

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 372 (2003) 305–323 www.elsevier.com/locate/laa

Rank restricting functions

Aharon Atzmon^a, Allan Pinkus^{b,*}

^aSchool of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel ^bDepartment of Mathematics, Technion, I.I.T., Haifa 32000, Israel Received 21 February 2003; accepted 12 April 2003

field 21 February 2005, accepted 12 April

Submitted by H. Schneider

Abstract

In this paper we characterize, for given positive integers k and d, the class of functions $f : \mathbb{R} \to \mathbb{R}$ such that for every $n \times m$ real-valued matrix $A = (a_{ij})_{i=1}^{n} j_{j=1}^{m}$ (arbitrary n and m) of rank at most k, the matrix $f(A) = (f(a_{ij}))_{i=1}^{n} j_{j=1}^{m}$ has rank at most d, as well as the class of functions $g : \mathbb{C} \to \mathbb{C}$ such that for every $n \times m$ complex-valued matrix $A = (a_{ij})_{i=1}^{n} j_{j=1}^{m}$ (arbitrary n and m) of rank at most k, the matrix $g(A) = (g(a_{ij}))_{i=1}^{n} j_{j=1}^{m}$ has rank at most d. For $k \ge 2$ each such function f is a polynomial of an appropriate form which we shall exactly delineate, while each g is a polynomial in z and \overline{z} , also of an explicitly delineated form. For k = 1 the class of such functions, in each case, is significantly different. Nonetheless it is via the study of the case k = 1 that we are able to characterize such functions where $k \ge 2$. \mathbb{C} 2003 Elsevier Inc. All rights reserved.

AMS classification: 15A03; 47A15

Keywords: Rank restriction; Dilation invariant subspace

1. Introduction

In this paper we prove two main results, one for real-valued functions, the other for complex-valued functions.

Let f denote a real-valued function defined on all of \mathbb{R} . We say that f takes matrices of rank k to matrices of rank d if for every real-valued matrix $A = (a_{ij})_{i=1}^{n} \sum_{j=1}^{m} (a_{ij})_{j=1}^{n} (a_{ij})_{j=1}^{n} (a_{ij})_{j=1}^{n}$

* Corresponding author.

E-mail address: pinkus@techunix.technion.ac.il (A. Pinkus).

^{0024-3795/\$ -} see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0024-3795(03)00549-4

(arbitrary *n* and *m*) of rank at most *k*, the real-valued matrix $f(A) = (f(a_{ij}))_{i=1}^{n} \sum_{j=1}^{m} f(A)$ has rank at most *d*. We similarly let *g* denote a complex-valued function defined on \mathbb{C} , and say that *g* takes matrices of rank *k* to matrices of rank *d* if for every complex-valued matrix $A = (a_{ij})_{i=1}^{n} \sum_{j=1}^{m} f(A)$ (arbitrary *n* and *m*) of rank at most *k*, the complex-valued matrix $g(A) = (g(a_{ij}))_{i=1}^{n} \sum_{j=1}^{m} f(A)$ has rank at most *d*.

The two main results of this paper are the following.

Theorem 1. Assume $k \ge 2$, and $f : \mathbb{R} \to \mathbb{R}$ is measurable. Then f takes matrices of rank k to matrices of rank d if and only if

$$f(t) = \sum_{\ell=1}^{p} \alpha_{\ell} t^{m_{\ell}},$$

where the m_{ℓ} are distinct nonnegative integers, $\alpha_{\ell} \neq 0$, $\alpha_{\ell} \in \mathbb{R}$, $\ell = 1, ..., p$, and

$$\sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}} \leqslant d.$$

The characterization in the case k = 1 is somewhat different. The class of functions is substantially larger and is given explicitly in Theorem 5. It is essentially all appropriate solutions of an Euler equation of degree d on all of \mathbb{R} . Despite the difference in the character of the solutions for k = 1 and $k \ge 2$, the analysis of the case k = 1 will be used to prove Theorem 1.

Theorem 2. Assume $k \ge 2$, and $g : \mathbb{C} \to \mathbb{C}$ is continuous. Then g takes matrices of rank k to matrices of rank d if and only if

$$g(z) = \sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}},$$

where the (m_{ℓ}, n_{ℓ}) are distinct pairs of nonnegative integers, $\beta_{\ell} \neq 0, \ell = 1, ..., p$, and

$$\sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}} \binom{k+n_{\ell}-1}{n_{\ell}} \leqslant d.$$

We also characterize all $g : \mathbb{C} \to \mathbb{C}$ which take matrices of rank 1 to matrices of rank *d*. Here the class of functions is significantly different and larger. This result may be found in Theorem 8. The proof of Theorem 2 depends upon this result.

This paper is organized as follows. In Section 2 we consider the case k = 1 for real f. In Section 3 we prove Theorem 1. The complex case is considered in Section 4.

There is a fairly extensive literature on operators which influence rank. See, for example, the many articles in the 1992 volume 33 of *Linear and Multilinear Algebra*

307

devoted to linear preserver problems. However the problems considered in these articles are different in character. They consider functions which operate on the full matrix, e.g., f(A) = PAQ where P, Q are appropriate matrices, rather than our "entrywise" functions $f(A) = (f(a_{ij}))_{i=1}^{n} m_{j=1}^{m}$. The type of function operation on matrices which we deal with has been considered in the literature in connection with a variety of problems. Functions taking positive definite or Hermitian matrices to positive definite or Hermitian matrices have been explicitly characterized (see e.g. [3,7,13]). Functions which preserve and generalize spectral radii inequalities in connection with Hadamard-like products have been studied (see e.g. [5,8]). The problem considered in this paper was motivated in part by a paper of Pinkus [12] (see also [11]), wherein are characterized real-valued functions f for which $f(\langle x, y \rangle)$ is a strictly positive definite kernel. Here $\langle \cdot, \cdot \rangle$ is a real inner product, and x and y are elements of some real inner product space. This problem is equivalent to that of characterizing those f which take all symmetric positive definite matrices of rank $\leq k$, with no two rows identical, to matrices of full rank.

2. Real f and the case k = 1

We start by considering the simplest case of k = d = 1, i.e., real-valued functions taking matrices of rank 1 to matrices of rank 1.

