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Let X and Y be two normed linear spaces of functions on [0,1] and let K: ¥ —> X
be an integral operator whose kernel K(x,y) is of rank n + 1. Let % denote the
image under K of the unit ball in Y. This article is concerned with the exact
determination of the n-width of % in X. It is also shown that the n-width of % in X
is equal to the best rank n tensor product approximation of the kernel K(x,y) in the
appropriate norm.

1. Introduction

Let X be a normed linear space and A a subset of X. The n-width of A
in X, in the sense of Kolmogorov, is defined as

4, X) = inf sup ylgfynllx =l (1.1)

where the infimum is taken with respect to all n-dimensional subspaces Y,
of X. Any, subspace ¥, for which the infimum is attained is called optimal.
Thus d,(%> X ) measures the degree to which % is approximable in X by
subspaces of dimension n. Various other n-width concepts appear in the
literature. For example, the linear n-width is often given by

85U X) = inf , inf f‘e‘%“x - B x| (1.2)
where Y, is an n-dimensional subspace and £, is any linear map from X to
Y,. (Thus, &, is the restriction from best approximations, as in d,, to
approximations linear in X.) There are many known examples where d,, and
§,, do not agree.

The exact determination of d,, 8, and other n-widths which abound in
the literature (see e.g., Pietsch [7], Tichomirov [10]) is, of course, generally
impossible to obtain. Much effort has nonetheless been devoted toward this
goal, as well as to the related task of determining the asymptotic behavior
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of these values as n — oo. This latter question is of importance not only in
approximation theory, but also in the study of ideals of operators between
Banach spaces (see, e.g., Pietsch [7], Triebel [11]).

We are here concerned with the exact determination of d, and §;, and the
characterization of optimal subspaces. This has been successfully pursued
in a few cases. Consider for example the case where X = L7[0, 1], and % is
the unit ball of the Sobolev space W'[0,1], ie, A ={f:
£ abs. cont. on [0, 1], || F@| r#[01] S 1). The n-widths d, and &, have
been obtained in the case r > 1 only for p = oo, arbitrary ¢q; ¢ = 1,
arbitrary p; and p = ¢ = 2, (see Kolmogorov [3], Tichomirov [9)], and [5]
and [4]). In fact, in these cases d, = &), and more importantly, it has been
shown that spline functions of degree r — 1 with n — r knots (depending on
p and g) form an optimal subspace for d, (and &)). The other cases remain
unsolved and, in fact, not even the asymptotic behavior of §, is known for
all p, g € [1, o0].

This interesting result concerning the optimality of splines of degree
r — 1 has its basis in the fact that Wg’ [0, 1] is essentially the image of a unit
ball under an integral map and in the total positivity structure of the kernel

(x — »)7\. In fact, if X = 1[0, 1], and

o = {K) = [} KW D: Wl < 1} (13)

where K(x,y) is a totally positive kernel, then for p, g as above (i.e., p = o0,
arbitrary g; etc.), there exist {n;}/_;, 0 < < --- <, < 1 (depending
on p, q) such that the subspace spanned by {K(x, )}/, is optimal for the
n-widths d,, and §/,. One would very much like to prove this property for all
P, q € [1,0]. n-widths of A of the form (1.3) are one generalization of
singular values of the kernel K in that for p =g =2, d,(%)

= Pns 1 (KTK)IY?, (see [4].

In Section 2 we consider the problem of the n-widths of rank n + 1
kernels, that is, A = {Kh: ||Ally < 1} (see (1.3)), where Y is some normed
linear space independent of X. Due to the nature of ¥, it is convenient to
consider 8, in place of &;, where

3, X) = ipf  inf IIhSIII:I:(’l”Kh Bh|y. (1.4)

We show that the quantities d,, J,, and the best rank n tensor product
approximation to the kernel K(x, y) in the appropriate norm (see Section 2),
are all equal for any rank n + 1 kernel with suitable conditions on the
nature of the norm. This latter problem is for X = Y = I2[0,1] and for
any real-valued kernel K(x,y) € I*([0,1]1x{0,1]), a classical result of
Schmidt [8].
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In Section 3 we prove that if, as in the previous example, p, ¢ € [1, «],
and K(x,y) is both totally positive and of rank » + 1, then it is possible to
choose an optimal subspace for the n-widths d, and 6, of the form

{KCem)hiap 0 <m <o <, < 1.

Section 4 is concerned with various examples and extensions of the
results of the previous sections. For example, if X = l;", and ¥ is the unit
ball in /)", then 4, is known if p > g, or if p = 1, ¢ = 2. However, if
m = n + 1, then we are able to compute d, exactly for all p, g € [1, o).

