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Abstract. We detail the history and present complete proofs of the
spectral properties of totally positive kernels and matrices.

§1. Introduction

There seem to have been four central topics which historically led to the devel-
opment of the theory of total positivity. These included the variation dimin-
ishing (V D) properties, the study of which was initiated by I. J. Schoenberg
in 1930 (see [30]), and the study of Pólya frequency functions also initiated by
I. J. Schoenberg in the late 1940’s and early 1950’s (see the relevant papers
in [31]). These two topics are extensively investigated and expanded upon
in Karlin [20]. In addition we have research connected with ordinary differ-
ential equations whose Green’s function is totally positive (work started by
M. G. Krein and some of his colleagues in the mid 1930’s), and finally the
study of the spectral properties of totally positive kernels and matrices. This
last topic was actually the first studied. There are various misconceptions
relating to the history and priority of results concerning spectral properties of
totally positive kernels and matrices. The main aim of this paper is to review
this history and provide complete proofs of the main results.

There are, as we shall see, differences between the matrix and kernel cases.
These differences are not so much conceptual, but more in terms of history and
proofs. The analysis of the spectral properties of totally positive matrices is
simpler, well-understood, and easily documented. It is essentially all laid out
in the 1937 paper Gantmacher, Krein [11] (an announcement of which appears
in 1935 in Gantmacher, Krein [10]). This paper contains most of the known
results relating to spectral properties of totally positive matrices, and many
other important results concerning totally positive matrices (except that they
were then ignorant of the variation diminishing properties connected with
such matrices). This paper, in slightly expanded form, is most of Chapter II
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of the book Gantmacher, Krein [13]. A review of only the spectral properties
of totally positive matrices would not be warranted.

The more interesting case is that of the spectral properties of totally
positive continuous kernels. As is often the case, the study of this problem
predates that of the associated matrix problem. By 1918 O. D. Kellogg [24]
had proved the main spectral properties of a continuous symmetric totally
positive kernel. In 1936, F. R. Gantmacher [6] announced the analogous result
in the continuous non-symmetric case. He also indicated how the proof should
go, and it follows very essentially the same lines as the proof in the matrix
case. Surprisingly he does not reference in this paper either the announcement
which appeared in 1935 or the paper which appeared in 1937, mentioned
above, by Krein and himself which dealt with the totally analogous problems
for matrices. Both the 1935 announcement and the 1937 paper of Gantmacher
and Krein do, however, mention this paper of Gantmacher. But they only
mention it in passing and say nothing about what is in the paper. In the book
of Gantmacher, Krein [13], this paper of Gantmacher is mentioned briefly but
twice. This all seems rather odd. One can only speculate as to the possible
reasons for this neglect. The work of Kellogg and of Gantmacher on this
subject certainly deserves more recognition.

We organize this review paper as follows. In Section 2 we collect some
of the notation and basic facts which we will subsequently use. Section 3 is
devoted to the results of Kellogg concerning spectral properties of continuous
symmetric totally positive kernels. The non-symmetric case, with proofs of
the theorems of Jentzsch and Schur, is considered in Section 4. In Section 5
we quickly, and mainly for completeness, present and prove the central result
in the matrix case.

§2. Basic Facts and Notation

For a given positive integer n we set

Ip = {i = (i1, . . . , ip) : 1 ≤ i1 < · · · < ip ≤ n}

where 1 ≤ p ≤ n, and i ∈ ZZp. If B = (bij)
n
i,j=1 is an n × n matrix, then we

set for i, j ∈ Ip

B[p](i, j) = B

(

i1, . . . , ip
j1, . . . , jp

)

= det (bikj`
)
p
k,`=1 .

The pth compound matrix of B is denoted by B[p] and is defined as the
(

n
p

)

×
(

n
p

)

matrix with entries

(

B[p](i, j)
)

i,j∈Ip

where the i ∈ Ip are arranged in lexicographic order, i.e., i ≥ j (i 6= j) if the
first non-zero term in the sequence i1 − j1, . . . , ip − jp is positive.
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Assume B = CD where B, C and D are n × n matrices. The Cauchy-
Binet formula (which also holds for non-square matrices) (see e.g., Karlin [20,
p. 1]), may be written as follows. For each i, j ∈ Ip

B[p](i, j) =
∑

k∈Ip

C[p](i,k)D[p](k, j) .

