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- 
Let K be a compact subset of R” with K=~nt K. Necessary conditions on an n- 

dimensional subspace U, of C(K) are given so that for each f~ C(K) there exists a 
unique best L’(w)-approximation from U,,, for every fixed positive weight function 
w. P 1988 Academic Press, Inc. 

1. NOTATION AND DEFINITIONS 

Let K be a compact subset of R”. For convenience we assume that 
K= int K. W will denote the set of bounded, integrable functions on K for 
which inf(w(x): XE K} > 0, and @ the set of strictly positive continuous 
functions on K. By C(K) we mean the set of real-valued continuous 
functions with domain of definition K. U, will always denote an n-dimen- 
sional subspace of C(K). For w E W, the L’(w)-norm offE C(K) is defined 
by 

Ilf’ll, = s, If(x)I w(x) dx. 
DEFINITION 1. We say that U, is a unicity space for w, w E W, if to each 

f~ C(K) there exists a unique best approximation to f from U, in the 
L’(w)-norm. Similarly we say that U,, is a unicity space jtir W (@) if U,, is a 
unicity space for w for all w E W (w E i?l). 

DEFINITION 2. For each f E C(K), we set Z(f) = {x: f(x) = O}. 
Similarly, for a set Fs C(K), we set Z(F) = {x: f(x) = 0 for all f~ J’}. 

DEFINITION 3. For a relatively open subset D of K, we denote by IDI 
the number (possibly infinite but countable) of the connected components 
of D. For given u E U,, we set M(u) = I K/Z(u)l. We fix an order on the 
connected components Aj= Ai of K/Z(u), and set K/Z(u) = UFf;) Ai. 
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DEFINITION 4. U, is said to satisfy Property A if for each UE U,,/(O) 
and every choice of E,E { - 1, l}, i= 1, . . . . M(u), there exists a UE U,/{O} 
satisfying 

(a) v(x) = 0 a.e. on Z(u), 
(b) E~v(x)~O, -YEA,, i= 1, . . . . M(u). 

DEFINITION 5. For u* E U,/(O), we define 

U(u*)= {u: UE U,, u(x)=0 a.e. on Z(u*)}. 

DEFINITION 6. U, is said to decompose on K if there exist disjoint sub- 
spaces V,, W,, ~ r of U, of dimension r and n - r, respectively, 1 < r 6 n - 1 
( V, n W, r = (0)) and disjoint subsets B and C of K such that each 
element of V, vanishes identically off B, and each element of W,-, vanishes 
identically off C. 

2. INTRODUCTION 

A classic result of approximation theory is that of Haar [Z]. Haar’s 
theorem characterizes those subspaces U,, of C(B), B compact Hausdorff, 
for which there exists a unique best approximation to each f~ C(B) from 
U,, in the uniform norm. It is natural to consider this same problem in the 
L’(w)-norm setting for given M’E W. That is, one searches for necessary and 
sufftcient conditions on U, such that U, is a unicity space for w. One 
would, of course, like these conditions to be both easily verifiable and 
intrinsic for given U,. Necessary and sufficient conditions were given by 
Cheney and Wulbert [l], and different (equivalent) conditions were also 
given by Strauss [ 111. Unfortunately these conditions are not at all easily 
verifiable. One reason for this fact is that the criteria turn out to be weight 
function (i.e., ,v) dependent. This is in sharp contrast to the analogous 
problem in the uniform norm, where the necessary and sufficient conditions 
as elucidated by Haar are identical if we approximate using any weighted 
uniform norm with weight ~1 E & 

It is therefore natural to ask for conditions on U,, which are equivalent 
to the demand that U,, be a uniticity space for W (@). A first result in this 
direction was obtained by Havinson [3] in the case K= [a, b] c R. Havin- 
son proved that if U, has the property that no u E U,/{O} vanishes on a 
subinterval of [a, b], then U,, is a unicity space for W if and only if U, is a 
T-system on (a, 6). (The “if’ direction is a classic result proven earlier by 
Krein [4].) 