2. n-Widths of Rank » + 1 Kernels

In this section we consider several methods of approximating rank n + 1
kernels and show that they are all equivalent. In this, we follow the point
of view of [5].

Let ||, i = 1, 2 be two norms defined on X = C[0, 1] which have the
following properties:

1. ||+||; are continuous with respect to the max-norm on X, i.e., there is a
constant M such that ||-[|; < M||-|l,, i = 1, 2.

2. gl = llall, if g = |Al. | ‘
3. If |4l = sup{l(g,W): llgl; < 1,8 € X}, (& 1) = Jp g(x)h(x)dx), is
the conjugate norm, then |4, < oo for » € X, and

Il = sup{l(g, A)l: llgli- < 1,8 € X}

We define two norms on C([0, 1] X [0, 1]) as follows:

Operator Norm. |Klh = sup{I(Kh,2)l: Il < 1, llglhy < 1} where

Kh(x) = fo K(x,y)h(y)dy.
Property 3 implies that |[Kl} , = sup{||Khl}: ”h”| < 1}, which indicates
that |-, is the operator norm of K as a mapping from (X, |-[}-) into

X, [11I2)-

Tensor Product Norm. |K|, , = ||fl}, where f(¥) = ||K(:,y)lb. Note that
this definition is permissible since Property 1 implies that f € C[0, 1].

Lemma 2.1. [[Klh; < |Ky,-

PROOF.

&)l = | [ f e |swa
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<o f KGN MO 50 dy dx
= f | f 1xeollelax | im0l
< f; IKC) il ()l d

= [, FO)HO) gl
< | Ky 1Al llgll -

The lemma is proven. O

Let
& = {Kh: ||Al}, < 1}, and
87 = {KTg: |lglly < 1}, where

KT = transpose of K, and set

n
n = 1 — - )
(&) wirlx | X igl “ v 12

where (u ® v)(x,y) = u(x)v(y). Further, let X; denote the space X = C[0
1], with the norm ||-||. Then,

Lemma 2.2,
dn(ﬁl’;X2) < 8)1(@1‘;X2) < El','2(K)’
and d,(R7; X}) < 8,(87; X)) < EH(K).

PROOF. The left-hand side inequalities follow from the definitions of 4, and
8,. To obtain the right-hand side inequalities, we invoke Lemma 2.1 so that

for any {u;};—, {v;}i=; C X, -

n n
(k- £ wew)ns)| <|x- 3 uou| el
= = ,

Thus,

n n
”Kh - u,-(v,-,h)ll < ,K— S ueu| [k
<1 2 =1 12
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and

n
KTg - .21 (ui,g)ui . <
i=

n
K- 2 u; ®v; ”g”2'-
i=1 1,2

These inequalities easily imply the assertion of the lemma since 3/ u;(v;, k)
= Ph and X}, (v, g); = Q,8 are linear maps of X into [y,...,u,]
= span{y; ---,u,} and [v,,...,y,], respectively. The lemma is proven.

(]

The kernel X is said to be of rank n + 1 if
n+1
K = 21 ¢i ® 1!’,' s
=
where {¢),...,9,41) and {§;,...,¥,,1} are each linearly independent
subsets of X. The main result of this section is the following:
Theorem 2.1. If K is a rank n+ 1 kernel, then E{,(K) = 8,(8;X3)
=§,(87; X)) = d,(8,; X3) = d,(R%; X,) and their common value is

n+l

2 al¢l

n+l1

Eb"llz

i=1

6= min

S @.1)

The following two lemmas are used in the proof of the theorem.

Lemma 2.3. Let ¢, ..., ¢, be linearly independent functions in X. Given
any numbers (ay, . . ., G,,1), not all zero, there exist measures day, . . ., da,
such that

T [ 2X7Y B

k l
kaét

PROOF. Fi irst observe that from the linear independence of the {¢; :'“1, there

exist {x;}7%1, 0 < x; < -+ < x,41 < 1, such that the matrix C = ||C; il
Cj = ¢;(x;), is nonsmgular Since a # 0, the vector ¢ = Ca is nonzero
Construct any nonsingular (n + 1) X (n + 1) matrix B such that Bc = e,,,,

where (e,41); = 8, Let

n+1

dai=>‘23ydy’x’ i=1,..-,n,
j=1 !

where du, répresents point evaluation at x, and A is some nonzero constant
to be chosen later. Now,
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n+1

fy #/0M) = 3 By
n+1
= kg | By, ij
= (BC);.

