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Let a,, . . . . u, span a subspace U of a normed linear space X. Let f  E X. An algo- 
rithm to find a best approximation to f  from U can be constructed by cyclically 
searching the one-dimensional spaces spanned by each a,. The best approximation 
from the one-dimensional spaces is subtracted from f  before searching in the next 
direction. This accumulating sum of best one-dimensional approximations is an 
algorithm for finding a best approximation from U. Variations of the method have 
been called Von Neumann alternating search, Diliberto-Strauss, and median polish 
algorithms. We first present the effects on the algorithm of smoothness and strict 
convexity of X We then give detailed consideration to the algorithm in the two 
spaces C(B) and L,. The main results are characterizations for convergence to a 
best approximation. 0 1992 Academic Press, Inc. 

1. INT-R~DUCTION 

In this paper we investigate in detail the following algorithm for linite- 
dimensional subspaces. Let X be a normed linear space (over R). Let U be 
an n-dimensional subspace of X, and ul, . . . . U, be any m nonzero elements 
of U which span U. The case where m = n is of particular interest. For 
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f(=f’“))~X,andk+1=rm+i,r30, ie{l,...,m}, setf’kf”=f’kJ-tkU, 
where the t, E R is chosen to minimize 

Ilfck) - t”i II 

over t E R. In other words, at each stage we find a best approximant from 
the l-dimensional subspace span{u,}, and we do this cyclically. Thus 

where zJk) E U. 
In the analysis of such an algorithm, three main questions arise. Do the 

{u’~‘} converge? If so, do they converge to a best approximant to f from 
U? At what rate do they converge? This paper is mainly concerned with 
the first two of these questions. 

The above algorithm is not new. It is essentially a cyclic coordinate 
algorithm (see Zangwill [ 11 I). For m = 2, it is a special case of the 
Von Neumann alternating algorithm, or Diliberto-Straus algorithm (see 
Light and Cheney [4], Deutsch [2], and references therein). If X is a 
smooth strictly convex normed linear space (e.g., Lp, 1 < p < a), then it 
was shown by Sullivan and Atlestam [S] that the above ~6~) necessarily 
converge to the unique best approximant to f from U. In Sections 2 and 3, 
we show exactly what role the smoothness and the strict convexity of the 
norm play in the above algorithm. For example, if X is not strictly convex 
it may be that no cluster point u* of the {u’“‘} satisfies 

/f-- u*ll =min Ilf- u* - tu,II 

for all i= 1, . . . . m; while if X is strictly convex, but not smooth, then 

IIS- u*l( = min /If-- u* - tu, (I 
I 

for each i= 1, . . . . m, for any cluster point u* of the {u’~‘}, but u* need not 
be a best approximant to f from U. 

Nothing seems to be known about convergence rates except in the 
Hilbert space setting, where Smith, Solomon and Wagner [7] proved 
geometric convergence of the u (k) to the unique best approximant tof from 
U. We conjecture that such a result should hold in any smooth uniformly 
convex normed linear space. 

For approximating continuous functions in the L’-norm, this algorithm 
was suggested by Usow [lo]. However, his claim that Ilf- ill i 
converged to the error in approximating f from U was incorrect, as was 
pointed out by Marti [S]. Marti’s suggestion for overcoming this problem 
involved a search in an unbounded number of directions. In fact, if the 
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function f is such that for every ZJ E U, the zero set off- u has measure 
zero, then every cluster point of { uCk)} is necessarily a best approximant to 
f from U; see Pinkus [6]. 

Our investigation into this algorithm was prompted by a paper of 
Kemperman [3] on “median polish.” Median polish, as developed by 
Tukey [9], is an elementary method for approximating, in the II-norm, an 
n x m matrix A = (aV)l= r, ,Y= I by a matrix of the form D = (bi + c,);= 1, j’=, . 
Here the error is given by 

The idea of median polish is to start with A, and determine {/I~“}:= I so 
as to minimize 

for each i= 1, . . . . n. One then determines {yj”},“, , so as to minimize 

i la&?y’-y;“l 
i= 1 

for each j= 1, . . . . m. Setting a!‘= aV- /?I’) - yJ1’, one then reapplies this 
same procedure with a:’ replacing q, to obtain a?‘, and then cycles 
through again and again. At the kth stage one obtains 

ui;k’ = ag - bik’ - cjk’, 

where bjk’ = pi” + . . . + /Ilk’ and c/!“’ = yj” + . . . + yjk’. The idea is that this 
process will hopefully converge, and that 

i f lu,i-bjk’-c/!k’l 
i=l j=l 

will approach 

yin .i f +b,-c,l. 
1. / *=I j=l 

Some variants of this method are also considered. Kemperman [3] does 
not discuss the problem of the convergence of this algorithm. But he does 
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ask the following: If the A = (a,):=, , ,F= 1 is such that one can take fii” = 0, 
i=l > ...> n, and yji’=O,j= 1, . . . . m, in the above, does it then follow that 

As Kemperman [3] noted, the answer in general is no. 
The above result is not surprising since the /,-norm is not smooth, and 

median polish is a special case of the algorithm we first described. To see 
this, consider the n x m matrix A = (Us)‘= i, ,Y= , as a vector a E UP’, whose 
entries are given by (Us)‘=, , y= i, arranged in lexicographic order. Then 

FP ,C C lU,i-bi-Cjl 
I' I r=l j-1 

may be reformulated as a best approximation (in 1;“) to a from a linite- 
dimensional (in this case (n + m - 1)-dimensional) subspace. In fact the 
above is equivalent to 

min a--~bivi-~cjwj 
b,, c, II i= 1 j= 1 

where the vi, wj E IR”“. The vi have all zero entries, except for the com- 
ponents with indices { n(i - 1) + l};“= , which have entries one, and the wi 
have all zero entries, except for the components with indices { Im +j};;d, 
which have entries one. Considered from this point of view, median polish 
is exactly the algorithm initially described. 