On the basis of work of Strauss [12], Property A was formulated. 
Strauss showed, for K= [a, b], that if U, satisfies Property A, then U, is a 
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unicity space for W. This result has been generalized to any K as above. In 
fact, however, these two conditions are equivalent, as has been shown by 
Kroo [6] and Sommer [9]. (Actually Kroo’s result holds in a much more 
general setting.) 

THEOREM A (Kroo [6] and Sommer [9]). For KC R”, K compact, 
K = KK, U, is a unicity space for W if and only if U,, satisfies Property A. 

One may relax the condition that U,, be a unicity space for W to the con- 
dition that U,, be a unicity space for I@ if one imposes a further condition 
on Ii,, namely, meas{Z(u)} =meas{int Z(u)) for all UE U,. Theorem A 
was originally proved for K= [a, 61 by Kroo in [S]. Independently, the 
first author in [S] proved this result, with K= [a, b], for I%‘, where the 
above additional assumption is imposed on U,. Theorem A for KC R” is a 
direct generalization of these results. 

The verification of Property A for a given subspace U, is not a simple 
problem. In the case K= [a, b], the first author went on to obtain more 
intrinsic conditions on U, which explicitly characterize all those subspaces 
U,, which satisfies Property A. He showed that U, satisfies Property A if 
and only if it is a “spline-like” space. The explicit conditions are somewhat 
lengthy to state and may be found in [S]. However, two main results 
deserve special mention. 

THEOREM B (Pinkus [8]). For K= [a, b], U, satisfies Property A if 
and only if 

I [a, bl/Z(u)l d dim U(u) 

for each u E U,. 

The “only if’ part is explicitly stated in [S] as Theorem 4.7. The “if’ part 
is essentially proved, but never explicitly stated. The second result is the 
following. 

THEOREM C (Pinkus [8]). Let K= [a, b], and assume U, satisfies 
Property A. Zf I [a, b]/Z( U,)( B 2, then U, decomposes. 

To be more precise, it follows from Theorem C that if [a, 6]/Z( U,) = 
U;= , A ;, where the {Ai}; are the relatively open connected components of 
[a, 6]/Z( U,), then dim U,I,, = ni, i= 1, . . . . r; 1 < n,; C;=, ni = n, and there 
exists a basis for U,,l,+ .a11 of whose elements vanish identically off Ai. 
Furthermore, by defimtron, U,, A, satisfies Property A on Ai, i = 1, . . . . r. 
Thus, as is easily seen, our problem reduces to r independent problems, i.e., 
U,, satisfies Property A on K if and only if U,I A, satisfies Property A on 2; 
for each i= 1, . . . . r. The best approximation problem reduces to r indepen- 
dent approximation problems. 
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We wish to generalize Theorems B and C to the multidimensional 
setting. However, only one direction of Theorem B is valid in more 
than one dimension. To verify this, consider Uz = span{x, y }, and 
K=[-l,l]x[-l,l]. For each UEU,/{O}, IK/Z(u)l=2=dimU(u). 
However, there exists no non-negative, non-trivial function in U1. Thus U2 
does not satisfy Property A. Nonetheless, we will prove the following 
results. 

THEOREM D. Let Kc R”, compact, K =intK. Zf U, satisfies Property A, 
then 

for each u E U,. 

IK/Z(u)l <dim U(u) 

THEOREM E. Let K be as above, and let U,, sati$v Property A. Zf 
I KJZ( U,,)I > 2, then U, decomposes. 

Theorem D is a generalization of Theorem 4.7 of [8]. The proof of 
Theorem 4.7, as given therein, is lengthy and arduous. A simpler proof, 
which is, however, also only valid for Kc R, has been constructed by Som- 
mer, based on the fact that U, satisfying Property A must be a WT-system. 
The proof given here of Theorem D is essentially simpler than the proof in 
[S] and of course more general than either of these other proofs. Note also 
that Theorem E together with the results of [8] totally solves the problem 
of characterizing unicity spaces U,, for W where K is a subset of R (and not 
necessarily one closed interval) by reducing it to distinct problems on 
closed intervals. 

