Available online at www.sciencedirect.com

science (d) DiRECT*

Rank restricting functions

Aharon Atzmon ${ }^{\text {a }}$, Allan Pinkus ${ }^{\text {b,* }}$
${ }^{a}$ School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
${ }^{\mathrm{b}}$ Department of Mathematics, Technion, I.I.T., Haifa 32000, Israel
Received 21 February 2003; accepted 12 April 2003
Submitted by H. Schneider

Abstract

In this paper we characterize, for given positive integers k and d, the class of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $n \times m$ real-valued matrix $A=\left(a_{i j}\right)_{i=1}^{n} \underset{j=1}{m}(\operatorname{arbitrary} n$ and $m)$ of rank at most k, the matrix $f(A)=\left(f\left(a_{i j}\right)\right)_{i=1}^{n}{ }_{j=1}^{m}$ has rank at most d, as well as the class of functions $g: \mathbb{C} \rightarrow \mathbb{C}$ such that for every $n \times m$ complex-valued matrix $A=\left(a_{i j}\right)_{i=1}^{n} \underset{j=1}{m}$ (arbitrary n and m) of rank at most k, the matrix $g(A)=\left(g\left(a_{i j}\right)\right)_{i=1}^{n} \underset{j=1}{m}$ has rank at most d. For $k \geqslant 2$ each such function f is a polynomial of an appropriate form which we shall exactly delineate, while each g is a polynomial in z and \bar{z}, also of an explicitly delineated form. For $k=1$ the class of such functions, in each case, is significantly different. Nonetheless it is via the study of the case $k=1$ that we are able to characterize such functions where $k \geqslant 2$. © 2003 Elsevier Inc. All rights reserved.

AMS classification: 15A03; 47A15

Keywords: Rank restriction; Dilation invariant subspace

1. Introduction

In this paper we prove two main results, one for real-valued functions, the other for complex-valued functions.

Let f denote a real-valued function defined on all of \mathbb{R}. We say that f takes matrices of rank k to matrices of rank d if for every real-valued matrix $A=\left(a_{i j}\right)_{i=1}^{n} \underset{j=1}{m}$

[^0](arbitrary n and m) of rank at most k, the real-valued matrix $f(A)=\left(f\left(a_{i j}\right)\right)_{i=1}^{n} \underset{j=1}{m}$ has rank at most d. We similarly let g denote a complex-valued function defined on \mathbb{C}, and say that g takes matrices of rank k to matrices of rank d if for every complex-valued matrix $A=\left(a_{i j}\right)_{i=1}^{n}{ }_{j=1}^{m}$ (arbitrary n and m) of rank at most k, the complex-valued matrix $g(A)=\left(g\left(a_{i j}\right)\right)_{i=1}^{n} \underset{j=1}{m}$ has rank at most d.

The two main results of this paper are the following.

Theorem 1. Assume $k \geqslant 2$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable. Then f takes matrices of rank k to matrices of rank d if and only if

$$
f(t)=\sum_{\ell=1}^{p} \alpha_{\ell} t^{m_{\ell}},
$$

where the m_{ℓ} are distinct nonnegative integers, $\alpha_{\ell} \neq 0, \alpha_{\ell} \in \mathbb{R}, \ell=1, \ldots, p$, and

$$
\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}} \leqslant d
$$

The characterization in the case $k=1$ is somewhat different. The class of functions is substantially larger and is given explicitly in Theorem 5. It is essentially all appropriate solutions of an Euler equation of degree d on all of \mathbb{R}. Despite the difference in the character of the solutions for $k=1$ and $k \geqslant 2$, the analysis of the case $k=1$ will be used to prove Theorem 1 .

Theorem 2. Assume $k \geqslant 2$, and $g: \mathbb{C} \rightarrow \mathbb{C}$ is continuous. Then g takes matrices of rank k to matrices of rank d if and only if

$$
g(z)=\sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}},
$$

where the $\left(m_{\ell}, n_{\ell}\right)$ are distinct pairs of nonnegative integers, $\beta_{\ell} \neq 0, \ell=1, \ldots, p$, and

$$
\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}} \leqslant d
$$

We also characterize all $g: \mathbb{C} \rightarrow \mathbb{C}$ which take matrices of rank 1 to matrices of rank d. Here the class of functions is significantly different and larger. This result may be found in Theorem 8. The proof of Theorem 2 depends upon this result.

This paper is organized as follows. In Section 2 we consider the case $k=1$ for real f. In Section 3 we prove Theorem 1. The complex case is considered in Section 4.

There is a fairly extensive literature on operators which influence rank. See, for example, the many articles in the 1992 volume 33 of Linear and Multilinear Algebra
devoted to linear preserver problems. However the problems considered in these articles are different in character. They consider functions which operate on the full matrix, e.g., $f(A)=P A Q$ where P, Q are appropriate matrices, rather than our "entrywise" functions $f(A)=\left(f\left(a_{i j}\right)\right)_{i=1}^{n}{ }_{j=1}^{m}$. The type of function operation on matrices which we deal with has been considered in the literature in connection with a variety of problems. Functions taking positive definite or Hermitian matrices to positive definite or Hermitian matrices have been explicitly characterized (see e.g. $[3,7,13]$). Functions which preserve and generalize spectral radii inequalities in connection with Hadamard-like products have been studied (see e.g. [5,8]). The problem considered in this paper was motivated in part by a paper of Pinkus [12] (see also [11]), wherein are characterized real-valued functions f for which $f(\langle x, y\rangle)$ is a strictly positive definite kernel. Here $\langle\cdot, \cdot\rangle$ is a real inner product, and x and y are elements of some real inner product space. This problem is equivalent to that of characterizing those f which take all symmetric positive definite matrices of rank $\leqslant k$, with no two rows identical, to matrices of full rank.

2. Real f and the case $k=1$

We start by considering the simplest case of $k=d=1$, i.e., real-valued functions taking matrices of rank 1 to matrices of rank 1.

Proposition 3. Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable. Then f takes matrices of rank 1 to matrices of rank 1 if and only if f is one of the following functions, where $C, c \in \mathbb{R}$:
(a) C,
(b) $C|t|^{c}, f(0)=0$,
(c) $C|t|^{c}(\operatorname{sgn} t), f(0)=0$.

Proof. Obviously the constant function, i.e., $f(t)=C$ for all t, takes every matrix to a matrix of rank at most 1 . Let us assume that f is not the constant function. The matrix

$$
\left(\begin{array}{ll}
0 & 0 \\
a & 0
\end{array}\right)
$$

is of rank 1 for any $a \neq 0$. Thus

$$
\left(\begin{array}{ll}
f(0) & f(0) \\
f(a) & f(0)
\end{array}\right)
$$

must also be of rank at most 1 . As its determinant is $f(0)(f(0)-f(a))$ and there exists an a such that $f(0)-f(a) \neq 0(f$ is not the constant function), we must have $f(0)=0$.

