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ON «-WIDTHS IN L00
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Abstract. The n-width in Vo of certain sets determined by matrices and

integral operators is determined. The notion of total positivity is essential in

the analysis.

1. Introduction. Let X = (X,\\ • ||) be a normal linear space, & a subset of X

and X„ any «-dimensional linear subspace of X. Then the «-width of &

relative to X (in the sense of Kolmogorov) is defined to be

(1.1) 4,(6?;*) = inf sup   inf ||x-v||.
xn xes yexK

Whenever there is no ambiguity in the choice of X we will denote the n-width

of & by d„((t). Xn is called an optimal subspace for & provided that

d„(&;X)=  sup inf ||x-v||.
xe&y£X„

A typical choice for S, is the image of the unit ball of some normed linear

space Y = (Y,\\ • ||) under a compact mapping A of Y into X,

(1.2) £ = {/.v:||v||<l,.yey}.

When Y = X and X is a Hubert space it is possible to obtain an expression

for d„(&; X) and identify optimal subspaces (see §2). These facts originated

with the example given by Kolmogorov in his paper [5] in which the concept

of «-width of a set was introduced. Subsequently, a number of papers

appeared treating «-widths in Hubert spaces. However, there still does not

exist a corresponding complete theory for «-widths of & when || • || is an

L°°-norm.

In this paper we present several results of a general nature concerning the

«-width of & in the max-norm. Our main tool is the use of the notion of total

positivity. Total positivity seems to have direct bearing on computing «-

widths of £E in L00. Very little is known to us when this hypothesis is not

satisfied.

The paper is organized into eight sections. §2 is a preliminary section

containing some useful results for computing «-widths. We include in this
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140 C. A. MICCHELLI AND ALLAN PINKUS

section a brief discussion of the n-width of & when A is an N x M matrix

and X = l2, Euclidean N-space, as well as results and terminology concern-

ing totally positive matrices.

§3 contains some results on the «-width of & when A is an arbitrary

N X M matrix and X - /*. We show that when min(M, N) = n + 1 and A

has rank n + 1 then there exists n linearly independent column vectors of A

which span an optimal subspace for &. Also, for a given N X M matrix we

introduce  a  real-valued  function   G„(i, j)  where  i = (/,.'n+iX j =

C/i> • • • >/«) are vectors of integers with 1 </,<•• • </„+,< N, 1 < /,

< • • • <j„ < M and show that dn(&) lies in the interval [pn(A),Xn(A)\,

where

Vn{A) = max minGn (i, j),   Xn(A) = min maxG„ (i, j).

In §4 we prove that p„(A) = \(A) = dn(&) when A is a strictly totally

positive matrix and that some n column vectors of A form an optimal

subspace for the «-width of &. Furthermore, we find the Gel'fand «-width of

6E and the best approximation to A by rank « matrices. Next, in §5 we relax

the hypothesis of §4 to include totally positive matrices, and in addition

consider sets of the form & + Xr where Xr is some fixed linear subspace of

dimension r.

§6 contains some examples of our previous results. In particular, we give an

optimal procedure, based upon «-widths, for compressing a large table of

numerical data when only information on the consecutive divided differences

of some order is available.

In §7, we apply some standard estimates for approximating an integral by a

Riemann sum and extend to integral operators our previous results on totally

positive matrices.

Finally, in §8, we describe how, again by using our results on matrices, to

compute the «-width of restricted moment spaces as well as the «-width of a

subset of L°°[0, 1] of the form

IM2 OjUjit): (a„ ...,aM)ERM, ¡ max^ |ay| < 1,0 < t < 1

Our results, both in the discrete and continuous form, were motivated by

and are dependent upon the methods employed by V. M. Tihomirov [10]. Our

approach to the continuous width problem (§7) has the advantage that, by

means of a "discretization", we avoid the necessity of the nonlinear

variational arguments given in [10]. This matter occupies a large portion of

Tihomirov's paper.

2. Preliminaries. In this section we collect some facts about widths and

totally positive matrices of which we will later make use.
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Perhaps the most important theorem is computing widths is the following

result of V. M. Tihomirov, cf. Singer [9, p. 277].

Theorem 2.1. Let Xn+X be an n + l-dimensional subspace oj X and suppose

U„+x is the closed unit ball ojXn+x. Then dn(Un+x; X) = 1.

Theorem 2.1 is an effective tool in obtaining lower bounds for the «-width

of a set &. The usual method of application is to find a ball of some

n + l-dimensional subspace of X which is contained in 6E. Then the radius of

the ball is a lower bound for the «-width.

If X C Y then clearly d„(&; Y) < d„(&; X). Moreover, there are examples

where strict inequality prevails. The depth of Theorem 2.1 lies in the fact that

the «-dimensional width of & = Un+X does not decrease when Un+X is

embedded in a space of higher dimension. Although, in general this is not the

case, it is nevertheless true that the n-width of any bounded set is an

« + l-dimensional space has this property, cf. Singer [9, p. 279].

Theorem 2.2 (A. L. Brown). Let X be a normed linear space and Xn+X an

« + l-dimensional linear subspace of X. Then for every bounded set & C Xn+X

wehavedn(&;X) = dn(&;Xn+x).

Theorem 2.2 is an easy consequence of Theorem 2.1 and the following

elementary but useful fact which is also due to A. L. Brown, cf. Singer [9, p.

276].

Lemma 2.1. Let & be a convex, centrally symmetric, closed subset oj an

n + l-dimensional normed linear space Xn+X then

dn(&'> Xn+\) = inf{M: x e Boundary &}.

Furthermore, an n-dimensional subspace Xn is optimal jor & ij and only ij the

hyperplane x + Xn is a support Jor both & and the ball oj radius dn(&;Xn+x) in

Let us give an application of Lemma 2.1. Suppose A is an (n + I) X (n +

I) nonsingular matrix. Let || • || be any vector norm on Rn+X and let \\A\\ he

the induced matrix norm of A. We define the set

(2.1) &o = {Ax:\\x\\<l,xERn+x}

and denote the «-width of y% in Fn+1 by dn(A).

Lemma 2.2. dn (A) - |M_I|r'.

Proof. According to Lemma 2.1 we have
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dn(A) - inf(|| v||: v E Boundary &}

= inf{||v||:||^->v||=l}

= [sup{|^-v||:||v||=l}]-1

-M"1!"1-
This completes the proof.

In particular, when we choose || • || to be the /2-norm on 7*"+l we obtain

d„(A) = XX/+2X where An+1 is the smallest eigenvalue of the matrix ATA

(A T = transpose of A). This fact is a special case of the following well-known

theorem on the «-width of @n when ||x|| is the Euclidean norm of x. We

include it here so that it may be compared to our results for the «-width of @n

for the max-norm.

For an TV X M matrix A = \\a¡j\\ we let 0 < XM < XM_X < • • • < Xx be

the eigenvalues of the positive semidefinite matrix A TA and xx, x2,..., xM

the corresponding set of orthonormal eigenvectors. (We will use superscripts

to enumerate vectors while a subscript will be used to refer to a particular

component of a vector, except when otherwise indicated.) If r = rank A then

0 = XM = • • - = \+x < \ < • • • < Xx and dn(A) = 0 when « > r.

Theorem 2.3. Let A be any N X M matrix. Then the n-width of the set &n,

defined by (2.1), corresponding to the l2-norm \\x\^ = 2jl \\xjf, is given by

dÁA)=[KÍ2v    n<r,
lO, n> r.

Furthermore, when « < r — 1, an optimal subspace for &n is spanned by the

vectors Ax1, i = 1, 2,..., «.

Proof. We assume « < r and define the vectors y' — Ax', i = 1,2,... ,r,

and denote by Yn the subspace spanned by yx,... ,yn. Since A TAx' = X¡x',

i = 1.r, it may be easily verified that (y',yj) = Xfiy, i,j = 1,..., r. Let

Sn+l = {y:yt Yn+X, \\y\\2 < Xxi2x). If y = ¿»¿¡cp* and x = 2£,V, then

„2
Tt+1

j-1

J     =

n+1

¿2 C.OC-'

.7-1

-2

y=l

Thus the ball Sn+X is contained in &n and we conclude from Theorem 2.1 that

d„(A) > Xl(?x (actually this may be argued directly because there is clearly a

y G35'n+1 such that y±Xn). The reverse inequality is proven in the following

manner.
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d2(A)< sup    ini \\Ax-y\\l

= sup[    S   X7.|(x,^)|2:||x||2<l
[j=n+l )

Thus we have proven Theorem 2.3.

Finally, we end this section by introducing some further notation and

results concerning totally positive matrices.

We will use the following notation for the minors of A.

\JV-Jkj

Idx

"Vi

%jk

>klk

= det(a,, ).
i,m v '""•'

We shall also use the notation

i,.ts

i    7i> • • •

= A

>Jk-l

*l>

/i> • ••>/*-1      /

and shall denote the/th column vector of ̂ 4 by aJ. Recall that superscripts are

used to enumerate vectors while subscripts are used for a particular

component of a vector.

Definition 2.1. A is said to be sign consistent of order k (SCk) if

(2.2)
\Jv-Jk)

ot>0

for all 1 </,<•• • < ik < N, 1 </,<•• ■ </fc < A/, and o¡ = I. A is

said to be strict sign consistent of order k (SSCk), if (2.2) holds with strict

inequality.