Proposition 3. Assume $f : \mathbb{R} \to \mathbb{R}$ is measurable. Then f takes matrices of rank 1 to matrices of rank 1 if and only if f is one of the following functions, where $C, c \in \mathbb{R}$:

(a) C, (b) $C|t|^c$, f(0) = 0, (c) $C|t|^c(\operatorname{sgn} t)$, f(0) = 0.

Proof. Obviously the constant function, i.e., f(t) = C for all t, takes every matrix to a matrix of rank at most 1. Let us assume that f is not the constant function. The matrix

 $\begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$

is of rank 1 for any $a \neq 0$. Thus

$$\begin{pmatrix} f(0) & f(0) \\ f(a) & f(0) \end{pmatrix}$$

must also be of rank at most 1. As its determinant is f(0)(f(0) - f(a)) and there exists an *a* such that $f(0) - f(a) \neq 0$ (*f* is not the constant function), we must have f(0) = 0.

Now consider the matrix

$$\begin{pmatrix} xy & y \\ x & 1 \end{pmatrix}$$

of rank 1, and set f(1) = C. Thus

$$\begin{pmatrix} f(xy) & f(y) \\ f(x) & C \end{pmatrix}$$

is of rank 1 implying

$$Cf(xy) = f(x)f(y)$$

for all $x, y \in \mathbb{R}$. If C = 0, then f(x) = 0 for all $x \in \mathbb{R}$, a contradiction. This is a Cauchy equation. From Aczél [1, p. 41] we have that if, for example, f is measurable (less will suffice) and not the constant function, then f is necessarily of one of the following forms with arbitrary $C, c \in \mathbb{R}$:

(b) C|t|^c,
(c) C|t|^c(sgn t),

for $t \neq 0$, and satisfies f(0) = 0.

The converse direction, i.e., if *f* has the form (a), (b) or (c), then *f* takes matrices of rank 1 to matrices of rank 1, easily follows using the fact that matrices are of rank at most 1 if and only if they are of the explicit form $A = (b_i c_j)_{i=1}^{n} \sum_{j=1}^{m}$.

The above proposition also follows as a consequence of these next two results which characterize functions taking matrices of rank 1 to matrices of rank d.

Proposition 4. Let $f : \mathbb{R} \to \mathbb{R}$. Then f takes matrices of rank 1 to matrices of rank d if and only if f is an element of a dilation invariant subspace of dimension at most d.

A *dilation invariant subspace* X over \mathbb{R} is a linear subspace with the property that if $g \in X$ then $g(a \cdot) \in X$ for every $a \in \mathbb{R}$.

Proof. Let us assume that $f : \mathbb{R} \to \mathbb{R}$ takes matrices of rank 1 to matrices of rank *d* and, without loss of generality, that there exists a real matrix $A = (b_i c_j)_{i,j=1}^d$ of rank 1 for which f(A) is of exact rank *d*, i.e., det $f(A) \neq 0$. Consider for each $x, y \in \mathbb{R}$ the $(d + 1) \times (d + 1)$ matrix

$$B = \begin{pmatrix} xy & xc_1 & \cdots & xc_d \\ b_1y & b_1c_1 & \cdots & b_1c_d \\ \vdots & \vdots & \ddots & \vdots \\ b_dy & b_dc_1 & \cdots & b_dc_d \end{pmatrix}$$

309

of rank 1. By assumption we have

$$\det f(B) = 0.$$

Since det $f(A) \neq 0$, expanding det f(B) by its first row and column gives us the equation

$$f(xy) = \sum_{i,j=1}^{d} e_{ij} f(xc_j) f(b_i y).$$
 (1)

Note that this can be rewritten in various ways in the form

$$f(xy) = \sum_{k=1}^{d} r_k(x) s_k(y).$$

Let

$$\mathscr{R} = \operatorname{span}\{f(a \cdot) : a \in \mathbb{R}\}.$$

 \mathscr{R} is a dilation invariant subspace. From (1) we see that it is of dimension at most d, since each $f(a \cdot)$ is a linear combination of the $\{f(c_j \cdot)\}_{j=1}^d$.

On the other hand, if f is an element of a dilation invariant subspace \mathcal{R} of dimension at most d, then we can write

$$f(xy) = \sum_{k=1}^{d} r_k(x) s_k(y),$$

for some functions $\{r_k\}_{k=1}^d$ and $\{s_k\}_{k=1}^d$. If A is a rank 1 matrix, then $A = (b_i c_j)_{i=1}^n j_{j=1}^m$. Therefore

$$f(b_i c_j) = \sum_{k=1}^d r_k(b_i) s_k(c_j) = \sum_{k=1}^d B_{ik} C_{kj},$$

i.e., f(A) is the pointwise sum of *d* matrices of rank at most 1, or alternatively, the $n \times m$ matrix f(A) is the product of an $n \times d$ and a $d \times m$ matrix, and thus f(A) is a matrix of rank at most *d*. \Box

We can now explicitly characterize functions taking matrices of rank 1 to matrices of rank d.

Theorem 5. Assume $f : \mathbb{R} \to \mathbb{R}$ takes matrices of rank 1 to matrices of rank d and f is measurable. Then f is a C^{∞} function on $\mathbb{R}\setminus\{0\}$. It is a solution thereon of a nontrivial Euler equation of degree at most d, i.e., satisfies

$$\sum_{\ell=0}^{d} c_{\ell} t^{\ell} f^{(\ell)}(t) = 0,$$
(2)

for $t \neq 0$, where the $c_0, \ldots, c_d \in \mathbb{R}$ are not all zero.

To be more exact it is a solution of (2) of the precise form

$$f(t) = \sum_{j=1}^{m} p_{1j}(\ln|t|)|t|^{\lambda_j} + p_{2j}(\ln|t|)|t|^{\lambda_j}(\operatorname{sgn} t) + \sum_{j=1}^{n} \left[q_{1j}(\ln|t|)|t|^{\mu_j} \cos(\nu_j \ln|t|) + r_{1j}(\ln|t|)|t|^{\mu_j} \sin(\nu_j \ln|t|) + q_{2j}(\ln|t|)|t|^{\mu_j} \cos(\nu_j \ln|t|)(\operatorname{sgn} t) + r_{2j}(\ln|t|)|t|^{\mu_j} \sin(\nu_j \ln|t|)(\operatorname{sgn} t) \right],$$
(3)

where the $\{\lambda_j\}_{j=1}^m$ are distinct values in \mathbb{R} , the $\{\mu_j \pm i\nu_j\}_{j=1}^n$ distinct values in $\mathbb{C}\setminus\mathbb{R}$, the p_{1j} , p_{2j} , q_{1j} , q_{2j} , r_{1j} and r_{2j} are polynomials, and

$$\sum_{j=1}^{m} (\partial p_{1j} + 1) + (\partial p_{2j} + 1) + 2 \sum_{j=1}^{n} (\max\{\partial q_{1j}, \partial r_{1j}\} + 1)$$
$$+ (\max\{\partial q_{2j}, \partial r_{2j}\} + 1) \leqslant d,$$

where ∂p denotes the degree of the polynomial p (with $\partial p = -1$ if p = 0).