Now consider the matrix

$$
\left(\begin{array}{cc}
x y & y \\
x & 1
\end{array}\right)
$$

of rank 1 , and set $f(1)=C$. Thus

$$
\left(\begin{array}{cc}
f(x y) & f(y) \\
f(x) & C
\end{array}\right)
$$

is of rank 1 implying

$$
C f(x y)=f(x) f(y)
$$

for all $x, y \in \mathbb{R}$. If $C=0$, then $f(x)=0$ for all $x \in \mathbb{R}$, a contradiction. This is a Cauchy equation. From Aczél [1, p. 41] we have that if, for example, f is measurable (less will suffice) and not the constant function, then f is necessarily of one of the following forms with arbitrary $C, c \in \mathbb{R}$:
(b) $C|t|^{c}$,
(c) $C|t|^{c}(\operatorname{sgn} t)$,
for $t \neq 0$, and satisfies $f(0)=0$.
The converse direction, i.e., if f has the form (a), (b) or (c), then f takes matrices of rank 1 to matrices of rank 1 , easily follows using the fact that matrices are of rank at most 1 if and only if they are of the explicit form $A=\left(b_{i} c_{j}\right)_{i=1}^{n}{ }_{j=1}^{m}$.

The above proposition also follows as a consequence of these next two results which characterize functions taking matrices of rank 1 to matrices of rank d.

Proposition 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Then f takes matrices of rank 1 to matrices of rank d if and only if f is an element of a dilation invariant subspace of dimension at most d.

A dilation invariant subspace X over \mathbb{R} is a linear subspace with the property that if $g \in X$ then $g(a \cdot) \in X$ for every $a \in \mathbb{R}$.

Proof. Let us assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ takes matrices of rank 1 to matrices of rank d and, without loss of generality, that there exists a real matrix $A=\left(b_{i} c_{j}\right)_{i, j=1}^{d}$ of rank 1 for which $f(A)$ is of exact rank d, i.e., $\operatorname{det} f(A) \neq 0$. Consider for each $x, y \in \mathbb{R}$ the $(d+1) \times(d+1)$ matrix

$$
B=\left(\begin{array}{cccc}
x y & x c_{1} & \cdots & x c_{d} \\
b_{1} y & b_{1} c_{1} & \cdots & b_{1} c_{d} \\
\vdots & \vdots & \ddots & \vdots \\
b_{d} y & b_{d} c_{1} & \cdots & b_{d} c_{d}
\end{array}\right)
$$

of rank 1. By assumption we have

$$
\operatorname{det} f(B)=0
$$

Since $\operatorname{det} f(A) \neq 0$, expanding $\operatorname{det} f(B)$ by its first row and column gives us the equation

$$
\begin{equation*}
f(x y)=\sum_{i, j=1}^{d} e_{i j} f\left(x c_{j}\right) f\left(b_{i} y\right) \tag{1}
\end{equation*}
$$

Note that this can be rewritten in various ways in the form

$$
f(x y)=\sum_{k=1}^{d} r_{k}(x) s_{k}(y)
$$

Let

$$
\mathscr{R}=\operatorname{span}\{f(a \cdot): a \in \mathbb{R}\} .
$$

\mathscr{R} is a dilation invariant subspace. From (1) we see that it is of dimension at most d, since each $f(a \cdot)$ is a linear combination of the $\left\{f\left(c_{j} \cdot\right)\right\}_{j=1}^{d}$.

On the other hand, if f is an element of a dilation invariant subspace \mathscr{R} of dimension at most d, then we can write

$$
f(x y)=\sum_{k=1}^{d} r_{k}(x) s_{k}(y)
$$

for some functions $\left\{r_{k}\right\}_{k=1}^{d}$ and $\left\{s_{k}\right\}_{k=1}^{d}$. If A is a rank 1 matrix, then $A=\left(b_{i} c_{j}\right)_{i=1}^{n}{ }_{j=1}^{m}$. Therefore

$$
f\left(b_{i} c_{j}\right)=\sum_{k=1}^{d} r_{k}\left(b_{i}\right) s_{k}\left(c_{j}\right)=\sum_{k=1}^{d} B_{i k} C_{k j},
$$

i.e., $f(A)$ is the pointwise sum of d matrices of rank at most 1 , or alternatively, the $n \times m$ matrix $f(A)$ is the product of an $n \times d$ and a $d \times m$ matrix, and thus $f(A)$ is a matrix of rank at most d.

We can now explicitly characterize functions taking matrices of rank 1 to matrices of rank d.

Theorem 5. Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ takes matrices of rank 1 to matrices of rank d and f is measurable. Then f is a C^{∞} function on $\mathbb{R} \backslash\{0\}$. It is a solution thereon of a nontrivial Euler equation of degree at most d, i.e., satisfies

$$
\begin{equation*}
\sum_{\ell=0}^{d} c_{\ell} t^{\ell} f^{(\ell)}(t)=0 \tag{2}
\end{equation*}
$$

for $t \neq 0$, where the $c_{0}, \ldots, c_{d} \in \mathbb{R}$ are not all zero.

To be more exact it is a solution of (2) of the precise form

$$
\begin{align*}
& f(t)=\sum_{j=1}^{m} p_{1 j}(\ln |t|)|t|^{\lambda_{j}}+p_{2 j}(\ln |t|)|t|^{\lambda_{j}}(\operatorname{sgn} t) \\
& +\sum_{j=1}^{n}\left[q_{1 j}(\ln |t|)|t|^{\mu_{j}} \cos \left(v_{j} \ln |t|\right)+r_{1 j}(\ln |t|)|t|^{\mu_{j}} \sin \left(v_{j} \ln |t|\right)\right. \\
& +q_{2 j}(\ln |t|)|t|^{\mu_{j}} \cos \left(v_{j} \ln |t|\right)(\operatorname{sgn} t) \\
& \left.+r_{2 j}(\ln |t|)|t|^{\mu_{j}} \sin \left(v_{j} \ln |t|\right)(\operatorname{sgn} t)\right], \tag{3}
\end{align*}
$$

where the $\left\{\lambda_{j}\right\}_{j=1}^{m}$ are distinct values in \mathbb{R}, the $\left\{\mu_{j} \pm i v_{j}\right\}_{j=1}^{n}$ distinct values in $\mathbb{C} \backslash \mathbb{R}$, the $p_{1 j}, p_{2 j}, q_{1 j}, q_{2 j}, r_{1 j}$ and $r_{2 j}$ are polynomials, and