Definition 2.2. A is said to be totally positive of order « + 1 (TPn+x) if A

is SCk, k - 1,...,«+ 1, and oÄ - 1, k «■ 1,..., n + 1. A is said to be
strictly totally positive of order « + 1 (STP„+X) it A is SSCk, k - 1,..., n +

1, and cta = 1, A: = 1,..., « + 1.

Definition 2.3. Let x = (xx,..., x¡) be a real vector of / components

(i) S~(x) denotes the number of actual sign changes in the sequence

xl,...,xl, with zero terms discarded.

(ii) S+(x) counts the maximum number of sign changes in the sequence

xx,..., x,, where zero terms are assigned values +1 or — 1, arbitrarily.

For example,

S - (-1, 0, 1, - 1, 0, - 1) = 2,   S+ (-1, 0, 1, - 1, 0, - 1) = 4.
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Theorem 2.4. If A is an TV X M matrix which is STPn+x, and if x is a

nontrivial vector such that S~(x) < «, then

(i)S+(Ax)< S~(x);

(ii) If S + (Ax) = S~(x), then the first (and last) component of Ax (if zero,

then the sign given in determining S+(Ax)) agrees in sign with the first (and

last) nonzero component of x.

Remark 2.1. The above theorem is to be found in Karlin [2, p. 223] in a

slightly different form. The proof of the above theorem is found in Karlin

and Pinkus [3].

3. The «-width of an aribtrary matrix. Let A be any real N X M matrix,

A = \\a0\\, and let

dH(AiRN)-M   «up    inf \\Ax - y]^,
x" IWL<i y&x*

where Xn denotes any «-dimensional linear space of TV-vectors, x G RM and

llxll«, = max,-!*,!, be the «-width of the set &n = {Ax: \\x\\x < 1, x G RM).
Whenever there is no ambiguity, we shall denote d„(A ; RN) by d„(A).

Let 7 = {i = (/„ ..., /n+1): 1< /,<•••< /n+1 < TV} and J = {j =

C/i» • • • J„): I < j\ < ' • • <f„ < M). Boldface i or j will always be used to
denote vectors whose components are positive integers. Also, we shall denote

by {aJ: j G j} the set of TV-vectors [aJi,..., aJ«) and by '2Je¡aJaj we mean

"2!km.xa.jaJk, where j = (/',,... ,f„). Generally, when we write j G j we will

interpret the «-tuple j as the set {/'„ ... ,f„) and mean that./ G {fx,... ,f„).

Otherwise j has its usual meaning as an ordered «-tuple.

We begin by defining two ancillary functions related to the n-width dn(A).

Let

(3.1) K(A) = inf  sup    inf \\Ax - y^,

where Yn denotes any «-dimensional linear space spanned by « column vectors

of A. Thus, by definition, dn(A) < Xn(A).

Let A (i), where i = (/,,..., in+x) G 7, be the (« + 1) X M submatrix of A

consisting of the n + 1 rows [ix,...,in+x)ofA. Define

(3.2) pn(A) = maxXn(A(i)).

Thus pn(A)< X„(A).
If A has rank at most «, then p„(A) = dn(A) = Xn(A) = 0, so we shall

assume throughout this section that A has rank at least n+1. Define

H = (j G J: the set [aJ:f G j} is linearly independent}

and for i G I,

H(ï) = Íj G J: the set [aJ(ï):f G j} is linearly independent}
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where  a-'(i)  is   the  restriction   of  the  column  vector aJ  to   the  rows

{/,, . . ., i„+i).  Thus  aJ(i)  is  the  n + 1-vector  whose  components  are

*ij> a,   ,-. Also, we define
'n+l./

M

2
j-i

G(i,i) =

' 'n+l

• >Jn>J

n + l

2j-i
' 'n + l

il- ■>Jn

\EI,\EJ,

with the convention that if the denominator of the above expression is zero,

then G (i, j) = 0. (Note that if the denominator is zero, then so is the

numerator.)

X„ (A ) = min max G (i, i),
v        íbh ie/

p„(A) = max  min G(i, j).
^   '      ie/ je//(i)    V '"

Proposition 3.1. //A has rank at least n + l, thenjor « > 1,

(3-3)

(3.4)

For « = 0, ̂ (A) = d0(A) = X0(A) - max.-Sf.,^.

Proof. The case n = 0 follows by definition. For n > 1, the characteriza-

tion (3.4) of n„(A) is a result of (3.3) and the definition (3.2) of n„(A). Thus, it

remains to prove (3.3). First note that from the definition of Xn(A), (3.1), we

need only consider n linearly independent columns of A.

Fix j £ H and let x be any A/-dimensional vector. It is well known, Singer

[9, p. 179], that the distance between x and the subspace spanned by {aJ:

j E j} is given by

inf 2 «,aj
;ej

a, ;

>,+ \J\

*'i A

a,   ,     x,

= max
ie/

n+l

2j-i
/„..., /,

i     Vi» •

., »,' *n+l

(double vertical bars means that we are taking the absolute value of the

determinant). Furthermore, if the above maximum is achieved at i =

(/,, ...,/„+,) and the columns {aj: j £ j) form a Haar system (that is, the

matrix ||aj|, /' = 1,2,..., N,j = /,, ...,/„ is SCn), then the minimum error

equioscillates on (i,,..., in+x) (cf. Singer [9, p. 183] and Definition 4.1 for

the meaning of the phrase "equioscillates on {/,,..., /„+,}").

Thus, by a multilinear expansion of the last column of the numerator,
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inf Ax — 2 ajaJ
jel

= max
ie/

í xja(íx: " ■Jn+x.

j=\ \7l> • • • tJn'J

n+\

2j=i
tx,...,is

Jv •

' 'n + 1

>Jn

For any choice of i G 7, the supremum of (3.5) over H*^ < 1 is obviously

achieved by choosing

(3.6) Xj = sgn A
']>••• » i„+i I

J\> • - • >Jn>J J
j$l,

a2 = 1, where ij.in+} are the rows which yield the maximum of the

expression in (3.5). Therefore,

(3.7) sup   inf
ML<i aj

Ax — 2 ajaJ
yej

= maxG(i, j).

The identity (3.3) now follows from (3.7) and the definition (3.1) of X„(A).

The proof is completed.

Proposition 3.1 leads us to

Proposition 3.2. If A is an (n + 1) X M real matrix of rank n + 1, then

pn(A) = Xn(A) = dn(A).

Proof. Since A has n + 1 rows we may conclude from our definitions that

p„(A) = \(A) > dn(A). But fio = {Ax: 11*11«, < 1} ç Rn+X and so the
hypothesis of Lemma 2.1 is satisfied. Hence dn(A) = inidlAxW^: Ax G3éEo}

where 9 &n denotes the boundary of 6t\,.

Our problem is thus one of determining d&n. To this end let us assume

without loss of generality, that each set of « + 1 columns of A is linearly

independent. For each j G J, let

./l,...,n + 1\        .-.
Xj = sgnA[ ,      j£h

\ 7i> • • • >y„>7 /

and consider the «-dimensional hyperplanes

(3.8) 2 otjaJ ± j 2 XjA,       («yi, ...,aJn) G R".
jel Vyëj      /

Then,

Lemma 3.1. Each hyperplane of the form (3.8) contains an n-dimensional face

of &n, and each n-dimensional face of &n is contained in a hyperplane of the

form (3.8) for some j G J.

Remark 3.1. According to Lemma 3.1 the faces of &n are the restrictions of
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the hyperplanes (3.8) to the cube |oc,-| < 1,/ E j.

Proof. Let j £ J he fixed and choose a nonzero « + 1-dimensional vector

y such that (y, aj) = 0, / £ j. Since v^O, and by assumption each set of

« + 1 columns of A is linearly independent, (y, aJ) =£ 0, / $ j. Now,

max{(y, Ax): ¡¡xW^ < 1} is achieved by vectors on the boundary of & and

(3.9) (y, Ax) = S (y, aJ)Xj < £ \(y, a>)\.

The maximum in (3.9) is achieved by taking x. = sgn(>>, aJ),j E j, while the

components Xj.j E j, may be chosen arbitrarily, under the restriction \xj\ < 1,

/ E j. Thus, the vectors x which maximize (y, Ax) form an «-dimensional

face of y%, and any «-dimensional face of \% may be determined in this

manner. Moreover, since (y, af) = 0, / E j, y is determined up to a nonzero

constant. In fact, it is easily seen that

y¡ = dAh" ...i." •'"+1)(-1)'
\ J\> • • • >7n /

where a* is some nonzero constant. For/ 2 j,

Thus

n+l n + l     /, .» \

lv,0=2^-¿2^M.■■•.'.•••.» + ! (-lya,
i-l i-l    \ 7i» ■ • • »yn /

= a-(-ir^(1'.--"'l + !).
V  Jl» • • • >7n'7  /

./I,...,« + 1\ . ^ .   2     -

*-88ni4l/„...,/„,/r ^°2=1-

This proves our lemma.

Remark 3.2. A similar argument shows that each of the points 1ljeiajaJ ±

1IJ^ixJaJ where |a,| = 1, for all/ E j is an extreme point of y%¡.

Now, returning to the proof of Proposition 3.2 we see from Lemma 3.1 that

a;(^) = inf{||^||oo:^Ea(20}

2 ctjaJ ± I 2 XjoA
/'eJ \jei¡       I

= inf :|o,|< l,/Ej,jE/

3

where x} is defined by (3.6). Thus, according to Proposition 3.1,

Xn(A) = inf 2 OLjai ± I 2 XjaAl   : otj E R,j £ j, j \<dn(A).
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We have already observed, by the definition of X„(A), that Xn(A) > dn(A)

and therefore p„(A) = dn(A) = Xn(A). Thus the proof of Proposition 3.2 is

complete.