Proof. As $f : \mathbb{R} \to \mathbb{R}$ takes matrices of rank 1 to matrices of rank *d* it follows from Proposition 4 that *f* belongs to a dilation invariant subspace \mathscr{R} of dimension at most *d*. It is well known (see e.g. [2,6,10,14] and references therein) that every *translation invariant* subspace of dimension at most *d* of measurable functions on all of \mathbb{R} is exactly the space of solutions of

$$\sum_{\ell=0}^{d} a_{\ell} g^{(\ell)}(s) = 0 \tag{4}$$

for all $s \in \mathbb{R}$, $a_0, \ldots, a_d \in \mathbb{R}$ not all zero. A change of variable $x = e^s$ (or $x = -e^s$) implies that each $f \in \mathscr{R}$ must satisfy an equation of the form (2) on \mathbb{R}_+ and on \mathbb{R}_- . In fact we can assume that it is the same equation on both \mathbb{R}_+ and \mathbb{R}_- . This follows from the dilation invariance, but can also be proven directly as follows.

 ${\mathcal R}$ is finite dimensional and therefore closed under uniform convergence on compact sets. Furthermore

$$\frac{f(x(y+h)) - f(xy)}{h} \in \mathscr{R}$$

for every $h \neq 0$. As all solutions of (4) are in $C^{\infty}(\mathbb{R})$, it follows that f is in $C^{\infty}(\mathbb{R}\setminus\{0\})$, and thus

$$xf'(x) = \frac{\mathrm{d}}{\mathrm{d}y}f(xy)\Big|_{y=1} \in \mathscr{R}$$

for $x \in \mathbb{R} \setminus \{0\}$. Repeated applications of the above imply that

$$x^k f^{(k)}(x) = \frac{\mathrm{d}^k}{\mathrm{d}y^k} f(xy)\Big|_{y=1} \in \mathscr{R}$$

for k = 0, 1, ..., d. As \mathscr{R} is a space of dimension at most d, these d + 1 functions are linearly dependent. Thus f must satisfy an equation of the form (2) on $\mathbb{R} \setminus \{0\}$.

We know the solutions of (2) (see e.g. [4, p. 148]). Solutions of (2) on $(0, \infty)$ are obtained as linear combinations of the following functions. We consider the polynomial

$$p(x) = \sum_{\ell=0}^{u} c_{\ell} x(x-1) \cdots (x-\ell+1).$$
(5)

Associated with each real root λ of p of multiplicity m we have the m solutions $(\ln t)^k t^{\lambda}$, $k = 0, \ldots, m - 1$. Associated with each pair of complex conjugate roots $\mu \pm i\nu$, each of multiplicity m, we have the 2m solutions $(\ln t)^k t^{\mu} \cos(\nu \ln t)$ and $(\ln t)^k t^{\mu} \sin(\nu \ln t)$, $k = 0, \ldots, m - 1$. (We are simply taking a real basis for span{ $(\ln t)^k t^{\mu \pm i\nu}$ }.) On $(-\infty, 0)$ we have the same class of solutions where t is replaced by |t|. Our function f is in the linear space generated by these functions. These are the functions which appear in (3), with an important difference. Solutions of (2), assuming $c_d \neq 0$, form a d dimensional subspace on \mathbb{R}_+ , a d dimensional subspace on \mathbb{R}_- , and thus a 2d dimensional subspace of $C(\mathbb{R} \setminus \{0\})$. However f is an element of \mathcal{R} , a dilation invariant subspace of dimension at most d of the solution space of (2).

We claim that each element of a dilation invariant subspace of dimension at most d which satisfies (2) is of the form (3). To see this, first note that \mathscr{R} is both positive and negative dilation invariant. That is, if $f(\cdot) \in \mathscr{R}$ then we also have $f(-\cdot) \in \mathscr{R}$. Thus any $f \in \mathscr{R}$ can be decomposed into the sum of an even and odd function, both of which belong to \mathscr{R} . That is,

$$\mathscr{R} = \mathscr{R}_{e} \oplus \mathscr{R}_{o}$$

where \mathscr{R}_e and \mathscr{R}_o consist of the even and odd functions in \mathscr{R} , respectively. Furthermore \mathscr{R}_e and \mathscr{R}_o are dilation invariant and

 $\dim \mathscr{R} = \dim \mathscr{R}_{e} + \dim \mathscr{R}_{o}.$

Let f = g + h where $g \in \mathscr{R}_e$ and $h \in \mathscr{R}_o$. Then g is necessarily of the form

$$g(t) = \sum_{j=1}^{m} p_{1j}(\ln|t|)|t|^{\lambda_j} + \sum_{j=1}^{n} \left[q_{1j}(\ln|t|)|t|^{\mu_j} \cos(\nu_j \ln|t|) + r_{1j}(\ln|t|)|t|^{\mu_j} \sin(\nu_j \ln|t|) \right],$$

where the p_{1j} , q_{1j} and r_{1j} are polynomials, the $\{\lambda_j\}_{j=1}^m$ in \mathbb{R} and the $\{\mu_j \pm i\nu_j\}_{j=1}^n$ in $\mathbb{C}\setminus\mathbb{R}$ are the roots of (5) of appropriate multiplicity (at least $\partial p_{1j} + 1$, j = 1, ..., m, and max $\{\partial q_{1j}, \partial r_{1j}\} + 1$, j = 1, ..., n, respectively), and

$$\sum_{j=1}^{m} (\partial p_{1j} + 1) + 2 \sum_{j=1}^{n} (\max\{\partial q_{1j}, \partial r_{1j}\} + 1) \leq \dim \mathscr{R}_{e}.$$