Kemperman [3] also shows that this algorithm (median polish) 
converges to the correct value if we replace the Ii-norm by the I,-norm, 
1 < p < co. This is a special case of the result of Sullivan and Atlestam [S]. 
In fact Bradu [l] proposes an s-median polish algorithm, which is 
perturbing the space I;“’ to a smooth, strictly convex space (easily done 
here since X = lTm is finite-dimensional), using the above algorithm, and 
then perturbing back to the original norm. 

2. THE ALGORITHM AND VARIATIONS 

Let X be a normed linear space over R, and U a finite-dimensional 
subspace of X. Let u,, . . . . U, be any m elements of U. (We will generally 
assume that the ui, . . . . U, span U, although they need not be linearly 
independent.) 
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The main algorithm we consider is the following. Given f E X, we start 
with some z.6’) E U. Given u (k) E U, write k + 1 in the form rm + i, where 
r>O and iE{l,...,m}. Then 

U(k+lJ = U(k) + t,u, 

where t, is chosen so that 

~~f-dk)--tkui(~=min Ilf-zP-tuJ. 

Such a t, exists (but is not necessarily unique) since we are approximating 
f - uk from the one-dimensional subspace span {ui}. 

We study this algorithm and two simple variants of it. In this section we 
address the question of the “convergence” of the algorithm. In the next 
section we ask to what it converges (if it converges). To understand what 
we mean by “convergence,” we define the following concept. 

DEFINITION. For f E X and u* E U, we say that u* is a stationary point 
for f with respect to {ui, . . . . u,} if 

for all t E R’ and each Jo { 1, . . . . m}. Of course, U* is stationary for f if and 
only if 0 is stationary for f - u*. 

We consider the questions: Does the sequence {a’“‘} converge to a 
stationary point? Is every cluster point of this sequence a stationary point? 
The answer to the latter question is no in general, but yes if m = 2 (the case 
for m = 1 is trivial) or the norm is strictly convex. We start with some 
simple facts. 

LEMMA 2.1. The sequence { uCk’} is a bounded sequence, and 

lim 11 f- dk)lj 
k-m 

exists. 

Proof. This follows from 

o< Ilf -24 (k+l)ll 6 Ilf- ZPy. 1 

Let 

lim 11 f- dk)JI = fx 
k-m 
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If G = 0, i.e., lim, _ o. zP) = 5 then the algorithm converges (to the best 
approximant), and there is nothing to prove. In addition, the algorithm 
may stop after a finite number of steps. If, for example, u(k) = u(“+ ‘) = 
. . . =u (k+m) for some k b 0, then it is easily checked that ~4~~) is a 
stationary point for f: This does not, a priori, imply that the algorithm 
will stop, since values of t other than zero may be selected at subsequent 
stages. However, if the norm is strictly convex, then the algorithm cannot 
possibly advance past this point. 

We will prove that if m = 2 or if the norm is strictly convex then every 
cluster point U* of {u’“‘} is a stationary point for f: The idea used in the 
proof of both cases is much the same. 

Let U* be a cluster point of the sequence {u’“‘}. Thus there exists a 
subsequence {k,} of {k} such that 

lim uckP) = u*. 
P-m 

Since m is finite, we may and shall assume that for each p 

k,=r,m+i 

for some rp 2 0 and fixed i E { 1, . . . . m} 

LEMMA 2.2. Let u*, i, and k, be as above. We have 

Ilf- ld* II G llf- IA* - t”j II 

for all t E [w and je {i, i + 1 } (where, if i = m, then we understand that 
i+ 1= 1). 

Proof. By definition, Iif-- u (kp)ll d IIf- dk~)- tu,Il. Hence IIf- u*ll < 
Ilf- u* - tu, II. 

Since the sequence {uCkp+ “} is a bounded sequence, on some 
subsequence, again denoted {k, + 1 }, 

lim U(kp+‘)=~ 
p+m 

for some ii E 17. Now, 

~(~p+‘)=&)+ tk 
P . 

ui+l 

Thus 

lim tkp = t* 
P+c= 
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exists, and ii = U* + t*ui+ r. From Lemma 2.1, 

Ilf- u*/l = Ilf- fill = 0, 

and from the previous analysis, 

Ilf-4 G Ilf-B-%+,ll 

for all t E R. Therefore 

Ilf-“*Il = IIf-iill d I(f-G-tUi+lll = [If-U* -t*Ui+l- tUi+lll 

for all t E [w. That is, 

Ilf-“*ll G llfmu* -tui+lll 

for all t E [w. u 

As an immediate consequence of Lemma 2.2, we have: 

PROPOSITION 2.3. For m = 2 every cluster point u* of the sequence 
is a stationary point for f with respect to {u,, u,}. 

In addition, 

{ 2.P’ 

127 

PROPOSITION 2.4. If X is a strictly convex normed linear space, and u* is 
a cluster point of the sequence (uCk)}, then u* is a stationary point for f with 
respect to {ul, . . . . u,}. 

Proof: The proposition is an immediate consequence of Lemma 2.2 if 
we can prove that for the U* and ii as therein, U* = ii. 

Recall that ii = u* + t*u,+ r, and 

for all t E R. Since X is a strictly convex normed linear space, the best 
approximation to S-- u* from span { ui+ ,} is uniquely attained. Since both 
0 and t*u,+ i are best approximants, it follows that t* = 0, i.e., u* = ii. 1 

If m 3 3 and the norm on X is not strictly convex, then it is not true that 
every cluster point U* of the {u’“‘} is a stationary point for f with respect 
to {u,, . . . . u,}. The following is an example verifying this statement. 