$$
\begin{aligned}
& \sum_{j=1}^{m}\left(\partial p_{1 j}+1\right)+\left(\partial p_{2 j}+1\right)+2 \sum_{j=1}^{n}\left(\max \left\{\partial q_{1 j}, \partial r_{1 j}\right\}+1\right) \\
& \quad+\left(\max \left\{\partial q_{2 j}, \partial r_{2 j}\right\}+1\right) \leqslant d,
\end{aligned}
$$

where ∂p denotes the degree of the polynomial p (with $\partial p=-1$ if $p=0$).
Proof. As $f: \mathbb{R} \rightarrow \mathbb{R}$ takes matrices of rank 1 to matrices of rank d it follows from Proposition 4 that f belongs to a dilation invariant subspace \mathscr{R} of dimension at most d. It is well known (see e.g. $[2,6,10,14]$ and references therein) that every translation invariant subspace of dimension at most d of measurable functions on all of \mathbb{R} is exactly the space of solutions of

$$
\begin{equation*}
\sum_{\ell=0}^{d} a_{\ell} g^{(\ell)}(s)=0 \tag{4}
\end{equation*}
$$

for all $s \in \mathbb{R}, a_{0}, \ldots, a_{d} \in \mathbb{R}$ not all zero. A change of variable $x=\mathrm{e}^{s}$ (or $x=-\mathrm{e}^{s}$) implies that each $f \in \mathscr{R}$ must satisfy an equation of the form (2) on \mathbb{R}_{+}and on \mathbb{R}_{-}. In fact we can assume that it is the same equation on both \mathbb{R}_{+}and \mathbb{R}_{-}. This follows from the dilation invariance, but can also be proven directly as follows.
\mathscr{R} is finite dimensional and therefore closed under uniform convergence on compact sets. Furthermore

$$
\frac{f(x(y+h))-f(x y)}{h} \in \mathscr{R}
$$

for every $h \neq 0$. As all solutions of (4) are in $C^{\infty}(\mathbb{R})$, it follows that f is in $C^{\infty}(\mathbb{R} \backslash\{0\})$, and thus

$$
x f^{\prime}(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} y} f(x y)\right|_{y=1} \in \mathscr{R}
$$

for $x \in \mathbb{R} \backslash\{0\}$. Repeated applications of the above imply that

$$
x^{k} f^{(k)}(x)=\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} y^{k}} f(x y)\right|_{y=1} \in \mathscr{R}
$$

for $k=0,1, \ldots, d$. As \mathscr{R} is a space of dimension at most d, these $d+1$ functions are linearly dependent. Thus f must satisfy an equation of the form (2) on $\mathbb{R} \backslash\{0\}$.

We know the solutions of (2) (see e.g. [4, p. 148]). Solutions of (2) on $(0, \infty)$ are obtained as linear combinations of the following functions. We consider the polynomial

$$
\begin{equation*}
p(x)=\sum_{\ell=0}^{d} c_{\ell} x(x-1) \cdots(x-\ell+1) \tag{5}
\end{equation*}
$$

Associated with each real root λ of p of multiplicity m we have the m solutions $(\ln t)^{k} t^{\lambda}, k=0, \ldots, m-1$. Associated with each pair of complex conjugate roots $\mu \pm \mathrm{i} v$, each of multiplicity m, we have the $2 m$ solutions $(\ln t)^{k} t^{\mu} \cos (v \ln t)$ and $(\ln t)^{k} t^{\mu} \sin (v \ln t), k=0, \ldots, m-1$. (We are simply taking a real basis for $\operatorname{span}\left\{(\ln t)^{k} t^{\mu \pm \mathrm{iv}}\right\}$.) On $(-\infty, 0)$ we have the same class of solutions where t is replaced by $|t|$. Our function f is in the linear space generated by these functions. These are the functions which appear in (3), with an important difference. Solutions of (2), assuming $c_{d} \neq 0$, form a d dimensional subspace on \mathbb{R}_{+}, a d dimensional subspace on \mathbb{R}_{-}, and thus a $2 d$ dimensional subspace of $C(\mathbb{R} \backslash\{0\})$. However f is an element of \mathscr{R}, a dilation invariant subspace of dimension at most d of the solution space of (2).

We claim that each element of a dilation invariant subspace of dimension at most d which satisfies (2) is of the form (3). To see this, first note that \mathscr{R} is both positive and negative dilation invariant. That is, if $f(\cdot) \in \mathscr{R}$ then we also have $f(-\cdot) \in \mathscr{R}$. Thus any $f \in \mathscr{R}$ can be decomposed into the sum of an even and odd function, both of which belong to \mathscr{R}. That is,

$$
\mathscr{R}=\mathscr{R}_{\mathrm{e}} \oplus \mathscr{R}_{\mathrm{o}}
$$

where \mathscr{R}_{e} and \mathscr{R}_{o} consist of the even and odd functions in \mathscr{R}, respectively. Furthermore \mathscr{R}_{e} and \mathscr{R}_{o} are dilation invariant and

$$
\operatorname{dim} \mathscr{R}=\operatorname{dim} \mathscr{R}_{\mathrm{e}}+\operatorname{dim} \mathscr{R}_{\mathrm{o}} .
$$

Let $f=g+h$ where $g \in \mathscr{R}_{\mathrm{e}}$ and $h \in \mathscr{R}_{\mathrm{o}}$. Then g is necessarily of the form

$$
\begin{aligned}
& g(t)=\sum_{j=1}^{m} p_{1 j}(\ln |t|)|t|^{\lambda_{j}}+\sum_{j=1}^{n}\left[q_{1 j}(\ln |t|)|t|^{\mu_{j}} \cos \left(v_{j} \ln |t|\right)\right. \\
& \left.\quad+r_{1 j}(\ln |t|)|t|^{\mu_{j}} \sin \left(v_{j} \ln |t|\right)\right]
\end{aligned}
$$

where the $p_{1 j}, q_{1 j}$ and $r_{1 j}$ are polynomials, the $\left\{\lambda_{j}\right\}_{j=1}^{m}$ in \mathbb{R} and the $\left\{\mu_{j} \pm \mathrm{i} \nu_{j}\right\}_{j=1}^{n}$ in $\mathbb{C} \backslash \mathbb{R}$ are the roots of (5) of appropriate multiplicity (at least $\partial p_{1 j}+1, j=1, \ldots$, m, and $\max \left\{\partial q_{1 j}, \partial r_{1 j}\right\}+1, j=1, \ldots, n$, respectively), and

$$
\sum_{j=1}^{m}\left(\partial p_{1 j}+1\right)+2 \sum_{j=1}^{n}\left(\max \left\{\partial q_{1 j}, \partial r_{1 j}\right\}+1\right) \leqslant \operatorname{dim} \mathscr{R}_{\mathrm{e}}
$$