Similarly, h is necessarily of the form

$$h(t) = \sum_{j=1}^{m} p_{2j} (\ln|t|) |t|^{\lambda_j} (\operatorname{sgn} t) + \sum_{j=1}^{n} \left[q_{2j} (\ln|t|) |t|^{\mu_j} \cos(\nu_j \ln|t|) (\operatorname{sgn} t) + r_{2j} (\ln|t|) |t|^{\mu_j} \sin(\nu_j \ln|t|) (\operatorname{sgn} t) \right],$$

where

$$\sum_{j=1}^{m} (\partial p_{2j} + 1) + 2 \sum_{j=1}^{n} (\max\{\partial q_{2j}, \partial r_{2j}\} + 1) \leq \dim \mathscr{R}_{o}.$$

This proves that f is of the form (3). \Box

Every f of the form (3) takes matrices of rank 1 to matrices of rank d, modulo the fact that we have not defined f at 0. From (1) it easily follows (substitute y = 0 therein) that if the constant function is not in \Re , then f(0) = 0.

3. Real *f* and the case $k \ge 2$

Based on Theorem 5 we first prove that in the case $k \ge 2$ our functions f are necessarily polynomials. We will then delineate their possible explicit form, dependent upon k and d.

Proposition 6. Assume $f : \mathbb{R} \to \mathbb{R}$ is measurable and f takes matrices of rank k, $k \ge 2$, to matrices of rank d. Then f is a polynomial.

Proof. As *f* takes matrices of rank *k* to matrices of rank *d*, it also takes matrices of rank 1 to matrices of rank *d*. Thus *f* has the form given in Theorem 5. More specifically, it is a C^{∞} function on $\mathbb{R} \setminus \{0\}$.

Now if $A = (a_{ij})$ is a matrix of rank 1, then for each real constant *c* the matrix $(a_{ij} - c)$ is of rank at most 2. As $k \ge 2$ the matrix $(f(a_{ij} - c))$ is of rank at most *d*. Thus for each constant *c* the function

 $f_c(t) = f(t - c)$

take matrices of rank 1 to matrices of rank at most d. Thus f_c is also of the form given in Theorem 5.

There is no a priori reason to assume that the different f_c , as c varies, satisfy Eq. (2) with one and the same coefficients. They simply satisfy equations of the form (2). However one property which is a result of the previous analysis is that every solution of (2) is a C^{∞} function on $\mathbb{R}\setminus\{0\}$. Saying that f_c is a C^{∞} function on $\mathbb{R}\setminus\{0\}$ for any $c \neq 0$ implies that f is a C^{∞} function also at zero and thus on all of \mathbb{R} . It is easily verified that the only functions in our solution set of (3) which are C^{∞} functions on all of \mathbb{R} (and thus at zero) are the powers x^m , m a nonnegative integer, and linear combinations thereof. Thus f is a polynomial. \Box

Now that we know that our fs are necessarily polynomials, we can characterize them explicitly.

Theorem 7. Let

$$f(t) = \sum_{\ell=1}^{p} \alpha_{\ell} t^{m_{\ell}},$$

where the m_{ℓ} are distinct nonnegative integers and $\alpha_{\ell} \neq 0$, $\alpha_{\ell} \in \mathbb{R}$, $\ell = 1, ..., p$. For each matrix $A = (a_{ij})_{i=1}^{n} f$ and $a_{\ell} \neq 0$, $\alpha_{\ell} \in \mathbb{R}$, $\ell = 1, ..., p$.

$$f(A) = (f(a_{ij}))_{i=1}^{n} _{i=1}^{m}$$

is of rank at most

$$\sum_{\ell=1}^p \binom{k+m_\ell-1}{m_\ell}.$$

Furthermore there exists a matrix A of rank k for which

$$\operatorname{rank} f(A) = \sum_{\ell=1}^{p} \binom{k + m_{\ell} - 1}{m_{\ell}}.$$

Before presenting the proof, we recall some notation. For $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$ and $\mathbf{n} = (n_1, \dots, n_k) \in \mathbb{Z}_+^k$ let

$$\mathbf{x}^{\mathbf{n}} = x_1^{n_1} \cdots x_k^{n_k},$$

and $|\mathbf{n}| = n_1 + \cdots + n_k$. For $\mathbf{b}, \mathbf{c} \in \mathbb{R}^k$ we use the standard inner product

$$\mathbf{b} \cdot \mathbf{c} = \sum_{i=1}^{k} b_i c_i.$$

Finally we recall that for any $q \in \mathbb{Z}_+$

$$(\mathbf{b} \cdot \mathbf{c})^q = \sum_{|\mathbf{n}|=q} {|\mathbf{n}| \choose \mathbf{n}} \mathbf{b}^{\mathbf{n}} \cdot \mathbf{c}^{\mathbf{n}},$$

where

$$\mathbf{b^n} \cdot \mathbf{c^n} = b_1^{n_1} \cdots b_k^{n_k} c_1^{n_1} \cdots c_k^{n_k},$$

and

$$\binom{|\mathbf{n}|}{\mathbf{n}} = \frac{(|\mathbf{n}|)!}{n_1! \cdots n_k!}.$$

Proof. A matrix $A = (a_{ij})_{i=1}^{n} \sum_{j=1}^{m} b_{j}$ is of rank at most *k* if and only if it is the sum of *k* rank 1 matrices, i.e., can be written in the form

$$a_{ij} = \sum_{t=1}^{k} b_{it} c_{jt}, \quad i = 1, \dots, n; \quad j = 1, \dots, m.$$
 (6)

Set $\mathbf{b}_i = (b_{i1}, \dots, b_{ik}), i = 1, \dots, n$, and $\mathbf{c}_j = (c_{j1}, \dots, c_{jk}), j = 1, \dots, m$. Thus $a_{ij} = \mathbf{b}_i \cdot \mathbf{c}_j$

$$u_{ij} = \mathbf{b}_i \cdot \mathbf{c}_j.$$

Furthermore for each $q \in \mathbb{Z}_+$

$$(\mathbf{b}_i \cdot \mathbf{c}_j)^q = \sum_{|\mathbf{n}|=q} {|\mathbf{n}| \choose \mathbf{n}} \mathbf{b}_i^{\mathbf{n}} \cdot \mathbf{c}_j^{\mathbf{n}}.$$
(7)