Another application of Lemma 2.1 gives us the following result.

Proposition 3.3. If A is an TV X (n + 1) real matrix of rank n + 1 then

dn(A) = K(A).

Proof. Since A is an TV X (n + 1) real matrix of rank n + 1, the boundary

of &n is characterized by 3 6^ = {Ax: [l-xrjl^, = 1} and an is a subset of an

n + 1-dimensional subspace Xn+, spanned by the column vectors of A. From

Theorem 2.2 and Lemma 2.1,

dn(A) = 4,04; Xn+X) = infill: U^ = 1}.

Let dn(A) = IM*0!!«,, H*0!!«, = 1, then there exists an i, 1 < /' < n + 1, such

that |jc,-| = 1. Furthermore, from Lemma 2.1 we see that the n-dimensional

subspace spanned by the columns {a1,

optimal subspace and

fl'-'.fl'*1, , a""1"1} is an

4,04)=  iff a' - 2 ajaJ
j*>i

By definition,

XJA) =     inf     infv    '       Ki<«+1   <*j a'' — 2 ajai\
j*i

Thus \(A) < d„(A). However we also know that dn(A) < X„(A) by the

definition (3.1) of Xn(A). Thus Proposition 3.3 is proven.

On the basis of Propositions 3.2 and 3.3 it seems plausible to conjecture

that p„(A) - dn(A) = X„(A) for any matrix A. In the next section, we will

prove that this is the case for the class of totally positive matrices. However,

in general this is not true as the following examples demonstrate.

Example 1. When

A =
1

- 1

1

1
1

- 1

a simple computation shows that px(A) = 1, while XX(A) = dx(A) = 2.

Example 2. If

5 =
1-1 0
1 0-1
0 1 1

then 111,(5) = dx(B) = 1 andXX(B) = 2. (Note that B = 2A~X.)

In general, we have the following result.
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Theorem 3.1. Ij A is any N X M real matrix then

(3.10) p„(A) < d„(A) < Xn(A).

Proof. We have already observed that if A has rank less than or equal to «,

the above inequalities are equalities. Hence we assume A has rank at least

« + 1. The right-hand inequality in (3.10) follows from the definitions of

X„(A) and d„(A). To prove that p„(A) < d„(A), we appeal to Proposition 3.2

which tells us that
xnaxdn(A(i)) = maxXn(,4(i)) = n„(A).

The last equation follows from the definition (3.2) of pn(A). Moreover, it is

easily seen, by definition, that d„(A(i)) < dn(A) for all choices of i E /. Thus

p„(A) < dn(A) and the proof is complete.

Before we turn to the proof that pn(A) = dn(A) = Xn(A) for strictly totally

positive matrices, we note the following corollary of Proposition 3.1.

Proposition 3.4. // A is an N X N nonsingular matrix, then

X„(A)riN-»-i(A-x) =l,n = 0,l,...,N-l.

Proof. First, let us recall that

(3.11) ,/ /.4 \m
\mx,...,mk)

Jm' <A     1)2î.iU+

\    'l> • • • > 'N-k   I

m,)

detA~x

where /,<••• < lk and /,'<••• < lN_k axe complementary sets of in-

dices in {I,... ,N) as are «t, < • • • < mk and m\ < • • • < m'N_k. We

shall assume, without loss of generality, that all n x n and (« + 1) x (« + 1)

minors of A are nonzero. Thus for 1 < « < N - 2,
N

S
/-I

K.(A) = min max
1<A<-- <Â<N !</,<••■ <i.+ ¡<N  n+x

N-n

S
s-l

min max -
KJi< ■ ■■ <j„<N Ki,< ••• </,+,<AT       „ + 1

S
J-l \l|t • ••> ¡H-m-V '¡I

(fit ■ • ■ >JN-n

'i> ■ • • >'Ár-„-i>/

-I

min max
Ky'i< • • • <j,<iN !</,< • • • </.+ ,< Af

ÍV

j-\

N-n

2 A-liJl'-'- >Js.JN-n I
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where {f'k)^x is the set of complementary (ordered) indices to {fk)"k^i, and

{'*}*-f-1 is trie set of complementary (ordered) indices to {/¿JXt'i in

{1,..., TV}. From (3.11), it follows that

\(A) = min max
!</!<••• <j'N-„<N !</',< ••• <i'N-„-i<N

-1

N

2
7-1

i-i (7i> • • • >7a/-b    \

i'x, ..., iN-„-X,jJ

N-n

2j=i
-i   7Í.

-(/fc—i^-1))

»i.

-l

>7i> • • • ̂ Js-n

•'flN-n-l        i

The cases « = 0, TV — 1 are even simpler and may be easily proven as

above. Alternatively, pn(A) = Xn(A) = dQ(A), by definition, and XN_X(A) =

Pn-i(A) = dN_x(A) by Proposition 3.2 while from Lemma 2.2
d0(A)dN_x(A-x)=l.

4. The n-width of totally positive matrices. In this section we shall assume

that .4 = lla^H is an TV X M STPn+x matrix.

Definition 4.1. Given 0 =f0<fx < • • <j„ <fn+x = M + 1, and a
vector x G R M, we will say that x alternates between y',,... ,jn provided that

there exists a sign a, a2 = 1, such that x, = (-l)'cr, y,_i < / <j¡, i =

1, 2,..., n + 1. (Note that if x alternates between 7,,... ,jn no requirement

is placed on the components Xj,... ,xJn.)

Also, we will use the terminology that a vector v G RN equioscillates on

i\, • • • i in+u 1 < »i < • • • < /„+1 < 7V> if there exists a sign o, a2 = 1, such

that vi/=O(-l)'||v||00,/=l,..., n + 1.

Let us introduce some further notation. Recall that, according to Proposi-

tion 3.1,

(4.1)

For any j G J, we define

XJA) = min max G (i, i).
nV   '     je/  ie/     v "J

(4.2)

sup  inf
1*0« < i aj

Ax — 2 ajaJ
im

= inf Axf - 2 aja1

Ax¡ — 2 a/fly
76J
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and

Uxfl-otT,   ifl=fk,k = l,2,...,n,
(  } (,)/ ÍW), '*J-

Let i° = (/",..., /°+1), j° = 0?» • • • >f%) denote the rows and columns,

respectively, for which (4.1) is attained and, in addition, denote the vector .xjo

by x°.

Since A is STPn+x, the proof in Proposition 3.1 (see (3.6) and the preceding

remarks) shows that

(i) xx alternates betweeny',,... ,f„, and

*■ ' ' (ii) Ax¡ equioscillates on some n + 1 components.

In particular, Ax° equioscillates on ix,..., i®+1. Finally, according to our

definitions,

(4.5) H*0L<M*jlL   for all j G 7.

Theorem 4.1. Let A be a strictly totally positive matrix of order n + 1 and

0 < « < min(TV, M). Then

(i)pn(A) = dn(A) = Xn(A).

Furthermore,

(ii) The linear space X? spanned by the columns {aJ: j G j0} is an optimal

subspacefor the n-width dn(A).

(iii) The vector x° defined above alternates between fx,... ,7°, Ax° equioscil-

lates on /?,..., i„°+1 and \\x°\\m = 1.

Since the second assertion of Theorem 4.1 follows from (i), and the first

two statements of (iii) are a result of (4.4), it remains for us to prove (i) and

||x°||M = 1. We will prove these facts in a series of lemmas.

We begin with

Lemma 4.1. ||x°\\o0 = 1.

Proof. For any j G 7, the definition of x} implies Hxjll«, > 1, and S~(xj)

< n by (4.4). However, from (4.4), and by the definition of equioscillation we

have S+(Ax¡) > n. Therefore, applying Theorem 2.4, we obtain S+(Axj) =

S ~(x¡) = n for all j G J. Theorem 2.4, (ii) tells us that the sign patterns of the

vectors Axx and x¡ agree. Multiplying x¡ by -1, if necessary, we assume that

the sign pattern of x¡ begins with a plus. Thus sgn(Xj)/ = (— l)'+l,7/_i < / <

jpi -  1.« +   l,jn = 0Jn+x  =  M +   1.
Our object is to show that \(x°)j¡>\ < 1, k = I,..., n.

First, let us suppose that jk > k. Let / be the largest integer less than jk

such that / ¥= j?, i = 1, 2, . . . , k - 1. Define j <■ (Ju ...,/„) where

0'i> • • • J„] is the set of indices {fx,... Jk-XJk+x,... J°, 1} rearranged in

increasing order. Due to our convention of arranging for the sign of the first
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component of x¡ to be positive we have (x^ — (-1)*. Now, consider the

vector Axx - Ax° = A(x¡- x°). If x¡ - x° = 0 then \(x°)j¡\ = 1. If x¡ - x°

¥= 0 then from (4.5) and the fact that Ax¡ equioscillates on some « + 1 rows,

in • • •. 'n+i> S+(Ax¡ - Ax°) > n. Since x¡ — x° has, by construction, at

most « + 1 nonzero components, that is, the components corresponding to

the columns /?» • • • >/"> ¡we conclude that S~(x¡ — x°) < n. From Theorem

2.4, S+(A(x¡ — x0)) = S~(x¡ — x°) = n and the sign patterns must agree.

Since A is STPn+x, A(x¡ — x°) cannot have n + 1 zero components.