Definition 2.1. An n× n matrix A is said to be totally positive (TP ) if

A[p](i, j) ≥ 0 (2.1)

for all i, j ∈ Ip, and all p = 1, . . . , n. It is said to be strictly totally positive

(STP ) if strict inequality always holds in (2.1).

We say that λ∗ ∈ C|| is an eigenvalue, and u ∈ C|| n (u 6= 0) an associated
eigenvector for A if

Au = λ∗u .

To each n × n matrix the sum total of the algebraic multiplicities of all its
eigenvalues (multiplicities of the zeros of the characteristic polynomial) is
n. Assume λ∗ is an eigenvalue with algebraic multiplicity m. There exist
at most m linearly independent eigenvectors. Moreover there exists an m-
dimensional subspace of “generalized eigenvectors”. That is, we can find
linearly independent u1, . . . ,um (whose union over all distinct eigenvalues
spans C|| n) such that

Auj =
m
∑

`=1

bj`u
` , j = 1, . . . ,m ,

where the m×m matrix (bj`)
m
j,`=1 has characteristic polynomial (λ− λ∗)m.

For a non-zero vector c = (c1, . . . , cn) ∈ IRn, we define two notions of the
number of sign changes of the vector c. These are:

S−(c) — the number of sign changes in the sequence c1, . . . , cn with zero
terms discarded.

S+(c) — the maximum number of sign changes in the sequence c1, . . . , cn
where zero terms are arbitrarily assigned values +1 and −1.

For any p vectors u1, . . . ,up ∈ C|| n we define

(

u1 ∧ · · · ∧ up
)

(i) = det
(

uj
i`

)p

j,`=1

for each i = (i1, . . . , ip) ∈ Ip. This vector (in C|| (n

p)) is called the Grassman
product or wedge product or exterior product of u1, . . . ,up. Obviously u1 ∧
· · · ∧ up = 0 if and only if the u1, . . . ,up are linearly dependent. It is also
well-known, and easily proven, that if the u1, . . . ,um are linearly independent,
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then the
(

m
p

)

vectors {uj1 ∧ · · · ∧ ujp} (1 ≤ j1 < · · · < jp ≤ m) are linearly
independent. From the Cauchy-Binet formula

A[p](u
1 ∧ · · · ∧ up) = Au1 ∧ · · · ∧ Aup .

For each p = 1, 2, . . . , we define the p-simplex

Sp = {x = (x1, . . . , xp) : 0 ≤ x1 ≤ · · · ≤ xp ≤ 1} .

For convenience we also define

S∗
p = {x = (x1, . . . , xp) : 0 ≤ x1 < · · · < xp ≤ 1} .

Given a kernel K ∈ C([0, 1] × [0, 1]), we define in an analogous fashion the
pth compound kernel K[p] ∈ C(Sp × Sp) by

K[p](x,y) = K

(

x1, . . . , xp

y1, . . . , yp

)

= det (K(xi, yj))
p
i,j=1 .

It will sometimes be convenient to consider this kernel as having been defined
on Rp × Rp where Rp = [0, 1]p.

If L,M ∈ C([0, 1] × [0, 1]) and

K(x, y) =

∫ 1

0

L(x, z)M(z, y) dz ,

then the Basic Composition Formula (a direct generalization of Cauchy-Binet)
(see Karlin [20, p. 17]) may be written as

K[p](x,y) =

∫

Sp

L[p](x, z)M[p](z,y) dz .

Definition 2.2. A kernel K ∈ C([0, 1] × [0, 1]) is said to be totally positive

(TP ) if
K[p](x,y) ≥ 0 (2.2)

for all x,y ∈ S∗
p , and all p = 1, 2, . . . . It is said to be strictly totally positive

(STP ) if strict inequality holds in (2.2) for all x,y ∈ S∗
p , and all p = 1, 2, . . . .

Aside from the pth compound kernel defined above, we also have the rth
iterated kernel Kr defined by K1(x, y) = K(x, y), and

Kr(x, y) =

∫ 1

0

Kr−1(x, z)K(z, y) dz .

(The matrix analogue of this is simply the power of a matrix.) It is a con-
sequence of the Basic Composition Formula that the operations of iteration
and compound are interchangeable, i.e., for positive integers p and r,

(K[p])r = (Kr)[p] .
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We say that λ∗ is an eigenvalue and φ (φ 6= 0) is an eigenfunction of K if

∫ 1

0

K(x, y)φ(y) dy = λ∗φ(x) .