As a result of Mairhuber’s theorem [7], it is known that if U, is a 
unicity space in the uniform norm on C(K), and n > 1, then K is essentially 
a subset of R. Thus is no longer true in the situation under consideration. 
Many examples exist of unicity spaces for W with Kc R”, m > 1. Perhaps 
the most interesting example so far constructed is that, due to Som- 
mer [lo], of certain subspaces of bivariate linear splines in R2. However, 
unlike the case where Kc R, an intrinsic characterization of unicity spaces 
in C(K) for Kc R”, as above, is a problem yet unresolved. 

3. PROOF OF THEOREM D 

Our proof is via induction on n. For n = 1, the theorem is obvious. Note 
that if U, satisfies Property A and u E U,, then U(u) also satisfies Proper- 
ty A. Thus if dim U(u) <n, then by the induction hypothesis we may 
assume that our results holds for such U. We therefore assume that there 
exists a u E U, with M(u) > n and will eventually arrive at a contradiction. 
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For convenience, our proof of Theorem D is divided into a series of 
lemmas. 

LEMMA 1. Let UE U,/{O}, and K/Z(u) = U,“= I Ai as in Definition 3 (M 
may be infinite). Let J be a subset of ( 1, . . . . M} with IJI elements. Set 

U,={~~:v~U(u),v=OonA~forj$J}. 

If dim U, < IJI, then there exists a non-zero sequence s = (s,, . . . . srbl) for 
which s, = 0 all j$ J, and 

,g, sj I, V(*y) dx = 0 

for all v E U,. 

Proof Let ur, . . . . u, be a basis for UJ. Set 

cij = s ui( x) dx, i=l,...,r; jeJ. 
4 

Since r < IJJ, there exists an s = (s,, . . . . sM) # 0 with sj= 0, j# J, which 
satisfies 

,g, ciJsj = 0, 
i = 4 ‘..’ I-. 

Thus 

jf, sj iA, V(X ) dx = 0 

for all v E U,. 1 

As an immediate consequence of this lemma we have 

COROLLARY 2. Let the assumptions of Lemma 1 hold with some u, J, U,, 
and s. If v E U, and s/v(x) 2 0 for all x E Aj and j = 1, . . . . M, then s/u(x) = 0 
for all x E Aj and all j = 1, . . . . M. 

We shall have frequent recourse to the above corollary with 
J= { 1, . . . . M}. As such we formalize the process. 

DEFINITION 7. Let UE U,/(O), K/Z(u)= Ux, Ai. A non-zero sequence 
s = (Sl, . . . . sM) is said to be an annihilator for u if for every function u E U(u) 
with sjv 2 0 on Ai, i = 1, . . . . M, it follows that siv = 0 on A;, i = 1, . . . . M. 
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If M(u) > n, then setting J= { 1, . . . . M}, it follows from Lemma 1 and 
Corollary 2 that there exists an annihilator for u. 

Let UE U,/(O), K/Z(u) = lJE=, Ai, and assume s= (s,, . . . . s,,.,) is an 
annihilator for U. Set 

U(u,s)= {IX UE U(u),siu>O on Ai, i= 1, . . . . M}. 

Let I" denote the set of indices in { 1, . . . . M} for which some u E U(u, s) does 
not identically vanish on Ai. 

Set 

K”=K/int u Ai . 
( > r(I’ 

Note that KS = int K”, and I” does not include indices for which si # 0. The 
important property to remember about U(u, s) is that if v E U(U) and 
siv 20 on Ai where si#O, then UE U(u, s). 