The number of summands in (7) is the dimension of the space of homogeneous polynomials of degree q in k variables, namely

$$\binom{k+q-1}{q}.$$

(This is easily checked by setting $b_{it}c_{jt} = x_t$ in (7).) It therefore follows from (6) and (7) that the matrix whose entries are

$$\alpha_{\ell}(a_{ij})^{m_{\ell}}$$

is of rank at most

$$\binom{k+m_\ell-1}{m_\ell},$$

and thus

rank
$$f(A) \leq \sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}}.$$

Let P_q^k denote the space of homogeneous polynomials of degree q in k variables. Set $P = \bigoplus_{\ell=1}^p P_{m_\ell}^k$ and

$$h = \dim P = \sum_{\ell=1}^{p} \binom{k + m_{\ell} - 1}{m_{\ell}}.$$

We wish to prove the existence of a matrix A of rank k for which f(A) is of rank h. In other words, we claim there exist vectors \mathbf{b}_i , \mathbf{c}_j , i, j = 1, ..., h, in \mathbb{R}^k such that the $h \times h$ matrix with (i, j) entry

$$\sum_{\ell=1}^{p} \alpha_{\ell} (\mathbf{b}_{i} \cdot \mathbf{c}_{j})^{m_{\ell}}, \quad i, j = 1, \dots, h,$$

is of rank *h*. To this end it suffices to prove the existence of vectors \mathbf{b}_i , i = 1, ..., h, for which the polynomials

$$\sum_{\ell=1}^{p} \alpha_{\ell} (\mathbf{b}_{i} \cdot \mathbf{x})^{m_{\ell}}, \quad i = 1, \dots, h,$$

are linearly independent. For if true, then these *h* polynomials are also linearly independent over some *h* points $\mathbf{c}_1, \ldots, \mathbf{c}_h$.

We will prove the existence of the required vectors. Assume such vectors do not exist. Then for each choice of \mathbf{b}_i , i = 1, ..., h, in \mathbb{R}^k there exist $\beta_1, ..., \beta_h$, not all zero, such that for all $\mathbf{x} \in \mathbb{R}^k$

$$\sum_{i=1}^{h} \beta_i \left(\sum_{\ell=1}^{p} \alpha_\ell (\mathbf{b}_i \cdot \mathbf{x})^{m_\ell} \right) = 0.$$

Thus

$$\sum_{\ell=1}^{p} \alpha_{\ell} \left(\sum_{i=1}^{h} \beta_{i} \left(\mathbf{b}_{i} \cdot \mathbf{x} \right)^{m_{\ell}} \right) = 0.$$
(8)

Each

$$\sum_{i=1}^n \beta_i (\mathbf{b}_i \cdot \mathbf{x})^{m_\ell}$$

is a polynomial in $P_{m_{\ell}}^{k}$ (homogeneous of degree m_{ℓ}). For (8) to hold it is necessary, since each $\alpha_{\ell} \neq 0$, that

$$\sum_{i=1}^{h} \beta_i (\mathbf{b}_i \cdot \mathbf{x})^{m_\ell} = 0, \quad \ell = 1, \dots, p,$$

which from (7) implies

$$\sum_{|\mathbf{n}|=m_{\ell}} {|\mathbf{n}| \choose \mathbf{n}} \sum_{i=1}^{h} \beta_i \mathbf{b}_i^{\mathbf{n}} \cdot \mathbf{x}^{\mathbf{n}} = 0, \quad \ell = 1, \dots, p.$$
(9)

As the set of functions in $\{\mathbf{x}^{\mathbf{n}}\}_{|\mathbf{n}|=m_{\ell}}$ are linearly independent in $P_{m_{\ell}}^{k}$ (this is just the monomial basis for $P_{m_{\ell}}^{k}$), (9) implies that

$$\sum_{i=1}^{h} \beta_i \mathbf{b}_i^{\mathbf{n}} = 0,$$

for each $\mathbf{n} \in \mathbb{Z}_+^k$, $|\mathbf{n}| = m_\ell$, and $\ell = 1, ..., p$. The number of such equations is exactly *h*. Moreover as the

 $\left\{\mathbf{x}^{\mathbf{n}}:\mathbf{n}\in\mathbb{Z}_{+}^{k},\,|\mathbf{n}|=m_{\ell},\,\ell=1,\ldots,\,p\right\}$

form a basis for *P* (of dimension *h*), it follows that there exist vectors $\mathbf{b}_1, \ldots, \mathbf{b}_h \in \mathbb{R}^k$ for which the matrix

$$\left\{\mathbf{b}_{i}^{\mathbf{n}}:\mathbf{n}\in\mathbb{Z}_{+}^{k}, |\mathbf{n}|=m_{\ell}, \ell=1,\ldots, p, i=1,\ldots, h\right\}$$

is nonsingular. For such a choice of vectors \mathbf{b}_i , i = 1, ..., h, the requisite $\beta_1, ..., \beta_h$, not all zero, do not exist. This proves that for these \mathbf{b}_i , i = 1, ..., h, the polynomials

$$\sum_{\ell=1}^{p} \alpha_{\ell} (\mathbf{b}_{i} \cdot \mathbf{x})^{m_{\ell}}, \quad i = 1, \dots, h,$$

are linearly independent, and thus there exist c_1, \ldots, c_h for which the matrix

$$\sum_{\ell=1}^{p} \alpha_{\ell} (\mathbf{b}_{i} \cdot \mathbf{c}_{j})^{m_{\ell}}, \quad i, j = 1, \dots, h,$$

is of rank h. \Box

Proposition 6 and Theorem 7 immediately imply Theorem 1.

Note that Theorem 1 states that $f : \mathbb{R} \to \mathbb{R}$ takes matrices of rank *k* to matrices of rank $< k \ (k \ge 2)$ if and only if *f* is the constant function, while it takes matrices of rank *k* to matrices of rank *k* ($k \ge 2$) if and only if *f* is the constant function or $f(t) = \alpha t$ for some $\alpha \in \mathbb{R}$. These simple facts can also be proven directly as follows.

