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Let (u&L1 , +, and C,!J be given functions in C(i), where 1 is some fixed Gnitc 
interval, and let do be a finite nonatomic strictly positive measure on .L 
For p E [I, co], we denote by E,(#) and E,(G) the error functions in the best 
P-approximation to (band #, respectively, from [ul ,...+,I (--spanjul ,...,&]). 
For p < CO, the D-approximation is taken with respect to the measure da, 
For p = co, we shall consider the usual Tchebycheff (L”) approximation. 
The main result of this paper is the following theorem. 

THEOKEM 1.1. Assume (uI ,..., Us} and (uI ) . . . . u, , 4, $1 are Tchebych& 
(T)-systems on I, n > 1. For p c (1, 001, the zeros of EB(& and E,(U;) in k” 
strict/y interlace. For p : 1, either the zeros strictly interlace, or I$($) has 
exactly n sign changes, and sgn(E,($)(t)) z= sgn(E,($)(t)) for all t E int(1). 
FM p :- oi) we need assume that I is closed. IPI that case we have both strict 
interlacivlg of the zeros and weak interlacing of the points of equioscillatioon. 

Various cases of this general theorem have been oblained by others. We 
shall shortly review some of these results. Our aim in proving Theorem 1. I 
is twofold. First, we have attempted to unify various known but disparate 
results on interlacing properties of zeros of the error functions in best 
P-approximation. Second, we wish to show that these interlacing properties 
are really rather simp1.e consequences of the Tchebyeheffian properties of the 
underlying system. 

Theorem 1.1 may be applied in several contexts. First, let us assume that 
{uI ,..., uk) is a T-system on I, for k :- n, M --! 1, n : 2. Denote by qi,,,(t>, 
k = n, n + 1, the error function in the best P-approximation to u,.~,bij 
from [u, 5..., uJ. If qn.&t) = u,,,(t) - C;=:’ &&t): then by the idcnti- 
fication C(t) = u,.+3(t) and $(t) = ~,.,~(t) - a~Tl,Bun.i.l(t), it follows that, 
&I(99 == B7z.D 3 while &(gL) = L~,~, . The conditions of Theorem t I I are 
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2 PINKUS AND ZIEGLER 

satisfied and since, as is well known, qk.,z, has exactly k sign changes in I, 
k = II, IZ + 1, we obtain 

COROLLARY 1.1. The n zeros of qnSD and the n f 1 zeros of qn+1.9 strictly 
interlace in Ifor 1 ,< p < co. If I = 1, then strict interlacing of the zeros and 
weak interlacilzg of the points of equioscillation hold for p = CD. 

In the special circumstance where ui(t) = ti-l, i = I,..., n + 2, the inter- 
lacing of the zeros of qn,.Jt) and qlZ+l,B (t) is a classical result concerning 
orthogonal polynomials on I with respect to the measure da (see [13, p. 461). 
The interlacing of the zeros (and of the points of equioscillation) of qn,m 
and qla+l,co is a well-known fact which follows from the identity qk,,(t) = T,(t), 
k = n, 12 + 1, where T,(t) is the kth Tchebycheff polynomial of the first kind. 
In 1952, Atkinson [2] generalized this result by proving the strict interlacing 
of the zeros of qL,p and qh-+l,D for 1 < p < cc, where, as above, ui(t) = P-l, 
i = I,..., IZ + 2. He later extended this result (see Atkinson [3]) to the case 
p = co, where in place of the usual L”-approximation he considered the norm 
defined by (j f lILm(20) = max,,, If(x) We, where W(X) is a continuous, 
positive function. For our methods, this weight function makes no difference 
in the result, since if {ul ,..., u,} is a T-system on 1, so is {u~Iv,..., 24,~) for any 
positive, continuous function 1%:. 

The study of the casep = a3 was initiated by Shohat [l l] in 1941. Among 
other results, Shohat proved that if j(T2+1)(t) is of one sign, then the 
points of equioscillation of the error function in the best approximation of 
f(t) by polynomials of degree rz are interlaced by the points of equioscillation 
of T,(t). The condition on f(t) implies that { 1, t,..., t’“,f(t)) is a T-system. 
Results of this type are also discussed by Paszkowski [8]. 

Another application of Theorem 1.1 is obtained from the following 
specialization. Let {ul ,..., zl,], k = 17, IZ $- 1, n + 2, and {ul ,..., u, , u,+~} be 
T-systems on I. Let h&t) denote the error function in the best Lp-approxi- 
mation to u,,,,(t) from [ul ,..., ug], k = II, n + 1. If h,+&t) = u,,,(f) - 
xy=:’ b&,ui(t), then choosing $(t) = u,.t2(t), G(t) == u,,,(t) -b$+l,Du,+l(t), 
we have E,(4) = Iz,,,, , E,(#) = h,,,,,, . The conditions of Theorem 1.1 
are satisfied. Furthermore, by the above assumptions, E,(4) has exactly rz sign 
changes and ED(#) has exactly n + 1 sign changes in I. Thus, 

COROLLARY 1.2. The n zeros of h,,, mzd the II + 1 zeros of h,,,,, strictly 
interlace in I for 1 < p < co. If p = CO and I = i, then strict interlacing of 
the zeros and weak interlacing of the points of equioscillation hold. 