Assume that we are given a u E U,/(O) with M(u) > n. (Because of the 
induction hypothesis this is the only case of interest.) There then exists an 
annihilator s for U, and by Property A, U(u, s) # 0. Furthermore, 
u # U(u, s). Thus 1~ dim U(u, s) < n. Let d denote the minimal value for 
dim U(u, s) as we vary over all UE U,/{O} with M(u) >n, and all 
annihilators s for u. 

LEMMA 3. rf M(u) > n, s is an annihilator for u, and dim U(u, s) = d, 
then 

IKslZ(u)l <d. 

ProoJ Assume lKs/Z(u)l >d. Now K/Z(u)= UK”=, Ai and KS/Z(u)= 
Uis ,’ Ai with lZ”l > d. We apply Lemma 1 with J= I’ to obtain a non-zero 
sequence t = (t, , . . . . tiCI), with ti = 0 for i# I”, such that if u E U(u, s) and 
tiu 2 0 on Ai, all i, then tiu = 0 on Ai, all i. Change ti for i$ I” by setting 
ti=si thereon. It is easily seen that this new t is an annihilator for u and 
U(u, t) gi U( u s since ti # 0 for at least one ie I”, i.e., I’ s I”. This 9 1 
contradicts the minimality of dim U(u, s). 1 

From Lemma 3, we have that if M(u) > n and s is an annihilator for u 
with dim U(u, s) = d, then 1 KS/Z(u)1 < d. Among all such II and s, choose 
u* and s with lK’/Z(u*)l maximal. 

LEMMA 4. Let u* and s be as above. Zf u E U(u*, s), then 

IK’/Z(u* - u)l < IK’/Z(u*)l. 
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Proof. Set tl=u* -u, and assume IK*/Z(tl)l > lK*/Z(u*)l. Now u=u* 
on Ai for all i$Z’. Let Ks/Z(o)=UjEJBj. Thus K/Z(o)=(UjE,Bj)u 
(U;$,,A;). Since IK”/Z(t~)( >IKs/Z(u*)l then M(t~)>n. We define a 
non-zero annihilator t for L’ by setting t, = si for i $ I” and tj = 0 for j E J. 
Clearly t is an annihilator for u and I’ is a subset of J. Furthermore, by the 
minimality property of dim U(u*, s), it follows that U(u, t) = U(u*, s). Thus 
L4 E U(Ll, t). 

Assume I’ #J. There then exists a k E J such that every element of U( L’, t) 
vanishes identically on B,. In particular u = 0 on B,. Since u vanishes on 
the relative boundary of B,, it follows that u* vanishes on the relative 
boundary of B,. From the definition of the Ai, we see that B, must contain 
some Ai with in I’. Thus every element of U(c, t) vanishes identically on 
this Ai, in I”, which contradicts the fact that U(L), t) = U(u*, s). Hence 
I’= J. 

Because I’= J we have K’= KS and KS/Z(o)= K’/Z(u). Since 
dim U(u, t) = dim U(u*, s) = d, the maximality of IK’/Z(u* )I implies that 

IK’/Z(tl)l = IK’/Z(u)I d lKs/Z(u*)I, 

proving the lemma. 1 

Let u* and s be as above. From Property A there exists a u E U(u*) such 
that siu 2 0 on Ai, i$ I”, and u*t’ 3 0 on A,, in I”. Thus, in particular, 
LIE U(u*, s). which implies u =0 on A,, i$Z*. 

LEMMA 5. Let u*, s, and u be as above. Then for each iE I” there exists 
an c(, 2 0 such that cliu* = v on A,. 

Proof: We first show that if XE Ain Aj for some i#j, then u(x) = 0. 
Suppose to the contrary that there exists an i, j; i # j; i, j E I” (necessarily), 
and an x,, E 2, n Aj such that u(xO) # 0. Let J’~E Ai, in I’. Since 11’1 < d, 
then for 6 suffkiently small and positive, I&( JJ~)I < lu*( yi)l. From 
Lemma 4, I K’/Z(u* - &)I < I K”/Z(u*)(. We contradict this inequality by 
showing that each of the points { )I,}~~[~ and zcO are in distinct connected 
components of K”/Z( u* - SLJ). 