Assume *f* takes matrices of rank *k* to matrices of rank $< k \ (k \ge 2)$. Consider the $k \times k$ matrix

(b	b	• • •	b	b	
а	b	• • •	b	b	
:	÷	۰.	÷	÷	·
a	а	• • •	а	b)	

That is, the (i, j)th element is equal to b for $i \leq j$, and to a for i > j. The determinant of this matrix is $b(b-a)^{k-1}$. Since f takes matrices of rank k to matrices of rank < k we must therefore have

$$f(b)(f(b) - f(a))^{k-1} = 0$$

for every choice of $a, b \in \mathbb{R}$. But this implies that f is the constant function.

Now assume *f* takes matrices of rank *k* to matrices of rank $k \ (k \ge 2)$, and *f* is not the constant function. The $(k + 1) \times (k + 1)$ matrix

(0	0		0	0)
a	0	•••	0	0
	÷	۰.	÷	:
a	а	•••	а	0/

is of rank k for $a \neq 0$. Thus

$\int f(0)$	f(0)	• • •	f(0)	f(0)
f(a)	f(0)	• • •	f(0)	f(0)
:	:	•	:	:
$\int_{f(a)}^{\cdot}$	f(a)		f(a)	$\frac{1}{f(0)}$

has rank at most k. We know that its determinant $f(0)(f(0) - f(a))^k$ must therefore equal zero. If $f(0) \neq 0$ then as f is not the constant function, a contradiction ensues. So f(0) = 0. (This is the same argument as that found at the beginning of the proof of Proposition 3.) Choose a so that $f(a) = c \neq 0$. Consider the $(k + 1) \times (k + 1)$ matrix

317

(a	• • •	0	0	a
:	۰.	÷	÷	÷
0		а	0	а
0	• • •	0	а	а
0/		х	y	x + y

This matrix is of rank k. (The last column is the sum of the previous columns.) As f takes matrices of rank k to matrices of rank k, the matrix

(c	• • •	0	0	С
1 :	·	:	:	÷
0		с	0	С
0		0	С	С
0/		f(x)	f(y)	f(x+y)

must be singular. This implies that we must have for all $x, y \in \mathbb{R}$

$$c^{k}(f(x + y) - f(x) - f(y)) = 0.$$

Thus

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$. This is a well-known Cauchy equation. Under any one of the conditions on f such as measurability, continuity at a point, or boundedness on an interval, this implies that

 $f(t) = \alpha t$

for some $\alpha \in \mathbb{R}$.

4. Complex g

What we did in Sections 2 and 3 for real-valued functions we will now do for complex-valued functions.

Theorem 8. Assume $g : \mathbb{C} \to \mathbb{C}$ is continuous on $\mathbb{C} \setminus \{0\}$ and takes matrices of rank 1 to matrices of rank d. Then g is of the form

$$g(z) = \sum_{\ell=1}^{p} p_{\ell} (\ln |z|) e^{c_{\ell} \ln |z|} z^{k_{\ell}}$$
(10)

on $\mathbb{C}\setminus\{0\}$, where p_{ℓ} is a polynomial of degree ∂p_{ℓ} , $c_{\ell} \in \mathbb{C}$, $k_{\ell} \in \mathbb{Z}$ and $\sum_{\ell=1}^{p} (\partial p_{\ell} + 1) \leq d$.

Proof. We mimic the proofs of Proposition 4 and Theorem 5. We assume that there exists a complex matrix $A = (b_i c_j)_{i,j=1}^d$ of rank 1 for which g(A) is of exact rank d, i.e., det $g(A) \neq 0$. Consider for each $z, w \in \mathbb{C}$ the $(d + 1) \times (d + 1)$ matrix

$$B = \begin{pmatrix} zw & zc_1 & \cdots & zc_d \\ b_1w & b_1c_1 & \cdots & b_1c_d \\ \vdots & \vdots & \ddots & \vdots \\ b_dw & b_dc_1 & \cdots & b_dc_d \end{pmatrix}$$

of rank 1. By assumption we have

$$\det g(B) = 0.$$

Since det $g(A) \neq 0$, expanding det g(B) by its first row and column gives us the equation

$$g(zw) = \sum_{i,j=1}^{d} e_{ij}g(zc_j)g(b_iw),$$
(11)

which we can rewrite in various ways as

$$g(zw) = \sum_{\ell=1}^{d} r_{\ell}(z) s_{\ell}(w).$$
(12)

Any g which satisfies (12) takes matrices of rank 1 to matrices of rank d. Set

$$\mathscr{V} = \operatorname{span}\{g(w \cdot) \colon w \in \mathbb{C}\}.$$

From (11) we have that \mathscr{V} is of dimension at most d. \mathscr{V} is invariant under dilation by $w \in \mathbb{C}$. We may therefore regard \mathscr{V} as a subspace invariant under rotation (multiplication by $w = e^{it}$) and positive dilation (multiplication by $w = \rho > 0$). As \mathscr{V} is of finite dimension, it is also closed under uniform convergence on compact sets. Define for each fixed $n \in \mathbb{Z}$ and $k \in \mathbb{N}$

$$\phi_k(z) = \frac{1}{k} \sum_{j=1}^k g\left(e^{-\frac{2\pi i j}{k}} z\right) e^{\frac{2\pi i j n}{k}}.$$

Since \mathscr{V} is rotation invariant we have that $\phi_k \in \mathscr{V}$ for each $k \in \mathbb{N}$. However the ϕ_k are Riemann sums associated with the integral

$$\frac{1}{2\pi}\int_0^{2\pi}g(\mathrm{e}^{-\mathrm{i}s}z)\mathrm{e}^{\mathrm{i}ns}\,\mathrm{d}s,$$

and converge to it uniformly in z on compact subsets of $\mathbb{C}\setminus\{0\}$. Thus this integral is also in \mathscr{V} . Letting $z = re^{i\theta}$, and applying the change of variable $t = \theta - s$, it follows that

$$\frac{1}{2\pi} \int_0^{2\pi} g(r \mathrm{e}^{\mathrm{i}t}) \mathrm{e}^{\mathrm{i}n(\theta-t)} \,\mathrm{d}t$$

is in \mathscr{V} . This integral equals

$$g_n(r)e^{in\theta}$$
,

319

where

$$g_n(r) = \frac{1}{2\pi} \int_0^{2\pi} g(r e^{it}) e^{-int} dt.$$

The functions $g_n(r)$ are in $C(0, \infty)$.