If ui(t) = ti-l, i = l,..., 12 + 1, and zf,&t) = f(t), where f(“)(t) and 
f(“+l)(t) are of one sign on 1, then the above assumptions are satisfied. The 
interlacing of the points of equioscillation of h,,, and h,+l,, , in this parti- 
cular case, was first proved by Shohat [I 11. 
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A third area of application is the following. As in the previous case? we 
assume that (ul ,..., .ukj is a T-system for li = i7, ~z + I, 17 -+ 2 and 
(141 )...) li, ) 14 n.+2j is also a T-system. Let $J = u,+~ and C$ =L u,+~ . Thus 
ED(#) and E,(4) each have exactly n sign changes in Z, which strictly interlace. 
In Section 5 we also deduce the manner in which these zeros interlace. 
Rowland [lo] established some of these properties in the case where p = ~1; 
uJt> = P-l, i = I,..., 17~ z~,+~(t) = g(t), and un+z(t) = f(t). His requirements 
were that g(“)(,) andf(“)(t) be positive, andfcn,(r)lg”)(r) be a strictly increasing 
function on I. The first requirements imply, as we have noted, tha- 
{l, t ,..., tn--l, gj and (1, I ,..., t”-l,Jj- are T-systems. The third requirement 
implies that {I, i,..., t+-l, g,fj- is a T-system on Z. 

It should be noted that the case of periodic ftinctions often demands the 
full generality of Theorem 1.1. 

Some recent applications of the present results serve to establish the 
inrerlacing of the zeros of P,n,P and P,,DrI in (0, I), where P,,, is the unique 
solution of 

normalized so that P&O) = I, where T, is the set of al! trigonometric 
polynomials of degree -<n (see [lS]). An essentially similar property holds if 
T, is replaced by 7~, , the set of algebraic polynomials of degree ~12 (see El !‘a, 

The organization of this paper runs as follows. Section 2 contains some 
preliminary definitions and properties. The proof of Theorem 1.1 is 10 be 
found in Sections 3 and 4. In Section 3, we prove the theorem for p E (It ~5). 
Section 4 presents the proof for p = 1 and p = #TJ. Section 5 contain6 
applications and extensions. 

2. PRELIMINARIES 

Let Z be as above. In this section we recall some basic facts concerning 
continuous T-systems on Z. These facts, with perhaps minor modifications, 
may all be found in Karlin and Studden [5], or in Gantmacher and Kreir~ [4j~ 

DEFINITION 2.1. The system {ui;)X1 of continuous fur,ctions on an interval 
Z is called a T-system if det(ui(tj))T,j=, + 0 for every choice of rI < ... < ;,; 
in Z. For convenience, we shall always take the sign of the determinant to be 
positive. 

The following concepts will prove relevant. 

DEF~NITI~~T 2.2. For anyfE C(Z), we call t, E int(Z) a nonnodal zero ofj’ 
provided thatfvanishes at to but does not change sign there. All other zeros 
are called nodal. 
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DEFINITION 2.3. For f E C(I,), let Z(j) denote the number of zeros off 
in I, with the convention that nonnodal zeros are counted twice. For any 
real piecewise continuous function f defined on I, let S-(f) denote the 
number of sign changes off on I, counted in the standard fashion. These 
numbers are not necessarily finite. 

An elementary, but decisive, property of T-systems is contained in the 
following lemma. 

LEMMA 2.1. The system {uJ& is a T-system on I ifs Z(u) < n - 1 
whenever u is a nontrivial linear combination of the ai’s. 

The next lemma may be found in l-5, p. 301. 

LEMMA .2.2. Let {u& be a T-system on I. For any k prescribed distinct 
points in int(Z), k < n - 1, there exists a u(t) = xy=, aiui(t) with nodal zeros 
at these points, which vanishes nowhere else in int(I). 

With the aid of Lemma 2.2 it is a simple matter to prove the following 
result. 

LEMMA 2.3. Let {Ui~~=~ be a T-system on I, ali E C(j), i = I,..., n. 

(1) Assume that dn is a finite nonnegative (nontrivial) measure on I and 
f E C(I). If 

/,f(t) dt> do(t) = 0, i = l,..., 11, 

then either S-(f) 3 II orf = 0 on supp(du). 
(2) Assume that do is a jinite nonatomic strictly positive measure on I 

(i.e., supp(dc) := I), andf is u piecewise contimrous,functiorz on f, which is nor 
zero a.e. there. Then 

implies S--(f) > n. 

3. INTERLACING PROPERTIES IN THE SPACE L”, 1 <p < co 

Let (Us ,..., u,> and (ul ,..., u,~ , 4, #) be T-systems on I, and assume 
(u,};H, , 4, 4/, E C(I). For fixed p E (I, oo), let gl(t) = E,($))(t) and gz(t) = 
I,, where -G(+h J%(#) are as defined in the introduction. We assume 
here that da is a nonnegative finite measure whose support contains at least 
11 + 2 points in I. 
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THEOREM 3.1. The zeros of gl(t) and g2(t) in I strictl.v interlace. 

The proof of Theorem 3.1 is divided into a series of lemmas and propo- 
sitions. In the first part of this section, we prove the foilowing result. 

PROPOSITION 3.1. For gl(t) and g2(t) as above, 

for all real 01: 8, a2 -I- /3” > 0. 

Proof We immediately obtain the inequality Z(q, t /3g?) < YL L 1 
from Lemma 2.1 and the fact that (ul ,...? II,, , 4, #> is a. T-system on 8. 

Set 
hjtt) = bgn Gil I Gil p-13 j = 1, 2. (3.1) 

From the orthogonality relations characterizing the unique best L”- 
approximation on I from (u~};=~ (see, e.g., [14, p. 64]), it follows that 

F 
h,(t) q(t) da(t) = 0, i=l I . . . . i?, j = 1, 2. (3.2) 

‘I 

A direct application of Lemma2.3 (1) and (3.2) yields, for ;1,6 real, J? + 6” >O. 

S-(yh, f 81,) > 72 (3.3) 

or yh, + 6h, = 0 on supp(do). We now show that 

wag, + pg.2) = s-(yh, -l- 8h,) 

for some y, 6 real, y2 + 8” > 0. This fact follows from the relation 

sgn[a + 61 = sgn[sgn[a] 1 a [ii-l + sgn[b] j b j ,-I] 

holding for real a, b. Indeed, 

Thus yk, + Sh, has at most n -I L 1 zeroes on I and cannot identicafiy vanish 
on the support of do. QED. 