Similarly, h is necessarily of the form

$$
\begin{aligned}
h(t)= & \sum_{j=1}^{m} p_{2 j}(\ln |t|)|t|^{\lambda_{j}}(\operatorname{sgn} t)+\sum_{j=1}^{n}\left[q_{2 j}(\ln |t|)|t|^{\mu_{j}} \cos \left(v_{j} \ln |t|\right)(\operatorname{sgn} t)\right. \\
& \left.+r_{2 j}(\ln |t|)|t|^{\mu_{j}} \sin \left(v_{j} \ln |t|\right)(\operatorname{sgn} t)\right]
\end{aligned}
$$

where

$$
\sum_{j=1}^{m}\left(\partial p_{2 j}+1\right)+2 \sum_{j=1}^{n}\left(\max \left\{\partial q_{2 j}, \partial r_{2 j}\right\}+1\right) \leqslant \operatorname{dim} \mathscr{R}_{0}
$$

This proves that f is of the form (3).
Every f of the form (3) takes matrices of rank 1 to matrices of rank d, modulo the fact that we have not defined f at 0 . From (1) it easily follows (substitute $y=0$ therein) that if the constant function is not in \mathscr{R}, then $f(0)=0$.

3. Real f and the case $k \geqslant 2$

Based on Theorem 5 we first prove that in the case $k \geqslant 2$ our functions f are necessarily polynomials. We will then delineate their possible explicit form, dependent upon k and d.

Proposition 6. Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and f takes matrices of rank k, $k \geqslant 2$, to matrices of rank d. Then f is a polynomial.

Proof. As f takes matrices of rank k to matrices of rank d, it also takes matrices of rank 1 to matrices of rank d. Thus f has the form given in Theorem 5. More specifically, it is a C^{∞} function on $\mathbb{R} \backslash\{0\}$.

Now if $A=\left(a_{i j}\right)$ is a matrix of rank 1 , then for each real constant c the matrix $\left(a_{i j}-c\right)$ is of rank at most 2 . As $k \geqslant 2$ the matrix $\left(f\left(a_{i j}-c\right)\right)$ is of rank at most d. Thus for each constant c the function

$$
f_{c}(t)=f(t-c)
$$

take matrices of rank 1 to matrices of rank at most d. Thus f_{c} is also of the form given in Theorem 5.

There is no a priori reason to assume that the different f_{c}, as c varies, satisfy Eq. (2) with one and the same coefficients. They simply satisfy equations of the form (2). However one property which is a result of the previous analysis is that every solution of (2) is a C^{∞} function on $\mathbb{R} \backslash\{0\}$. Saying that f_{c} is a C^{∞} function on $\mathbb{R} \backslash\{0\}$ for any $c \neq 0$ implies that f is a C^{∞} function also at zero and thus on all of \mathbb{R}. It is easily verified that the only functions in our solution set of (3) which are C^{∞} functions on all of \mathbb{R} (and thus at zero) are the powers x^{m}, m a nonnegative integer, and linear combinations thereof. Thus f is a polynomial.

Now that we know that our f s are necessarily polynomials, we can characterize them explicitly.

Theorem 7. Let

$$
f(t)=\sum_{\ell=1}^{p} \alpha_{\ell} t^{m_{\ell}},
$$

where the m_{ℓ} are distinct nonnegative integers and $\alpha_{\ell} \neq 0, \alpha_{\ell} \in \mathbb{R}, \ell=1, \ldots, p$. For each matrix $A=\left(a_{i j}\right)_{i=1}^{n}{ }_{j=1}^{m}$ of rank at most k, the matrix

$$
f(A)=\left(f\left(a_{i j}\right)\right)_{i=1}^{n} m
$$

is of rank at most

$$
\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}
$$

Furthermore there exists a matrix A of rank k for which

$$
\operatorname{rank} f(A)=\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}
$$

Before presenting the proof, we recall some notation. For $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}_{+}^{k}$ let

$$
\mathbf{x}^{\mathbf{n}}=x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}
$$

and $|\mathbf{n}|=n_{1}+\cdots+n_{k}$. For $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{k}$ we use the standard inner product

$$
\mathbf{b} \cdot \mathbf{c}=\sum_{i=1}^{k} b_{i} c_{i}
$$

Finally we recall that for any $q \in \mathbb{Z}_{+}$

$$
(\mathbf{b} \cdot \mathbf{c})^{q}=\sum_{|\mathbf{n}|=q}\binom{|\mathbf{n}|}{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \cdot \mathbf{c}^{\mathbf{n}},
$$

where

$$
\mathbf{b}^{\mathbf{n}} \cdot \mathbf{c}^{\mathbf{n}}=b_{1}^{n_{1}} \cdots b_{k}^{n_{k}} c_{1}^{n_{1}} \cdots c_{k}^{n_{k}},
$$

and

$$
\binom{|\mathbf{n}|}{\mathbf{n}}=\frac{(|\mathbf{n}|)!}{n_{1}!\cdots n_{k}!} .
$$

Proof. A matrix $A=\left(a_{i j}\right)_{i=1}^{n} \underset{j=1}{m}$ is of rank at most k if and only if it is the sum of k rank 1 matrices, i.e., can be written in the form

$$
\begin{equation*}
a_{i j}=\sum_{t=1}^{k} b_{i t} c_{j t}, \quad i=1, \ldots, n ; \quad j=1, \ldots, m \tag{6}
\end{equation*}
$$

Set $\mathbf{b}_{i}=\left(b_{i 1}, \ldots, b_{i k}\right), i=1, \ldots, n$, and $\mathbf{c}_{j}=\left(c_{j 1}, \ldots, c_{j k}\right), j=1, \ldots, m$. Thus

$$
a_{i j}=\mathbf{b}_{i} \cdot \mathbf{c}_{j} .
$$

Furthermore for each $q \in \mathbb{Z}_{+}$

$$
\begin{equation*}
\left(\mathbf{b}_{i} \cdot \mathbf{c}_{j}\right)^{q}=\sum_{|\mathbf{n}|=q}\binom{|\mathbf{n}|}{\mathbf{n}} \mathbf{b}_{i}^{\mathbf{n}} \cdot \mathbf{c}_{j}^{\mathbf{n}} . \tag{7}
\end{equation*}
$$