Let d0 = 1, and

dp =
1

p!

∫

Rp

K[p](x,x) dx =

(

∫

Sp

K[p](x,x) dx

)

.

Then

D(µ) :=
∞
∑

p=0

dp(−µ)p

is called the Fredholm determinant of K. This series converges for all µ ∈ C|| ,
and thus D(µ) is an entire function of µ. D(µ∗) = 0 if and only if λ∗ = 1/µ∗ is
an eigenvalue of K. Since D(µ) is entire each zero µ∗ is of finite multiplicity,
and this multiplicity is called the algebraic multiplicity of the eigenvalue λ∗

(as a root of the Fredholm determinant of K). Assume λ∗ is an eigenvalue
with algebraic multiplicity m. The number of linearly independent eigenfunc-
tions (the geometric multiplicity) with eigenvalue λ∗ is at most m. Moreover
there does exist an m-dimensional subspace of “generalized eigenfunctions”.
That is, there exist m (and no more than m) linearly independent functions
φ1, . . . , φm such that

∫ 1

0

K(x, y)φi(y) dy =

m
∑

j=1

bijφj(x) , i = 1, . . . ,m,

where the m ×m matrix (bij)
m
i,j=1 has characteristic polynomial (λ∗ − λ)m.

(For a review of this theory, see e.g., Goursat [16] or Smithies [33].)
If λ0, λ1, . . . , are all the eigenvalues of K, listed to their algebraic multi-

plicity as roots of the Fredholm determinant of K, then

sr =

∫ 1

0

Kr(x, x) dx =
∞
∑

i=0

λr
i ,

which converges for r ≥ 2.
For f ∈ C[0, 1] , we let Z(f) count the number of distinct zeros of f on

[0, 1]. We will use Z(0,1)(f) to denote the number of distinct zeros on (0, 1).
S(f) and S(0,1)(f) will denote the number of sign changes of f in [0, 1] and
(0, 1), respectively.

For any p functions ψ1, . . . , ψp ∈ C[0, 1] we define

(ψ1 ∧ · · · ∧ ψp) (x) = det (ψi(xj))
p
i,j=1

for x ∈ Sp (or Rp). This is called the Grassman product or wedge product
or exterior product of ψ1, . . . , ψp. Obviously ψ1 ∧ · · · ∧ ψp = 0 if and only
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if the ψ1, . . . , ψp are linearly dependent. It is also well-known, and easily
proven, that if the ψ1, . . . , ψm are linearly independent, then the

(

m
p

)

functions

{ψj1 ∧ · · · ∧ ψjp
} (1 ≤ j1 < · · · < jp ≤ m) are linearly independent.

From the Basic Composition Formula

∫

Sp

K[p](x,y) (ψ1 ∧ · · · ∧ ψp) (y) dy = ((Kψ1) ∧ · · · ∧ (Kψp)) (x) ,

where

(Kψ)(x) =

∫ 1

0

K(x, y)ψ(y) dy .

§3. The Beginning: O. D. Kellogg

In this section we will try to review some of the contributions of O. D. Kellogg
to the development of the spectral theory of totally positive kernels. Oliver
Dimon Kellogg (1878–1932) was an American who obtained his Ph. D. from
Göttingen in 1903 under the supervision of D. Hilbert. (He was Hilbert’s
first Ph. D. student to do a thesis on integral equations.) In 1905 Kellogg
accepted a position at the University of Missouri. He moved to Harvard
in 1919, where he remained until his death (see G. D. Birkhoff [3]). He is
best known for his work in potential theory, and his book Foundations of
Potential Theory is still in print today. Kellogg wrote two papers relevant to
the topic under discussion, Kellogg [23], and [24]. The first has to do with
orthogonal sets of functions, while the second deals with integral equations.
A third paper, Kellogg [25], is devoted to the related topic of Sturm-Liouville
ordinary differential equations. We will not discuss this third paper here.

The first paper, Kellogg [23], is short (5 pages) and simple. I quote the
first three sentences from the paper. The sets of orthogonal functions which

occur in mathematical physics have, in general, the property that each changes

sign in the interior of the interval on which they are orthogonal once more

than its predecessor. So universal is this property that such sets are frequently

referred to as sets of “oscillating functions.” The question arises, is this

property of oscillation inherent in that of orthogonality? Kellogg then shows,
by simple example, that the “oscillating” property does not solely depend
on the orthogonality. Moreover he then introduces an additional condition
(which he later terms Property (D) in Kellogg [24]) which is the following.