Note the important fact that Proposition 3.1 implies that agI(t) f ,/3g2(:) 
has no nonnodal zeros in (0, 1). 

The next proposition is a modification of a result of Gantmacher and 
Krein [4] (see also Lee and Pinkus [6]). 
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PROPOSITION 3.2. If CD, y E cto, 0, and n < S-(&D + ,W) < 
Z(CI@ + ,W) < n + 1 for all real oi, /3, c? $ pz > 0, then the zeros of Q, and 
Y in (0, 1) strictly interlace. 

Let(&)~~l,&,=O<~l <...<& <fkil= l(k=norn+l)denote 
the zeros (sign changes) of Q(t) in (0, 1). Let li = (Eiwl , ti), i = l,..., k + 1, 
and f(t) = Y(t)/@(t). 

The proof of Proposition 3.2 is divided into a series of lemmas. 

LEMMA 3.1. f(t) is strictly monotone in each Ii , i = l,..., k + 1. 

ProoJ Iff(t) is a constant c on a subinterval of I of positive length, then 
Z(Y - c@) = co, contradicting the hypothesis of the proposition. Iffis not 
strictly monotone on Ii , thenfhas a relative extremum at some point 3ci E Zi . 
The function Y(t) - J(xJ CD(t) h as a nonnodal zero at xi, contradicting the 
hypothesis. The lemma is proved. 

LEMMA 3.2. f(t) has exactly ooze zero in each Ii, i = 2,..., k. 

Proof. Sincef(t) is monotone in each 4, i = l,..., k + 1, both 

lim f(t) = Ii- 
r+g,- 

and lim f(t) = Zi+ 
r-e<+ 

exist as extended real numbers for i == l,..., k. We shall show that none of 
these li+ and /,r- is finite. Taken together with Lemma 3.1, this implies 
Lemma 3.2. 

Let us assume that either Zi- or Iif is finite. Since @(tJ = 0, it follows that 
Y(fJ = 0. We are concerned with one of the following four cases: 

(i) Exactly one of Ii+ and I,- is finite; 
(ii) Zi+ and Zi-- are finite and unequal; 
(iii) &+ = Ii- (finite) and f is monotone in a neighborhood of ti ; 
(iv) Ii+ = Ii- (finite) and f is monotone in opposite senses for t E Ii and 

t E Ii+1 . 

If either of cases (i) or (ii) occurs, let c be any real number between Zii- and 
Zi-3 while if case (iii) holds, let c = Ii+ = Ii-. Then Y(t) - c@(t) has a non- 
nodal zero at f( since @([J = Y(5,) = 0, and CD(t) changes sign at ti , This 
is impossible. 

Assume case (iv). Let c = Ii+ = Zi- and assume, without loss of generality, 
that f(t) < c for t in a neighborhood of Et. Now, Y(t) - c@(t) has at least 
y1 sign changes in (0, l), one of which is at ti . Thus Y((t) - c@(t) + e@(t) 
has, for E > 0 sufficiently small, at least n - 1 sign changes bounded away 
from ci . Since f(t) is strictly monotone in li and 1i+1 , Y(t) - (c - E) Q(t) 
has a zero slightly to the left of & , a zero slightly to the right of fi , and 
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vanishes at ti . Thus Y(t) - (c - l ) Q(t) h as at least n + 2 zeros in (0, ‘i), 
a contradiction proving the lemma. 

Since G(t) and Y(tj are interchangeable in the above analysis, Proposition 
3.2, for IZ > 2, follows from Lemmas 3.1 and 3.2. For the cases n = 0 and 
I: == 1, the following additional lemma is needed. 

LEMMA 3.3. Q(t) and Y(t) have no conmo~z zero in (0: 1). 

Proof. Assume CD(f) = Y’(f) = 0. Let J(t) = Y(.t)/@(r) and g(f) = 
@(t)/Y(tj. Both J(f) and g(t) are, by Lemma 3.1 I strictly monotone in some 
neighborhood to the left and in some neighborhood to the right of f. 
Furthermore, their limits, as t + f from above and below, exist and are 
infinite by the proof of Lemma 3.2. A contradiction immediately ensues, 
and the lemma is proved. 

The proof of Proposition 3.2 is complete. 

Proof of Theorem 3.1. If I is an open interval, then Theorem 3.1 is a 
consequence of Propositions 3.1 and 3.2. 

Assume I = [O, 1) and g,(O) = 0. Since !z 3 1, let 6 E (0, 1) be such that 
g,(f) = 0 and gl(t) i 0 for all t E (0, 5). From Lemma 3.3, g,(t) + 0. We 
must prove that g,(O) f 0 and gz(t) has a zero in (0, tj. Assume gd(t) has no 
zero in [0, E]. This immediately contradicts the monotonicity of gZ(tj,‘gl(fj 
in (0, [) (see Lemma 3.1). Now assume g,(O) = 0, and by interchanging g,(t) 
and g,(t) if necessary, assume gg(t) 1 0 in (0, e]. Assume also that 
gl(t) gz(t> > 0 for t E (0, E). Then liml,,- gz(tj/gl(tj = rx) and lim,,+ 
g&j/g,(t) z‘ = c > 0, c finite. g2(t) - cgl(t) has pz sign changes in (0, lj and 
thus, for a suficiently small E > 0, gs(t) - (c + ~jg,(t) has 72 sign changes in 
(0, 1) bounded away from t = 0, a zero near t = 0, and a zero at t = 0 
Therefore g.&li) - (c + E) gr(rj has at least H + 2 zeros in I = [O, Lj, a 
contradiction. 

This same analysis applies when I = (0, 1] and 1 = [O, l]. 

4. INTERLACING PROPERTIES IN THE SPACES L1 AND L" 

As previously, let (ul ,..., u,) and {ul ,..., u, , 4, t,b) be T-systems on 1, 
and assume U, ,..., 21, , 4, z/J E C(I). Let g, = El(~) and g, = El($), where 
Ed!4 and Eli41 are as defined in the introduction. In this section we assume 
that c2’0 is a finite nonatomic strictly positive measure on 1. We first prove 
the following result. 