Because the sign pattern in S+(Ax¡) begins with a plus, and IM*0!!«, <

II^LxjIL it follows that the sign pattern in S+(A(x¡ — x0)) begins with a plus.

Applying Theorem 2.4 (ii), we see that sgn((x})jo - (x°)jo) = (-1)*. Since

(x¡)jo = (-l)k we conclude that 1 > (x°)jo(- l)k. s'imilarly,*if/£ < M - n +

k, we let / be the smallest integer greater than jk such that / ^ jf, i = k +

1,..., «, then as before, we may show that 1 > (x°)jo(-l)k+x. Hence, if

both j% > k and jk < M — n + k we obtain the desired conclusion that

In the case that/° = k we have/? = /, / = 1,..., k — 1 and thus sgni*0),«

= (— l)*+l. However, « < M, which implies jk < M — n + k. Thus by our

above remarks \(x\\ = (-l)*+1(x\ < 1. Similarly, ú j% = M - n + k

then/? > k and IC*0),«! = (- T)k(x°)jo < 1. Thus in all cases we arrive at the

desired conclusion.

Lemma 4.2. a;04) = X„(/I).

Proof. Since S~(x°) = n and due to the orientation given x°, there exists

{/„ ...,/„}, 0 = l0 </,<•• • < /„ < /-+1 - M, such that if lk_x <i<lk

then sgn(x°), = (-1)*-1 or zero, k = 1,..., n + I, and for each k =

1,..., « + 1 there exists at least one i, lk_x < i < lk, such that sgni*0), =

(-I)*"'.
Let bk = Sf.4_1+i|(x0)/|fl', k = 1,...,« + 1, and denote by B the TV X

(« + 1) matrix composed of the columns bx,..., b"+x. Then B is STPn+x.

Set

n+l

k=\

n + l

2akb> <K(A)\

We shall show that Un+X C y%>, where as before y% = {Ax: \\x\\M < 1}. This

inclusion in turn implies, by Theorem 2.1, that X„(A) < d„(A), proving the

lemma. By the construction of the vectors bx,..., b"+x and Lemma 4.1 it is

sufficient to prove that '2nkt\akbk E Un+X implies \ak\ < I, k = 1,..., n +

1.
Assume to the contrary that there exists S¿Í',aA6* E Un+X for which

max¿|a¿| = c > 1. Now, Ax° = S^-'iC-1)*-1^* and therefore there exists an
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/*, 1 </'<« + 1, such that a¡/c = (— I)' xa, where a2 = 1. Since X„(A) =

H^x"!^, Ax° equioscillates n + 1 times on /°, . . . , <J+I, and

c_1KÍX¿>*ll«, < X„(A), we conclude that

(M+I n + 1   a, \

a2(-l)*"'6*- 2  -bk\>n.
k~\ *-l    C        j

Moreover, S~({a(— l)k~x — ak/c)) < n — 1, since the /th component of the

vector vanishes. A contradiction now follows from Theorem 2.4. Thus Un+X

C <Zn and the proof is complete.

Finally with our next lemma we finish the proof of Theorem 4.1.

Lemma 4.3. dn(A) = p„(A).

Proof. The proof depends on the following observation. Given any x G

R M which alternates between some n components, then

(4.6) ||^°||oo<max|(^)/.|.
/er

Assume, to the contrary, that there exists a vector x which alternates between

some n components and \(Ax),\ < WAx0^, i G i°. Then for any sufficiently

small 8 > 0, S~(Ax° ± (1 + 8)Ax) > n because Ax° equioscillates on i°.

Moreover, S~(x° ± (1 + 8)x) < n, since x alternates between some « com-

ponents. Thus Theorem 2.4 implies that S ~(x° ± (1 + 8)x) = « and the

components of the vector ±(1 + 8)x have a fixed sign orientation de-

termined by the vector Ax°. This contradiction implies that (4.6) is valid.

Now, to complete the proof we note that for any j, there exists a vector x¡

which alternates between_/,,.. . ,jn such that

max \(Axt) I =  sup  inf max I Ax - 2 a,-«7' I •

This follows from (4.2) and (4.4) when applied to the (« + 1) X M matrix

A(f). Hence by the definitions of \(A(f)) and p„(A) we have

a-n(^)=||^°||oo<X„(/l(i0))< pn(A).

We conclude from Theorem 3.1 that dn(A) = pn(A). This is our desired

conclusion.

The following result is closely related to the above lemma and is proven in

a similar manner.

Proposition 4.1. If A is an TV X M STPn+x matrix and if x is any vector

such that 11*11«, < 1, and (Ax)k(- l)ko > 0, k = 1,. . ., « + 1, where a2 = 1

for some n + 1 rows, i = (/,,..., /n+1), 1 </,<•• • < in+x < TV, rnen

^\(Ax),\<\\AxX-
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The following two quantities are closely related to the «-width of y%¡,

(4.7) yn(A)=    inf      sup  WAx-Bx]^
rank* = « |WL<1 "

where B is an N X M matrix, and

(4.8) d*iA)-d«i<S0)-    inf sup H^.
«',..., e"(j,y)-0,/-1.„

yea*

The first quantity is the error in the best approximation to A, relative to the

induced matrix norm, by rank « matrices, while d"(A) is the «-width of y% in

the sense of Gel'fand (the infimum in (4.8) is taken over all sets of « vectors

inRN).

Given any vectors ex,..., e" in R", let Un+X be the « + 1-dimensional ball

defined in Lemma 4.2. Then there exists ay £ Un+X with WyW^ — dn(A) and

(y, e') = 0, i = I,..., n. This is a consequence of the fact that any «

homogeneous linear equations in « + 1 unknowns always have a nonzero

solution. Hence we conclude from Theorem 4.1 that d„(A) < d"(A). Also, by

definition we have dn(A) < y „(A). We claim that

d"(A) = yn(A) = dn(A).

This conclusion will follow from our next lemma.

In preparation for this lemma let us observe that since S*(Ax°) =

S~(Ax°) = S -(x°) = « then (Ax°)x(Ax°)N ̂  0 and if (Ax°)¡ = 0, 1< i <

N, then (Ax°)i_x(Ax°)i+x < 0. Furthermore, at the ith sign change (S+ or

S ~) of Ax°, i' = l,...,«, one of two possibilities occurs. Either

(a)(^;c\G4;c\+,<0,or

(b) (Ax°)ki = 0, and (Ax\_x(Ax\+x < 0,

where 1 < kx < • • • < kn < N.

For each i, i = 1,..., «, we define an N-dimensional vector e' as follows.

If (a) holds, let

v 0, otherwise.

If (b) arises let (e')/ = ôv, / = 1,..., N. Thus in either case (Ax°, e') = 0,

i = 1,..., «.

Now, we define an M X M matrix P by the condition that for any

x E R M the vector j> = Px has the property

(x - Px, A V) = 0,       / = 1,..., n,

and

(**),= 0,       l${j0x,...,j°n}.
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Px exists, since otherwise there is a nonzero vector yei?" such that

(Ay, <?') = (y, A V) = 0, / = 1,..., «, and y, = 0, / £ {fx,... ,fn). From
the equations, (Ay, e') = 0, / = 1,..., «, it follows that S +(Ay) > n. But the

vector v has at most « nonzero components and thus we conclude that

S~(y) < n — I. Now, we may apply Theorem 2.4 and arrive at a contra-

diction.

Let B = AP and note that B is an TV X M matrix of rank n whose column

space is spanned by the set of vectors {aJ: f G j0}.

Lemma 4.4. \(Ax - Bx)\ < \(Ax*)\, i - 1,2,..., N,for M«, < 1.

Proof. We prove this lemma by contradiction. Suppose there is an / such

that \(Ax - Bx)\ > ¡(Ax0),].

Let d = (Ax°)i/(Ax - Bx)¡, then the ith component of the vector z ■

d(Ax — Bx) — Ax° is zero. Also, (Ax°)¡ =£ 0, otherwise, by the definition of

the vector e' and the fact that (Ax - Bx, e') = 0,1 = I,..., n, we conclude

that (Ax — Bx)¡ = 0. This contradicts our assumption that \(Ax — Bx)¡\ >

\(Ax*)¡\. Since (z, e>) = 0,j = I,..., n, we conclude that S+(z) > n + 1, as

before. However,

S + (z)< S~ (d(x - Px) - x°) < n.

This contradiction proves the lemma.

Theorem 4.2. If A is an TV X M STPn+x matrix then

dn(A) = d"(A) = y„(A).

Proof. According to Lemma 4.4, y„(A) < IM-x0!!«, = dn(A). Also, if

(Ax, e') = 0, / = 1,..., n, then Px = 0. Therefore Lemma 4.4 implies

\\Ax\\M < WAx0^, if 11*11«. < 1. Thus d"(A) < d„(A). Since we already ob-
served that dn(A) < y „(A) and dn(A) < d"(A) the theorem is proven.

Remark 4.1 By a variation on the method used in Lemma 4.3, it may be

proven that for A STPn+x, if * alternates between some n components, and

* ¥= x°, then H-djcH«, > H^*0!!«,. Thus we conclude that the vector *° is

unique. However, this fact does not imply the uniqueness of the n optimal

columns 7°,... ,y°. Nonuniqueness may occur only if \(x°)j>\ = 1 for some
k= l,...,n.

5. Some extensions. In this section we include some useful extensions of our

results of §4.