From the linear independence of the $\{e^{in\theta}\}_{n\in\mathbb{Z}}$, we have that those $\{g_n(r)e^{in\theta}\}$ with g_n not identically zero, are also linearly independent. As each of these functions is in \mathcal{V} , and \mathcal{V} is of dimension at most d, this implies that there are at most d distinct integers $n \in \mathbb{Z}$ for which g_n is not identically zero. By the unicity theorem for Fourier series (see e.g. [9, p. 4]), we have

$$g(r\mathrm{e}^{\mathrm{i}\theta}) = \sum_{\ell=1}^{d} g_{n_{\ell}}(r) \mathrm{e}^{\mathrm{i}n_{\ell}\theta}.$$

The space \mathscr{V} is also invariant under positive dilation. As the $\{e^{in_{\ell}\theta}\}_{\ell=1}^{d}$ are linearly independent and \mathscr{V} is of finite dimension, then for each $n \in \{n_1, \ldots, n_d\}$ the space

$$\operatorname{span}\{g_n(\rho \cdot): \rho > 0\}$$

is a finite dimensional subspace of $C(0, \infty)$. Therefore by a change of variable (see the proof of Theorem 5) using the known result characterizing finite dimensional translation invariant subspaces of complex-valued functions in $C(\mathbb{R})$ it follows that each g_n is a linear combination of a finite number of functions of the form $(\ln r)^k r^{\lambda}$ for k = 0, ..., m, and some $\lambda \in \mathbb{C}$. Combining the above facts implies that g is necessarily of the form

$$g(z) = g(re^{i\theta}) = \sum_{\ell=1}^{p} p_{\ell}(\ln r)r^{d_{\ell}}e^{ik_{\ell}\theta}$$

on $\mathbb{C}\setminus\{0\}$, where $z = re^{i\theta}$, each p_{ℓ} is a polynomial, $d_{\ell} \in \mathbb{C}$ and $k_{\ell} \in \mathbb{Z}$. Since r = |z| and $e^{ik_{\ell}\theta} = z^{k_{\ell}}|z|^{-k_{\ell}} = z^{k_{\ell}}e^{-k_{\ell}\ln|z|}$, the above may be rewritten as

$$g(z) = \sum_{\ell=1}^{p} p_{\ell}(\ln |z|) e^{c_{\ell} \ln |z|} z^{k_{\ell}},$$

where p_{ℓ} is a polynomial, $c_{\ell} \in \mathbb{C}$ and $k_{\ell} \in \mathbb{Z}$. As $g \in \mathcal{V}$, dim $\mathcal{V} \leq d$ and \mathcal{V} is invariant under dilations by positive constants and under rotation, it follows that $\sum_{\ell=1}^{p} (\partial p_{\ell} + 1) \leq d$. \Box

Remark 1. It is also not difficult to show that for any *g* of the form (10) with $\sum_{\ell=1}^{p} (\partial p_{\ell} + 1) \leq d$ the associated linear subspace generated by dilations of *g* is dilation invariant of dimension at most *d*. Thus, if we also set g(0) = 0, then *g* will take matrices of rank 1 to matrices of rank *d*.

Remark 2. In Theorem 5 we assumed that f was measurable. Here we demanded that g be continuous on $\mathbb{C}\setminus\{0\}$. It is possible to prove this result for measurable

functions. However the proof then becomes rather detailed and complicated. The interested reader may wish to consult the methods in [6].

Based on Theorem 8 we first prove that for $k \ge 2$ the associated g are necessarily polynomials in z and \overline{z} . We then delineate the possible explicit forms, dependent upon k and d.

Proposition 9. Assume $g : \mathbb{C} \to \mathbb{C}$ is continuous and g takes matrices of rank k, $k \ge 2$, to matrices of rank d. Then g is a polynomial in z and \overline{z} .

Proof. We mirror the proof of Proposition 6. Since *g* takes matrices of rank *k* to matrices of rank *d*, and $k \ge 2$, it follows as in the proof of Proposition 6 that $g_c(t) = g(t - c)$ takes matrices of rank 1 to matrices of rank *d* for every constant $c \in C$.

Thus g is necessarily of the form (10) and its translates also have the same general form. Note that any g which satisfies (10), i.e., is of the form

$$g(z) = \sum_{\ell=1}^{p} p_{\ell} (\ln |z|) e^{c_{\ell} \ln |z|} z^{k_{\ell}}$$

is a C^{∞} function in x and y (z = x + iy) for (x, y) \neq (0, 0). If its translates have this same property, then g must be a C^{∞} function at (0, 0). It is readily verified that this implies that each of the above polynomials p_{ℓ} is a constant function, and that the c_{ℓ} and $2k_{\ell} + c_{\ell}$ are nonnegative even integers implying

$$e^{c_{\ell} \ln |z|} z^{k_{\ell}} = z^{k_{\ell} + c_{\ell}/2} \bar{z}^{c_{\ell}/2}.$$

Thus *g* has the desired form, namely

$$g(z) = \sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}},$$

where $\beta_{\ell} \in \mathbb{C}$ and the (m_{ℓ}, n_{ℓ}) are distinct pairs of nonnegative integers. \Box

Now we can explicitly characterize the g of Theorem 2.

Theorem 10. Let

$$g(z) = \sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}},$$

where the (m_{ℓ}, n_{ℓ}) are distinct pairs of nonnegative integers, $\beta_{\ell} \neq 0, \ell = 1, ..., p$. For each complex-valued matrix $A = (a_{ij})_{i=1}^{n} f$ and a_{ij} and $b_{i=1}^{n} f$ and $b_{ij} = 0$.

$$g(A) = (g(a_{ij}))_{i=1}^{n} \sum_{j=1}^{m} (g(a_{ij}))_{i=1}^{n} ($$

is of rank at most

$$\sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}} \binom{k+n_{\ell}-1}{n_{\ell}}.$$

321

Furthermore there exists a matrix A of rank k for which

rank
$$g(A) = \sum_{\ell=1}^{p} {\binom{k+m_{\ell}-1}{m_{\ell}} \binom{k+n_{\ell}-1}{n_{\ell}}}.$$