Definition 3.1. We say that the real continuous functions φ0, . . . , φn, . . . ,
orthogonal on (0, 1) satisfy Property (D) if for every n = 0, 1, 2, . . . , and any
0 < x0 < · · · < xn < 1 we have

det(φi(xj))
n
i,j=0 > 0 .

In other words, the {φi} are orthogonal and constitute what we today call
a CT -system (complete Chebyshev system). Kellogg then goes on to prove,
for such functions, a series of properties which we assemble together.
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Proposition 3.1. Let {φi} be an orthogonal set of continuous functions on
(0, 1) satisfying Property (D), and set

Φn = span{φ0, . . . , φn} .

Then:
1) Given any n+1 points 0 < x0 < x1 < · · · < xn < 1 and data c0, c1, . . . , cn,

there exists a φ ∈ Φn satisfying φ(xj) = cj , j = 0, . . . , n.
2) For each φ ∈ Φn\{0}, Z(φ) ≤ n.
3) If φ ∈ Φn\{0} and Z(φ) = n, then φ changes sign at each of its zeros.
4) If ψ ∈ C(0, 1) is orthogonal to Φn, then ψ has at least n+1 sign changes.
5) For every choice of non-trivial (am, . . . , an)

m ≤ S(0,1)(

n
∑

i=m

aiφi) ≤ Z(0,1)(

n
∑

i=m

aiφi) ≤ n .

6) The zeros of φn−1 and φn strictly interlace.

We do not prove this result here. The proof is fairly simple, and we
will eventually prove a slightly more general result. The properties listed in
Proposition 3.1 are familiar. They are (aside from the orthogonality) prop-
erties associated with eigenfunctions of an integral equation whose kernel is
strictly totally positive.

Kellogg, in fact, ends this paper by expressing his hope of finding con-
ditions on the kernel of an integral equation so that the eigenfunctions will
satisfy Property (D). In other words he seems to have known where he was
going, because this hope is fulfilled in Kellogg [24]. The main result of that
paper is the following result, which we precede with a definition.

Definition 3.2. Let K be real, continuous and symmetric on [0, 1] × [0, 1].
We say that K satisfies Property (K) if

a) K

(

x0, x1, . . . , xn

y0, y1, . . . , yn

)

≥ 0, n = 0, 1, . . . ,

for any 0 < x0 < x1 < · · · < xn < 1, and 0 < y0 < y1 < · · · < yn < 1.

b) K

(

x0, x1, . . . , xn

x0, x1, . . . , xn

)

> 0, n = 0, 1, . . . ,

for any 0 < x0 < x1 < · · · < xn < 1.

Theorem 3.2. (Kellogg [24]) Assume K satisfies Property (K). Then the
eigenvalues of K are positive and simple, and for each n = 0, 1, . . . , the n+ 1
eigenfunctions associated with the largest n + 1 eigenvalues of K may be
chosen to satisfy Property (D).

Kellogg’s proof of Theorem 3.2 is different from that which we will give
in Section 4, but has many of the same ideas. As such we will present much of
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it in detail. The kernel K is continuous, real, symmetric and positive definite
(from (b)). Since K is symmetric, the algebraic and geometric multiplicity
of each eigenvalue is the same. Since K is positive definite each eigenvalue is
positive. We list them to their multiplicity and order them by

λ0 ≥ λ1 ≥ · · · > 0 .

To each λi we may choose an eigenfunction φi such that the {φi} are or-
thonormal. By Mercer’s Theorem

K(x, y) =

∞
∑

i=0

λiφi(x)φi(y)

where the series converges absolutely and uniformly on [0, 1] × [0, 1]. In this
case we also have that the series

s1 =

∫ 1

0

K(x, x) dx =

∞
∑

i=0

λi ,

converges.
We divide the “proof” of Theorem 3.2 into a series of steps.

Proposition 3.3. The largest eigenvalue λ0 of K is simple, and φ0 is strictly
of one sign on (0, 1).