The number of summands in (7) is the dimension of the space of homogeneous polynomials of degree q in k variables, namely

$$
\binom{k+q-1}{q}
$$

(This is easily checked by setting $b_{i t} c_{j t}=x_{t}$ in (7).) It therefore follows from (6) and (7) that the matrix whose entries are

$$
\alpha_{\ell}\left(a_{i j}\right)^{m_{\ell}}
$$

is of rank at most

$$
\binom{k+m_{\ell}-1}{m_{\ell}}
$$

and thus

$$
\operatorname{rank} f(A) \leqslant \sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}
$$

Let P_{q}^{k} denote the space of homogeneous polynomials of degree q in k variables. Set $P=\bigoplus_{\ell=1}^{p} P_{m_{\ell}}^{k}$ and

$$
h=\operatorname{dim} P=\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}
$$

We wish to prove the existence of a matrix A of rank k for which $f(A)$ is of rank h. In other words, we claim there exist vectors $\mathbf{b}_{i}, \mathbf{c}_{j}, i, j=1, \ldots, h$, in \mathbb{R}^{k} such that the $h \times h$ matrix with (i, j) entry

$$
\sum_{\ell=1}^{p} \alpha_{\ell}\left(\mathbf{b}_{i} \cdot \mathbf{c}_{j}\right)^{m_{\ell}}, \quad i, j=1, \ldots, h
$$

is of rank h. To this end it suffices to prove the existence of vectors $\mathbf{b}_{i}, i=1, \ldots, h$, for which the polynomials

$$
\sum_{\ell=1}^{p} \alpha_{\ell}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}, \quad i=1, \ldots, h
$$

are linearly independent. For if true, then these h polynomials are also linearly independent over some h points $\mathbf{c}_{1}, \ldots, \mathbf{c}_{h}$.

We will prove the existence of the required vectors. Assume such vectors do not exist. Then for each choice of $\mathbf{b}_{i}, i=1, \ldots, h$, in \mathbb{R}^{k} there exist $\beta_{1}, \ldots, \beta_{h}$, not all zero, such that for all $\mathbf{x} \in \mathbb{R}^{k}$

$$
\sum_{i=1}^{h} \beta_{i}\left(\sum_{\ell=1}^{p} \alpha_{\ell}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}\right)=0
$$

Thus

$$
\begin{equation*}
\sum_{\ell=1}^{p} \alpha_{\ell}\left(\sum_{i=1}^{h} \beta_{i}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}\right)=0 \tag{8}
\end{equation*}
$$

Each

$$
\sum_{i=1}^{h} \beta_{i}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}
$$

is a polynomial in $P_{m_{\ell}}^{k}$ (homogeneous of degree m_{ℓ}). For (8) to hold it is necessary, since each $\alpha_{\ell} \neq 0$, that

$$
\sum_{i=1}^{h} \beta_{i}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}=0, \quad \ell=1, \ldots, p
$$

which from (7) implies

$$
\begin{equation*}
\sum_{|\mathbf{n}|=m_{\ell}}\binom{|\mathbf{n}|}{\mathbf{n}} \sum_{i=1}^{h} \beta_{i} \mathbf{b}_{i}^{\mathbf{n}} \cdot \mathbf{x}^{\mathbf{n}}=0, \quad \ell=1, \ldots, p \tag{9}
\end{equation*}
$$

As the set of functions in $\left\{\mathbf{x}^{\mathbf{n}}\right\}_{|\mathbf{n}|=m_{\ell}}$ are linearly independent in $P_{m_{\ell}}^{k}$ (this is just the monomial basis for $P_{m_{\ell}}^{k}$), (9) implies that

$$
\sum_{i=1}^{h} \beta_{i} \mathbf{b}_{i}^{\mathbf{n}}=0
$$

for each $\mathbf{n} \in \mathbb{Z}_{+}^{k},|\mathbf{n}|=m_{\ell}$, and $\ell=1, \ldots, p$. The number of such equations is exactly h. Moreover as the

$$
\left\{\mathbf{x}^{\mathbf{n}}: \mathbf{n} \in \mathbb{Z}_{+}^{k},|\mathbf{n}|=m_{\ell}, \ell=1, \ldots, p\right\}
$$

form a basis for P (of dimension h), it follows that there exist vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{h} \in$ \mathbb{R}^{k} for which the matrix

$$
\left\{\mathbf{b}_{i}^{\mathbf{n}}: \mathbf{n} \in \mathbb{Z}_{+}^{k},|\mathbf{n}|=m_{\ell}, \ell=1, \ldots, p, i=1, \ldots, h\right\}
$$

is nonsingular. For such a choice of vectors $\mathbf{b}_{i}, i=1, \ldots, h$, the requisite $\beta_{1}, \ldots, \beta_{h}$, not all zero, do not exist. This proves that for these $\mathbf{b}_{i}, i=1, \ldots, h$, the polynomials

$$
\sum_{\ell=1}^{p} \alpha_{\ell}\left(\mathbf{b}_{i} \cdot \mathbf{x}\right)^{m_{\ell}}, \quad i=1, \ldots, h
$$

are linearly independent, and thus there exist $\mathbf{c}_{1}, \ldots, \mathbf{c}_{h}$ for which the matrix

$$
\sum_{\ell=1}^{p} \alpha_{\ell}\left(\mathbf{b}_{i} \cdot \mathbf{c}_{j}\right)^{m_{\ell}}, \quad i, j=1, \ldots, h
$$

is of rank h.
Proposition 6 and Theorem 7 immediately imply Theorem 1.
Note that Theorem 1 states that $f: \mathbb{R} \rightarrow \mathbb{R}$ takes matrices of rank k to matrices of rank $<k(k \geqslant 2)$ if and only if f is the constant function, while it takes matrices of rank k to matrices of rank $k(k \geqslant 2)$ if and only if f is the constant function or $f(t)=\alpha t$ for some $\alpha \in \mathbb{R}$. These simple facts can also be proven directly as follows.