Since BCa = e, ;, the lemma follows by Cramer’s rule, the nonsingularity
of BC, and the appropriate choice of A. O

REMARK 2.1. Note that (2.2) is equivalent to

1
ok ¢j(x)da,-(x)“ —n
J=1..., n+1
1 sn+l
S, (J.=laj¢,-(x))da,-(x)=0, i=1...,n @.3)

For ease of exposition, we introduce the following notation.

Definition 2.1. Let day, ..., da,, dB,, ..., dB, be measures, K € C([0,1]
x[0,1]),and 4; € C[0,1},i =1, ..., n + 1. We set

(G a) = uset | Ken a0

.....

Also,
K(dux, day, ..., da,,)
dy,,, dpy, ..., dB,
will often be denoted by
x, doy, ..., dan)
K .
(y’ dﬁla---’dﬁn -
Further,
x,dal,...,dan _ 1 _ i
U( L...,n+1 ) - k=o(,11?'.(..,n ufo u;(x) day(x)|| where dog = d,
j=1....n :
and

dal, ...,da,, _ 1
U( L...,b....n+ l) - k==(11,eft..,n ”_/(; “j(x)dak(x)". o
J=1,.. 1

e
JF*i
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The reason for the above notatio

n is partially contained in the following
lemma.

Lemma 24. If K = 3™ ¢, ® y, then

K(x, day, ...,da,,) _ x,dal,...,da,, ¥, d,Bl,...,d,Bn
yaB,..ndf) N L at UL h
and

day, ..., da )
K n
(dﬁl, .o dB,

ntl dal,...,da,, dﬁl""’ dﬂn
“i§1¢(1,...,f,...,n+1)4’(1,...,1‘,.. n+1)°

*>

PROOF. The first equality is a direct result of the fact that det(4B)

= (det A)(det B). The second equality follows from an application of the
Cauchy-Binet formula, (see Karlin [2, p. 1)).

PROOF OF THEOREM 2.1. We first prove the upper bound. Note that

n
n K) = .nf -_ . :
El(K) unf K ‘Zl u; ® v, 2
n
= K —_— ., . ® V.
4 €X i,j2=1 (4 ® 1) 12
¢; €R

Letdw, ..., da,, dBy, ..., dB, be any 2n measures for which K(z:::::f;:)
# 0. Then,

l (x,dal, . ,a'a,,)
,dBy, . ...d,
EfH(K) < yd Ay Ba/ ] L2
’ IK( al,...,dan)
dp,,...,dB,
by the choice of u,(x) = f§ K(x,»)dB,(»), v;(y) = ! K (x,y) da;(x), and c;;
appropriately taken. From Lemma 2.4, we obtain

&

(x’da]"--’dan) (y’dﬂlaﬂ'-9dﬂn
A L0000

U day, . da, aB,....dB,
P ¢(1,‘...,i,...n‘+ 1)‘P(1,...,i,...n+ 1),

Ef(K) <
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x,dey, ..., da,
N L...n+1 )|,

¢(y,dﬁl’ s ’dBn

L...,n+1

ad dal,...,dan dBl""’dﬂn )
2 "’(1, chent1 "’(1,...,:‘,...,n+ 1)|
Let
. i+1 da]’ adan
a,—( l) ¢(1,...,l, ’n+l),and
i+1 dﬂl} :dﬂn
b = (-1) ‘P(l,...,i, ,n+1
The above inequality then reduces to
n+1 n+1
S ao ||Z 6
E(5(K) < wrl ’
.21 a;b;
i=

for any {g;}/*], (b;)"*] obtained as above for which X**!g

= K(z:::::fk:) # 0. An application of Lemma 2.3 yields E»(K) < 6.
To prove the lower bound, we first note that &, is an n + 1 dimensional
subset of the n + 1 dimensional subspace [¢;, . ..,¢,.;] of X;. Since &, is
convex, centrally symmetric, and closed, it follows from Lemma 5 and
Theorems 5 and 6 of Brown [1] that d,(Ry;x) = mf{||g||2 g € boundary
of ®,.). Now, g = Kh = 3| a;¢, where a; = f3 y;(Dh(»)dy, i =1,
,n+ 1. Since (ay,...,8,4,) = 2| a;¢; is a homeomorphism, the
boundary of &, consists of all such g where (a;,...,a,,,) lies on the
boundary of the moment space

1
B = {(et e rmar)s & = f WOIHO)B Il < 1},

Since a € boundary of M, there exists a b € R™! such that
i(b,0)| < (b,a) forallc € M.

