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Abstract

In this paper we characterize, for given positive integers k and d, the class of functions
f : R → R such that for every n × m real-valued matrix A = (aij )n

i=1
m
j=1 (arbitrary n and m)

of rank at most k, the matrix f (A) = (f (aij ))n
i=1

m
j=1 has rank at most d, as well as the class

of functions g : C → C such that for every n × m complex-valued matrix A = (aij )n
i=1

m
j=1

(arbitrary n and m) of rank at most k, the matrix g(A) = (g(aij ))n
i=1

m
j=1 has rank at most d.

For k � 2 each such function f is a polynomial of an appropriate form which we shall exactly
delineate, while each g is a polynomial in z and z̄, also of an explicitly delineated form. For
k = 1 the class of such functions, in each case, is significantly different. Nonetheless it is via
the study of the case k = 1 that we are able to characterize such functions where k � 2.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we prove two main results, one for real-valued functions, the other
for complex-valued functions.

Let f denote a real-valued function defined on all of R. We say that f takes ma-
trices of rank k to matrices of rank d if for every real-valued matrix A = (aij )

n
i=1

m
j=1
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(arbitrary n and m) of rank at most k, the real-valued matrix f (A) = (f (aij ))
n
i=1

m
j=1

has rank at most d . We similarly let g denote a complex-valued function defined
on C, and say that g takes matrices of rank k to matrices of rank d if for every
complex-valued matrix A = (aij )

n
i=1

m
j=1 (arbitrary n and m) of rank at most k, the

complex-valued matrix g(A) = (g(aij ))
n
i=1

m
j=1 has rank at most d .

The two main results of this paper are the following.

Theorem 1. Assume k � 2, and f : R → R is measurable. Then f takes matrices
of rank k to matrices of rank d if and only if

f (t) =
p∑

�=1

α�t
m�,

where the m� are distinct nonnegative integers, α� /= 0, α� ∈ R, � = 1, . . . , p, and
p∑

�=1

(
k + m� − 1

m�

)
� d.

The characterization in the case k = 1 is somewhat different. The class of func-
tions is substantially larger and is given explicitly in Theorem 5. It is essentially
all appropriate solutions of an Euler equation of degree d on all of R. Despite the
difference in the character of the solutions for k = 1 and k � 2, the analysis of the
case k = 1 will be used to prove Theorem 1.

Theorem 2. Assume k � 2, and g : C → C is continuous. Then g takes matrices of
rank k to matrices of rank d if and only if

g(z) =
p∑

�=1

β�z
m� z̄n� ,

where the (m�, n�) are distinct pairs of nonnegative integers, β� /= 0, � = 1, . . . , p,

and
p∑

�=1

(
k + m� − 1

m�

)(
k + n� − 1

n�

)
� d.

We also characterize all g : C → C which take matrices of rank 1 to matrices of
rank d . Here the class of functions is significantly different and larger. This result
may be found in Theorem 8. The proof of Theorem 2 depends upon this result.

This paper is organized as follows. In Section 2 we consider the case k = 1 for
real f . In Section 3 we prove Theorem 1. The complex case is considered in Section
4.

There is a fairly extensive literature on operators which influence rank. See, for
example, the many articles in the 1992 volume 33 of Linear and Multilinear Algebra
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devoted to linear preserver problems. However the problems considered in these
articles are different in character. They consider functions which operate on the full
matrix, e.g., f (A) = PAQ where P , Q are appropriate matrices, rather than our
“entrywise” functions f (A) = (f (aij ))

n
i=1

m
j=1. The type of function operation on

matrices which we deal with has been considered in the literature in connection
with a variety of problems. Functions taking positive definite or Hermitian matrices
to positive definite or Hermitian matrices have been explicitly characterized (see
e.g. [3,7,13]). Functions which preserve and generalize spectral radii inequalities
in connection with Hadamard-like products have been studied (see e.g. [5,8]). The
problem considered in this paper was motivated in part by a paper of Pinkus [12] (see
also [11]), wherein are characterized real-valued functions f for which f (〈x, y〉) is
a strictly positive definite kernel. Here 〈·, ·〉 is a real inner product, and x and y are
elements of some real inner product space. This problem is equivalent to that of char-
acterizing those f which take all symmetric positive definite matrices of rank � k,
with no two rows identical, to matrices of full rank.