We begin by observing that the maximum norm of a vector is unchanged

by permuting any of its components or multiplying them by ±1. Thus

Theorem 4.1, parts (i), (ii) and an appropriate formulation of (iii), remains

valid for any matrix A which after row and column interchange and/or

multiplication by ± 1 is STPn+l.
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An important example of matrices of this form are inverses of STP

matrices. If A is an N X N STPN matrix, then it follows from (3.11) that if

A~x = Hfyll, then the matrix B = \\b0(-iy*J\\ is STPN. As a result of this

observation we have

Corollary 5.1. IJA is an N X N STPN matrix, then dn(A)dN_„_x(A~x) -

l,n = 0,l,...,N -I.

Proof. From Proposition 3.4, Xn(A)¡ín_„_x(A ~x) = 1, n = 0, 1,..., N —

1, for any N X N nonsingular matrix. For an STPN matrix we have from

Theorem 4.1 that X„(A) = dn(A) and ¡i„(A _1) = dn(A "'). Thus we obtain the

desired conclusion.

Let A he an N X M STPn+x matrix. For any r, 0 < r < M, we define

&r = [Ax: \x¡\< l,i = r+ 1, ...,M).

Our objective is to extend the results of §4 to the set (Zr. We begin with

Proposition 5.1. IJ « < r then dn(@.r) = oo. IJ n > r and if X„ is an

n-dimensional subspace of RN such that sup^g^ inf^g^ \\y — x\\ < oo then

{ax,...,a')QXn.

Proof. Suppose « < r and X„ is any «-dimensional subspace of RN. Since

the vectors ax,.. . ,an+x are linearly independent there exists a vector

y = Ax = VjZlxjO1 such that inf^J.y - x\\œ = 1. But Xy £ &, for all
X > 0. Thus d„(&r) > X and we conclude that d„(&r) = oo.

Similarly, if n > r and sup>,eSrinf;tejrJ|.y - xW^ = d < oo then, for all

X>0,

*S& ̂ -xU<d,      J=l-.-,r.

Therefore (a1,..., ar) C Xn, as asserted in the proposition.

Let us now modify the definitions in §4 so that they apply to the set (£,.

We will use the notation trrx = (0,..., 0, xr+x,..., xM), dnriA) = dni&r)

and d"'riA) = d"i&r). With this notation &r = [Ax: Hvc^ < 1}.

The quantity Xnr(/1) is defined by (3.1) where we replace the condition

11*11«, < 1 by the weaker requirement IK-xIL < 1. p„,iA) is defined to be
maxieA,r(^(0) a°d yn,r(A) is defined by (4.7) where again the condition

11*11«, < i is replaced by ||ir,x|L < 1.
Also, we define for any set of integers {jr+x,... ,j„), r + I < jr+x

< • • • <jn< M, the vector j, = (1,..., r,jr+x,... ,/„). Let

1° -(#-.. .&,),       !</?<••• <i°n+1<N,

and

Jr ™ (*»••• » r>Jr+V • • • >Jn)
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denote the rows and columns, respectively, for which rninj eymax,e/G(i, j,) is

achieved.

Theorem   5.1.   Let  A   be  an  TV x M  STPn+x   matrix  with  r < n <

min(TV, M). Then

0) KM) = maxle/minJeyG(i, j,), Xnr(A) = minjeymaxie/G(i, j,).

(2)dn,(A) = d»'(A) = y„,(A) = KÂA) = Xn,(A\
(3) A best n-dimensional linear subpsace for the width dnr(A) is attained by

the subspace spanned by the columns {aJ:j G \°r).

(4) dnr(A) = H/lx0!!«,, where Ax° is a vector which equioscillates on i°, .. .,

'«+i» TTrx° alternates between j?+x, . . . ,f°and || V^H«, = 1.

The proof of Theorem 5.1 is similar to the proof of Theorem 4.1 since the

first r components of the vector *° will not interfere with our previous sign

change arguments.

In addition to Theorem 5.1 we also know as in the proof of Theorem 4.1 the

following facts about the vector x°

(a)S-(Ax°) = S+(Ax() = S-(x°) = «.

(b) P*0||M < Max/elo|(i4*),|, for any vector * G RM for which irrx alter-

nates between some n — r components.

(c) min^K^x),-! < H^x0!!«, for any vector x E RM such that || v^l«, < 1

and (Ax)ik(- l)ko > 0, k = 1,.. ., n + 1, where a2 = 1 for some n + 1 rows

/„ ...,/„+„ 1 < /, <•••</„+! < TV.
(d) Let el,..., e" be vectors constructed from Ax° as before. Also, we

define an M X M matrix Pr by the condition that for any * G R M

(x - Prx, A V) = 0,       i = 1,.... n.

and (P,x), = 0, / G j?. Let Br = APr. Then

\(Ax - Brf^KAx0).],       i=l,...,N,

for any* G RM with 11^*11«, < 1.
The class of STP matrices is frequently too small to include many im-

portant applications of Theorem 5.1. Below we give an extension of part of

Theorem 5.1 which is valid for TP matrices. §7 contains a thorough discus-

sion of the continuous analogue of Theorem 5.2 for TP kernels.

Theorem 5.2. Let A be an N X M TPn+x matrix of rank at least n + 1 such

that any n columns of A are linearly independent and r < « < min(TV, M).

Then there exists a vector *° G RM such that vrx° alternates between some

n - r columns y?+„ . . . ,fn, r+l< ¿°+i <••• <fn<M, |K*°IL - 1
andAx0 equioscillates on some « + 1 rows.

Furthermore, for any vector *° with these properties we have dnr(A) =
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ll/lx0!!«, and an optimal subspace Jor the set &r is spanned by the vectors [aJ:

jE?r},i° = (l,...,r,j?+x,...JÏ).

Proof. The existence of a vector x° with the above properties follows from

Theorem 5.1 by the following argument.

Since A is TPn+x and of rank at least « + 1 there exists a sequence of

N X M STP„+X matrices {A,: t > 0} such that A,-+A as t -» oo. According

to Theorem 5.1 there exists x°(t) E RM such that A,x°(t) equioscillates on

some « + 1 rows i°(t),..., i°+x(t), IK*°(0ll<» = 1 and vV) alternates

between/r°+,(0,...,/?('), r + 1< /?+,(/) <••• <j°(t) < M. There exists

a subsequence {/,}, ts -> oo, such that i°(ts) = i?, I = 1,..., n + l,jf(ts) =

jf, I = r + 1,..., «; s = 1, 2,-
Thus

(5.1) {A,x°its))¡r i- i)'|V°(',)|b     * - 1.2,...,;/- 1,....« + 1.

We claim that the sequence

d, = K(0| + • • • + K(o| +1vV,)L   * - ». 2,...,
is bounded. For, if a"5 ̂ oo we may divide both sides of (5.1) by ds. Then after

passing through a subsequence, if necessary, we conclude that there exists

numbers/,.yr+x, 2í¿}|/,| = 1 such that/r+, > 0 and

(5.2) Ity/A -(-i)5v

(5.3) ( 2 ^X)

/= 1,...,« +1,

<7,+ i,       /«Si0.

If/r+! =£ 0 then from (5.2) we conclude that S~(S¡j^xyJaJ) > n. However, A

is TPtt+x and we know that S'ÇSj^yja*) < r - 1 < n - 1. Thusjv+i = 0
and we conclude that '2lrj=xyjaJ = 0. Since a1,..., ar are assumed to be

linearly independent we conclude that/, = • • • = yr = 0 which is a contra-

diction.

Now that we know that supJa'J < oo we may easily pass to the limit in (5.1),

perhaps through a subsequence, and conclude that there exists a vector jc°

with the properties demanded by the theorem.

Thus it remains to prove that for any such vector *° we have dnr(A) =

WAx0]^. The proof of this fact is very similar to the proofs given in §4, so we

will be brief.

From the discussion in Proposition 3.1 we may easily conclude that

sup    inf
lk*IL<> aj

Ax — 2 ajaJ

jef.
= \\Ax°h-
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Thus dnr(A) < ll/l*0!!«,. To prove the reverse inequality we follow the proof

of Lemma 4.2. We define the vectors bl,..., bn+x as in Lemma 4.2 and note

that since l¡ — i,i = 1,..., r, bk is a multiple of ak,k= \,...,r. Now, it is

an easy matter to prove that if IlS^tX0*!!» < P*°ll» then Kl < *>
k = r + I,..., n. From this conclusion it follows that the ball Un+X, defined

in the proof of Lemma 4.2, is contained in <£r. Hence by Theorem 2.1

d„r(A) > M*°||oo- This inequality proves the theorem.

6. Some examples. Let A = ||a¿,|| be the TV X TV matrix defined by a,-, = 1,

i < j, a¡j = 0, / > j. Thus A is die lower triangular matrix with l's on and

below the diagonal and is clearly TPN.

Let [*] denote the greatest integer less than or equal to *. Then

Proposition 6.1.

i /       r TV (2« - 1) + 2« 1\
dn(A) = J^-[        2n+\-   j.      « = 0,1,...,TV,

and the columns a'1,..., aJ" are optimal if and only if

j, = (N-jn){l-x2) + ex + --- +e„

I = 1,2,... ,n  for some {e¡}"_x,

where

(6.1)

10 or 1,      i = 2,..., n,

and

Jn =

TV (2« - 1) + 2«

2«+ 1

Proof. Let *° be the TV-dimensional vector, *° = (1, 1,..., 1, 0, - 1,

...,-1,0, 1,..., 1,0,... ) where the zeros occur at the components

7l» • • • >7n-

Also, lety0 = 0,yn+1 = TV + 1, y¡ =j, - f,_x, /= 1,...,« + 1, and ß =

2y.,(- iy+1(yy. - 1), Í - 1,...,«+ 1. Then (Ax\_x - (Ax\ = ßk, k -
1,..., n, and (Ax°)N = ßn+x.