Hence |3 b,y < |21 4;b;], and thus

n+1 n+1

n+1 2 a;¢; .El bi‘Pi”

o = |3 a0, > 12l L
= .21 a;b;

18,
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Consequentl}/ we have shown that d,(®;X;) > 8. Similarly, d,(®7;X)
— it (IS Bhlhs (1, - bya) € O where R = (e - - Epar):
=3 ¢,(x)h(x)dx, lall,y < 1}. As above, it follows that d,(R5; X;) > 6. We
now apply Lemma 2.2,

It remains to be proven that the value & is, in fact, attained. Suppose that
{ak), {b¥}) is a m1n1m1z1ng sequence. We may renormalize these sequences
such that 3™ gk bk = 1 = I lbkl Hence b¥ — b;, through a subse-
quence, and therefore hmk,_,oo IIE"+ a¥ o1, = &/ b,y ll. Conse-
quently, some subsequence of {ak} also converges. The proof of the
theorem is complete. O

Several useful facts emerge from the proof of the theorem Suppose

8 = 8l lIlh, where § = Z7%1 3¢, & = ZiZ1 B,y and SiZ 1B, = 1.
Let da;, dB;,i = 1, ..., n be any 2n measures such that (2 2) (or (2.3)
holds for @; and b,, i=1...,n+1, respectlvely Set 7;(x) = fo K(x, »)

dg;(y), and v (y) = J},K(xy)da(x) i=1,...,n Since 1 = "b
= K( :;1 . ;g: ), we may define two projections B and Pgas follows.

1. B:X—|[%,...,4,] and satisfies

J; (Khex) ~ BA@)dm () = 0,i = 1,...,m h € X.

2. PpiX— [#),...,9,] and sa’(isﬁesfol [KTg(y) - Pi;g(y)]dﬁ,.(y) =0,i
=1,...,n g € X. Then,

1. [a,...,%,] is an optimal subspace for d,(R®,; X;) and 8,(8); X5),
and B 24

furnishes an optimal linear method of approximation.

2. [y, ...,5,] is an optimal subspace for ,(®7; X;) and §,(R7; X;),

and Pﬁ (25)

furnishes an optimal linear method of approximation.

3.E[K) = |K - E cy(u,®v) where %, 75, i,/ = 1,...,'n,
’j— 2

(2.6)

are as above and ¢; are appropriately chosen numbers.
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3. Measures of Smallest Support

Our goal in this section is to consider a class of kernels and to prove that
for these given kernels there exist optimal subspaces for 4,(®)/; X;) and
d,(®7; X)), (and also of course for 8,), which are of the form [K(x,m,), ...,

K(x,m,)] and [K(%,y) --,K(£,,y)], respectively, where 0 < m < :--
<1,<1land0 < § < --- < §, < 1. In other words, we seek conditions
on the kernel for which, in the notation of the previous section,

dw; = dy, ,i=1,...,n 3.1
dp; = au, Li=1...,n 3.2)
On the basis of (2.3), if this is possible, it would be necessary that
rank ;) =n, i=1...,n+Lj=1...,n
_ (3.3)
$¢)=0 j=1...,n
and analogously,
rank ly; ()l = n, i =
¥@)=0 j=1...,n

where as previously,

Before stating our result, the following definition is necessary.

|
-
S
+
—
~
!
—

(3.4)

n+1

3 ae,

ntl

Eab‘I

n+1 o
1= 5| = 1t =

Definition 3.1. A set {4, ...,u,} of linearly independent functions on X is
called a weak Chebyshev system if forall0 < x; < - <x,< 1,

1,..
I,j_—'dl',e-t..,ll”ui(xj)” - U(xl’ . 9x ) > 0

If strict inequality prevails above, then {u,, . . .,u,} is called a Chebyshev

system. )

In this section |-}, shall denote the usual IP[0, 1] norm, 1 < p < o0. We
now state the result.

Theorem 3.1. Let {4)1, .. ’¢'_l-;-?'+l’ .o _i_l} {\Pl, e ,Ip,_l,lll,+1, PP
Y hi=1,...,n+ 1, {¢;}/—;, and {\p,}," 16 all be Chebyshev systems on
[0,1]. Let p, q € [1,:]. If {g; "+1 and {b;};~ }, are such that 3™1 a/b;
= 1, and
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n+1

21 a;¢;

==

n+1

> by

jme]

5 =

b

q9 P

then 3™ @ ¢; and S B,y each have exactly n distinct zeros in (0, 1).