2. Real f and the case k = 1

We start by considering the simplest case of k = d = 1, i.e., real-valued functions
taking matrices of rank 1 to matrices of rank 1.

Proposition 3. Assume f : R → R is measurable. Then f takes matrices of rank
1 to matrices of rank 1 if and only if f is one of the following functions, where
C, c ∈ R:

(a) C,

(b) C|t |c, f (0) = 0,

(c) C|t |c(sgn t), f (0) = 0.

Proof. Obviously the constant function, i.e., f (t) = C for all t , takes every matrix
to a matrix of rank at most 1. Let us assume that f is not the constant function. The
matrix(

0 0
a 0

)

is of rank 1 for any a /= 0. Thus(
f (0) f (0)

f (a) f (0)

)

must also be of rank at most 1. As its determinant is f (0)(f (0) − f (a)) and there
exists an a such that f (0) − f (a) /= 0 (f is not the constant function), we must have
f (0) = 0.
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Now consider the matrix(
xy y

x 1

)

of rank 1, and set f (1) = C. Thus
(

f (xy) f (y)

f (x) C

)

is of rank 1 implying

Cf (xy) = f (x)f (y)

for all x, y ∈ R. If C = 0, then f (x) = 0 for all x ∈ R, a contradiction. This is a
Cauchy equation. From Aczél [1, p. 41] we have that if, for example, f is measurable
(less will suffice) and not the constant function, then f is necessarily of one of the
following forms with arbitrary C, c ∈ R:

(b) C|t |c,
(c) C|t |c(sgn t),

for t /= 0, and satisfies f (0) = 0.
The converse direction, i.e., if f has the form (a), (b) or (c), then f takes matrices

of rank 1 to matrices of rank 1, easily follows using the fact that matrices are of rank
at most 1 if and only if they are of the explicit form A = (bicj )

n
i=1

m
j=1. �

The above proposition also follows as a consequence of these next two results
which characterize functions taking matrices of rank 1 to matrices of rank d .

Proposition 4. Let f : R → R. Then f takes matrices of rank 1 to matrices of rank
d if and only if f is an element of a dilation invariant subspace of dimension at most d .

A dilation invariant subspace X over R is a linear subspace with the property that
if g ∈ X then g(a·) ∈ X for every a ∈ R.

Proof. Let us assume that f : R → R takes matrices of rank 1 to matrices of rank d

and, without loss of generality, that there exists a real matrix A = (bicj )
d
i,j=1 of rank

1 for which f (A) is of exact rank d , i.e., det f (A) /= 0. Consider for each x, y ∈ R

the (d + 1) × (d + 1) matrix

B =




xy xc1 · · · xcd

b1y b1c1 · · · b1cd

...
...

. . .
...

bdy bdc1 · · · bdcd
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of rank 1. By assumption we have

det f (B) = 0.

Since det f (A) /= 0, expanding det f (B) by its first row and column gives us the
equation

f (xy) =
d∑

i,j=1

eij f (xcj )f (biy). (1)

Note that this can be rewritten in various ways in the form

f (xy) =
d∑

k=1

rk(x)sk(y).

Let

R = span{f (a·): a ∈ R}.
R is a dilation invariant subspace. From (1) we see that it is of dimension at most d ,
since each f (a·) is a linear combination of the {f (cj ·)}dj=1.

On the other hand, if f is an element of a dilation invariant subspace R of dimen-
sion at most d , then we can write

f (xy) =
d∑

k=1

rk(x)sk(y),

for some functions {rk}dk=1 and {sk}dk=1. If A is a rank 1 matrix, then A = (bicj )
n
i=1

m
j=1.

Therefore

f (bicj ) =
d∑

k=1

rk(bi)sk(cj ) =
d∑

k=1

BikCkj ,

i.e., f (A) is the pointwise sum of d matrices of rank at most 1, or alternatively, the
n × m matrix f (A) is the product of an n × d and a d × m matrix, and thus f (A) is
a matrix of rank at most d. �

We can now explicitly characterize functions taking matrices of rank 1 to matrices
of rank d .