Assume f takes matrices of rank k to matrices of rank $<k(k \geqslant 2)$. Consider the $k \times k$ matrix

$$
\left(\begin{array}{ccccc}
b & b & \cdots & b & b \\
a & b & \cdots & b & b \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a & a & \cdots & a & b
\end{array}\right)
$$

That is, the (i, j) th element is equal to b for $i \leqslant j$, and to a for $i>j$. The determinant of this matrix is $b(b-a)^{k-1}$. Since f takes matrices of rank k to matrices of rank $<k$ we must therefore have

$$
f(b)(f(b)-f(a))^{k-1}=0
$$

for every choice of $a, b \in \mathbb{R}$. But this implies that f is the constant function.
Now assume f takes matrices of rank k to matrices of rank $k(k \geqslant 2)$, and f is not the constant function. The $(k+1) \times(k+1)$ matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
a & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a & a & \cdots & a & 0
\end{array}\right)
$$

is of rank k for $a \neq 0$. Thus

$$
\left(\begin{array}{ccccc}
f(0) & f(0) & \cdots & f(0) & f(0) \\
f(a) & f(0) & \cdots & f(0) & f(0) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
f(a) & f(a) & \cdots & f(a) & f(0)
\end{array}\right)
$$

has rank at most k. We know that its determinant $f(0)(f(0)-f(a))^{k}$ must therefore equal zero. If $f(0) \neq 0$ then as f is not the constant function, a contradiction ensues. So $f(0)=0$. (This is the same argument as that found at the beginning of the proof of Proposition 3.) Choose a so that $f(a)=c \neq 0$. Consider the $(k+1) \times(k+1)$ matrix

$$
\left(\begin{array}{ccccc}
a & \cdots & 0 & 0 & a \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & a & 0 & a \\
0 & \cdots & 0 & a & a \\
0 & \cdots & x & y & x+y
\end{array}\right)
$$

This matrix is of rank k. (The last column is the sum of the previous columns.) As f takes matrices of rank k to matrices of rank k, the matrix

$$
\left(\begin{array}{clccc}
c & \cdots & 0 & 0 & c \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & c & 0 & c \\
0 & \cdots & 0 & c & c \\
0 & \cdots & f(x) & f(y) & f(x+y)
\end{array}\right)
$$

must be singular. This implies that we must have for all $x, y \in \mathbb{R}$

$$
c^{k}(f(x+y)-f(x)-f(y))=0
$$

Thus

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$. This is a well-known Cauchy equation. Under any one of the conditions on f such as measurability, continuity at a point, or boundedness on an interval, this implies that

$$
f(t)=\alpha t
$$

for some $\alpha \in \mathbb{R}$.

4. Complex g

What we did in Sections 2 and 3 for real-valued functions we will now do for complex-valued functions.

Theorem 8. Assume $g: \mathbb{C} \rightarrow \mathbb{C}$ is continuous on $\mathbb{C} \backslash\{0\}$ and takes matrices of rank 1 to matrices of rank d. Then g is of the form

$$
\begin{equation*}
g(z)=\sum_{\ell=1}^{p} p_{\ell}(\ln |z|) \mathrm{e}^{c_{\ell} \ln |z|} z^{k_{\ell}} \tag{10}
\end{equation*}
$$

on $\mathbb{C} \backslash\{0\}$, where p_{ℓ} is a polynomial of degree $\partial p_{\ell}, c_{\ell} \in \mathbb{C}, k_{\ell} \in \mathbb{Z}$ and $\sum_{\ell=1}^{p}\left(\partial p_{\ell}+\right.$ $1) \leqslant d$.

Proof. We mimic the proofs of Proposition 4 and Theorem 5. We assume that there exists a complex matrix $A=\left(b_{i} c_{j}\right)_{i, j=1}^{d}$ of rank 1 for which $g(A)$ is of exact rank d, i.e., $\operatorname{det} g(A) \neq 0$. Consider for each $z, w \in \mathbb{C}$ the $(d+1) \times(d+1)$ matrix

$$
B=\left(\begin{array}{cccc}
z w & z c_{1} & \cdots & z c_{d} \\
b_{1} w & b_{1} c_{1} & \cdots & b_{1} c_{d} \\
\vdots & \vdots & \ddots & \vdots \\
b_{d} w & b_{d} c_{1} & \cdots & b_{d} c_{d}
\end{array}\right)
$$

of rank 1. By assumption we have

$$
\operatorname{det} g(B)=0
$$

Since $\operatorname{det} g(A) \neq 0$, expanding $\operatorname{det} g(B)$ by its first row and column gives us the equation

$$
\begin{equation*}
g(z w)=\sum_{i, j=1}^{d} e_{i j} g\left(z c_{j}\right) g\left(b_{i} w\right) \tag{11}
\end{equation*}
$$

which we can rewrite in various ways as

$$
\begin{equation*}
g(z w)=\sum_{\ell=1}^{d} r_{\ell}(z) s_{\ell}(w) \tag{12}
\end{equation*}
$$

Any g which satisfies (12) takes matrices of rank 1 to matrices of rank d.
Set

$$
\mathscr{V}=\operatorname{span}\{g(w \cdot): w \in \mathbb{C}\}
$$

From (11) we have that \mathscr{V} is of dimension at most $d . \mathscr{V}$ is invariant under dilation by $w \in \mathbb{C}$. We may therefore regard \mathscr{V} as a subspace invariant under rotation (multiplication by $w=\mathrm{e}^{\mathrm{i} t}$) and positive dilation (multiplication by $w=\rho>0$). As \mathscr{V} is of finite dimension, it is also closed under uniform convergence on compact sets. Define for each fixed $n \in \mathbb{Z}$ and $k \in \mathbb{N}$

$$
\phi_{k}(z)=\frac{1}{k} \sum_{j=1}^{k} g\left(\mathrm{e}^{-\frac{2 \pi \mathrm{i} j}{k}} z\right) \mathrm{e}^{\frac{2 \pi \mathrm{i} j n}{k}}
$$

Since \mathscr{V} is rotation invariant we have that $\phi_{k} \in \mathscr{V}$ for each $k \in \mathbb{N}$. However the ϕ_{k} are Riemann sums associated with the integral

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(\mathrm{e}^{-\mathrm{i} s} z\right) \mathrm{e}^{\mathrm{i} n s} \mathrm{~d} s
$$

and converge to it uniformly in z on compact subsets of $\mathbb{C} \backslash\{0\}$. Thus this integral is also in \mathscr{V}. Letting $z=r \mathrm{e}^{\mathrm{i} \theta}$, and applying the change of variable $t=\theta-s$, it follows that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(r \mathrm{e}^{\mathrm{i} t}\right) \mathrm{e}^{\mathrm{i} n(\theta-t)} \mathrm{d} t
$$

is in \mathscr{V}. This integral equals

$$
g_{n}(r) \mathrm{e}^{\mathrm{i} n \theta}
$$

where

$$
g_{n}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(r \mathrm{e}^{\mathrm{i} t}\right) \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} t
$$