Recall that & is always the value of the minimum problem of Theorem

2.1.

Before embarking on the proof of Theorem 3.1, we record its conse-
quence.

Theorem 3.2. Let K = 31 ¢, ® ,, where {o;}71 and {y;)}7*} satispy the
conditions of Theorem 3.1. The Kolmogorov and linear n-widths of Ky
= {Kh: ||Ally < 1}, where (1/p) + (1/p’) = 1, as a subset of L7 are 6.
Moreover, if 3121 3,0/6) =0,j=1,...,n0< § < - <§,< 1,
and ;‘:}E,.lp,.(nj) =0/=1L..,n0<y < <, <1, then the
set {K(x,m) . ..,K(x,n,)} spans an optimal subspace for the n-widths, and
interpolation at &, . . ., §, is an optimal linear method of approximating K.

There is of course, on the basis of Theorems 2.1 and 3.1, a companion
result for @Z: as a subset of I7. We leave its precise formulation to the
reader.

The proof of Theorem 3.1 necessitates the following proposition. In all
that follows, we assume that as in Theorem 3.1, {¢,,... ,¢i~_1,¢,-+l, ceey
Srrtd (Vs oo WictsWints - s¥prr b = L ooy m+ 1, {)72), and {72
are Chebyshev systems on [0, 1].

Proposition 3.1. Let {d;}}* } be any real nonnegative numbers such that

I
St d, > 0. Then for fixed q € [1,], there is a unique $(x)
= 21 @, ¢,(x) which minimizes |3 a; &;ll, subject to the constraint
S \a;\d; = 1. Moreover, § has exactly n distinct zeros (sign changes) in

(0,1), and the a; alternate in sign.

PROOF. Assume that 1 < ¢ < oo. The case ¢ = oo will be handled separ-
ately.
Let ¢*(x) = 3™ a*¢,(x) be any function which minimizes

=721 ailly, with 725 laf|d; = 1.
We first wish to prove

16 1T sgn #* e (x) e |
0 2,

1 ) (3.5)
= [j;) |¢*(x)|qu][sgn atldy, k=1,...,n+ 1.

The problem in the proof of (3.5) is that |a| is not differentiable at 7, = 0.
This, of course, is irrelevant if d;, = 0, in which case the orthogonality

121



C. A. Micchelli and A. Pinkus

k ' 16* @17 [sen * () x = 0

is easily proven since there is then no restriction whatsoever on a;. If
d, > 0 and af # 0, then formula (3.5) is easily shown to hold (by the
Lagrange multiplier method, for example). In fact however, one cannot
have af = 0 if d; > 0. To see this note that if d, > 0 and af = 0, then
taking left and right limits, it is necessary that

= [ 16* I [sgn ¢ (k) e > [ N (x)qux]dk,

i.e., both inequalities hold. Since d,[fi |$(x)|?dx] > 0, this is impossible.
Thus(35)holdsfora11k—l ceesn+ 1, ;
Now, consider mmllZ" 1 a;¢; ||, subject to the constraint S a(-1)'4

i=1

= 1. Let¢(x) = 2| a;¢; (x) be the unique solution to this problem, w1th
pO ! Ei(—l)idi = 1. By the method of Lagrange multipliers it follows that

Jy eI sn Fourax = | [ BN ax | 1

k=1...,n+ 1.

(3.6)

Since {(~1)*d,)it!, weakly alternates in sign, and {p,(x)}7} is a
Chebyshev system on [0, 1], it is necessary that $(x) have n sign changes in
(0,1). The condition that {¢;,...,®i_1>Pis1s--+»Pps1} IS a Chebyshev
system on [0,1] for i = 1, ..., n + 1, implies that since $(x) has n sign
changes on (0,1), we must have @;a;,, < 0,i = 1, ..., n. The constraint
then implies that @;(—=1) >0, i=1,...,n+ 1 so that, in fact, 1 =
Srtl a(-1)d, = Z"H |a;|d,, i.e., the {@; } +1 are permissible in the original
minimum problem

Now, assume that |31 4! Foill, < =it @ |, and ¢*(x) # =F(x).
Thus, from (3.5) and (3.6),

S (1 sgn B0 = 16 ()1 [sgm 6* Dbk (D x

= (IBlE D" = llo* |fIsen af Dy, =1...,n+1

Since by assumption, {I|¢||q(—1)k * lo*fsenaf ] k =1,...,n+ 1,
weakly alternates in sign (the orientation of which is independent of the +),
>0, k=1,...,n+1, and {¢}_ is a Chebyshev system it is
necessary, as previously, that (FC)[* [sga 0] = [¢* ()" [sgn ¢*(x)])
exhibits at least n sign changes in (0,1), and » + 1 if {BlIZ(—1)" = [l6* |
-sgnap), k= 1,...,n+ 1is an identically zero sequence for some +.