THEOREM 4.1. The zeros of gl(t) arzd g2(t) OIZ I str.ic:ly inferiace m/es 
S-(g,) = S-(ga = n, in which case sgn gl(t) = sgn g,(t)fir d t E in@). 
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For j = 1, 2, set h,(t) = sgn gj(t) for t E int(Z), and let h,(t) be continuous 
at the endpoints. Since (uI ,..., u,> and (uI ,..., U, , 4, #} are T-systems on I, 
gl(t) and g2(t) are uniquely defined and Z( gj) < n + 1, j = 1,2. Thus 
1 h,(t)1 = 1 a.e. on I, j = 1,2, and the orthogonality conditions (see 
1114, P. 381) 

s hj(t) 2$(t) do(t) = 0, i = I,..., n; j = 1, 2, (4.1) I 

are satisfied. 

LEMMA 4.1. For h,(t) and h*(t) as above, rz < S-(h,) < IZ + 1, j = 1, 2, 
and n ,( S-(12, 4 h,), unless h,(t) * h,(t) = 0 oyt I. 

ProoJ: This is an immediate consequence of the Tchebycheff property of 
{Ul ,.--, un , 4, $1 and of Lemma 2.3(2). 

Replacing h,(t) by -h,(t) if necessary, and letting1 = [0, 1] for definiteness, 
we may assume the existence of {fi}fCI and {~i}~II , IZ < k, m < p1 -t 1, 
with 

such that 

to = 0 < (, < *.- < (j$ < &+1 = 1, 

To = 0 < rll < *.. < qn < 7],+1 = 1, 

hi(f) = (-l)i, Ei < t < Ll 2 i = 0, 1,. ., k, 

he(t) = (-l>i, 
(4.2) 

rli < j < Ti+l 7 i = 0, l,..., 172. 

LEMMA 4.2. For h,(t) uncl hx(f) as above, S-(h, 5 h,) < min(k, m>, wd if 
k=m,thenS-(h,-hh,)<k-I -m--l. 

Proof. The result is known, but, for completeness, we include a proof. 
With no loss of generality, assume k < nz. From the definition of h,(t), 

(h(j) It M>>t-oi > 0, 51 < t < &+1, i = 0, 1 ,.. .? k. 

Thus S-(/z, k 1z.J < k = min{k, m>. 
Assume k = nz and .-$I < vl . Since h,(t) - h,(t) 3 0 on [0, <J, 

,!&,(h, - h,) = S~l,I,(l~, - h,). However, h,(t) has k - 1 sign changes on 
(& , 1). Applying the previous result, the lemma follows. 

LEMMA 4.3. Ifs-(g,) = S-(gp) = n, then ti = 77; , i = l,..., n. 

ProoJ: Since S-(h,) = S(gJ, j = 1, 2, then S-(k, - h2) < n - 1 by 
Lemma 4.2. From Lemma 4.1 it follows that h,(t) = h4(t) for almost all 
t E [0, I]. Thus fi = vi , i = I,..., n. 
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Lemma 4.3 is a restatement of the well-known fact that if {id1 ,..., u,~} is a 
T-system on (0, I), then there exists a unique set of rz points (Tj)L1 ) CO = 
o<i;,< .‘. < 5, < cn+l = 1, such that 

$ t- lY JLy+1 q(t) d5(tj = 0, i=i ,~..? II. 

To prove Theorem 4.1, it remains to consider the case where at least one of 
S-(hi), S-(/z,) is II + 1. Note that if S-(hj) = S-(g,) --II n + 1, j = 1? 2, then 
we cannot have /zl(t) = h,(t) for almost all t E 1. This is a consequence of the 
fact that there exists a unique (up to a multiplicative constant) nontrivial 
linear combination of (zll ,..., u, , 4, Z/J> which changes sign at :z -t 1 given 
points in I. and it cannot be of both forms 

]LEMMX 4.4. Let h,(t) andh,(t) be as in (4.2). Thefzfor each i = l,..., k -- 1 1 
fhere exists a~ rlr E (fi , fi+l). 

ProoJ: Assume that this is not the case. Replace &(t) by -$(t), if 
necessary, in order that h,(t) - h,(t) = 0 for i E (5, , t&. If i = 1, theu 
h,(t) - h,(t) has no sign change in (0, fs), while SG~~,,(~Z, - h,) < k - 3 by 
Lemma 4.2. Thus S;~,,(h, - h,j < k - 2 < n - 1, contradicting Lemma 
4.1. The analogous result holds for i = k - 1~ Assume 1 < i < k - 1. Then 
h,(t) - A,(t) has no sign change on (fiPl , ti+3, while SG,~,-,)(I~~ -- &) < 
i - 2. and S- CEi+2,1t(lzl - k,) --<. k - i - 2. Therefore, S&)(/z1 -- h,) < 
(i-2)-(k-&2)+2=k-> 7 < II - 1. a contradiction. The lemma 
Is proven. 

Proof of Theorem 4.1. If S-(g,) = S-(g,) =: n, the result follows from 
Lemma 4.3. Assume this is not the case. Then Lemma 4.4 immediately 
implies that the zeros of gl(t) and g2(t) in (0, 1) strictly interlace. If1 == LO, I), 
and g,(O) = 0, then S-(g,) = II, since gr(r) has at most n + 1 zeros on 3: 
and thus S-(g,) = n + 1. The strict interlacing on f now follows. The same 
reasoning applies if I = [0, l] or I == (0, I], and the theorem is proven. 

A scrutiny of the proof of Theorem 4.1 reveals that the Tchebycheffian 
property of (wl . . ..~ U, , #J, $1 h as not been used except to establish a bound 
on the number of sign changes of E,(4) and E,(#). E-fence the same proof 
establishes the following. 