The functions $g_{n}(r)$ are in $C(0, \infty)$.
From the linear independence of the $\left\{\mathrm{e}^{\mathrm{i} n \theta}\right\}_{n \in \mathbb{Z}}$, we have that those $\left\{g_{n}(r) \mathrm{e}^{\mathrm{i} n \theta}\right\}$ with g_{n} not identically zero, are also linearly independent. As each of these functions is in \mathscr{V}, and \mathscr{V} is of dimension at most d, this implies that there are at most d distinct integers $n \in \mathbb{Z}$ for which g_{n} is not identically zero. By the unicity theorem for Fourier series (see e.g. [9, p. 4]), we have

$$
g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=\sum_{\ell=1}^{d} g_{n_{\ell}}(r) \mathrm{e}^{\mathrm{i} n_{\ell} \theta} .
$$

The space \mathscr{V} is also invariant under positive dilation. As the $\left\{\mathrm{e}^{\mathrm{i} n_{\ell} \theta}\right\}_{\ell=1}^{d}$ are linearly independent and \mathscr{V} is of finite dimension, then for each $n \in\left\{n_{1}, \ldots, n_{d}\right\}$ the space

$$
\operatorname{span}\left\{g_{n}(\rho \cdot): \rho>0\right\}
$$

is a finite dimensional subspace of $C(0, \infty)$. Therefore by a change of variable (see the proof of Theorem 5) using the known result characterizing finite dimensional translation invariant subspaces of complex-valued functions in $C(\mathbb{R})$ it follows that each g_{n} is a linear combination of a finite number of functions of the form $(\ln r)^{k} r^{\lambda}$ for $k=0, \ldots, m$, and some $\lambda \in \mathbb{C}$. Combining the above facts implies that g is necessarily of the form

$$
g(z)=g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=\sum_{\ell=1}^{p} p_{\ell}(\ln r) r^{d_{\ell}} \mathrm{e}^{\mathrm{i} k_{\ell} \theta}
$$

on $\mathbb{C} \backslash\{0\}$, where $z=r \mathrm{e}^{\mathrm{i} \theta}$, each p_{ℓ} is a polynomial, $d_{\ell} \in \mathbb{C}$ and $k_{\ell} \in \mathbb{Z}$. Since $r=|z|$ and $\mathrm{e}^{\mathrm{i} k_{\ell} \theta}=z^{k_{\ell}}|z|^{-k_{\ell}}=z^{k_{\ell}} \mathrm{e}^{-k_{\ell} \ln |z|}$, the above may be rewritten as

$$
g(z)=\sum_{\ell=1}^{p} p_{\ell}(\ln |z|) \mathrm{e}^{c_{\ell} \ln |z|} z^{k_{\ell}},
$$

where p_{ℓ} is a polynomial, $c_{\ell} \in \mathbb{C}$ and $k_{\ell} \in \mathbb{Z}$. As $g \in \mathscr{V}$, $\operatorname{dim} \mathscr{V} \leqslant d$ and \mathscr{V} is invariant under dilations by positive constants and under rotation, it follows that $\sum_{\ell=1}^{p}\left(\partial p_{\ell}+1\right) \leqslant d$.

Remark 1. It is also not difficult to show that for any g of the form (10) with $\sum_{\ell=1}^{p}\left(\partial p_{\ell}+1\right) \leqslant d$ the associated linear subspace generated by dilations of g is dilation invariant of dimension at most d. Thus, if we also set $g(0)=0$, then g will take matrices of rank 1 to matrices of rank d.

Remark 2. In Theorem 5 we assumed that f was measurable. Here we demanded that g be continuous on $\mathbb{C} \backslash\{0\}$. It is possible to prove this result for measurable
functions. However the proof then becomes rather detailed and complicated. The interested reader may wish to consult the methods in [6].

Based on Theorem 8 we first prove that for $k \geqslant 2$ the associated g are necessarily polynomials in z and \bar{z}. We then delineate the possible explicit forms, dependent upon k and d.

Proposition 9. Assume $g: \mathbb{C} \rightarrow \mathbb{C}$ is continuous and g takes matrices of rank k, $k \geqslant 2$, to matrices of rank d. Then g is a polynomial in z and \bar{z}.

Proof. We mirror the proof of Proposition 6. Since g takes matrices of rank k to matrices of rank d, and $k \geqslant 2$, it follows as in the proof of Proposition 6 that $g_{c}(t)=$ $g(t-c)$ takes matrices of rank 1 to matrices of rank d for every constant $c \in C$.

Thus g is necessarily of the form (10) and its translates also have the same general form. Note that any g which satisfies (10), i.e., is of the form

$$
g(z)=\sum_{\ell=1}^{p} p_{\ell}(\ln |z|) \mathrm{e}^{c_{\ell} \ln |z|} z^{k_{\ell}}
$$

is a C^{∞} function in x and $y(z=x+\mathrm{i} y)$ for $(x, y) \neq(0,0)$. If its translates have this same property, then g must be a C^{∞} function at $(0,0)$. It is readily verified that this implies that each of the above polynomials p_{ℓ} is a constant function, and that the c_{ℓ} and $2 k_{\ell}+c_{\ell}$ are nonnegative even integers implying

$$
\mathrm{e}^{c_{\ell} \ln |z|} z^{k_{\ell}}=z^{k_{\ell}+c_{\ell} / 2} \bar{z}^{c_{\ell} / 2}
$$

Thus g has the desired form, namely

$$
g(z)=\sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}},
$$

where $\beta_{\ell} \in \mathbb{C}$ and the (m_{ℓ}, n_{ℓ}) are distinct pairs of nonnegative integers.
Now we can explicitly characterize the g of Theorem 2 .
Theorem 10. Let

$$
g(z)=\sum_{\ell=1}^{p} \beta_{\ell} z^{m_{\ell}} \bar{z}^{n_{\ell}}
$$

where the $\left(m_{\ell}, n_{\ell}\right)$ are distinct pairs of nonnegative integers, $\beta_{\ell} \neq 0, \ell=1, \ldots, p$. For each complex-valued matrix $A=\left(a_{i j}\right)_{i=1}^{n}{ }_{j=1}^{m}$ of rank at most k, the matrix

$$
g(A)=\left(g\left(a_{i j}\right)\right)_{i=1}^{n} m_{j=1}^{m}
$$

is of rank at most

$$
\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}}
$$

Furthermore there exists a matrix A of rank k for which

$$
\operatorname{rank} g(A)=\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}}
$$