3.7

122



n-Widths of Rank » + 1 Kernels

However, it is easily seen that

sgn(|B()17 " [sgn ()] = [6* (0|7 '[sgn * (X)) = sgn(B(x) = ¢* (x)).

Since $(x) # +¢*(x), we cannot have ||¢||1s )t = +||¢* |L‘§sgna for
k=1,...,n+ 1. Thus, $(x) = ¢*(x) = I, @ = a*)¢,(x) exhibits ex-
actly n sign changes in (0,1) and the onentatlon of the sign is fixed,
independent of the +. This implies that |g;| > |a*| for all i = 1,

n+ 1. Hence 1 = 31 |g,|d; > 371 |a¥|d, = 1. This is a contradlctlon
The proposition, including the uniqueness, has been proven for 1 < ¢
< o0.

We now prove the proposition for ¢ = oo. Let $(x) = 37! 7,4.(x) be
the polynomial which equioscillates at » + 1 points in [0,1], and is normal-
ized such that @,(—1)' > 0,i=1,...,n+ 1, and 37! |a,|d 1. It is
well known that § exists and is umque Let o*(x) = ,"+{ a ¢,(x) be any
other polynomial (¢* % +3) for which X" |a*|d, = 1. If ||¢*||°°
< I|¢|5, then, since $(x) equioscillates at n + 1 points, $(x) = ¢*(x)

1 @ = a¥)¢;(x) must have at least n weak sign changes with
orlentatlon independent of the *. As before, this implies that [a;| > |af |,

forali=1,...,n+ 1, and the result follows. Note that for ¢ = oo, $(x)
is mdependent of the {d} 1 up to multiplication by a constant. This fact
is further examined in Remark 4.1. The proposition is proven. O
PrROOF OF THEOREM 3.1. Let {a*}7*] and {b*}"*! be any solution to:
Minimize |37] ¢;¢; I, 112 mlp, i¥ill, subject to | "+1 a;b;| = 1. Assume
that ¢* = "+{ a’ ¢; does not have r distinct zeros in (0,1). Then,
n+1 n+1 n+1 n+1
= at ¢; P bfy; P> al ¢, 2 by,
i=1 g lli=1 p S i=1 glli=1 p
n+1 Z n+1 .
S atbf = laflibf
i=1 i=1
n+1 n+l
_21 ‘71 ¢1 ) .21 bl* ‘Pi
: i= glli= p
> n+l1 . ’
3, laliot |

where (a; },=1 depends upon {16} 1} ntl 1 (chosen as in Proposition 3.1), and
are such that @ =32, a;¢; has n dxstxnct zeros in (0,1). Similarily, if
Y =3 b"’ y; does not exhibit n distinct zeros, we agam apply Proposx-
tion 3. l to obtam
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n+l n+1 n+l n+l _
P af‘Pi S by, l 2 a; 2 by,
i=1 i=1 > i=1 i=1 p
n+l n+l
3 atr Py

where the {5; }""’1 depend upon {|a; |}, 1- Now, by Proposmon 3.1, both the
{@)] and the {5,}71] alternate in sign. Thus, 3"} |7,||3,| = IZ,":} a;b;l.
Whence we have shown

n+l . n+1 n+1 n+1
* _ -
Zai‘P,' 2 bty 2 a 2 by,
i=1 i=1 P i=1 i=1 p
n+1 n+1 ’
S arb!
i=1
a contradiction. The theorem is proven. O

4. Remarks and Examples

RESULT 4.1. In the proof of Proposition 3.1, it was shown that if {¢; "+} has

the Chebyshev properties of Theorem 3.1, and 4; > 0, i =1,...,n+ 1,
St d, >0, then the unique solution of mmllE,"f} a; ;L subject to the
constraint 371 |a;|d; = 1,is § = S a4, Furthermore $, up to multi-
plication by a constant, is independent of the {d, r} . Hence, in particular,
the zeros {¢;}7_, of & are independent of {d;}"~ As a result we have the
following proposition.