Let Ei=sgnu* on Ai, iEZS. Then ciu>O on Ai, FEZ”. Since 
E;(u* - &I)( ri) > 0, while EJU* - &I)(X) = -ci &I(X) 6 0 on the relative 
boundary of Ai, it follows that the relatively open connected component of 
K/Z(u* - 6v) containing yi is itself contained in Ai. In particular the 
components containing different y,‘s are distinct and disjoint from the 
boundaries of the Ais. Since x0 E aAi and (u* - &)(x0) = -&(x0) # 0, x,, 
belongs to still another component of K”/Z(u* -So), which is a contra- 
diction to Lemma 4. 

Assume now that v is not proportional to u* on A, for some Jo I”. We 
can choose CI > 0 such that CIU* - u f 0 on Ai for every i E I’, and uu* - v 
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takes both positive and negative values on Aj. Since v vanishes on the 
relative boundary of Ai for each in I”, this implies that IK’/Z(au* - v)l > 
1 K”/Z( U* )I, contradicting Lemma 4. 1 

On the basis of all of the above, we may assume that there exists a 
U*E U,/(O) with M=M(u*)>dim U(u*)=n, associated Ai, i= 1, . . . . M, 
and a VE U(u*)/(O} which satisfies the following: 

(i) v=aiu* on Ai, i= 1, . . . . M, 
(ii) ai>, and all the ai are zero except for at most some d < n. 

LEMMA 6. Theorem D holds. 

Proof. The aI)s take on the distinct values /?,, j= 1, . . . . k; 2 <k Qn. 
Assume that flj is taken on nj times, j = 1, . . . . k. Thus cJ”=, nj = M > n. 

Since fiju* - ~1 vanishes identically on some Aj, we have U* $ U(fl,u* - v). 
Thus dim 11(13,u* - a) <n and by the induction hypothesis 

M-n, = IK/Z(/?,u* - o)l <dim U@,u* - o), 

j = 1, . . . . k. This immediately implies that M cannot be infinite, since all but 
one nj is bounded by d. 

We claim that dim( fiT= 1 U(pjiu* - v)) > 0. We prove this fact by showing 
by induction that dim(n;=, U(fiju*-v))>M-(n,+ ... +n,) for 
r = 2, . . . . k. For r = k this gives the desired result. For r = 2, 

dim( U(p,u* -v) n U(fl?u* -v)) = dim( U(fi,u* - v)) + dim( U&u* -v)) 

-dim(U(/?,u*-v)+U(p,u*-v)) 

>(M-n,)+(M-n,)-n 

>M-(n,+n,) 

since dim( U(/?r u* - v) + U(bzu* - v)) < n < M. Assume the result holds for 
r- 1, 3<r<k. Then 

dim h U(/?,u*-v) 
( ) ( 

=dim ‘fi’ U(flju*-v) 
) 

+dim(U(P,u*-v)) 
j=l j=l 

-dim((‘fi’ U(B,u*-v))+(U@,u*-v))) 
j= I 

>(M--(n,+ ... +n,-,))+(M-n,)-n 

>M-(IV,+ a*. +n,) 

since dim((n;=: U(pju* - v)) + (U(/?,u* - v)) < n < M. Thus dim 
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(flT=, U(pju* - u)) > 0. But if u E fi:=, U(/?,U* - a), then it is easily seen 
that u = 0. Thus dim( nF=, U(fi,u* - 0)) = 0. This contradiction proves 
Theorem D. 1 

4. PROOF OF THEOREM E. 

In the proof of Theorem E we shall make use of the following 
Proposition. 