EXAMPLE. Let X=Z:, i.e., f=(fi,f2,f3)ER3 with norm llfllI=lf,l+ 
If21 +If31. Set ur=(l, LO), u,=(l,O, I), and u,=(O, 1, l), i.e., m=3. Let 
f = (- 1, 0, 1) and u(O)= (0, 0,O). It may be checked that we can choose 
t, = -1 if k = 0 or 1 (mod 4) and t, = 1 otherwise. Computation shows 
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that u”*) = 0 (the process is cyclical with period 12), Ilf - u@)l(, = 2 for all 
k, and f-U(“k+l’= u3 for all k. That is, u(12k+‘)=~*=(-l,-l,0) is a 
cluster point of the {u’~‘}, but u* is not a stationary point for f with 
respect to {ui, u2, u,}, since 

2= /If-“*Ili > Ilf-u*-u,//,=o. 

In fact u(‘*~+‘) and u(~*~+~) are also cluster points which are not stationary 
points, since f-~(l*~+~)=ui, and f-~(l*~+~)=u~. 

Remark. This exact same example gives the identical result with X= 
I’,, i.e., f=(fi,f2,f3)ER3 with norm (Ifl(,=max{lfiI:i=1,2,3}. The 
only difference is that I/f - uCk)ll m = 1 for all k. 

A simple modification of the algorithm will allow us to prove that every 
cluster point is a stationary point. This modified algorithm runs as follows. 

We are given j’~ X and ui, . . . . U, as previously. Given u(~), we define 
zJk+ I) as follows. Let 

Ilf- dk) - tkujkll = min min Ilf- UCk)- t”ill. 
i= l,...,m f 

Set u(“+ ‘) = z&~) + tkujk. That is, at each step we look along each of the m 
directions {ui}, and we choose the direction which maximally minimizes 
the error. 

PROPOSITION 2.5. In the above modified algorithm, if u* is a cluster point 
of the sequence {u’~‘}, then u* is a stationary point for f with respect to 

{u %I. I > ..‘, 

Prooj Let lim,, o. u (kp)= u*. Since Ilf -u’ll d IIf -u’I( for all l< k it 
follows that )I f - dkp)lJ < 11 f - u(~P~~+ ‘)I/ < )I f - ~(~p-1) - tuiII for all t E R 
and all i. Hence Ilf --*II < Ilf -u*- tuill. 1 

Remark. Another variant (generalization) of the main algorithm is the 
following. Let Ui, . . . . U, be subspaces of U. As previously, given uCk) with 
k+i=rm+i,r30,ie{l,..., m}, welet 

IIf -dk)-- Uill =2 IIf -dk)-UI(, 

where U,E Ui. Such a ui of course exists since each Ui is finite-dimensional. 
Set u(~+ l) = ~6~) + ui. This is a generalization of the main algorithm. It is 
easily checked that the results of Propositions 2.3 and 2.4 hold in this 
setting. That is, if U* is a cluster point of the (u’~‘}, then u* is a “stationary 
point” provided that either m = 2 or that the norm is strictly convex. 
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3. STATIONARY POINTS 

The question we address in this section is the following. If u* is a 
stationary point forfwith respect to {u,, . . . . u,}, is u* a best approximant 
to f from span{u,, . . . . u,}? We show that in order that the response be 
positive for all f and {ui, . . . . u,}, it is both necessary and sufficient that X 
be a smooth normed linear space. However, it should be noted that given 

{U 1, . . . . u,} in a nonsmooth X, there may exist {ui, . . . . u,} satisfying 
span{u,, . . . . u,} =span{u,, . . . . u,} for which the answer is yes if we replace 
the (ui, . . . . u,} by {vi, . . . . u,>. 

For ease of exposition, we say that u* is a phantom approximation to f 
from {ui, . . . . urn} if u* is a stationary point for f with respect to 

{U I, . ..> u,}, but not a best approximant to f from span{u,, .,,, u,}. 

DEFINITION. The normed linear space X is smooth if to each f E X of 
norm one, there exists a unique I in the unit ball of X* (the continuous 
dual of X) for which Z(f) = 1. 

THEOREM 3.1. If X is a smooth normed linear space, f E X, and 
ul, . . . . u, E X, then there does not exist a phantom approximation to f from 

b.4 1, . . . . %?I>. 

Proof: Assume f - u* # 0. Otherwise there is nothing to prove. Let u* 
be a stationary point for f with respect to { ui, . . . . u,}. Let 1 be the unique 
norm one linear functional in X* satisfying I(f - u*) = I/f - u*(l. Now, 
for each ie { 1, . . . . m}, the zero function is a best approximant to f-u* 
from span(ui}. From the Hahn-Banach theorem, there exists an Z;EX* 
satisfying 

(l) Illi 11X*= l. 
(2) Z,(u,) = 0. 

(I31 li(f -u*)= Ilf -“*ll. 
From (1) and (3), li = 1 for each i = 1, . . . . m. Thus we have an ZE X* 
satisfying 

(1’) II~Il,* = 1. 
(2’) l(u,)=O, i= l,..., m. 

(3’) Z(f-U*)= llf-u*II. 

Condition (2’) implies that l(u) = 0 for every u E span(u,, . . . . u,}, and 
therefore u* is a best approximant to f from span(u,, . . . . u,]. 1 

The condition of smoothness is necessary for the above result to hold for 
all f and {ui, . . . . u,}. 
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PROPOSITION 3.2. Assume X is a normed linear space which is not 
smooth. Then there exist {ul, . . . . u,} and f in X for which the zero function 
is a phantom approximation to f from {u,, . . . . u,,,}. 