Proposition 4.1. Let K = S™1 ¢, ® y; where {qb,}"+1 and (4,Y{*" satisfy the
conditions of Theorem 3.1. For every p € [1, o], [K(§;,)), ..., K(§,,)] is
an optimal subspace in the Kolmogorov and linear n-widths d,, (QIT ; IP) and
8,(R7 ; IP). Further, for each p € [1, 0}, there exist {(nF};—,, such that the
set [K(x,m{),...,K(x,nF)] is an optimal subspace for the n-widths
d,(R,; L*) and 8 (Q L°°) and interpolation at §, . . . , &, (independent of
p)is an optimal method of approximating .

REMARK 4.2. We have concerned ourselves, in Section 3, with a particular
type of optimal subspace. Many other optimal subspaces may of course be
constructed (see (3.1)<3.4)). For example, it is possible, under the condi-
tions of Theorem 3.1 and since ¢ and ¢ have n sign changes in (0, 1), to
choose

I
Jp—
x

da, = dy, +du,, i
dB’-:d[L{.'de.g-H‘ ,i=1,...,n

forsome 0 < [ < <1 LLOL{ < <L <L Ifg= oo,
we may further choose the {'ri}',’“, as the points of equioscillation of .
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REMARK 4.3. The results of Section 3 may be extended to weak Chebyshev
systems. The major difficulty in such an extension is to prove the rank
condition given in (3.3) and (3.4). This condition may be verified provided
that the convexity cone associated with the weak Chebyshev system
{$1...,%,41) contains a weak Chebyshev system of dimension at least .
For details of this type of argument and the meaning of the condition on
the convexity cone, see [6].

REMARK 4.4. Note that no claim of uniqueness has been made in Theorem
3.1. However, if p or ¢ = oo, then uniqueness (by which we mean
uniqueness up to a multxphcatwe constant) does in fact obtain. For
example, if p = oo, then the {b} 1 are determined independently of g,
and for fixed {|5; |}"+l, the {g; }"—1 are unique by Proposition 3.1. In
addition, if p = ¢ = 2, then we have from (3.6)

fol () (x)dx = []: |$|2dx]7)k, k=1...,n+1
@4.1)
¥ = 1 sidla.  k=1..nt

By definition, K(x,5) = i} ¢x(x)¢(»). Now set

n+l1
KKT(52) = [ KenKeD = 3 ae@| [ w0y0)s]

An application of (4.1) yields

f) kKT )z = 56| f) ool ax] [ f) #OEa ]

ie., ¢(x) 1s an eigenfunction of KK7(x,z) with eigenvalue [fy |<1>(x)|2 dx]

| fo |t[/( )2 dyl KK T(x, z) 1s a positive semidefinite kernel of rank n + 1
and [fg 190 dx]fg |9( ) dy] is its smallest nonzero eigenvalue (see
Kolmogorov [3], and Melkman and Micchelli [4]). Thus, if we can show
that this eigenvalue has multiplicity 1, then ¢(x) is unique. The Chebyshev-

ian conditions on the {¢,}7"! and {y;}]"" are sufficient to prove the result

REMARK 4.5. Let A be any (n + 1) X (n + 1) nonsingular matrix. Let Il ||1
and |||, be two vector norms on R™! and let R

R XV 1. X ¢ = inf inf ||4
) L X 2 2) = in nsﬁ.lzlye"“ x = ylbs .
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where ¥, is any k-dimensional subspace of R"™!, The following is a simple
consequence of the previously mentioned result of Brown [1].

Lemma 4.1. d,(4; X;; X,)do(471 5 X5 X,) = 1.
PROOF.

-1 -1 -1
4 (A4 X3 %) = min 14Xl _ [max llxlh] _ [m% 4 ym]
y

x#0 [Ixly L0 l4xly Iyl

= [dy(a™!; X35 X)) 7.
If we let ||-||, denote the usual /, norm in R™1, then from the above
lemma d,(4; 1,5 1,) = [do(A"5 1,3 1) 7.
From Section 2 we in fact obtain d,(4;/,;1,) = 8,(4;1,;1)) = Ej ,(4),
where 8,(4;1,;1,) is as earlier defined, and
Ej(4) = inf [l4 - Bly,

rank B<n

where B is any (n + 1) X (n + 1) matrix of rank < n, and

n+1 sn+l Plaq\fr
Il = [gl (i§1 |Cy|q) ] '

J

One may obtain Lemma 4.1 via the analysis of Sections 2 and 3 by, for
example, the choice of ¢;(y) = X[(i — 1)/(n + 1),i/(n + D](»),i =1,
oo, n+ 1, and ¢;(x) = 37 @, XI(k — 1)/(n + 1),k/(n + 1)](x), where
X, is the usual characteristic function of the interval [a, b]. Hence,

n+1 n+1
12 x,.¢l,.||q||,_§1y,-¢,.||,,,=m I|A|:(c|L,II))|)I|pg L
n+ X;5 Vi X,y +1
S Il D
p
1 .l Axll,

T+ 1P xe0 ),

REMARK 4.6. The problem of determining min,.qo(ll4xll,)/(l|x|},) where A
is an (n + 1) X (n + 1) nonsingular matrix cannot, in general, be put in a
more closed form. However, in certain cases, something more may be
established.