PROPOSITION 7. Let Kc R”, K compact, K = int. Let W = 
span(w,, . . . . wr} be an r-dimensional subspace of C(K). Assume that for all 
w E W, 1 K/Z(w)l < M, Mfinite. Then there exists a w* E W of the form 

such that if w E W satisfies 

(a) w(x) =0 a.e. on Z(w*), 
(b) w(x)(sgn w*(x)) = lw(-u)l for all XE K/Z(w*), 

then M’ = CM* for some tl> 0. 

Remark. Note that in the statement of the proposition, the coefficient 
of w, is 1. 

To prove the proposition, we use the following lemmas. We always 
assume that the conditions of the proposition hold. 

LEMMA 8. Assume g,, . . . . g, E W/(O), and int Z( gi) S$ int Z( gi+ ,), 
i= 1 , . . . . k - 1. Then g,, . . . . g, are linearly independent. 

ProojI We may assume that g,, . . . . g,- , are linearly independent and 
g,, . . . . g, are linearly dependent. Thus 

k-l 

gk= 1 Qigi. 
i=l 

On int Z( gk), C:z,’ ai gi = 0. Thus on int Z( g2), 0 = xf:: aj gi = a, g, . But 
there exists an X, E int Z( g,)/int Z( gi) for which g,(x,) #O. Thus a, = 0. 
We continue in this manner to obtain a, = ... = a&, = 0, a contradic- 
tion. 1 
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Set 

v= M’: w= M’( + i 
i 

a,wj 
i=2 I 

and 

B= (w: cw~ V for some c1# 0). 

LEMMA 9. There exists a w* E V which satisfies the following: 

Zf we V and int Z(w)zint Z(w*), then int Z(w)=int Z(w*), 
and IK/Z(w)I < IK/z(w*)I. 

Proof: Choose u, E V. If there exists a v2 E V for which 
int Z(u,) $ int Z(u,), then replace U, by u2. Continue this process. Since 
VG W and dim W= r, it follows from Lemma 8 that this process stops 
after at most r steps. Thus there exists a GE V such that if w E V, and 
int Z( w ) 2 int Z(G), then int Z( w ) = int Z(G). 

Among all w E V satisfying int Z(w) = int Z(G), choose w* E V for which 
1 K/Z( w*)I is maximal. Such a choice is possible since I K/Z( w)l is uniformly 
bounded by A4 for all w E W. 1 

We shall eventually prove that the w* E V of Lemma 9 satisfies the claim 
of the proposition. 

Let K/Z( w* ) = UF= , A i, where the Ai are relatively open, connected sets 
in K, k < M. Let si denote the sign of w* on Ai, i = 1, . . . . k. Assume, con- 
trary to the claim of the proposition, that there exists a we W/{O} for 
which w # c(u)* for any u > 0 and 

(a) w(1)=0 a.e. on Z(w*), 
(b) sjw(.~)>,O, all XEA,, i= 1, . . . . k. 

LEMMA 10. Let w and w* be as above. For all XE IinAj, 
i, jE { 1, . . . . k}; i #j, we have w(x) = 0. 

The proof of Lemma 10 follows the proof of Lemma 5. The freedom in 
the choice of 6 small and positive in the proof of Lemma 5 allows us to 
assume that IV* - 6w E I? 

Proof of Proposition 7. Let w* and w be as above and assume that 
w # aw* for any ~12 0. We divide the proof of the proposition into two 
cases. 

Case I. There exists an Ai, iE { 1, . . . . k}, as above, for which w # tlw* 
on Ai for any ~20. 
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In this case (as in the proof of Lemma 5) there exist x,, x2 E Ai and b > 0 
for which (u.* -j?w)(xi). (HP* - BM!)(x~) < 0. p may be perturbed slightly 
and the strict inequality maintained. As such we may assume that 
w* - /?WE v. If \V* - ~w vanishes identically on some Aj, je { 1, . . . . k}, then 
we contradict Lemma 9 since then int Z(M)* - @) 3 int Z(w*). Otherwise 
we contradict Lemma 9 because IK/Z(ir,* -ji’i~)I > IK/Z(w*)I. 