Proof: Assume (without loss of generality) that 1 = λ0 = λ1 = · · · = λm >
λm+1 ≥ · · · . Taking the limit of

Kr(x, y) =
∞
∑

i=0

λr
iφi(x)φi(y) ,

as r → ∞, we obtain

F (x, y) =

m
∑

i=0

φi(x)φi(y) (3.1)

where F is continuous, symmetric, and positive on (0, 1)× (0, 1), and is easily
seen to satisfy

F (x, y) =

∫ 1

0

F (x, z)F (y, z) dz . (3.2)

Kellogg now distinguishes between three possible cases which follow from
(3.2), and from the fact that F is symmetric and strictly positive on (0, 1) ×
(0, 1). In the first case, F is strictly positive on all of the boundary of the
unit square. In the second case, F vanishes on all of the boundary. In the
third case, F vanishes on two symmetric sides of the boundary, but is strictly
positive on the interior of the other two. As in Kellogg [24], we will present
proofs in the first two cases only. The third case is proven by a similar method.
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Assume F is strictly positive on [0, 1] × [0, 1]. For any fixed point y ∈
[0, 1], the function ψ0(x) = F (x, y) is a continuous eigenfunction of F , with
eigenvalue λ = 1 (see (3.2)), which is strictly positive on [0, 1]. We can thus
redefine the {φ0, . . . , φm} so that φ0 is strictly positive on [0, 1]. Assume
m ≥ 1, and let c be any constant such that cφ0−φ1 ≥ 0 on [0, 1], but vanishes
at some point z therein. Then

0 = cφ0(z) − φ1(z) =

∫ 1

0

F (z, y) [cφ0(y) − φ1(y)]dy .

This is a contradiction, since F is strictly positive and cφ0 − φ1 ≥ 0 and not
identically zero. Thus m = 0.

Let us now assume that F vanishes on all of the boundary of the unit
square. By arguing as above we may assume that φ0 is strictly positive on
(0, 1). It is easily seen that all eigenfunctions must vanish at 0 and at 1. We
will prove that we can still apply the method of proof used above. Since F is
continuous and vanishes on the boundary we have, for given ε > 0, a δ > 0
such that 0 ≤ F (x, y) < ε for all x ∈ [0, δ]∪ [1− δ, 1] and all y ∈ [0, 1] (and by
symmetry for all y ∈ [0, δ] ∪ [1 − δ, 1] and all x ∈ [0, 1]). Choose ε and δ such
that 2δε < 1.

For x ∈ [0, δ] ∪ [1 − δ, 1],

|φi(x)| =

∣

∣

∣

∣

∫ 1

0

F (x, y)φi(y) dy

∣

∣

∣

∣

≤ ε

∫ 1

0

|φi(y)|dy ≤ ε

(∫ 1

0

|φi(y)|
2dy

)1/2

≤ ε .

Choose c so that cφ0−φ1 ≥ 0 on [δ, 1−δ], but vanishes at some point therein.
We claim that cφ0−φ1 ≥ 0 on all of [0, 1]. Since φ0 ≥ 0, we have cφ0−φ1 ≥ −ε
on [0, 1]. Now for x ∈ [0, δ] ∪ [1 − δ, 1]

(cφ0 − φ1)(x) =

∫ 1

0

F (x, y)(cφ0 − φ1)(y) dy

≥

∫ δ

0

F (x, y)(cφ0 − φ1)(y) dy +

∫ 1

1−δ

F (x, y)(cφ0 − φ1)(y) dy

≥

∫ δ

0

ε(−ε)dy +

∫ 1

1−δ

ε(−ε)dy = −2δε2 .

Repeating this k times, each time using the newer lower estimate for cφ0 −φ1

on [0, δ]∪ [1− δ, 1], we get that (cφ0 − φ1)(x) ≥ −(2δε)kε on [0, δ]∪ [1− δ, 1].
Since this is true for every k we have that cφ0 − φ1 ≥ 0 on all of [0, 1], and so
we may apply the previous method of proof to obtain m = 0.

It is important to note that the above argument can easily be adapted to
the case of a real continuous, symmetric function of many variables. We will
use this fact.
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The pth compound kernel K[p](x,y), defined on Rp × Rp, is continuous,
symmetric (in x and y), and anti-symmetric within each of its variables x and
y. That is, interchanging the order of xi and xi+1 is the same as multiplying
by −1. Note that by assumption

K[p](x,y) ≥ 0

for all (x,y) ∈ Sp × Sp, and

K[p](x,x) > 0

for all x ∈ intSp. Furthermore, if ψ is anti-symmetric then

(Kψ)(x) =

∫

Rp

K[p](x,y)ψ(y) dy = p!