Case I. Let A = diag[),...,\,.), i.e, 4 is an (n + 1) X (n + 1) diago-
nal matrix with diagonal entries A;, ..., A,;;- We assume that |A;| > 0, i
=1,...,n+ 1,1ie., that 4 is nonsingular. Then
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Proposition 4.2. For 4 as above,

i=1,...,n+1

n+1 i/r
(E IA,-I’) » 1<p<g»

i=

dy(4;0,;1) = {

where 1/r = 1/g— 1/p < 0.
PROOF. By previous remarks, for p, ¢ # oo,

ll4xll,
4ipily) = g g

n+1 Vq
(jzl p\jleq)

mig ——"—"——¥—¥—¥—/""—
x#0 /sn+l p
x~|p)'

1

qq/p/
>o(§wf )

7=l

n+1 l/q
= ( min I}\jlq'g.‘?/l’)

20 j=1

5=l

3
"Mi\-\

3
—M.t':\

Now, if g/p < 1, then, since 2"“ 1A Iq'r‘7/P is concave in 7, the minimum
must occur at an extreme point and thus

d,(4;1, I)—i 'n |)\|

If ¢/p > 1, then "H 1 1A% a/p is stnctly convex and thus the minimum
occurs at an mtenor pomt of the simplex, 7; > 0, 2"“ 7, = 1. By Lagrange

multipliers, the {r;}7*! must satisfy

|}\j|qa}-q/p_ =n Jj=1...,n
n+l1
jgl 7 =1
Hence,
; O

T Ew)
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and therefore,

n+1 r-/
n+l aa V/q jE |>\J|q|}‘]| o Vq
N2,.9/P - =
(j§1 A1 ) [ n+l a/p ]
(Z )"
n+l1 ,
jgl |>‘j| 1/q n+1 , 1r
n+1 , lI/P] = [gl |}\j| ] )
(Z wr)

Case II. If p =g =2, then d,(4;1;h) = AV2, where A, ay) 1S the
smallest positive eigenvalue of the positive definite matrix A7 A4. This
follows from

Ax  (Ax.A 1/2 . (AT Ax, x /2
I ||2___[ nw] =[%(_L)] = A2,

mi
x#0 ||x|, x#0  (x,x) (x, x)

by the min-max characterization of eigenvalues for symmetric matrices.

Case I11. Let A be such that all n X n minors of 4 are nonnegative, and
of course, det 4 = |A| # 0. (This is the analogue to the Chebyshevian

requirements on {¢;}7*" and {y;}"*").
Let A(1 """ ":"""“) denote the determmant of the n X n submatnx of A

1.

|4l
dn(A;Ip;loo)= +1 n+l n P l/p
("2 [2 A(l---,z,...,n+ 1)] )
Jj=1 Li=1 1eeesf oo ,n+1
2.
A
a4 b3 1) = 14

sl RS NN SN T A O
(Z 120 I)
i=1 Lj=1 L....Jy...,n+1

where 1/g + 1/¢g’ = 1.
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3.
7Y — i |4
(45l 3 1) = min —— - PTG
(2 [A(l,...,z,...,n+1)] )
i= Leoosfyouosn+1
4,
- |4]
d,(4;1,;4) = min

i sntl . NV
(2 [A(l""’i’""n-'-l ] )
Jj=1 L,...of,...,n+ 1
REMARK 4.7. It is worth noting that (2.1) may be simplified in the case that

Ik = I, and ¢; = ¢;. For here it is easily shown that it is possible to
choose @; = b,,i = 1,..., n + 1, since

n+1
] n+1 n+1 igl ai¢l' . 2
gon 21 % ¢‘| x—l bidi “ > [ ntl 1/2]
i%aibi:] (2 a,z)
i=1
n+1

and equality is, in fact, obtained. Thus, if {¢;};=, satisfies the usual
Chebyshevian properties of Section 3, then it follows that in d,, (@p; IF), the
nodes which determine the optimal subspace in Theorem 3.2, and the points
of interpolation, are one and the same.
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