Also, by their definition, 0 < /?, > ß2 < ß3 > ß4,..., the difference

between consecutive components of Ax° is at most one and the components

of Ax° are monotonically increasing or decreasing between they, andy/+I
components.

Let {otj)jmX satisfy
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(6.2)
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A- 2«, = (-i)'+1a,      1-1,...,»!,

n
\n + 2.

/3„+1-2«y = (-ir+2A.
7-1

Then, from Theorem 5.2, X = dn(A) if

(a) |a,.| < 1,/ = 1,..., «,

ib)\ß,-2J-\al\<\i-l,...,n.
Now, from (6.2),

>;+!/
«, = (-1)    (Y/-1-2X),       i = 2,...,«,

a, = y, - 1 - X,

X = (N-jn)/2.

Thus (a) is equivalent to

|y(. - 1 - 2X| < 1,   / = 2, ..., «,

|y,-l-X|< 1,

while (b) implies

|Y,- - 1 - X| < X,   i' = 2,..., n,

y, - 1< X.

From (a') and (b') it follows

(a") N -)n < y, < N -j„ + 1,   i = 2,..., «,

(b") (^-/„)/2<y, <(N-j„)/2 + l.

Since 2"= ,Yi = fn> we nave

(6.3)

(a')

(b')

or equivalently

A^(2«-l) iV(2«- l) + 2n

2« + 1     < ^n < 2/T+T

N(2n - 1) + 2«
./* = 2n+ 1

From (6.3)

dn(A) = X=j\N-
N(2n- l) + 2n

2« + 1 )

« = 0, 1, .. ., N, and any columns satisfying (a") and (b") are optimal. These

inequalities are easily seen to be equivalent to (6.1). Thus the proof is

complete.

Let us now consider the following problem. Given N fixed points, 0 < /,

< • • • < tN < 1, we wish to "store" the values of one or more functions
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computed at the points /,,..., tN. We are allowed only n storage locations

where n << N, but we have some assurance that the rth (r < n) consecutive

divided differences of the computed data are bounded by some constant

which we normalize to one. Then the n-width of the set

S = {(/(/,). • • • ./('*))= |/C> • • •. «U,)| <hi=h...,N-r}

will give us an estimate of the minimum intrinsic error in storing the data.

As a corollary to Theorem 5.2 we have the following result.

Theorem 6.1. d„(c$>) = maxx< J<N\f0(tj)\, where the vector

(/oi'i)» • • • >/o(*Af)) equioscillates on some n + 1 components and the vector

(/o('i> • • • - 'r+i)>/o('2> • • • » 'r+2)> ■ • ■ >M{N-r> • •• - '*)) alternates between

some « — r columns.

Proof. The proof of this theorem consists of showing that the set 9> may

be expressed as (&r for some totally positive matrix. We begin with the

identity

/Ci)

/('*)

'i-'o

'i-'o

0

h-h

u-u

0

0

0

0

tN-t. N-\

/Co u)
f(t» h)

/(fw-i> h)

where we choose any i0 < /, and set f(t0) = 0. Let us denote the above

N X N matrix by B(t0,..., tN). Then it easily follows by induction on r that

/(',) - 2 Ai}f(t_r+j, ..., tj),
7-1

i = 1, . .., TV,

where A - B(t0, ..., tN)B(t_x, ..., tN_x). . . B(t_r+X, ..., tN_r), t_r

< • • • < t0 and f(t_r) = • • • = f(t0) = 0. Since B(tt,..., ti+N) is totally

positive, i = 0, - 1,..., - r + 1, (it is just a column scaling of the matrix

which appears in Proposition 6.1), it follows that A is totally positive. If we

define the vector * = (*,,..., xN), x¡ = f(t_r+i, ...,/,),/= 1,..., TV, then

% = {Ax: 11^*11«, < 1}. Hence Theorem 6.1 follows from Theorem 5.2.

7. «-widths in L°°[0, 1]. Let X = L°°[0, 1] and HAH«, = ess sup{|«(*)|:

0 < * < 1}. Suppose kx(t),..., kr(t) are continuous functions on [0, 1] and

K(t, s) is jointly continuous for t, s G [0, 1].

We define the subset of continuous functions

% = ( 2 Xjkj(t) + Ck(i, s)h(s)ds: (*„ ..., xr) G Rr,
ly-i J°

< 1
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We will assume throughout this section that for «i > 0, 0 < k < r, 0 < sx

< • • • < sm < I, 0 < r, < • • • < tm+k < I, 1 </,<•••< ik < r, the
determinant

/    /,,..., ik, sx,...,sm    \

\tx, .. ., tk, tk+x, . .., tm+kJ

(7.1)

M'i)

K(tx,sx)

K(h, sm)

^¡¡Vm + k)

k¡k (tm+k)

^({m+k' sl)

^('m + fc'-W

is nonnegative. In addition to this hypothesis we also require the following

assumptions to hold.

The sets of functions

(7.2) {kx(t),...,kr(t),K(t,sx),...,K(t,sm)),

axe linearly independent on [0, 1], for any 0 < i, < • • • <sm<l, m =

1,2,....

(7.3) For any 0 < r, < • • • < tr < 1,     det     ||*,.(fy)| > 0.
¿j/^ it ■ ■ ■ t r

Thus our assumptions on 9Cr consist of the essential total positivity

assumption (7.1) and, in addition, we require the linear independence

hypotheses (7.2) and (7.3).

Lemma 7.1. For any constants otx,... ,an, 0 = s0 < sx < • • • < sn_r <

s„-r+x = I, the Junction

g(t)=íajkj(t)+2(-iy(s^K(t,y)dy+   ¿   <**('•*-*)
j-\ y=0 Jsj j = r+l

has at most « distinct zeros in (0, 1).

Proof. Suppose to the contrary that g(t) has « + 1 distinct zeros t =

zx,..., z„+x in (0, 1). We introduce the functions

v^y)'K(z,li'"zr,z   \      '-1.»-r+l.
yz„ . . . , zr, zr+xj

By Sylvester's determinant identity we have
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.. , det  JHyj)\\
ij = l,...,n-r+l"        J  "

= (Kl l,...,r \\"  'J 1,..., r,yx,... ,y„.r+x \
\   V»--->zr))        \zx,..., zr, zr+x,..., zn+xy

Hence by our hypotheses (7.2) and (7.3) the set {vx(x),..., v„_r+1(*)} is a

weak Chebyshev system on [0, 1]. Moreover, from the equations g(z¡) = 0,

i = 1, 2,..., n + 1, it follows that

Y(-')JfSj+tvi(y)dy+  2 «,^-,) = o,
j = 0 J'J j-r+i

i - 1,...,« — r + 1.

We arrive at a contradiction, as in [7], by constructing a nontrivial function

v(y) = 2;;f+1 ¿8,0,00 such that v(y)(-iy > 0, Sj < y < sJ+x, j -

0, 1,..., n - r. From (7.4) we obtain /¿|u(>0| dy = 0 which is impossible.

Theorem 7.1. G/'ven any n > r, there exists a function of the form

Fo(t)- 2*A(0 + "2(-iy[Sj+>K(t,s)ds
y-1 7-0 •'If

w/f« 0 = ¿o < ¿j < • • • < |„_r < £„_,.+j = 1 wn/'cn equioscillates on n + 1

po/nte o/[0, 1],

^o(^) = (-l)y+r+,roL.      7 = L...,«+1,

where 0 < e, < • • • < e„+1 < 1.

Proof. We set

*,.=7/(TV-l),      ,- = 0, 1,...,TV-1,

and

tj=j/(N+r-l),      j = 0,l,...,N + r- 1.

Then according to (7.1) and Theorem 5.2 there exists a vector *°(TV) =

(*?(TV), . . . , 4+r(7V)) such that |K*°(^)IL = 1, trrx°(N) alternates
between some n — r columns and, if we define

PN(t)- 2*/(A0W + Âr-rr 2 #,(*)*('. ^i),

then there exist integers, 0 < /f < • • • < /„^ < TV + r - 1, such that

= (-l)'+r+x      max      |W_i—- )
v     '        o</<jv+#—i       V TV +/• - 1 /

/= 1, ...,n + 1.
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We define dN = |jc?(JV)| + • • • + \x°(N)\ + \\PN\\00>N. Then just as in Theo-

rem 5.2 we may prove that supNdN < oo. There exists a subsequence {ifl)

such that i,NJ/(Nj + r - 1) -> e„ I = 1,...,« + 1, 0 < <?, < e2 < • • • <

en+x < 1. Using the fact that supNdN < oo and the simple estimate

i n — r 7*+i-l      / ;       \       n — r „ .      ,,,.    ..

TT3T 2 ("0*   2   Kit, Tt4    - 2 (-l)kfJk-/(N-l)K(t,s)ds
" 'W J„ \       «"I/       *-0 JJ„/(.N-\)

< max{|A(/,/,) - A(/,.y2)|: 0 < í < 1, |/, -/2|< 1/(A/ - 1)}

which holds for all / £ [0, 1], 0 =/? </,<•• • </„_r </,_,+ , = N - 1,
we conclude that there exists a function

PoW = 2 WO + "2 (-i)JP+,a-(/,*) a
j-i 7-0 Ji

such that 0 - ío <{,<•• • < £„_r < £„-r+x = 1 and

ro(eJ) = (-x-)J+r+VoL,

0 < e, < • • • < eB+1 < 1. First let us note that ||P0Hco > 0, for otherwise we

would contradict Lemma 7.1. Hence 0 < ex < • • • < e„+x < 1.