THEOREM 4.2. Let (zli)f=z be a T-system on I, contimous on 1, afzd ic ij; 
and Z/J be linearly irzdependent continzzous fzmctions on I szzch that El(+) and 
E1($} uarrish on sets of measure 0 and change sign at Mo more rhan I: + 1 pcir?:s 
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in I. Then either the two sequences ofpoints of sign change strictly inter/ace, ot 
sgn E,($)(t) = sgn E,(#)(t) for ail t 6 int(1). 

The results for p = o(j parallel those obtained for p E [I, co). Note that 
in this case we assume, in order that the best approximation be unique, that 
I is closed. For the sake of ismplicity we set I = [0, 11. 

Let gl(t) and gZ(t) denote the error functions in the best L” (Tchebycheff) 
approximation to 4(t) and t/(t), respectively, from [ul ,..., u,]. Thus gl(t) = 
4(t) - CL, afui(t), where 

and gz(t) is analogously defined. As previously, we assume that (ul ,..., u,,) 
and {ZQ ,...) u, , $, $1 are both T-systems on I. 

Remark 4.1. As noted in the introduction, one often considers L” 
(Tchebycheff) approximation with a weight function w(t), where w(t) is a 
positive, continuous function on I. Thus, j/f//Lm(w) = max,,f If(t)1 w(t). If 
{ul ,... 9 un) is a T-system, then {ull~’ ,..., u,~v} is a T-system, and all our results 
maintain their validity. 

The method of proof in the case p = co involves no more than a careful 
zero counting procedure (cf. [5, Chap. 21). The following definition facilitates 
our exposition. 

DEFINITION 4.1. Let f E C(1). We say that f(t) equioscillates at k points 
(or k - 1 times) if there exist k points, 0 < t, < ... < tl, < 1 such that 
f(tJ = (-l)% I/f /lm , i = l,..., k, where E is fixed, E = + 1 or - 1. If 
E = (-l)“, then we shall say thatf(t) equioscillates at k points with a positive 
orientation. Otherwise the orientation is negative. 

From the definition of gl(t) and gz(t), it follows that each has n or tz + 1 
zeros in 1, and n + 1 or IZ + 2 points of equioscillation in I. We further 
note that for each gi(t), i = 1,2, the zeros and points of equioscillation 
strictly interlace, by a simple parity argument. We also show 

THEOREM 4.3. Under the above assumptions, 

(1) the zeros of gl(t) and g&t) strictly interlace; 

(2) the points of equiosciliation of gl(t) and gz(t) weakly interlace. 

Remark 4.2. If (u, ,. .., at, , $, $1 is an extended Tchebycheff system of 
order 2 (see Karlin and Studden [5, Chap. 2]), then it may be shown that the 
points of equioscillation of gl(t) and gz(t) in (0, 1) strictly interlace. 

The proof of Theorem 4.3 relies upon the following proposition which is 
stated without proof. The proof, in a more or less complete form, may be 
found in [5] and [9]. 
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P~0pOsrTf0N 4.1. Let fi , f2 E C(I), and assume that ,fI(t) and fl(t) eqtri- 
oscillate at k and I points, respectitlely. 

Proof of Theorem 4.3. Let 0 < t, < ... < tI, < 1 and 0 < s1 < < 
So < I denote the points of equioscillation of gi(t) and gz(t)? respectively. 
Thus 12 - 1 < k, 1 < n + 2. Let us first note that k = 1 = IZ + 2 is 
impossible. Assume not. From Proposition 4.1(2) it follows that 
Z(g, - eag2) 2 n + 2, where a = ji g, lirn/l/ g, /la,, and E = *L is chosen so 
that g, and e&g2 have the same orientation. As g1 - Exg, E [ii1 ,..., II,~ , +7 $1: 
we have Z(g, - cagLg,) < ~1 + 1, a contradiction. 

Let (~J~:~ denote the zeros (sign changes) of g,(t) which strictly interlace 
the pi:;& f i.e., 0 < tl < El -C t, < ... < t,i-l c fL--l < t,: < 1. Ifgr(t) has 
a zero to the left of t, , we denote it by f, , and if it has a zero to the rig’ht 0’ 
tk ) it is denoted by eti . Similarly, let {qi>::: denote the i - I zeros of g4(r> 
in (a ) sJ which must strictly interlace the {s& , and let Q, and rl denote the 
possible additional zeros of g,(t), if they exist. 

We first prove the strict interlacing of the zeros of gl(t) and g8(t). Note that 
weak interlacing of the zeros is a result of the proven interlacing in 15” for a”11 
! < p < jr,. We need, however, a strict interlacing for which we provide 
a direct proof. 

Lei US first assume that k = IZ T 1 and I = 17 -+ 2. We wish to shovr that 
qi < E, < Q < ... < c,,! < qn+l and that if f0 or entl exists, then 5, < ‘~7~ 
or E -n+l > T,~+~ 1 respectively. Note that n + 1 is a bound on the number of 
zeros cf gi(t), i = 1, 2. Assume that there exists a ,j~(l,..., nj such that 
(Q , yj-2, ‘I contains no ti. Thus c1 < 7; < qj+I < <,-1 for some I = 0, I,..., d3 
(where 50 = 0, LtiZCl = 1). Since tl < Er , ilMr > tl+l , 3; < Tj i and S,it? > 
yj+l , it follows that Zto.nj,(g, $ olg,) > max{j - 1, I’ - 13 and ifj = i, then 
there exists an E = * 1, fixed, for which ZL,,,~,,(~, - Gag3 3 j = 1’. Simiiarip, 
zt ,g,+z,I~(gl & 0g2) > max{n -j, n - I- I>-, and if j = ! -+ ‘1, then there 
exists an E = A 1, fixed, for which Z (,j*l,lj(gl - sxg,) > I’ - 1 = IZ - j + I 
Furthermore, for a suitable choice of E = fl, Z~i,j,17,+1~(gI - ;agL7) > 2. 
Now it 3s easily seen that the choice of E in all the cases is the same. Hence 
Z[&g, -~ Eagz) > 12 + 2, a contradiction. Thns, Q < E, < Q < I.. < 
&? -c ?In+i . Assume e, exists. If E, 3 vl , then Q < Ea < fi < q.2 and one 
may obtain, by an appropriate choice of E = ‘1, that Z[,,t,)(gl - e&g?) 2 3. 
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Since & < t, , & < qp < s, , and k=n+l, I=n+2, it follows that 
Z(~l,ll(gl - l cxgz) > n - 1. Thus Z[&g, - Emg,) > IZ + 2, a contradiction, 
and to < Q . In a totally symmetric manner, erafl > qn+l if <,+, exists. 