ProoJ: Since X is not smooth, there exist an f E X of norm one, and two 
distinct linear functionals I, and 1, in the unit ball of X* satisfying I,(f) = 
Z*(f) = 1. Because 1, # I, (implying dim X > 1) there exists a g E X for which 
Z,(g) # 1*(g). Set W= span{fi g}. S’ mce dim W= 2, we can find u,, u2 E W 
such that 

zi(“j) = 6,, i, j= 1, 2. 

Let u3, . . . . 24, be arbitrary functions in X such that either Ii = 0 or 
12(uj) = 0, j = 3, . . . . m. 

For each jE (1, . . . . m} there exists an li, iE { 1, 2) satisfying 

(1) IlMlx*= 1. 
(2) Zi(Uj) = 0. 

(3) /i(f) = llf II. 
Thus the zero function is a stationary point for f with respect to 
(u,, . . . . u,}. The zero function is not a best approximant to f from 
span{u,, . . . . u,} sincefEspan{u,, . . . . u,}. 1 

In the next two sections we investigate in more detail two nonsmooth 
normed linear spaces: namely, continuous functions with the uniform 
norm, and the space L’. 

4. THE SPACE C(B) 

Let B be a compact Hausdorff set, and C(B) the space of continuous 
real-valued functions defined on B with norm 

llfll, =max{Ifb)l :xeB). 

In what follows, for f~ C(B) we let 

critf= Ix: If(x llfll) 

suppf = {x: f(x)#O} 

z(f)={x:f(x)=o}(=B\wvf), 

and if U is a subspace of C(B), then 

supp u = u supp u. 
ueu 
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We show that C(B) is a particularly unsuitable space for the algorithm 
under consideration. 

PROPOSITION 4.1. Let U be an n-dimensional subspace of C(B) (n > 1). 
Assume that we are given ul, . . . . u, in U with m < 2”- I. Then there exists an 
f E C(B) for which the zero function is a phantom approximation to f from 
{u 4. 1, . . . . 

Proof Let {x1, . . . . x,} G B satisfy dim UI iX,, ,,_, x.1 = n. With no loss of 
generality assume that U/(X,) > 0 forj= 1, . . . . m. Since m < 2”-’ there exists 
a choice of si E { - 1, 1 }, i= 2, . . . . n, sl = 1, such that for no jE { 1, . . . . m} do 
we have 

EiUj(Xi) > 0, i = 1, ,.., n. 

Let f E C(B) satisfy f(xi) = si, i = 1, . . . . n, and crit f = (x1, . . . . x,}. Such an 
f exists. Since 

min 
i= I,...,n 

(TUT f(xi) 6 0 

for each j = 1, . . . . m, and 0 E { - 1, 1 }, we have that the zero function is a 
stationary point for f with respect to { ul, ,,., u,}. But dim UI II,r ,_,, X.j = n, 
and there therefore exists a u E U for which 

U(Xi)f(Xj)>O, i=l , . . . . n. 

Thus the zero function is not a best approximant to f from U. 1 

For m = 2”- ’ we can exactly delineate those functions ul, . . . . u, for 
which the results of the previous proposition hold. 

PROPOSITION 4.2. Let U be an n-dimensional subspace of C(B) (n > l), 
and m = 2” ~ ‘. Let ul, . . . . u, E U. No f E C(B) has a phantom approximation 
from { ul, . . . . u, } tf and only tf the following hold. 

(a) There exists a basis v,, . . . . v, for U with 

supp Vk n supp v, = % 

for all k # 1. 
(b) Let (E{, . . . . E:), j= 1, . . . . m( =2”-l) denote all possible distinct 

vectors with E{E { - 1, 1 }, i = 2, . . . . n, and E{ = 1. Then 

n 

uj=dj C E{a{vi, j= 1, . . . . m, 
i=l 
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for some d,E { -1, l}, and 

a! > 0, i= 1 3 . ..> n, ,j = 1, . . . . m. 

ProojI (x=). Assume the {u,, . . . . urn} satisfy (a) and (b). It suffices to 
prove that the zero function is not a phantom approximation to any 
f~ C(B) from {u,, . . . . urn}. As such let us assume the existence of an 
f~ C(B) for which the zero function is not a best approximant to f from U. 
Then there exists a u = Cy=, b,u, satisfying 

U(Y) f(Y) ’ 0 for all y E crit 1: 

By assumption (b), there exist a 6 E { - 1, 1) and a Jo { 1, . . . . m} such that 

&,= i aivi 
i= I 

satisfies ai # 0, i = 1, . . . . n, and a$, B 0, i = 1, . . . . n. From (a), (6uj)(x) # 0 for 
all x~supp U, and 

(6u,)(x) 4x12 0 

for all x E supp U. Thus 

tauj)(Y) f(Y) ' O for all y E crit J: 

This implies that the zero function is not a stationary point for f with 
respect to {ui, ,.., u,}. 

(a). We now assume that every stationary point is a best approxi- 
mant. Let {xi, . . . . x,} G B satisfy dim UI iX,, ,,,, X,j = n. It follows from the 
proof of the previous proposition that if uj(x,) 20, j= 1, . . . . m, then for 
each choice of (si, . . . . E,) with E,E { - 1, l}, i= 2, . . . . n, si = 1, there must 
exist a Jo { 1, . . . . m} such that 

Eiz4j(Xi) > 0, i=l n. 9 . . . . 

Since m = 2”- ‘, to each such choice of (si, Ed, . . . . a,) there exists a unique 
Jo { 1, . . . . m} satisfying the above. 