Theorem 5. Assume f : R → R takes matrices of rank 1 to matrices of rank d and
f is measurable. Then f is a C∞ function on R\{0}. It is a solution thereon of a
nontrivial Euler equation of degree at most d, i.e., satisfies

d∑
�=0

c�t
�f (�)(t) = 0, (2)

for t /= 0, where the c0, . . . , cd ∈ R are not all zero.
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To be more exact it is a solution of (2) of the precise form

f (t) =
m∑

j=1

p1j (ln |t |)|t |λj + p2j (ln |t |)|t |λj (sgn t)

+
n∑

j=1

[
q1j (ln |t |)|t |µj cos(νj ln |t |) + r1j (ln |t |)|t |µj sin(νj ln |t |)

+ q2j (ln |t |)|t |µj cos(νj ln |t |)(sgn t)

+ r2j (ln |t |)|t |µj sin(νj ln |t |)(sgn t)
]
, (3)

where the {λj }mj=1 are distinct values in R, the {µj ± iνj }nj=1 distinct values in C\R,

the p1j , p2j , q1j , q2j , r1j and r2j are polynomials, and

m∑
j=1

(∂p1j + 1) + (∂p2j + 1) + 2
n∑

j=1

(max{∂q1j , ∂r1j } + 1)

+ (max{∂q2j , ∂r2j } + 1) � d,

where ∂p denotes the degree of the polynomial p (with ∂p = −1 if p = 0).

Proof. As f : R → R takes matrices of rank 1 to matrices of rank d it follows
from Proposition 4 that f belongs to a dilation invariant subspace R of dimension
at most d . It is well known (see e.g. [2,6,10,14] and references therein) that every
translation invariant subspace of dimension at most d of measurable functions on
all of R is exactly the space of solutions of

d∑
�=0

a�g
(�)(s) = 0 (4)

for all s ∈ R, a0, . . . , ad ∈ R not all zero. A change of variable x = es (or x = −es)
implies that each f ∈ R must satisfy an equation of the form (2) on R+ and on R−.
In fact we can assume that it is the same equation on both R+ and R−. This follows
from the dilation invariance, but can also be proven directly as follows.

R is finite dimensional and therefore closed under uniform convergence on com-
pact sets. Furthermore

f (x(y + h)) − f (xy)

h
∈ R

for everyh /= 0. As all solutions of (4) are inC∞(R), it follows thatf is inC∞(R\{0}),
and thus

xf ′(x) = d

dy
f (xy)

∣∣∣
y=1

∈ R
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for x ∈ R\{0}. Repeated applications of the above imply that

xkf (k)(x) = dk

dyk
f (xy)

∣∣∣
y=1

∈ R

for k = 0, 1, . . . , d . As R is a space of dimension at most d , these d + 1 functions
are linearly dependent. Thus f must satisfy an equation of the form (2) on R\{0}.

We know the solutions of (2) (see e.g. [4, p. 148]). Solutions of (2) on (0, ∞) are ob-
tained as linear combinations of the following functions. We consider the polynomial

p(x) =
d∑

�=0

c�x(x − 1) · · · (x − � + 1). (5)

Associated with each real root λ of p of multiplicity m we have the m solutions
(ln t)ktλ, k = 0, . . . , m − 1. Associated with each pair of complex conjugate roots
µ ± iν, each of multiplicity m, we have the 2m solutions (ln t)ktµ cos(ν ln t) and
(ln t)ktµ sin(ν ln t), k = 0, . . . , m − 1. (We are simply taking a real basis for
span{(ln t)ktµ±iν}.) On (−∞, 0) we have the same class of solutions where t is re-
placed by |t |. Our function f is in the linear space generated by these functions. These
are the functions which appear in (3), with an important difference. Solutions of (2), as-
suming cd /= 0, form a d dimensional subspace on R+, a d dimensional subspace on
R−, and thus a 2d dimensional subspace of C(R\{0}). However f is an element ofR,

a dilation invariant subspace of dimension at most d of the solution space of (2).
We claim that each element of a dilation invariant subspace of dimension at most

d which satisfies (2) is of the form (3). To see this, first note that R is both positive
and negative dilation invariant. That is, if f (·) ∈ R then we also have f (−·) ∈ R.
Thus any f ∈ R can be decomposed into the sum of an even and odd function, both
of which belong to R. That is,

R = Re ⊕ Ro

where Re and Ro consist of the even and odd functions in R, respectively. Further-
more Re and Ro are dilation invariant and

dimR = dimRe + dimRo.