It remains to consider the case k = I = n + 1. We first prove that Q # &. 
Assume the contrary. Since tl, s, < Q = & < t, , sp , it follows that, with 
the proper choice of E, Z[,,~l](g, - Eag,) > 2 and Z(,l,l](gl - Eag& 3 yt. 
A contradiction ensues. Thus Q f 5, , and we may assume, without loss of 
generality, that rll < t1 . 

It is now necessary to consider two conceivable situations. First, we assume 
that q1 < & < Q < ... < Q < & < &+.t-1 < qj+l for some j. Since sj, 
4 < & < c-j+1 < h 3 %+2 3 we obtain, by the correct choice of E, 
Z[o,tj)(gl - -a) >j, -&j,tj+llkl - =m) 3 2, and Z(~j+,,ll(gl - =a> 3 
rz - j, a contradiction. Now let us assume that Q < & < Q < ... < rlipl < 
(j-1 < Q < Q.+~ < & . Choosing E so that gl(t) and agz(t) agree in sign 
on (Q , Q+~), we see that Z(,j,Vj+,)(gl - eagz) Z 2, and since sj < Tj, 
Z[o,,j)(gl - =qd >j - 1, while tj+l > 6% implies Z(+ll(gl - =a) 3 
rz -j. However, this does not provide a contradiction. The contradiction is 
obtained by noting that an additional zero of g,(t) - l g2(t) must occur in 
(Yj 3 tj+ll- 

That E. , q. , L+l or 71,+~, if they exist, exhibit the correct interlacing 
properties follows in a similar manner. The proof of part (1) is complete. 

It now remains to prove the weak interlacing of the points of equioscillation 
of gl(t) and g2(t). The proof of this fact is similar to the proof of part (1). 
Hence we only consider the case k = n $ 1, I = n + 2. 

We wish to prove si < ti < sitI, for i = I,..., n + 1. Assume sj > tj for 
some j = l,..., n + 1. From Proposition 4.1, Zto,t,](g, rrf: ag& > j - 1, and 
Zc,j,,l(g, & agj) > n + 2 - j. Furthermore, for some E = *I, fixed, 
&tj,sjl(g, - w2> > 1. A contradiction ensues if we have not, at tj or sj , 
counted a zero twice. In this case an additional argument is necessary. 
We leave the details to the reader. Thus si < ti for i = l,..., IZ + 1. The proof 
of fi < si+1 , i = l,..., n + 1, is totally symmetric. Thus si < ti < sifl , 
i = I,..., 12 + 1. 

5. ADDITIONS AND APPLICATIONS 

In this section we consider two general questions which lie within the 
framework of the problem considered in the preceding sections. The first 
question involves a direct application of the previous results, while the 
second requires additional analysis. Moreover, in both cases, we are able to 
deduce not only the interlacing of the zeros, but also the explicit manner in 
which they interlace. 
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I. As previously, let (ul ,..., z[J and (ul ,‘.., II, : 4, $j be F-systems on 1 
and consider the best LP-approximation to #J and 4 from [all ,..., uJ. Set 
g&> = E,(4N) and gdt) = E,(#)(t), and let us also assume here that 

iv ,..., u, , 4 and h ,..., u,, 41 are T-systems on 1. It now follows from the 
theorems of the previous sections that gl(t) and g*(t) each has exactly 72 zeros 

in I which strictly interlace, except when p = 1, in which case gl(t) and gZ(f) 
have exactly the same zeros in I. (If p = m, we assume I = 1.) We shall 
prove the following result. 

THEOREM 5.1. Under the above assumptions and GC I < p < in, the zeros 
ofgl(t) lie to the right of the zeros of gl(t). This result is a/so validfor p = CE 
zyr = I. 

ProoJ”. Let (4&=, and {Q>:=~ denote the zeros of gl(t) and g,(t), respec- 
tively. Theorems 3.1 and 4.3 imply that either 

El -c q1 < ti < ... < t, < yn 7 
or 

q1 < 5, < 72 < ~.~ < 7% < f,, 1 

We wish to prove that (5.1) obtains. 

(5.1) 

(5.2) 

Let gl(t) be as above, and let h(t) = z)(t) - a,+ly5(t) - EL, a&t) denote 
the error function in the best L”-approximation to #(t) from llr, )..., U, , 41~ 
Thus h(t) has n t 1 zeros and as may be deduced from our previous results, 
the n zeros of gl(t) must strictly interlace the 13 + ! zeros of h(tj. Observe 
that h(t) is also the error function in the best LJ’-approximation of 
44) - an+1 4(f) from [ul ,~..’ u,]. Let h(t; a) denote the error function in the 
best L*-approximation of z)(t) - a+(t) from [Us ,.. ., zin]. Thus h(t; a,+l) = h(t j 
and hjt; 0) = g2(t). Now h(t; a) is a continuous function of a (since the best 
approximation is unique), and the zeros of if(f; a) and gl(t) strictly interlace 
for any a. Thus, as a goes from a,,, to 0, one of the jr f 1 zeros of J?(t) is lost. 
Moreover, it is easily seen that it must be lost at an endpoint (since all zeros 
of iz(t; a) are simple). Since both h(t) and g,(t) are positive to the right of 
their largest zero, it follows that the zero is lost at the left endpoint. Hence 
(5.1) must hold. 