Assume y$ {xi, . . . . x,}. If for some k,l~ {l,..., n}, k#i, 

dim UI{, ,,..., x.,Y~\(Xk)=dim UI,, ,,..., x,,Y~\{X,)=nT 

then a contradiction ensures. This follows from the result of the previous 
paragraph and the fact that the vector (u,(y), . . . . u,(y)) cannot have the 
same (strict) sign pattern as both (ul(xk), . . . . u,(x,)) and (u,(x,), . . . . u,(x,)). 
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Thus for each YE supp U there exists one and only one ke { 1, . . . . n} for 
which 

n = dim UI I ~l.....&.Y)\~~kl~ 

Let vr, . . . . u, E U satisfy u,(xi) = 6,, i, j= 1, . . . . n. Such vi exist since 
dim UI fxl, ._., xn) = n. The ul, . . . . v, are a basis for U. From the above, it 
follows that if y E supp U, there exists a unique ke { 1, . . . . H} for which 
u,Jy) # 0. Thus for k, ZE { 1, . . . . n}, k # Z, 

supp Vk n supp u, = 0. 

Since on the set (xi, . . . . x,}, the { f u,},?= , take on all (strict) sign patterns, 
it follows that the (Us},?=, must satisfy (b). 1 

Remark. If vi, . . . . v, is a basis for U, and for all k, 1 E { 1, . . . . n), k # Z, 

supp ok n supp VI= 0, 

then it is easy to find a best approximant to anyfE C(B). Let ai attain the 
minimum in 

min max I(f’-av,)(x)l. 
(I x E supp UI 

Then u = C;= i aivi is a best approximant to f from U. 

If m > 2”- ‘, then the situation becomes more complicated. If C(B) = I”, , 
where 

~d,={x:=W IIxllm=iyplJ~ . . . . 

then for any finite-dimensional subspace U of l”,, it is possible to find 
I+, . ..) II”’ E U (m finite) such that there is no phantom approximation to 
any bEId, from {II’, . . . . II”‘}. We must simply include in the set { kuj}y= r 
all possible (strict) sign patterns of every u E U on any subset of the indices 
{ 1, 2, . . . . d}. This is what was done in Proposition 4.2. It is not a recom- 
mended procedure. Let us go to the other extreme and consider one other 
case which further emphasizes the unsuitability of this algorithm in the 
uniform norm. 

Let ,u be any positive non-atomic Bore1 measure defined on a compact 
set B. 

PROPOSITION 4.3. Let U be a finite-dimensional subspace of C(B). 
Assume there exists a set A E B such that p(A) > 0 and dim UI A 2 2. Further 
assume that ifu~ U and ulA #O, then p(Z(u)IA)=O. Then for any ul, . . . . u, 
which span U, there exists an f E C(B) for which the zero function is a 
phantom approximation to f from { uI, . . . . u,}. 
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Proof: For each Jo { 1, . . . . m}, set 

Af={x:u,(x)30}nA 

Af = {x : U,(X) < 0) n A. 

Then there exist ii, . . . . i,, each in { 1, 2}, such that 

p fi A] >p(A)/2m>0. 
( > j=l 

Let C = njm= i A). If dim UI c < 2, then there exists a u E U for which UI A # 0, 
but ulc=O. But then ~(Z(u)l~) > 0, a contradiction. Thus dim U/.3 2, 
and there exist y, , y, E C for which dim UI (-“,, Y2j = 2. 

Thus 

uj(Yl) uj(Y2) a03 j = 1, . . . . m, 

and there exists a u E U satisfying u( y, ) u( y2) < 0. Let f E C(B), f( y, ) = 1, 
KY*)= -1, and crit f= {y,, yz}. The zero function is a phantom 
approximation to f from {ui, . . . . u,}. 1 

5. THE L'-NORM 

Let B be a set, Z a g-field of subsets of B, and v a positive measure 
defined on C, i.e., v(E) B 0 for all E E C. By L’( B, v) (we suppress the C for 
brevity), we mean the space of all real-valued v-measurable functions f for 
which If I is v-integrable. L’(B, v) is topologized by the pseudonorm 

Ilf II I = JB If(x)I Mx). 

As previously, 

suppf = {.x :f(x)#O) 

and 

Z(f)= {x:f(x)=O}. 

The sets supp f and Z(f) are v-measurable. For f E L’(B, v), we set 

1, f(X)‘0 
sgn f(x) = 0, f(x).= 0 

-1, f(x)<@ 
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We recall that iffgL’(B, v) and U is a linear subspace of L’(B, v), then 
the zero function is a best approximant to f from U if and only if 

I4 dv 

for all 24 E U. 

Remark. When working in L, spaces we interpret all functions, 
including f and ui to be equivalence classes of functions. In this section we 
will only consider the case m = n. 

In contrast to the previous section, phantom approximations are not 
nearly as prevalent in this setting (especially for L’(B, v) = I;‘). We start 
with a simple result. 

PROPOSITION 5.1. Let U = span{ u, , . . . . u,} be an n-dimensional subspace 
of L’(B, v). Assume that 

supp ilk n supp u, = 0 

for all k # 1. Then no f E L’(B, v) has a phantom approximation from 
b %I. 1, *.*, 

Proof Let U* be a stationary point for f with respect to {ui, . . . . un}. 
Thus the zero function is a best approximinant to f-u* from each 
span(u,}, i= 1, . . . . n. Therefore 

ui sgn(f - u*) dv 

i = 1, . . . . n. Since the { u,}l= 1 have distinct support, for any ai E [w, i = 
1, . . . . n, 

Thus u* is a best approximant to f from U. 1 
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Remark. In the above case the algorithm converges to a best approxi- 
mant after one cycle through the u,, . . . . u,. 

There is an essential difference in the problem of best approximation in 
L’(B, v) depending upon whether or not the measure v has atoms. 

THEOREM 5.2. Assume that v is a nonatomic, o-finite, positive measure. 
Let U=span{u,, . . . . u,} be an n-dimensional subspace of L’(B, v). Assume 
that 

v(supp Uk n supp u,) > 0 

for some k # 1. Then there exists an f E L’(B, v) for which the zero function 
is a phantom approximation to f from { ul, . . . . u,}. 