Let f = g + h where g ∈ Re and h ∈ Ro. Then g is necessarily of the form

g(t) =
m∑

j=1

p1j (ln |t |)|t |λj +
n∑

j=1

[
q1j (ln |t |)|t |µj cos(νj ln |t |)

+ r1j (ln |t |)|t |µj sin(νj ln |t |)],
where the p1j , q1j and r1j are polynomials, the {λj }mj=1 in R and the {µj ± iνj }nj=1
in C\R are the roots of (5) of appropriate multiplicity (at least ∂p1j + 1, j = 1, . . . ,

m, and max{∂q1j , ∂r1j } + 1, j = 1, . . . , n, respectively), and
m∑

j=1

(∂p1j + 1) + 2
n∑

j=1

(max{∂q1j , ∂r1j } + 1) � dimRe.
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Similarly, h is necessarily of the form

h(t) =
m∑

j=1

p2j (ln |t |)|t |λj (sgn t) +
n∑

j=1

[
q2j (ln |t |)|t |µj cos(νj ln |t |)(sgn t)

+ r2j (ln |t |)|t |µj sin(νj ln |t |)(sgn t)
]
,

where
m∑

j=1

(∂p2j + 1) + 2
n∑

j=1

(max{∂q2j , ∂r2j } + 1) � dimRo.

This proves that f is of the form (3). �

Every f of the form (3) takes matrices of rank 1 to matrices of rank d , modulo
the fact that we have not defined f at 0. From (1) it easily follows (substitute y = 0
therein) that if the constant function is not in R, then f (0) = 0.

3. Real f and the case k �� 2

Based on Theorem 5 we first prove that in the case k � 2 our functions f are nec-
essarily polynomials. We will then delineate their possible explicit form, dependent
upon k and d .

Proposition 6. Assume f : R → R is measurable and f takes matrices of rank k,

k � 2, to matrices of rank d . Then f is a polynomial.

Proof. As f takes matrices of rank k to matrices of rank d , it also takes matrices
of rank 1 to matrices of rank d . Thus f has the form given in Theorem 5. More
specifically, it is a C∞ function on R\{0}.

Now if A = (aij ) is a matrix of rank 1, then for each real constant c the matrix
(aij − c) is of rank at most 2. As k � 2 the matrix (f (aij − c)) is of rank at most d .
Thus for each constant c the function

fc(t) = f (t − c)

take matrices of rank 1 to matrices of rank at most d . Thus fc is also of the form
given in Theorem 5.

There is no a priori reason to assume that the different fc, as c varies, satisfy Eq.
(2) with one and the same coefficients. They simply satisfy equations of the form (2).
However one property which is a result of the previous analysis is that every solution
of (2) is a C∞ function on R\{0}. Saying that fc is a C∞ function on R\{0} for any
c /= 0 implies that f is a C∞ function also at zero and thus on all of R. It is easily
verified that the only functions in our solution set of (3) which are C∞ functions on
all of R (and thus at zero) are the powers xm, m a nonnegative integer, and linear
combinations thereof. Thus f is a polynomial. �
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Now that we know that our f s are necessarily polynomials, we can characterize
them explicitly.

Theorem 7. Let

f (t) =
p∑

�=1

α�t
m�,

where the m� are distinct nonnegative integers and α� /= 0, α� ∈ R, � = 1, . . . , p.
For each matrix A = (aij )

n
i=1

m
j=1 of rank at most k, the matrix

f (A) = (f (aij ))
n
i=1

m
j=1

is of rank at most
p∑

�=1

(
k + m� − 1

m�

)
.

Furthermore there exists a matrix A of rank k for which

rank f (A) =
p∑

�=1

(
k + m� − 1

m�

)
.