Remark 5.1. If p = CTJ and I = 1, then the points of equioscillation of g-, 
lie weakly to the right of those of g, . 

31, The problem we shall now consider is rather diKerent in character 
and is derived from a problem of Lorentz [7], which was solved for all Lj’: 
1’ .+ p < wo, by the first author, and subsequently solved in a more elegant 
and simple form by Smith [12]. The problem is as follows. 

Let (~32~ be a Descartes system on [O, l], i.e.: (ui, )..., ZQ,) is a T-system 
on [O, l] for all 1 < il < ... < ii, < m and all k = I,..., 1%. Given 11, 6nd 
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the n optimal functions zli, ,...,.L$,, , 1 6 il < ... < i, < PI, which best 
approximate u,, in Ln. More exphcttly we are interested in iI ,..., i, solving 

min min u,,? - 
l<il<...<i,tm al,...,a, Ii $I aJ+ie 1iB . (5.3) 

The following result may be proved. 

THEOREM 5.2. Under the above assumptions, the minimum in (5.3) is 
attainedfor (il , i2 ,..., in] = (m - n, m - 12 + I ,..., m - 11. 

The proof of this theorem is sufficiently simple and elegant to be reproduced 
here. 

Proof (Smith [12]). Let (ik}~Z=l and { jk}bl be any two ordered sets of n 
integers from (l,..., m -- I}, such that i* < jTC , k = i,..., IZ. Assume further 
that the two sequences have exactly 12 - 1 common integers. Let v(t) = 
u,,(t) - xi=1 a,u,,(t) denote the error function in the best Ln-approximation 
to ~d.>~, from [zli, ,..., ui,]. By the Tchebycheffian properties v has n zeros and 
ak(-l)k-‘-n > 0, k = l,..., rz. Let us construct the unique “polynomial” 
G(t) = u,,,(t) - cb, b+,,(t) which has the same n zeros as v(t). Thus 
bk(-l)k+n > 0, k = l,..., 77. Let {hr}E2: = (iJfL=, u { j,)F==, , 1 < h, < ... < 
h < m. Since v(t) - C(t) = -x .= T 1 akui .(t> + lZ:,“=, hujk(t) = CiL: ckuh .(t>, 
vTtj’- C(t) has at most IZ zeros. Thus v(tk C(t), and v(t) - G(t) all haveLthe 
same iz zeros which are all necessarily sign changes, whence 1 v(t)1 > 1 G(t)/ 
or I G(t)/ 3 I v(t)1 for all t E [0, l] (with equality only at these same II points). 
Let Y be the largest integer p with h, $ (ik},” n {jJF. By assumption it follows 
that h, E {j,}E=, . Thus c~+~ = b, . Since b,.(- l)r+n > 0, it follows that 
~,+~(-l),~+~ > 0, and thus ~~+~(-l)~+~ > 0, k = l,..., n + 1. The deter- 
mination of the orientation of the signs of the coefficients implies, with the 
previous results, that / v(t)1 > 1 zE(t)l for all t E [0, 11. Hence (zQ,}~=~ is not 
the best choice of functions. An inductive argument establishes the theorem. 

Not only can we discern which n functions provide the best approximation 
to U, from (u, ,..., u,-~}, but we can also determine the pattern of the zeros of 
the error function of best approximation. 

THEOREM 5.3. Let {il ,..., in} and f j, ,..., j,} be two increasing sequences of 
integers in (I,..., m - 1) such that ik < j, , k = I,..., n. Let v(t) = u,(t) - 
xFZL, an,uik(t) and w(t) = u,(t) - xF==, bLujB(t) denote the error functions in 
the best L”-approximation to al, from [ui, ,..., a~,] and [uj, ,..., u/J. respectively. 
Let (~J~Zl and{~i}~Z=l denote then zeros of v and w. Then Sk. < qrc , k = l,..., n. 

To prove Theorem 5.3, it suffices to prove the following proposition. 
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PROPOSITION 5.1. Let v, w, (ti>y and {r$ be as above. Assume that the 
sequences {ik}&, and { j&& have n - 1 common elements. Then 

0 < E, < 71 < & < .‘. < 5, -c 77% < 1. (5.4) 

Proof. The novelty of the proof of the proposition is due to the fact that 
the interlacing is not an immediate application of the results of Sections 3 
and 4. In fact it is simple to verify that 01u -+ /3w may have as many as n + 1 
zeros and as few as rz - 1 sign changes in [O, 11. This difference allows for 
the possibility of nonnodal zeros which would invalidate the analysis of 
Section 3. Hence, we first show that a nonnodai zero cannot occur and we 
shall then, with minor modifications, apply the analysis of Section 3. For 
ease of exposition, we shall prove the result only for p E (I, coj. 

Recall that since v(t) = u,(t) - C’E=, a,z@r) is the error function in the 
best LP-approximation to un(t) from [ui, ).... uili], it follows that 

f’ 1 v(t)l+l (sgn v(t)) ui,(t) dt = 0, k = !,...: ~5. (5.5, 
“0 

Similarly 

i 
l 1 tv(t)l”-l (sgn k+(t)) uj,(t) dt = 0, k = I,..., II. (5.6) 
0 

Let us assume, for ease of exposition, that ik = j, ) k = I,..., n - 1, and 
.‘,, < j, < IX. We wish to prove that OIV + @v has no nonnodal zeros in (0, ij. 
if iy = 0 or @ = 0, then the result is immediate. We thus assume cx = 1. 

Let w(t) = am(t) - Cz==, bktcj,(t). Then 

n-i 

= (1 + fl) u,(t) - ,Bb,z+,(t) - a,u,,(t) - c (/3bR + a,) ui,(t). (5.7’) 
i;=l. 