Proof: For ease of notation, assume that supp ui n supp u2 = R, and 
v(R) > 0. 

From Liapunov’s Theorem (since v is non-atomic and a-finite), if GE B, 
then the set 

LX&= hu, dv, . . . . :h~L”(G,v),Ih(x)(=l,allx~G 

is a compact, convex subset of R”, symmetric about the origin, and equals 

hu, dv, . . . . :hEL=‘(G,v), Ilhll,<l . 

Furthermore, if the u,, . . . . u, are linearly independent over G, then 
OEint cplIG. For if 0 E C%Z?~ (obviously OE JS&), there exists a b = 
(b , , . . . . b,) # 0 for which 

i bi jGhuidv>O 
i=l 

for all he L”(G, v) satisfying Ih( = 1 for all XEG. Setting u=Cy=, b,u, 
and h = -sgn u on supp u n G, a contradiction ensues since u f 0. 

Since 0 E int SZZ’~, there exists an E > 0 such that 

D,={d:deR”, Ildll,<e)cr;s,. 

Set 

P;={x:(-l)‘uJx)>O}nR, i, j= 1, 2. 

Since P,! u P’ = R for i= 1,2, at least one of the four sets P$ n Pt has 
positive v-measure for ji, j, E { 1,2}. Let c denote such a set. 
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From the absolute continuity of the integral, given E >O there exists a 
6 > 0 such that if Q G B and v(Q) < 6, then 

i 
luil dv < 43, i = 1, . . . . n. 

Q 

Choose Cc 2; such that 0 < v(C) < 6. Thus J&C D,,,. Since 

and D, G dB, we have that D,,, c &“,c. Thus J&C G!~,~. There therefore 
exists an h E L”(B\C, v) with [h(x)1 = 1 for all x E B\C such that 

s 
hul dv= -ul dv 

B\C s C 

and 

s 
hui dv = 

s 
ui dv i = 2, . . . . n. 

B\C C 

From the above, we obtain 

l~B,=huidvl~~~,ur,dv, i=l,..., n. (1) 

Choose a, BE IF4 satisfying aal < 0 and &(x) > 0 for all XE C. Since 
CE c, such a choice is possible. Thus 

jB,c h(au, +/I&) dv = s,- au1 + j?u2 dv 

For equality to hold in the above inequality, it is necessary that 

Ml + hl = lw + l/h v a.e. on C. 

But (au,)(&) <O on C. Thus, setting ii=au, +/?u,, we have 

hzTidv> 
s 
c Ifi1 dv. (2) 
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Finally, let f E L’ (B, v) satisfy 

XEB\C 
xc c. 

Then from (1) and (2) 

ui sgn f dv < 
1 j 

1% dv, i = 1, . ..( n 
Z(f) 

s 
iisgnf dv> s 

Iii1 dv. 
B z(r) 

The first set of inequalities imply that the zero function is a stationary 
point for f with respect to {ur, . . . . u,}. The second inequality says that the 
zero function is not a best approximant to f from U. u 

Remark. For the above-constructed f, v(Z(f)) > 0. If u* is a stationary 
point for f with respect to (ur , . . . . u,}, and v(Z(f - u*)) = 0, then a simple 
consequence of the characterization theorem of best approximants is that 
u* is a best approximant to f from span{ u,, . . . . u,}. If we further assume 
that f and the {ui}:= f are continuous (see the next paragraph) and 
v(Z(f-u))=O for all uEspan{u,,...,u,}, then it was proved, in 
Pinkus [6], that every cluster point of the algorithm is a stationary point 
and hence a best approximant. 

We wish to extend the above Theorem 5.2 to continuous functions. To 
avoid complications, we let B = K, where K is a compact subset of Rd with 
K = int. We also set v = p, where p is a nonatomic, positive, finite, 
regular, Bore1 measure on K whose support is K. Thus Ij.lI I is a true norm 
on C(K) and we do not need to consider equivalence classes of functions. 
By C,(K, p) we mean the space C(K) endowed with the norm II .I/, . 
C,(K, cl) is not a Banach space. It is not complete. 

THEOREM 5.3. Let the above assumptions hold. Assume that U = 
span{u,, . . . . u,} is an n-dimensional subspace of C(K) and uk(x) u[(x) # 0 for 
some x E K and k # 1. There then exists an f  E C(K) such that in C,(K, p) the 
zero function is a phantom approximation to f  from (u, , . . . . u,}. 

Proof: By assumption ~(supp uk n supp u,) > 0 (since U c C(K)). Thus 
from the previous theorem there exist a g E L’( K, p) and ii E U for which 

ui sgn g dp Q 
I 1 

z(g) luil 4, i=l n 9 . . . . 

s 
iisgn gdp> 

s I4 4. 
K .3&r) 

(3) 

(4) 
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The proof of this theorem is divided into two steps. The first step proves 
that we can perturb g to SE L’(K, p) so that strict inequality holds in (3) 
for all i E (1, . . . . n}, and in (4). The second step shows that we can replace 
g by f~ C(K). This implies the statement of the theorem. Since the proof 
of each step is lengthy and technical, we separate them. 

LEMMA 5.4. Assume (3) and (4) hold. Then there exists a g E L’(K, p) 
satisfying (3) and (4) with strict inequality in (3) for each i = 1, . . . . n. 