Before presenting the proof, we recall some notation. For x = (x1, . . . , xk) ∈ Rk

and n = (n1, . . . , nk) ∈ Zk+ let

xn = x
n1
1 · · · xnk

k ,

and |n| = n1 + · · · + nk . For b, c ∈ Rk we use the standard inner product

b · c =
k∑

i=1

bici .

Finally we recall that for any q ∈ Z+

(b · c)q =
∑
|n|=q

(|n|
n

)
bn · cn,

where

bn · cn = b
n1
1 · · · bnk

k c
n1
1 · · · cnk

k ,

and (|n|
n

)
= (|n|)!

n1! · · · nk! .

Proof. A matrix A = (aij )
n
i=1

m
j=1 is of rank at most k if and only if it is the sum of

k rank 1 matrices, i.e., can be written in the form

aij =
k∑

t=1

bit cjt , i = 1, . . . , n; j = 1, . . . , m. (6)
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Set bi = (bi1, . . . , bik), i = 1, . . . , n, and cj = (cj1, . . . , cjk), j = 1, . . . , m. Thus

aij = bi · cj .

Furthermore for each q ∈ Z+

(bi · cj )
q =

∑
|n|=q

(|n|
n

)
bn

i · cn
j . (7)

The number of summands in (7) is the dimension of the space of homogeneous
polynomials of degree q in k variables, namely(

k + q − 1

q

)
.

(This is easily checked by setting bit cjt = xt in (7).) It therefore follows from (6)
and (7) that the matrix whose entries are

α�(aij )
m�

is of rank at most(
k + m� − 1

m�

)
,

and thus

rank f (A) �
p∑

�=1

(
k + m� − 1

m�

)
.

Let P k
q denote the space of homogeneous polynomials of degree q in k variables.

Set P = ⊕p

�=1 P k
m�

and

h = dim P =
p∑

�=1

(
k + m� − 1

m�

)
.

We wish to prove the existence of a matrix A of rank k for which f (A) is of rank h.
In other words, we claim there exist vectors bi , cj , i, j = 1, . . . , h, in Rk such that
the h × h matrix with (i, j) entry

p∑
�=1

α�(bi · cj )
m�, i, j = 1, . . . , h,

is of rank h. To this end it suffices to prove the existence of vectors bi , i = 1, . . . , h,
for which the polynomials

p∑
�=1

α�(bi · x)m�, i = 1, . . . , h,

are linearly independent. For if true, then these h polynomials are also linearly inde-
pendent over some h points c1, . . . , ch.
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We will prove the existence of the required vectors. Assume such vectors do not
exist. Then for each choice of bi , i = 1, . . . , h, in Rk there exist β1, . . . , βh, not all
zero, such that for all x ∈ Rk

h∑
i=1

βi

( p∑
�=1

α�(bi · x)m�

)
= 0.

Thus
p∑

�=1

α�

( h∑
i=1

βi(bi · x)m�

)
= 0. (8)

Each
h∑

i=1

βi(bi · x)m�

is a polynomial in P k
m�

(homogeneous of degree m�). For (8) to hold it is necessary,
since each α� /= 0, that

h∑
i=1

βi(bi · x)m� = 0, � = 1, . . . , p,

which from (7) implies

∑
|n|=m�

(|n|
n

) h∑
i=1

βibn
i · xn = 0, � = 1, . . . , p. (9)

As the set of functions in {xn}|n|=m�
are linearly independent in P k

m�
(this is just the

monomial basis for P k
m�

), (9) implies that

h∑
i=1

βibn
i = 0,

for each n ∈ Zk+, |n| = m�, and � = 1, . . . , p. The number of such equations is ex-
actly h. Moreover as the{

xn: n ∈ Zk+, |n| = m�, � = 1, . . . , p
}

form a basis for P (of dimension h), it follows that there exist vectors b1, . . . , bh ∈
Rk for which the matrix{

bn
i : n ∈ Zk+, |n| = m�, � = 1, . . . , p, i = 1, . . . , h

}
is nonsingular. For such a choice of vectors bi , i = 1, . . . , h, the requisite β1, . . . , βh,
not all zero, do not exist. This proves that for these bi , i = 1, . . . , h, the polynomials

p∑
�=1

α�(bi · x)m�, i = 1, . . . , h,
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are linearly independent, and thus there exist c1, . . . , ch for which the matrix
p∑

