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ON n-WIDTHS AND OPTIMAL RECOVERY IN Mr
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Let BV[0,1] denote the set of all functions of bounded
variation on [0,1]. For any X e BV[0,1], we set HA[
total variation of ), and define

r r . _ =l oy 1 r-1
M™ = MT[0,1] = {f:f(x) = iioaix +WT{) (x - £) "da(e),
A € BV[0,1] .

In this paper, the n-width both in the sense of Kolmogorov and
Gel'fand, for

= {£:£ ¢ M5, ||A] < 1}
is found. In addition, we solve the related problem of optimal
recovery of a function f ¢ Br'

1 n-Widths

Let d (B L [0,1]) = d (B ) denote the n-width in the
sense of Kolmogorov of Br in L [0,1], given explicitly by

d (B) = inf sup inf ||f - g|
nor X feB_ geX v
n T n

where theinfimum is taken over all n—dimensional linear sub-

spaces X of L [0,1] and ”f”l = f [E(t)] dt. The n-width
in the sense of Gel'fand for Br in C[O 1] 1is given as

d*(B) = dn(Br;C[O,l]) =inf swp g,
Ln feB{\Ln

where the infimum is taken over all subspaces Ln of C[0,1]
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of codimension n. An extremal subspace for either dn(Br)
or dn(Br) -is any subspace for which the respective infimum

is attained.

il

A perfect spline P of degree r with s knots at

CalN

X ces X 0=x, <X, < «.. <x_ < x ,=1 1is any function

1° 0 1 s s+l

expressible as

r-1 . s . -1
P(x) = Tax +c I (-7 [ITx- o)) de.
i=0 i=

The following result is essentially contained in Karlin [1].

THEOREM 1. For n > r, there exists a perfect spline Qn r==Q,
b4

unique up to multiplication by -1, of degree r with n
knots such that ||Q = 1 which satisfies the boundary

(r)“
conditions QP (0) = o) =0,1=0,1, ..., £ -1, and
equioscillates at n - r + 1 points in (0,1), i.e.,
) = DYoflall, 121, 2, s n-r+ 1, 0<ny < L <

<1l, o=+l or -1, fixed.

Mh—r+1

Utilizing Theorem 1, we obtain the following result ‘b‘

THEOREM 2. For r > 2,

1) d.(8) =d"@B) = > neT

log o n2x |
(2) Q . has exactly n - r simple zeros {Ci}?;i in (0,1),
and the,linear space spanned by the functions {1, x, ..., xr_l,
(x - Cl)i_l, cees (x - Cn_r)ifl} is an extremal subspace for

dn(Br)'
(3) L; = {g:g ¢ C[0,1], g(gi) =0, 1i=1, 2, ..., n}, where

n .
{Ei}i=% are the n knots of Qn,r is an extremal subspace
for d (Br).

The proof of Theorem 2 is based upon duality and analysis YL

similar to that found in [2].
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OPTIMAL RECOVERY

2 Optimal Recovery

Let x = (xl, cees xn), Xy = 0 < % < .. < X <1-= X 110
be given and denote the vector (f(xl), cees f(xn)) by f£.
The problem of optimal recovery is one of determining a rule
for best recovering f ¢ Br’ n>r > 2, based on the informa-
tion f (for the L  analogue of this problem see [3]).

Any transformation R from {f:f ¢ Br} into Ll[O,l]
determines a recovery scheme S8f =Rf for f ¢ Br. The error

for recovery based on S 1s defined as
Iz - sll; = suw |l£ - sz
L feBr r

and
E(x) = inf{]|I - S”l:S a recovery scheme}

is the minimum error in recovering f ¢ Br from the informa-
tion f. B8* is called an optimal recovery scheme provided
that ||T - S*Hl = E(x).

THEOREM 3. For every n > r > 2, and each x as above, there

exists a function

n i ox, n
OB jio ??SEL%YT £.3+1(x - t)i‘ldt + jzlcj(x - xj)i-l
J

which satisfies the boundary conditions Pii)(l) =0, i =0,
1, ..., r -1, and equioscillates n - r + 1 times on (0,1).
?5 has n -~ r simple zeros {ci(z)}?;i, 0 < ;l(ﬁ) < ... <
Cn—r(§> <1, 332 x; < ci(§) < Xy i=1, ..., n-r.

Based on Theorem 3, we define a recovery scheme S* by
interpolating the function f at the values {x.}2=l by
linear combinations of 1, x, ..., xr_l, (x - ;l(§))i_l, cees
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r-1
(x - ;n_r(g))+ , i.e., (S*f)(xi) = f(xi), i=1, ..., n.
Since x; < ci(z) <Xy
scheme is well-defined.

i=1, ..., n - r, such a recovery

We prove the following theorem by using Theorems 1-3,

ey

and analysis paralleling that used in the proof of Theorem 2.

THEOREM 4. S* 1is an optimal recovery scheme for Br’ and

E(x) = “PXHM. Furthermore, if £ = (El, cees En) are the
knots of Qn,r’ then min E(x) = EQ¢) = HQn,r“w = m%n”PAlm.

Full details and extensions of all the above results will

appear elsewhere.
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