Proof: Assume (multiplying the ui by - 1 if necessary) that 

s ui sgn g dp = 
s z(g) luil dp, i= r, . . . . n, 

K 

where 1 < r 6 n. 
Let s=jKiisgn gdp-lszCgj JiiJ dp >O. From the absolute continuity of 

the integral, there exists a 6 > 0 such that if A c K and p(A) < 6, then 

Now, if SK u, sgn g 4 = Jzcnj lu,I 4 = 0 
there exists a set A E supp U, such that 

J A u,sgn g dp = 0. 

then supp u, G supp g, and 
P(A)<~,O< JA lu,l &, and 

If SK ur %n if 4 = jqg j  Iu,I dp > 0, there exists a set A G supp g such that 
AA)<4 JA~rsgng&=J, Iu,I &>Q and JA Iu,l &<JKU,sgngdp. 

In either case we set 

x4A 

XEA. 

In the first case we have 

s u,sgn gdp= I u, w  g & - 
K K s u, sgn g dp = 0, 

A 

while 

j” 
Z(f) 

Id h=j lurl h>O. 
A 
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In the second case we have 

while 

0~ U,sgngdp= u,sgngdp- 
5 5 s b,l dp 

K K A 

< 
j Iurl 4 
Z(g)uA 

= s Iurl &. 
z(g) 

Thus in all cases, 

For ie (1, . . . . n}, i#r, 

uisgn gdp- 
s Uisgn g4 

K A 

= 
s z(g) luil &. 

Thus the inequalities (3) are maintained. Since (5) holds for i = 1, . . . . r - 1, 
there must be strict inequality in the above set of inequalities. Thus (5) now 
holds for i = 1, . . . . r. 

Finally, we prove that (4) is maintained. Then applying the above 
process a finite number of times, we will have proven the lemma. 
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Recall that since p(A) < 6, 
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Now, from the above inequality, 

s ii sgn S dp = 
K s 

ii sgn g dp - 
K s 

iisgn gdp 
A 

2 
s 

iisgn gdp- [ii1 d,u 
K s A 

> J I4 4 + j, lfil 4 
Z(n) 

= s I4 &. 
-a%) 

Thus (4) continues to hold. m 

LEMMA 5.5. Let U=span(u,, . . . . u,} be an n-dimensional subspace of 
C(K). Assume that ii E U and 2 E L’(K, ,u) satisfy 

and 

I iisgn gdp> 
s lfil 4. 

K z(g) 
(8) 

Then there exists an f E C(K) such that (7) and (8) hold with f replacing 2. 

Proof: Let 

q=min Sz(g)IuiId~-lSKuisgngd~l, i=l,...,n 
SKiis@ B~P-!~(~) 14 &. 

From (7) and (8), q > 0. For ease of notation, set il = U, + 1 in what follows. 
Let 

vi(C) = s, luil 4, i= 1 , . . . . n + 1, 
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P= {x: g(x)>o} 

N= {x: g(x)<o}. 

From the regularity of p, and the absolute continuity of the integral, 
for each E > 0 there exist compact sets A, B and disjoint open sets V, W 
satisfying A c P, Bc N, A c V, Bc W, where each of the v,(P\A), 
v,(N\B), vi( V\A), vi( W\B) is strictly less than E for i= 1, . . . . n + 1. 

From Urysohn’s Lemma, there exists an f E C(K) satisfying 

XEA 

XEB 

x$(Vu W). 

Now, for i = 1, . . . . n + 1 

= Vi(P\A) + v,(N\B) + Vi(( VU W)\(A U B)) 

= Vi(P\A) + v,(N\B) + V;( V\A) + Vi( W\B) < 4~. 

For i = 1, . . . . n + 1, 

Jztf, luil dP-jz,,, luil dPGjK,caua, luil dP-jK,cp,Nr luil dP 

= ui(V\(A u B))\(K\(Pu NJ) 
= vj((Pu N)\(A u B)) 

= vi(P\A) + v,(N\B) < 2&, 
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< s K\(AuB) ‘ul’ dp-sh,(v” W) ‘ui’ dp 
= Vi((K\(A ” B))\(K\(Vu WI 

= Vi( V\A) + Vi( W\B) < 2E. 

Thus 

for i = 1, . . . . n + 1. Choosing 6s < q, the lemma follows. fl 

Lemmas 5.4 and 5.5 prove Theorem 5.3. 
In Theorems 5.2 and 5.3 we considered nonatomic measures. We now go 

to the other extreme and consider 

If= 
{ 

x:xERd, llxlll= ; lXil . 
i=l I 

We present two positive results. 

PROPOSITION 5.6. Let U=span{u’, . . . . u”} be an n-dimensional subspace 
of Rd. Assume there exists a set of n - 1 distinct indices K = {k, , . . . . k, ~ , } c 
{ 1, . . . . d} for which 

uj =d. k, V’ i, j = 1, . . . . n - 1, 

u;, = 0, i = 1, . . . . n - 1, 

and 

j= 1, . . . . n- 1. 

Then there does not exist a phantom approximation to any be 1;’ from 
span{u’, . . . . u”}. 

Proof Let u* be a stationary point for b with respect to {II’, . . . . II”}. 
Then 

i u{sgn(b,- u,?) d c Iu!I, j=l , . . . . n. (9) 
i= 1 isZ(b-u*) 

580/104/3-10 
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The crux of our proof is the fact that KC Z(b - u*). Assume to the 
contrary that k, $Z(b-u*). Consider (9) for j= 1. We have 

Thus 

l< i Iu;l= 1 Iu:l, 
,=I k4K 

i#kl 

contradicting our hypothesis. Therefore KG Z(b -u*). 
Let u* = C;= 1 aru’. Since K?iZ(b-u*), we have bk,=ut,, 

i = 1, . . . . n - 1, implying by hypothesis that a? = bk,, i = 1, . . . . n - 1. Thus 

b-u*=b- c b,,u’-a,*u”. 
i= I 

Since u* is a stationary point for b with respect to {u”}, we have 

n-1 

b- 1 bk,ui-a,,u” 
i= 1 II 1 

Now, if ti E U is any best approximant to b from U, then (9) holds with 
ti replacing ti. Thus as above, KE Z(b - ti) and consequently fi = 
Cyz: bk,ui - ii,u”, where 

Ilb-~llI=o~~an lib-if1 aiUiii, 

n-1 

= min b- 1 bk,ui-a,u” . 
an Ii i= 1 il I 

Therefore lib-u*/l,= lib-till,, and u* is a best approximant to b 
from U. 1 

PROPOSITION 5.7. Let U be an n-dimensional subspace of Rnfl. Then 
there exist u’, ,.., u”in UsuchthatnobER”+’ has a phantom approximation 
from {ul, . . . . u”}. 