Case II. On each Ai, IZ!=CX,~V*, ~~20, i= 1, . . . . k. 
If all the ai are equal, then iv = CLM ,*. Thus assume that not all the a, are 

equal. Let ai, aj k 0, ai # a,. Then either ai\tp* - \V E v or ajul* - \VE v. But 
int Z(aw* - \%I) 2 int Z(M’*) for a = ai, aj. This contradicts Lemma 9. 1 

We are now in a position to prove Theorem E. 

Proof of Theorem E. Assume lK/Z( U,,)l > 2. From Theorem D we have 
IWZ(~,*)I G n. Thus K/Z(U,,) = U;=, A,, where 26 k<n, and the Ai are 
the relatively open, connected components of K/Z( U,). Set B = A,, 
C= lJf=, Ai. Let 

~nls=~m, dim V,=nz<n 

unlc’wr? dim W,=r<n. 

Now, m, r 2 1 and m + r > n. Our aim is to prove that m + r = n. This is 
equivalent to the claim of Theorem E. Assume therefore that m + r > n, and 
set I = m + r -n > 0. We shall contradict Property A. 

Let 4’: U,, + V, and 4”: U,, -+ W, be the restriction maps. Clearly 4’ and 
4” are onto hence dimkerd’=n-m=r-landdimkerd”=n-r=m-1. 
Also ker 4’ n ker 4” = { 0} so we can choose a basis u,, . . . . u,, t’,+ , , . . . . v,, 
)1’/+ L, ..., M’, for U,, such that v,, , , . . . . tt,,, span ker 4” and HI/+ , , . . . . it’,. 
span ker 4’. 

For u E U,,, set u’ = d’(u) = MI B~ V, and u” = MI c E W,. Then 

V,=span{u;, . . . . u;, o;,,, . . . . a;) 

W, = span{ u;‘,..., u;‘, $+ , , . . . . \v:I }. 

The conditions of Proposition 7 hold on B. There therefore exists a 
function u* E U, of the form 

V* =u, + i a,Si+ 2 b*oi 
r=2 i=IC I 

such that if v E U, satisfies 

(i) u(x)=0 a.e. on ZB(u*) 
(ii) u(x)(sgn v*(x)) = Iv(x)l for all xEB/ZB(v*) 

(1) 
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then there exists an a 2 0 such that (v -au* j(x) = 0 on B. In other words, 
v - au* E ker 4’. 

Set u* = u, + If=, a,?ui, and @= span{u*, )t’,+ ,, . . . . ~1~1. We now apply 
Proposition 7 to C and @‘. There exists a function HI* E it of the form 

r 
w*=u*+ 1 c*w; 

i=lfl 

such that if u’ E m satisfies 

(i) H(X) =0 a.e. on Z&w*) 
(ii) H(x)(sgn NJ*(X)) = Iw(x)l for all XE C/Zc(w*) 

(2) 

then there exists a b > 0 such that up - /?bv* = 0 on C, i.e., M’ - flw* E ker 4”. 
Set ii= u* +~yzl+, b,f+vi+Cj=,+ 1 c,~v~. Then iiI,=v*l. and 

HI c = MI* I c. As a consequence of Property A and the construction of B and 
C, there exists a function u E U,/{ 0 > for which 

(i) u(x) = 0 a.e. on Z(G) 
(ii) u(x)(sgn h(x)) > 0 on B (3) 
(iii) u(x)(sgn c(x)) 6 0 on C. 

From (1) and (3) it follows (since QI,=v*l,) that u-aii~ker#’ for 
some a > 0. Since ii E @ and ker qY < @ we have u E & Then by (2) and 
(3), u-@E ker 4” for some /?<O. Thus (a-fl)iiE ker d’+ ker 4”. Since 
u#Oandker~‘nker~“=Owehavea#Oand/or~#O,hencea-~>O.It 
follows that ii E ker 4’ + ker 4”, which contradicts our construction of ii. 1 
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