Proof. We parallel the proof of Theorem 7. Let $A = (a_{ij})_{i=1}^{n} \sum_{j=1}^{m} be a matrix of rank$ *k*. Then it may be written in the form

$$a_{ij} = \sum_{t=1}^{\kappa} b_{it} c_{jt}, \quad i = 1, \dots, n; \quad j = 1, \dots, m,$$
 (13)

for some choice of constants b_{it} and c_{jt} . Set $\mathbf{b}_i = (b_{i1}, \dots, b_{ik}), i = 1, \dots, n$, and $\mathbf{c}_j = (c_{j1}, \dots, c_{jk}), j = 1, \dots, m$. Thus

$$a_{ij} = \mathbf{b}_i \cdot \mathbf{c}_j.$$

Furthermore for each $p, q \in \mathbb{Z}_+$

$$a_{ij}^{p}\bar{a}_{ij}^{q} = (\mathbf{b}_{i}\cdot\mathbf{c}_{j})^{p}\overline{(\mathbf{b}_{i}\cdot\mathbf{c}_{j})}^{q} = \sum_{|\mathbf{m}|=p} \binom{|\mathbf{m}|}{\mathbf{m}} \mathbf{b}_{i}^{\mathbf{m}}\cdot\mathbf{c}_{j}^{\mathbf{m}} \sum_{|\mathbf{n}|=q} \binom{|\mathbf{n}|}{\mathbf{n}} \bar{\mathbf{b}}_{i}^{\mathbf{n}}\cdot\bar{\mathbf{c}}_{j}^{\mathbf{n}}.$$
 (14)

The number of summands in (14) is

$$\binom{k+p-1}{p}\binom{k+q-1}{q}.$$

It therefore follows from (13) and (14) that the matrix whose entries are

$$\beta_{\ell}(a_{ij})^{m_{\ell}}(\bar{a}_{ij})^{n_{\ell}}$$

is of rank at most

$$\binom{k+m_\ell-1}{m_\ell}\binom{k+n_\ell-1}{n_\ell},$$

and thus

$$\operatorname{rank} g(A) \leqslant \sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}} \binom{k+n_{\ell}-1}{n_{\ell}}.$$

We now follow the remaining arguments in the proof of Theorem 7 replacing x^n by $z^m\bar{z}^n,$ where we note that the

 $\left\{\mathbf{z}^{\mathbf{m}}\bar{\mathbf{z}}^{\mathbf{n}}:\mathbf{m},\mathbf{n}\in\mathbb{Z}_{+}^{k},|\mathbf{m}|=m_{\ell},|\mathbf{n}|=n_{\ell},\,\ell=1,\ldots,\,p\right\}$

are linearly independent functions which span a subspace of \mathbb{C}^k of dimension

$$\sum_{\ell=1}^{p} \binom{k+m_{\ell}-1}{m_{\ell}} \binom{k+n_{\ell}-1}{n_{\ell}}.$$

The proof of Theorem 10 then follows. \Box

Remark 3. A study of the proof of the above results shows that if $g : \mathbb{C} \to \mathbb{C}$ takes matrices of rank *k* to matrices of rank *d*, then *g* satisfies the functional equation

$$g(\mathbf{z} \cdot \mathbf{w}) = \sum_{\ell,m=1}^{d} a_{\ell m} g(\mathbf{c}^m \cdot \mathbf{z}) g(\mathbf{b}^{\ell} \cdot \mathbf{w}), \qquad (15)$$

for all $\mathbf{z}, \mathbf{w} \in \mathbb{C}^k$, some $\mathbf{b}^{\ell}, \mathbf{c}^m \in \mathbb{C}^k$ and $a_{\ell m} \in \mathbb{C}, \ell, m = 1, \dots, d$. Similarly if *g* solves an equation of the form (15), then for any $\mathbf{d}^i, \mathbf{e}^j \in \mathbb{C}^k, i, j = 1, \dots, n$,

$$g(\mathbf{d}^{i} \cdot \mathbf{e}^{j}) = \sum_{\ell,m=1}^{d} a_{\ell m} g(\mathbf{c}^{m} \cdot \mathbf{d}^{i}) g(\mathbf{b}^{\ell} \cdot \mathbf{e}^{j})$$
$$= \sum_{\ell=1}^{d} \left(\sum_{m=1}^{d} a_{\ell m} g(\mathbf{c}^{m} \cdot \mathbf{d}^{i}) \right) g(\mathbf{b}^{\ell} \cdot \mathbf{e}^{j})$$
$$= \sum_{\ell=1}^{d} D_{i\ell} E_{\ell j}$$

which implies that rank $(g(\mathbf{d}^i \cdot \mathbf{e}^j))_{i,j=1}^n \leq d$. That is, *g* takes matrices of rank *k* to matrices of rank *d* if and only if *g* solves (15). We solved (15) for k = 1 directly, and for $k \geq 2$ indirectly. This same result holds for $f : \mathbb{R} \to \mathbb{R}$ taking matrices of rank *k* to matrices of rank *d*.

Acknowledgements

The authors wish to thank Carl de Boor, Raphael Loewy and Vladimir Lin for their suggestions.

References

- J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
- [2] P.M. Anselone, J. Korevaar, Translation invariant subspaces of finite dimension, Proc. Amer. Math. Soc. 15 (1964) 747–752.
- [3] C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer-Verlag, New York, 1984.
- [4] E.A. Coddington, An Introduction to Ordinary Differential Equations, Prentice-Hall, NJ, 1961.
- [5] L. Elsner, D. Hershkowitz, A. Pinkus, Functional inequalities for spectral radii of non-negative matrices, Linear Algebra Appl. 129 (1990) 103–130.
- [6] M. Engert, Finite dimensional translation invariant subspaces, Pacific J. Math. 32 (1970) 333–343.
 [7] C.H. FitzGerald, C.A. Micchelli, A. Pinkus, Functions that preserve families of positive semidefinite matrices, Linear Algebra Appl. 221 (1995) 83–102.
- [8] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

- [9] T.W. Körner, Fourier Analysis, Cambridge University Press, Cambridge, 1988.
- [10] L. Losonczi, An extension theorem for the Levi–Civita functional equation and its applications, in: Contributions to the Theory of Functional Equations, Grazer Math. Ber., vol. 315, 1991, pp. 51–68.
- [11] F. Lu, H. Sun, Positive definite dot product kernels in learning theory, Adv. Comput. Math., in press.[12] A. Pinkus, Strictly positive definite functions on a real inner product space, Adv. Comput. Math., in
- press.
- [13] I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.
- [14] L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, Singapore, 1991.