Proof: Since dim U= n, U c R”+ ‘, there exists a unique (up to multi- 
plication by - 1) vector y E R” + ’ satisfying 

(1) IIYIICC = 1. 
(2) c;z: y,u, = 0, all u E U. 
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Let lyil = 1. Then 

i#J i#J 

for all u E U. Without loss of generality, assume that j= n + 1. Thus 

l”n+ll d i l”il 

i=l 

for all u E U. This implies that U restricted to the indices { 1, . . . . n} is of full 
rank. For otherwise there exists a u E U, u # 0, satisfying ui = 0, i = 1, . . . . n, 
in contradiction to the above inequality. 

Define v’, . . . . v” in U by 

v; = ii,, i,j= 1 ) . ..) n. 

The v’, . . . . v” span U, and 

lv;+ll 6 5 Ivl’l = Iu,il = 1, j = 1, . ..) n. 
i= 1 

If Iv!+ iI < 1 for any n - 1 of the v’, . . . . v”, then we can set 
uj = vj, j = 1, . . . . n, and apply the previous proposition. 

Assume 

I4+ II < 1, j=l , . ..) r - 1 

lui+,l = 1, j=r, . . . . n 

where 1 d r < n - 1. Note that the vector 

satisfies (1) and (2), i.e., yr= u;‘n+ i, j= 1, . . . . n, yn+ 1 = -1. Thus IJJ, I = 1, 
J = r, . . . . n. 

We define ul, . . . . u” as follows. For j= 1, . . . . r - 1, set uj= vi. For 
j= r, . . . . n, set 

uj = (0, . ..) O,(n-j+l)Yj,-Yj+l,...,-yn,l). 

Note that ur, . . . . u” E U since I yj ) = 1, j = r, . . . . n, and 

u”= y,v” 

uj=(n-j+l)yjvj-yj+,vj+l- . . . -ynvn 

for j=r, . . . . n- 1. In addition, U=span{u’, . . . . u”). 
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Now assume that u* is a stationary point for b with respect to 
{u’, . ..) u”}. Then 

,r+ I 

,C, u!sgn(b,-247) 6 1 lu:l, .i= 1, . . . . n. 
rtZ(b~ U*I 

As in the proof of the previous proposition, it follows that { 1, . . . . Y - 1) c 
Z(b -u*). 

We next prove that there exists a 6 E { - 1, 1 } for which 

6yi = sgn(b, - ui*) 

for all i$Z(b-u*). Let k=min{i:i$Z(b-u*}. If k=n+l there is 
nothing to prove. Assume k < n. Since { 1, . . . . r - 1) G Z(b- u*), we have 
r<k. Now 

ieZ(b-u*) 

Thus 

(n-k+ l)y,sgn(b,-u,*) 

- if! Yisgn(JJ-u*)+sgn(b,+,-u* 
r=k+l 

6 #{i:iEZ(b-u*), i>k+ l}, 

where # {A } indicates the number of elements in A. Since lyi 1 = 1 for 
i = k, . . . . n, 

(n-k+l)y,sgn(b,-u,*) 

- i y,sgn(b,-ui*)+sgn(b,+, * ) -U,+1 
i=k+l 

2(n-k+l)-#{i:i#Z(b-u*),i>k+l}. (10) 

Because 

#{i:iEZ(b-u*),i>k+l)} 

+#(i:i#Z(b-u*),iak+l}=n-k+l, 
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we must have equality in (lo), implying that if we set 6 = y, sgn(b, - u,*), 
then 

6 = yi sgn(bi - u,?), 

for i$Z(b-u*), k+ 1 di<n, and 

6Y n+l = s&b, + l z u,*+ 1 1 

ifn+l$Z(b-u*)sincey,+,=-l.Thus 

6yi = sgn(b, - ~7) 

for all i$Z(b-u*). 
Now, for any u E U, we have from properties (1) and (2) of y 

= 1 uiYi 
i$Z(b--u*) 

- c UiYi 
ieZ(b-u*) 

Then u* is a best approximant to b from U. 1 

Remark. There is a general result which can provide a better method of 
approximating in I;‘. If U is an n-dimensional subspace of R“, and there 
exists a set of n distinct indices L = {Ii, . . . . l,} in ( 1, . . . . d} for which 

for all u E U, then given any b E [Wd there exists a u* E U satisfying 
b,, - ut = 0, i= 1, . . . . n. In addition, u* is necessarily a best approximant to 
U from b (Pinkus [6, p. 1371). If d= n + 1, then such a set L necessarily 
exists (see the beginning of the proof of Proposition 5.7). 

Remark. In contrast to our results for C(B), in this section we had only 
considered linearly independent pi, . . . . u,. That is, we always set m = n. 
It is known that the problem of best approximation in 1;’ (for any d) is 
equivalent to a linear programming problem. If one could find a reasonable 
bound m dependent on d and n, such that for any n-dimensional subspace 
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U of 1: there exist u’, . . . . IP in U such that no b has a phantom approxima- 
tion from (u’, . . . . urn}, then one could develop an alternative algorithm to 
the simplex method for solving the standard linear programming problem. 
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