�=1

α�(bi · cj )
m�, i, j = 1, . . . , h,

is of rank h. �

Proposition 6 and Theorem 7 immediately imply Theorem 1.
Note that Theorem 1 states that f : R → R takes matrices of rank k to matrices

of rank < k (k � 2) if and only if f is the constant function, while it takes matrices
of rank k to matrices of rank k (k � 2) if and only if f is the constant function or
f (t) = αt for some α ∈ R. These simple facts can also be proven directly as follows.

Assume f takes matrices of rank k to matrices of rank < k (k � 2). Consider the
k × k matrix


b b · · · b b

a b · · · b b
...

...
. . .

...
...

a a · · · a b


 .

That is, the (i, j)th element is equal to b for i � j , and to a for i > j . The determi-
nant of this matrix is b(b − a)k−1. Since f takes matrices of rank k to matrices of
rank < k we must therefore have

f (b)(f (b) − f (a))k−1 = 0

for every choice of a, b ∈ R. But this implies that f is the constant function.
Now assume f takes matrices of rank k to matrices of rank k (k � 2), and f is

not the constant function. The (k + 1) × (k + 1) matrix



0 0 · · · 0 0
a 0 · · · 0 0
...

...
. . .

...
...

a a · · · a 0




is of rank k for a /= 0. Thus


f (0) f (0) · · · f (0) f (0)

f (a) f (0) · · · f (0) f (0)
...

...
. . .

...
...

f (a) f (a) · · · f (a) f (0)




has rank at most k. We know that its determinant f (0)(f (0) − f (a))k must therefore
equal zero. If f (0) /= 0 then as f is not the constant function, a contradiction ensues.
So f (0) = 0. (This is the same argument as that found at the beginning of the proof
of Proposition 3.) Choose a so that f (a) = c /= 0. Consider the (k + 1) × (k + 1)

matrix
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a · · · 0 0 a
...

. . .
...

...
...

0 · · · a 0 a

0 · · · 0 a a

0 · · · x y x + y


 .

This matrix is of rank k. (The last column is the sum of the previous columns.) As f

takes matrices of rank k to matrices of rank k, the matrix


c · · · 0 0 c
...

. . .
...

...
...

0 · · · c 0 c

0 · · · 0 c c

0 · · · f (x) f (y) f (x + y)




must be singular. This implies that we must have for all x, y ∈ R

ck(f (x + y) − f (x) − f (y)) = 0.

Thus

f (x + y) = f (x) + f (y)

for all x, y ∈ R. This is a well-known Cauchy equation. Under any one of the condi-
tions on f such as measurability, continuity at a point, or boundedness on an interval,
this implies that

f (t) = αt

for some α ∈ R.

4. Complex g

What we did in Sections 2 and 3 for real-valued functions we will now do for
complex-valued functions.

Theorem 8. Assume g : C → C is continuous on C\{0} and takes matrices of rank
1 to matrices of rank d . Then g is of the form

g(z) =
p∑

�=1

p�(ln |z|)ec� ln |z|zk� (10)

on C\{0}, where p� is a polynomial of degree ∂p�, c� ∈ C, k� ∈ Z and
∑p

�=1(∂p� +
1) � d .

Proof. We mimic the proofs of Proposition 4 and Theorem 5. We assume that there
exists a complex matrix A = (bicj )

d
i,j=1 of rank 1 for which g(A) is of exact rank

d , i.e., det g(A) /= 0. Consider for each z, w ∈ C the (d + 1) × (d + 1) matrix
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B =




zw zc1 · · · zcd

b1w b1c1 · · · b1cd
...

...
. . .

...

bdw bdc1 · · · bdcd




of rank 1. By assumption we have

det g(B) = 0.