Now, using (7.1) we may conclude from Theorem 2.4 that for N sufficiently

large the function

,   n-r K+J/"
*"(')-2 W) + i 2(-i)7    2    *k£)

has the property that

« < 5 - (FN (ex),..., PN (en+,))</• + number of distinct £,'s E (0, 1).

Hence we conclude that 0 <£,<•• • < £„-, < 1 which completes the

proof.

Let us remark that when the determinants in (7.1) are always strictly

positive then the function constructed to Theorem 7.1 is unique. To see this,

we let F, be any other function with these properties and suppose H^*,||00 <

||Poll»- If ^1 * A> then the function F = P0- Px has the property that
S+(E(ex),..., E(en+X)) > n while the strict positivity of the determinants in

(7.1) implies that S+(E(ex),..., E(en+X)) < n - 1, [2]. This contradiction

implies P0 = Px.

Before presenting the main theorem of this section we prove the following

important lemma.

Lemma 7.2. Let P0 be any junction which has the properties described in

Theorem 7.1 and let P0(z¡) = 0, i = 1, 2,..., «, 0 < z, < • • • < z„ < 1.

Then
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k(  i>"->r>tl>--'>t*-r \ >0#
\zx, . . . , zr, zr+x, . . ., znj

Proof. We will prove the lemma by contradiction. Suppose that the above

determinant is zero. Then there exists constants cx,... ,cn not all zero such

that

$cjkj(zt)+   2   CjK(zt,%_r)'0,      /=1,...,«.
J-i Jmr+l

According to (7.2) there exists a z E (0, 1) - {z,, .. ., z„} such that

tcjkj(z)+   2   CjK(zAj_r)^0.
7=1 J=r+\

Choose a constant d such that

P0(z) + d[ 2 Cjkj(z) +   2   CjK(z, ij_r)\ = 0,

(7.5)
7 = 1 j=r+\

n — r

where P0(/) = 2 bjkj(t) + 2 (~l)J ¡ij+yK(t,s) ds.
7=1 7=0 %

However, (7.5) together with the equations P0(z¡) = 0, / = 1,..., «, contra-

dicts Lemma 7.1 and thus the lemma is proven.

To state the main theorem of the section we define the following quantities

dn<r(K) = dn(%r;L°"[0,l}),

dn-r (K) = d" (%r; C[0, 1 ]) = inf     sup    ||«||
Ln he%rnL„

where the infimum is taken over all subspaces Ln of C[0, 1] of codimension n,

X„r(K)= inf sup       inf      max
0<J,< •••<*„_,< 1 UAH«, «I.«»0<»<1

(lKit,s)his)ds-t«jkjit)-   2   ctjK(t,Sj_r)
J0 j=\ j=r+i

iinr(K)=           sup                      inf              sup      inf        max
o</,<--- <í„+1<i°<í'<---<f»-<1 ||«IL<'ai.a-K'<"+i

(XK(t„ s)h(s) ds-t ajkj(t) -   2   «¡Kb, *j-r)
J0 Jml y=r+l

and

ya,ÁK)=iní  sup    max
T   llnll_<i0<'<1

(lK(t,s)h(s)ds-(Th)(t)

where T is any bounded linear operator from L°°[0, 1] into C[0, 1] whose
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range is an «-dimensional subspace containing the functions kx(t),..., kr(t).

Note that d„,(K)< ynr(K).

Theorem 7.2. Let P0 be any function having the properties described in

Theorem 7.1 and let P0(z¡) = 0, / = 1,..., «. Then

(1) dnr(K) = Xnr(K) = || PqII«, andan optimal subspace X®for the n-width of

%r is spanned by the functions kx(t),..., kr(t), K(t, £,),..., K(t, £„_,.).

(2) d"'r(K) = ||P0||«, and a best subspace of codimension nfor the n-width in

the sense of Gel'fand for %r is {g: g G C[0, 1], g(z¡) = 0, i = 1,..., «}.

O) "YnA^) = ll-^olloo and a Dest rar,k n approximation to the operator

fx0K(t, s)h(s) ds whose range includes the functions kx(t),..., kr(t) is defined

by (Th)(Z¡) = íXnK(Z¡, s)h(s) ds,i=l,...,n, and Th G X?.

(4) p^iK) -M*)-P*olL. and

(7.6)

V-nÂK) = SUP _inf.

fiK(1'---'r'Sl.S°-"s)\as
Jo     \ tx,...,tn+x J\

0<r,<--.<i,+1<iO<*i<- •<».-,<!      »+i    ll,...,r,sx.*,_,

l-l       \   «1» • • •»'/»• ••» 'n+l

M*) =      „ inf,     ., SUP

(1\k{1.r'Sl.W)L
Jo |   \ 'i.'„+i )\

<-'-"<s„.r<U<tl<-'-'-r<t„+l<i      «+i    II, ...,r,sx.sn_r\

/-i   \ tx,...,/,,...,t„+x )

and the inf-sup and sup-inf are achieved for t¡ = e¡, i = 1,..., n + 1, and

s¡ = £,-, / = 1,...,«- r.

Proof. The following three facts may be proved by either "discretization"

as in Theorem 7.1 or by using arguments which are completely analogous to

those used in the proof of Theorem 4.1.

(a) Let

g(t) = 2 *A(<) + "^aj+r+if(j+lK(t, s) ds.
7-1 7=0 J$

If 11*11«, < \\Po\L then |a,| < l,f = r + I,... ,n + I.
(b) Given any « G L°°[0, 1] we define linear functionals Xx(h),..., Xn(h)

by

flK(Z¡, s)h(s) ds=j: Xj(h)kj(z,) + Y WW* %)>      i=l...,n.
J0 j=\ 7=1

(This may be done in view of Lemma 7.2.) Then
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flK(t, s)h(s) ds-t Xjih)kjit) - "^XJ+r(h)K(t, $) <\P0(t)\,
y0 y=i y-i

i£[0,l],if||/I||oo<l.

(c) Let 0 < sx < • • • < s„_r < 1 and

P(t)=íaJkJ(t)+Y(-i)JíSj+'K(t,s)ds+   2   ajK(t,Sj_¿.
7-1 7 = 0 JSj J=r+l

Then H^olloc < max,<(.<n+,|P(ei)|.
Hence from (a) it follows that dnr(K) > ||F0IL and dn'r(K) > HF^.

Using (b) we see that (1), (2) and (3) are valid. Thus it remains to prove (4).

Let 0 < tx < • • • < f„+, < 1, 0 < 5, < • • • < s„_r < 1 and consider the

set of equations

(7.7)

CK(tt, s)h(s) ds=t bjkjM + "Ïbj+Mt, sj) + (- l)'X(A),
•'O 7-1 7-1

i = l,...,« + l,

where « £ L°°[0, 1]. Clearly

ÇA1.r'Sx"--'s^s)h(s)ds
Jo    \        h,...,tn+x ) w

"+y    ¡\          r s, s     \

(7.8) 2A   '".'."-
/=!      \   tx, . . . , t„ . . . , tn + x   I

=     inf        max
<<1.<*» Kf<R+l

( K(t„ S)h(s) ds-2 <**,(',) -     2     «,*('/' *J-r)
J<3 7-1 7-r+l

and thus (7.6) is valid by the definition of pnr(A). Now, from (c) we conclude

by choosing t¡ = e¡,i = I,... ,n + I, that

Fo\L<

ri K(l,...,r,Sl.w)L
^0        \ e»---'en+\ )\

»£ll,...,r,sx,...,sn\

¡=l      \  eV ' • • > el> • • • » en+\   /

for all 0 < 5, < • • • < s„_r < 1. Hence HP,^ < ftn_r(A). But clearly from

(7.8) and the definition of X„ r(A) we have
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p..î      . .c\

ds

inf sup
0<i,< • • • <i,

r\ K(l,...,r,sx,...,sn_„s\

Jo      \ tx,...,tn+x ]

r<I 0</,< • • • </„+1<l       «+i     / 1,..., r, sx,..., s„_r\

l-\   \ tx,...,t„...,tm+x )

<Kr(K)=\\PoL-
The last inequality follows from (1) which we have already proved. Hence

M*) - M*) - ll^olL and (4) is proven.
We conclude this section with several examples of Theorem 7.1.

The first example, treated in [10], was our motivation for this study.