We separate the proof into two cases: 

Case I. /3 3 -1. 
Since u and w each have n zeros (sign changes) and (u$F is a Descartes 

system, (-l)k’+n bl,, (-l)b+n aL > 0, k = I,..., II, i.e., the coefficients strictly 
alternate in sign. In order that (v f fiw)(t) have n -t 1 zeros, it is necessary 
that its coefficients strictly alternate in sign. However, if p > - 1, then since 
1 f /3 > 0 and --a, < 0, we cannot have strict alternation in the signs of the 
coefficients, and Z(v + /SW) < n. Now, if h(t) = / v(t)l”-‘(sgn v(t)) -+- 
j @(t)j”-l sgn@v(t)), then as was seen in Section 3, the sign pattern of h(r) 
and (E + Pwj(t) is identical. Furthermore, from (5.5) and (5.6), 

s 

1 
h(t) u;,(t) dt = 0, k = l,..., 17 - 1. (5.8f 

0 
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Thus h(t) has at least rz - 1 sign changes. Hence II - 1 < S-(u + ,&v) < 
Z(v + pw) < n, and u + PIV has no non-nodal zeros in (0, 1). 

Case 2. p < -1. 
Since the coefficients of (v + Pin) may now alternate in sign, we see that 

Z(v + @v) < n + 1, while S-(V + @v) > 12 - 1, from the orthogonality 
conditions (5.8). Thus it seems possible that a nonnodal zero may occur in 
(0, 1): Let us assume that (V + fin!)(t) has a nonnodal zero. Since the leading 
coefficient of (0 + pi*>)(t) IS negative, and (a + ,&v)(t) has IZ + 1 zeros, it 
follows that (t. + ply)(I) < 0, i.e., the orientation is determined. Construct 
the unique “polynomial” z(t) = zQt> - Cz1: $uik(t) which has the same 
n - 1 sign changes as (U + PM,)(~). Now z(1) > 0, by the choice of the 
leading coefficient, so that 

s 
1 h(r) z(t) dt < 0, 

0 
(5.9) 

where h(t) is defined as above. Moreover from (5.8) and (5.5) 

j1 h(t) z(t) dt = I1 h(t) ui,i(t) dt 
0 0 

= 
I 
o1 1 /3w(t)l”-’ sgn@w(t)) q,,(t) dt 

> 0. 

(This last inequality follows from the fact that sgn /3 = -1 and since 
j,-, < i, < j, < m, then 

s 
l 1 w(t))"-l (sgn w(t)) u*,(t) dt < 0.) 

0 

However, this contradicts (5.9). Thus (U + /3w)(t) has no nonnodal zero. 
Having proven the nonexistence of nonnodal zeros, we return to the proof 

of the interlacing of the zeros of L’ and 1~. We follow the proof of Theorem 3.1. 
The crucial ingredients there are Lemmas 3.1 and 3.2. Lemma 3.1 and 
parts (i), (ii), and (iii) of Lemma 3.2 are immediate consequences of the above 
proved facts. It remains to consider case (iv) of Lemma 3.2. In the terminology 
of Section 3, let f be a point of sign change of w(t) such that I+ = I- (finite), 
and f = u(t)/w(t) is monotone in opposite senses on each side of f. Set 
c = If = I- and assume, without loss of generality, that f(t) 6 c in a 
neighborhood of [. Now u(t) -- w(t) has at least n - 1 sign changes in 
(0, I), one of which is at 5, Thus u(t) - c*v(t) + w(t) has, for E > 0 but 
sufficiently small, at least n - 2 sign changes bounded away from 5. Since 

f(t) is monotone, in opposite senses, on each side of [, u(t) - (c - E) w(t) 
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has a zero slightly to the left of 5, a zero slightly to the right of f, and a zero 
at 5. Thus u(t) - (c - E) rv(f) has at least n + 1 zeros in (0, 1). This implies 
that the coefficients of v(t) - (c - E) n(t), and hence the coefficients of 
u(t) - en!(r), weakly alternate in sign (with the same sign pattern as wou!d 
prevail if v(t) - en(t) had n + 1 zeros). Moreover, 2-l(t) - c:,v(t) has exactly 
IZ - I sign changes. Thus we are essentially in Case 2 and we now apply the 
proof as given therein to obtain a contradiction This proves part (iv) of 
Lemma 3.2, and the remaining analysis of Theorem 3.1 holds, proving our 
result. 

We now know that the zeros of I’ and r!’ strictly interlace. However, it 
remains to prove (5.4), i.e., that they interlace In the given manner. 

The functions u(t) and n*(f) depend on the parameter p. We shall indicate 
this dependence by denoting them by up(t) and nlD(t), respectively. From the 
uniqueness of best L.n-approximation it may be seen that the zeros of I’), and 
ri’, are continuous functions of p. It thus suffices to prove the result for some 
p E [l, m]. We shall prove it for p = ,a. 

Each of ~1, and IV,= has n zeros and I? J- I points of equiosciliation and 
each is positively oriented. Let a0 = II L:,~ li,.l, II’,, ,i7; . Then Z(V~ - +ilaX) 2~ 
II + 1. Since Z(v, - ocrr,) < n -C 1 for any choice of &L, it fohows that 
Z(u, - ~q,wJ = n + 1. Now (0, - Lx”lv,)(t) = (I - Ya) u&j f x”b)Illj;)r(f,~ - 
a,ulR(f) + .... From the signs of the coefficients (which must alternate in sign) 
we see that if (tJ:=:’ are the n + 1 ordered zeros of I,, - U”N, , then 
(0, - ~o~i~~j(r)(-l)~+~~ > 0 for ti < r < fi+l, i = I,..., I?. Since I, < e, ; 
?n < I~+~, it follows that E,, < 711 , and thus (5.4) holds for p = 3:) and 
hence for ah p E [I, co]. The proposition is proved. 
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