Since det g(A) /= 0, expanding det g(B) by its first row and column gives us the
equation

g(zw) =
d∑

i,j=1

eij g(zcj )g(biw), (11)

which we can rewrite in various ways as

g(zw) =
d∑

�=1

r�(z)s�(w). (12)

Any g which satisfies (12) takes matrices of rank 1 to matrices of rank d .
Set

V = span{g(w·): w ∈ C}.
From (11) we have that V is of dimension at most d . V is invariant under dilation
by w ∈ C. We may therefore regard V as a subspace invariant under rotation (mul-
tiplication by w = eit ) and positive dilation (multiplication by w = ρ > 0). As V
is of finite dimension, it is also closed under uniform convergence on compact sets.
Define for each fixed n ∈ Z and k ∈ N

φk(z) = 1

k

k∑
j=1

g

(
e− 2�ij

k z

)
e

2�ijn
k .

Since V is rotation invariant we have that φk ∈ V for each k ∈ N. However the φk

are Riemann sums associated with the integral

1

2�

∫ 2�

0
g(e−isz)eins ds,

and converge to it uniformly in z on compact subsets of C\{0}. Thus this integral is
also in V. Letting z = reiθ , and applying the change of variable t = θ − s, it follows
that

1

2�

∫ 2�

0
g(reit )ein(θ−t) dt

is in V. This integral equals

gn(r)e
inθ ,
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where

gn(r) = 1

2�

∫ 2�

0
g(reit )e−int dt.

The functions gn(r) are in C(0, ∞).
From the linear independence of the {einθ }n∈Z, we have that those {gn(r)einθ } with

gn not identically zero, are also linearly independent. As each of these functions is
in V, and V is of dimension at most d , this implies that there are at most d distinct
integers n ∈ Z for which gn is not identically zero. By the unicity theorem for Fourier
series (see e.g. [9, p. 4]), we have

g(reiθ ) =
d∑

�=1

gn�
(r)ein�θ .

The space V is also invariant under positive dilation. As the {ein�θ }d�=1 are linearly
independent and V is of finite dimension, then for each n ∈ {n1, . . . , nd} the space

span{gn(ρ·): ρ > 0}
is a finite dimensional subspace of C(0, ∞). Therefore by a change of variable (see
the proof of Theorem 5) using the known result characterizing finite dimension-
al translation invariant subspaces of complex-valued functions in C(R) it follows
that each gn is a linear combination of a finite number of functions of the form
(ln r)krλ for k = 0, . . . , m, and some λ ∈ C. Combining the above facts implies that
g is necessarily of the form

g(z) = g(reiθ ) =
p∑

�=1

p�(ln r)rd�eik�θ

on C\{0}, where z = reiθ , each p� is a polynomial, d� ∈ C and k� ∈ Z. Since r = |z|
and eik�θ = zk� |z|−k� = zk�e−k� ln |z|, the above may be rewritten as

g(z) =
p∑

�=1

p�(ln |z|)ec� ln |z|zk�,

where p� is a polynomial, c� ∈ C and k� ∈ Z. As g ∈ V, dimV � d and V is
invariant under dilations by positive constants and under rotation, it follows that∑p

�=1(∂p� + 1) � d. �

Remark 1. It is also not difficult to show that for any g of the form (10) with∑p

�=1(∂p� + 1) � d the associated linear subspace generated by dilations of g is
dilation invariant of dimension at most d . Thus, if we also set g(0) = 0, then g will
take matrices of rank 1 to matrices of rank d .

Remark 2. In Theorem 5 we assumed that f was measurable. Here we demanded
that g be continuous on C\{0}. It is possible to prove this result for measurable
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functions. However the proof then becomes rather detailed and complicated. The
interested reader may wish to consult the methods in [6].

Based on Theorem 8 we first prove that for k � 2 the associated g are necessarily
polynomials in z and z̄. We then delineate the possible explicit forms, dependent
upon k and d .

Proposition 9. Assume g : C → C is continuous and g takes matrices of rank k,

k � 2, to matrices of rank d . Then g is a polynomial in z and z̄.

Proof. We mirror the proof of Proposition 6. Since g takes matrices of rank k to
matrices of rank d , and k � 2, it follows as in the proof of Proposition 6 that gc(t) =
g(t − c) takes matrices of rank 1 to matrices of rank d for every constant c ∈ C.