Example 1. k¡(t) = r'-1, i = 1, 2,..., r, K(t, s) = (t - s)r~x/(r - l)\, t, s

G [0, 1]. In this case

%■ = {Z:/'-0 is absolutely continuous,/r) G L°°[0, 1], ¡f^ < 1}

= {/:/G^[0,l],||/(X<1}-

Hence d„,(K) = ||P0||«, where

p*{t) = 2¡V + tt^v 2r(-iy' P+,(< - s)7l ds
j=o (r - i). ,=0 j^

is a perfect spline with « — r knots 0 < £x < • • • <£„_,.< 1 which

equioscillates at « + 1 points. In this case 0 = ex < • • • < en+x — 1 and an

optimal n-dimensional subspace is given by

*.0-Í2V+    2   a,(/-i_r)7': («„.-.,«„) G Ä").
I 7=0 j-r+l )

Example 2. K(t, s) = l/(t + s), t, s G [a, b], a > 0. This kernel is known

to be strictly totally positive. Hence the width of the set

I rb h(s)
1

- [Ja    t + S

is d„(K)= ||P0||«, where

*o(0- 2(-iyP+,T^T ds,       a<tx<---<tn<b,

and PQ equioscillates « + 1 times on [a, b]. P0(t) is unique and an optimal

subspace for %¡ is given by

*„°={ 2«77TÇ:(«i>-••»«»)£*"}■

Example 3. K(t, s) = e", t,s G [0, 1].
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%>-{fyh(s)ds:\\h\\a><\},

dn(K)= ||Poll«,, where

^(0=2 (-1/ f^e" ds,       0 <{,<••< Í, < 1,
7-0 ^

and P0 equioscillates « + 1 times on [0, 1]. P0(t) is unique and an optimal

subspace for %q is given by

*„°=f t^:(ax,...,a„)ER"
{ 7=1

Example 4. Given any nonnegative real numbers /,,..., tm we define the

polynomial

m

i2Áx) - n (x2 - i2)
7=1

and the set

*D = {/:/ £ W2m[0, 1],/2»(1) =/(2W(0) - 0,

fc-0,l,...,m-l,||a2„(Z))/||ao< 1).

We may express <î> as a 9Ç, where K(t, s) is the Green's function for the

differential operator

â(ê-i)'-*
(7.9) 7=1

/(2,t)(l) = /2A:)(0) = 0,      fc » 0,1,..., m - 1.

It may be verified that

M1fl\ v /.   „v        t  V     Sin A"77í Sin fc7T5
(7.10) K(t, s) = 2 2,  -ttt-^;— •

Furthermore, it is known that (-l)mK(t,s) is totally positive on [0, 1] X

[0, 1], To see that this is the case we observe that the differential operator

(7.9) is the product of the second order differential operators

J"(x)-a2J(x) = 0,       a = tx,...,tm,

("   } /(l)=/(0) = 0.

Thus if we call the Green's function for (7.11) K(t, s; a) and define

Kjit,s) = [lK{t,y;tJ)Kj_xiy,s)dy

where Kx(t, s) = K(t, s; tx), then K(t, s) = Km(t, s). Hence it is sufficient to
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prove  — K(t, s; a) is totally positive for any a > 0. However a direct

calculation shows that

K(t,s;a) =
— a  ' sinh at sinh a(l — s),       t < s,

— a~x sinh a(l — /) sinh as,       s < t.

Since

d_
dx

sinh ax

sinh a(l — *) [sinh a(l - *)]
>0

for 0 < * < 1 we may conclude from Corollary 3.1, p. 112, of [2] that

- K(t, s; a) is totally positive.

We define

Po(t)=î(-iyiu+mn+ï)K(t,s)ds.
7=0 Jj/(n+l)

Then using (7.10) we obtain

4   °° sin(2/ + 1)(« + l)wt

^(0 = ̂ 2
n £0 (21 + l)q2m(i(2l + l)(n + l)ir)

Clearly,

p0(t + i/(« + i)) = -p0(0,     P0(V(" + i) - 0 = ^o(0,

p0(0) = o.

Hence

P0(i/(n + 1)) = 0,       / = 0, l,...,n + l,

P¿((2i - l)/2(« + 1)) = 0,       i = 1,..., n + 1.

It is also known that P¿ has no further zeros in (0, 1) and (- l)mP0(0 > 0,

0 < í < l/(n + 1), cf. [8]. Thus we conclude from Theorem 7.2 that

4(-l)m   «                       (-1)'
d /6j)\ « J:—L. y -i-í-
nK   J tt      ¿Q (21 + l)a2m(.(2/ + 1)(« + 1)-)

and an optimal subspace for fy is given by

Xn° - { J2 «jK[t, -^ ): («,, ...,«„) e R" J.

When q2m(x) = x2m,

d m._Í-f_("1}/
"V   '     v2m+x(n+l)2m ,=o (2/+l)2m+1'
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Furthermore in this case

Po{t)--~^E2m((n+l)t)
(n + 1)

where E2m is the 2wth Euler perfect spline function, normalized so that

\E§?\x)\ = 1.
As a comparison, let us compute the L2-width of the set <$. Since (7.9) is a

selfadjoint operator with eigenvalues X„ = q2~m(intt), « = 1, 2,..., and cor-

responding eigenfunction sin mnx, « = 1,2,..., we may use the obvious

L2-analogue of Theorem 2.3 and conclude that

Hence we have

,.    4,ÇA;¿"[(Uj)    4 Ä     (-i)'
d„i^;L2[0, 1])       »,to (2/+l)2m+1

Finally, we remark that using the results in [4] and [6] we may obtain the

«-width of other differential operators whose Green's function is totally

positive.

Following the completion of this article the paper by G K. Chui and P. W.

Smith [1] appeared. We shall comment below on the relationship of our

results to those obtained by Chui and Smith.

Given any real-valued functions Xx(x),..., Xr(x) defined on the interval

[-1, 1] we define the rth order differential operator

(7.12) Lf(x) = II (D - Xjix))Jix)
7=1

and consider the class

(7.13) $(L) = [f-.fe wr[-\, l], HAnico < 0

where in this case \\g\\x = ess sup{|g(x)|: \x\ < 1}.

In [1], the «-width of % (L) was found when the functions Xx(x),..., Xr(x)

axe constants

Xj(x) = bj,      j= l,...,r,x E[-l,l],

andWJmXbj = 0.

In the general case, we may express ®(L) as %r by choosing

kx(t),..., kr(t) to span the null space of L and K(x,y) to be the Green's

function of the initial value problem determined by L. It is well known that

our hypotheses (7.1)-{7.3) are satisfied in this case, [2]. Thus Theorem 7.2

applies to the set ® (L).
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In particular, given any real polynomial />,(*) of exact degree r such that

the set of zeros of pr is contained in the vertical strip

{z: |Imz|< tt/2}

thenpr(D) may be factored in the form (7.12) and thus Theorem 7.2 applies.

The reason that the approach in [1] for the case that pr(x) has real zeros

bx,... ,br does not apply when Ilj„xbj =£ 0 results from the choice of the

nonlinear approximation problem studied in [1].

Using their notation we define v G W[—l, 1] by requiring v(t) = 0 for

/ < 0 and Lv(t) = (?)+• The best approximation problem of [1] is

(7.14) inf 11*11«,

where g(t) = v(t + 1) + 27=laiv(t - /,) + 2ï„,Aw,(0. {*„ ..., w,} is a
basis of the null space of the operator L and the minimum is taken over

-1 </,<•• • < tm < 1, a, - ± 1, (/?„ ..., ßr) G Rr. The function g is in

% if and only if \YJ=xbj = 0. Hence when II"=,6, ̂  0 the value of (7.14) does

not give the width of © (L).

8. Restricted moment spaces. The discussion in §7 corresponds, in a sense,

to the results in §§4 and 5 when TV = M = oo. In this section we briefly

consider some examples of the cases TV < oo, M = oo and TV = oo, M < oo.

We provide no proofs here since the previous methods used in §7, combined

with the results in §4, apply readily.

Case 1. TV < oo, M - oo.

Let ux(t), ..., uN(t) be a set of continuous functions which form a Markov

system on [0, 1], that is,

det\uik(tj)\>0

for all 0 </,<•• • < tk< 1,1 < ix< • • ■ < ik< N,k < TV.
The restricted moment space generated by ux,..., uN is defined as follows.

Let % be the mapping from L°°[0, 1] into /£ defined by setting

(%«).= CUi(t)h(t)dt,       /=1,...,TV.
•'o

Then

**-{**: ML <!}
is the restricted moment space generated by ux(t),..., uN(t).

For every * = (*,,..., *„) G R", 0 = *0 <*,<■• • < *„ < *n+I = 1

we define

hx(0 = (-1)7.       Xj < t < xJ+xJ - 0, 1,..., n.

911^ is a subset of RN and its «-widths is given by
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Theorem   8.1.   For   any   integer   n, 0 < « < N,   there   exists   a   £ =

(£,.£,), 0 < £, < • • • < £„ < 1, such that the N-vector, %«£, equioscil-

lates « + 1 times. The n-width of <3TLiV « g/'ue« 6y

<(^;^)=||^£L
û«a" the vectors (w,(£,), . . . , «#(£,)), i = 1, . . ., «, span an optimal subspace for

the n-width of VtN.

Note that when N = « + 1 then we also have

n + l

2 CjUjiO
7=1

n + l

dt:  2-,(-!/-If-41Ä+i;C)=a   min        f1

Case 2. A/ = oo, M < oo.

For every x = (x„ ..., %) E /?w we define m(í; x) = Syi,,*,-«/*)- Again,

we assume that {»,(/)» • • • » "m(0} is a Markov system on [0, 1]. Let

%M = {u(t;x):\\x\\„<l,xERM}.

%M is a subset of ¿"[O, 1] and its «-width is given by

Theorem 8.2. For any integer «, 0 < n < M, there exists a vector x° =

(xx, . . ., x%¡) which alternates on some « components j° = 0'°, . . . jfy, 1 < j°

< • • • <j°<M, and u0(t) = u(t; x°) equioscillates « + 1 times on [0, 1].

The n-width oj %M is given by d„(%M; L°°[0, 1]) = HmqIL and the junctions

Ujo(t),. . . , Ujo(t) span an optimal subspace jor the n-width of %M.

Note that when Af = « + 1,

dn(%n+x; L-[0, 1]) = min{||«(/; x)¡m: \\x\\M = 1).
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