Proof. We parallel the proof of Theorem 7. Let $A=\left(a_{i j}\right)_{i=1}^{n} \underset{j=1}{m}$ be a matrix of rank k. Then it may be written in the form

$$
\begin{equation*}
a_{i j}=\sum_{t=1}^{k} b_{i t} c_{j t}, \quad i=1, \ldots, n ; \quad j=1, \ldots, m \tag{13}
\end{equation*}
$$

for some choice of constants $b_{i t}$ and $c_{j t}$. Set $\mathbf{b}_{i}=\left(b_{i 1}, \ldots, b_{i k}\right), i=1, \ldots, n$, and $\mathbf{c}_{j}=\left(c_{j 1}, \ldots, c_{j k}\right), j=1, \ldots, m$. Thus

$$
a_{i j}=\mathbf{b}_{i} \cdot \mathbf{c}_{j}
$$

Furthermore for each $p, q \in \mathbb{Z}_{+}$

$$
\begin{equation*}
a_{i j}^{p} \bar{a}_{i j}^{q}=\left(\mathbf{b}_{i} \cdot \mathbf{c}_{j}\right)^{p} \overline{\left(\mathbf{b}_{i} \cdot \mathbf{c}_{j}\right)}{ }^{q}=\sum_{|\mathbf{m}|=p}\binom{|\mathbf{m}|}{\mathbf{m}} \mathbf{b}_{i}^{\mathbf{m}} \cdot \mathbf{c}_{j}^{\mathbf{m}} \sum_{|\mathbf{n}|=q}\binom{|\mathbf{n}|}{\mathbf{n}} \overline{\mathbf{b}}_{i}^{\mathbf{n}} \cdot \overline{\mathbf{c}}_{j}^{\mathbf{n}} . \tag{14}
\end{equation*}
$$

The number of summands in (14) is

$$
\binom{k+p-1}{p}\binom{k+q-1}{q}
$$

It therefore follows from (13) and (14) that the matrix whose entries are

$$
\beta_{\ell}\left(a_{i j}\right)^{m_{\ell}}\left(\bar{a}_{i j}\right)^{n_{\ell}}
$$

is of rank at most

$$
\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}}
$$

and thus

$$
\operatorname{rank} g(A) \leqslant \sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}}
$$

We now follow the remaining arguments in the proof of Theorem 7 replacing $\mathbf{x}^{\mathbf{n}}$ by $\mathbf{z}^{\mathbf{m}} \overline{\mathbf{z}}^{\mathbf{n}}$, where we note that the

$$
\left\{\mathbf{z}^{\mathbf{m}} \overline{\mathbf{z}}^{\mathbf{n}}: \mathbf{m}, \mathbf{n} \in \mathbb{Z}_{+}^{k},|\mathbf{m}|=m_{\ell},|\mathbf{n}|=n_{\ell}, \ell=1, \ldots, p\right\}
$$

are linearly independent functions which span a subspace of \mathbb{C}^{k} of dimension

$$
\sum_{\ell=1}^{p}\binom{k+m_{\ell}-1}{m_{\ell}}\binom{k+n_{\ell}-1}{n_{\ell}}
$$

The proof of Theorem 10 then follows.

Remark 3. A study of the proof of the above results shows that if $g: \mathbb{C} \rightarrow \mathbb{C}$ takes matrices of rank k to matrices of rank d, then g satisfies the functional equation

$$
\begin{equation*}
g(\mathbf{z} \cdot \mathbf{w})=\sum_{\ell, m=1}^{d} a_{\ell m} g\left(\mathbf{c}^{m} \cdot \mathbf{z}\right) g\left(\mathbf{b}^{\ell} \cdot \mathbf{w}\right), \tag{15}
\end{equation*}
$$

for all $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{k}$, some $\mathbf{b}^{\ell}, \mathbf{c}^{m} \in \mathbb{C}^{k}$ and $a_{\ell m} \in \mathbb{C}, \ell, m=1, \ldots, d$. Similarly if g solves an equation of the form (15), then for any $\mathbf{d}^{i}, \mathbf{e}^{j} \in \mathbb{C}^{k}, i, j=1, \ldots, n$,

$$
\begin{aligned}
g\left(\mathbf{d}^{i} \cdot \mathbf{e}^{j}\right) & =\sum_{\ell, m=1}^{d} a_{\ell m} g\left(\mathbf{c}^{m} \cdot \mathbf{d}^{i}\right) g\left(\mathbf{b}^{\ell} \cdot \mathbf{e}^{j}\right) \\
& =\sum_{\ell=1}^{d}\left(\sum_{m=1}^{d} a_{\ell m} g\left(\mathbf{c}^{m} \cdot \mathbf{d}^{i}\right)\right) g\left(\mathbf{b}^{\ell} \cdot \mathbf{e}^{j}\right) \\
& =\sum_{\ell=1}^{d} D_{i \ell} E_{\ell j}
\end{aligned}
$$

which implies that rank $\left(g\left(\mathbf{d}^{i} \cdot \mathbf{e}^{j}\right)\right)_{i, j=1}^{n} \leqslant d$. That is, g takes matrices of rank k to matrices of rank d if and only if g solves (15). We solved (15) for $k=1$ directly, and for $k \geqslant 2$ indirectly. This same result holds for $f: \mathbb{R} \rightarrow \mathbb{R}$ taking matrices of rank k to matrices of rank d.

Acknowledgements

The authors wish to thank Carl de Boor, Raphael Loewy and Vladimir Lin for their suggestions.

References

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
[2] P.M. Anselone, J. Korevaar, Translation invariant subspaces of finite dimension, Proc. Amer. Math. Soc. 15 (1964) 747-752.
[3] C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer-Verlag, New York, 1984.
[4] E.A. Coddington, An Introduction to Ordinary Differential Equations, Prentice-Hall, NJ, 1961.
[5] L. Elsner, D. Hershkowitz, A. Pinkus, Functional inequalities for spectral radii of non-negative matrices, Linear Algebra Appl. 129 (1990) 103-130.
[6] M. Engert, Finite dimensional translation invariant subspaces, Pacific J. Math. 32 (1970) 333-343.
[7] C.H. FitzGerald, C.A. Micchelli, A. Pinkus, Functions that preserve families of positive semidefinite matrices, Linear Algebra Appl. 221 (1995) 83-102.
[8] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[9] T.W. Körner, Fourier Analysis, Cambridge University Press, Cambridge, 1988.
[10] L. Losonczi, An extension theorem for the Levi-Civita functional equation and its applications, in: Contributions to the Theory of Functional Equations, Grazer Math. Ber., vol. 315, 1991, pp. 51-68.
[11] F. Lu, H. Sun, Positive definite dot product kernels in learning theory, Adv. Comput. Math., in press.
[12] A. Pinkus, Strictly positive definite functions on a real inner product space, Adv. Comput. Math., in press.
[13] I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96-108.
[14] L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, Singapore, 1991.

[^0]: * Corresponding author.

 E-mail address: pinkus@techunix.technion.ac.il (A. Pinkus).