Thus g is necessarily of the form (10) and its translates also have the same general
form. Note that any g which satisfies (10), i.e., is of the form

g(z) =
p∑

�=1

p�(ln |z|)ec� ln |z|zk�

is a C∞ function in x and y (z = x + iy) for (x, y) /= (0, 0). If its translates have
this same property, then g must be a C∞ function at (0, 0). It is readily verified that
this implies that each of the above polynomials p� is a constant function, and that
the c� and 2k� + c� are nonnegative even integers implying

ec� ln |z|zk� = zk�+c�/2z̄c�/2.

Thus g has the desired form, namely

g(z) =
p∑

�=1

β�z
m� z̄n� ,

where β� ∈ C and the (m�, n�) are distinct pairs of nonnegative integers. �

Now we can explicitly characterize the g of Theorem 2.

Theorem 10. Let

g(z) =
p∑

�=1

β�z
m� z̄n� ,

where the (m�, n�) are distinct pairs of nonnegative integers, β� /= 0, � = 1, . . . , p.
For each complex-valued matrix A = (aij )

n
i=1

m
j=1 of rank at most k, the matrix

g(A) = (g(aij ))
n
i=1

m
j=1

is of rank at most
p∑

�=1

(
k + m� − 1

m�

)(
k + n� − 1

n�

)
.
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Furthermore there exists a matrix A of rank k for which

rank g(A) =
p∑

�=1

(
k + m� − 1

m�

)(
k + n� − 1

n�

)
.

Proof. We parallel the proof of Theorem 7. Let A = (aij )
n
i=1

m
j=1 be a matrix of rank

k. Then it may be written in the form

aij =
k∑

t=1

bit cjt , i = 1, . . . , n; j = 1, . . . , m, (13)

for some choice of constants bit and cjt . Set bi = (bi1, . . . , bik), i = 1, . . . , n, and
cj = (cj1, . . . , cjk), j = 1, . . . , m. Thus

aij = bi · cj .

Furthermore for each p, q ∈ Z+

a
p
ij ā

q
ij = (bi · cj )

p(bi · cj )
q =

∑
|m|=p

(|m|
m

)
bm

i · cm
j

∑
|n|=q

(|n|
n

)
b̄n

i · c̄n
j . (14)

The number of summands in (14) is(
k + p − 1

p

)(
k + q − 1

q

)
.

It therefore follows from (13) and (14) that the matrix whose entries are

β�(aij )
m�(āij )

n�

is of rank at most(
k + m� − 1

m�

)(
k + n� − 1

n�

)
,

and thus

rank g(A) �
p∑

�=1

(
k + m� − 1

m�

)(
k + n� − 1

n�

)
.

We now follow the remaining arguments in the proof of Theorem 7 replacing xn

by zmz̄n, where we note that the{
zmz̄n: m, n ∈ Zk+, |m| = m�, |n| = n�, � = 1, . . . , p

}
are linearly independent functions which span a subspace of Ck of dimension

p∑
�=1

(
k + m� − 1

m�

)(
k + n� − 1

n�

)
.

The proof of Theorem 10 then follows. �
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Remark 3. A study of the proof of the above results shows that if g : C → C takes
matrices of rank k to matrices of rank d , then g satisfies the functional equation

g(z · w) =
d∑

�,m=1

a�mg(cm · z)g(b� · w), (15)

for all z, w ∈ Ck , some b�, cm ∈ Ck and a�m ∈ C, �, m = 1, . . . , d . Similarly if g

solves an equation of the form (15), then for any di , ej ∈ Ck , i, j = 1, . . . , n,

g(di · ej ) =
d∑

�,m=1

a�mg(cm · di )g(b� · ej )

=
d∑

�=1

( d∑
m=1

a�mg(cm · di )

)
g(b� · ej )

=
d∑

�=1

Di�E�j

which implies that rank (g(di · ej ))ni,j=1 � d . That is, g takes matrices of rank k to
matrices of rank d if and only if g solves (15). We solved (15) for k = 1 directly, and
for k � 2 indirectly. This same result holds for f : R → R taking matrices of rank k

to matrices of rank d .
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