∫

Sp

K[p](x,y)ψ(y) dy . (3.3)

In the next two lemmas we identify all the eigenvalues and eigenfunctions
of K[p].

Lemma 3.4. Let {λi}
∞
0 and {φi}

∞
0 be the eigenvalues and eigenfunctions,

respectively, of K, as previously defined. Then p!λi1 · · ·λip
is an eigenvalue

of K[p] on Rp ×Rp, with associated eigenfunction φi1 ∧ · · · ∧ φip
, for each set

of integers 0 ≤ i1 < · · · < ip.

Proof: From (3.3),

∫

Rp

K[p](x,y)
(

φi1 ∧ · · · ∧ φip

)

(y) dy = p!

∫

Sp

K[p](x,y)
(

φi1 ∧ · · · ∧ φip

)

(y) dy.

From the Basic Composition Formula,

p!

∫

Sp

K[p](x,y)
(

φi1 ∧ · · · ∧ φip

)

(y) dy = p!
(

(Kφi1) ∧ · · · ∧ (Kφip
)
)

(x)

= p!λi1 · · ·λip

(

φi1 ∧ · · · ∧ φip

)

(x).

We only consider distinct i1, . . . , ip since if they are not distinct, then
φi1 ∧ · · · ∧ φip

= 0.

Lemma 3.5. The only eigenvalues and eigenfunctions of K[p] on Rp×Rp are
those given in Lemma 3.4.

Proof: Recall that

dp =
1

p!

∫

Rp

K[p](x,x) dx .

From the Fredholm theory of integral equations

p! dp =
∞
∑

j=0

νj ,
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where the {νj}
∞
0 are all the eigenvalues of K[p] listed to their algebraic mul-

tiplicities as root of the Fredholm determinant of K[p]. K[p] is continuous,
symmetric and positive definite. As such all its eigenvalues are positive. The
lemma is therefore proven if we can show that

dp =
∑

0≤i1<···<ip

λi1 · · ·λip
.

(It is not trivial to see that K[p] is positive definite. However it is true. A
simple way of getting around the necessity of showing this fact is to consider
(K2)[p], i.e., replace K by its second iterate K2. Since (K2)[p] = (K[p])2, we
have for every ψ ∈ C(Rp)

∫

Rp

∫

Rp

(K2)[p](x,y)ψ(x)ψ(y) dx dy =

∫

Rp

(

∫

Rp

K[p](x, z)ψ(x) dx

)2

dz ≥ 0 ,

and thus (K2)[p] is positive definite. We then obtain the result for (K2)[p],
which in turn implies the result for K[p]. However, for ease of exposition, we
will work with K[p].)

Recall that sr =
∑∞

i=0 λ
r
i , r = 1, 2, . . . . K[p](x,x) is a determinant which

is a sum of factors of the form K(x1, xj1) · · ·K(xp, xjp
) with appropriate sign.

Collecting terms of the form K(x1, x`1)K(x`1 , x`2) · · ·K(x`r
, x1) with distinct

1, `1, . . . , `r, and all possible r, and integrating, it may be shown that dp

satisfies the recurrence formula

pdp =

p
∑

r=1

(−1)r−1srdp−r

(see Goursat [16, p. 114]) where d0 = 1. The unique solution to the above set
of equations (with d0 = 1) is

dp =
∑

0≤i1<···<ip

λi1 · · ·λip
.

This proves the result.

We now have all the tools needed to finish the proof of Theorem 3.2.

Proof of Theorem 3.2: For each p we have from Lemmas 3.4 and 3.5 that
all the eigenvalues and eigenfunctions of the integral equation

∫

Sp

K[p](x,y)φ(y) dy = λφ(x)

are {λi1 · · ·λip
} and {φi1 ∧ · · · ∧ φip

}, respectively, for 0 ≤ i1 < · · · < ip.
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From the proof of Proposition 3.3 applied to K[p], it may be deduced that
the largest eigenvalue of K[p] is simple, and the associated eigenfunction may
be chosen to be strictly positive on the interior of its domain of definition.

Since
λ0 ≥ λ1 ≥ · · · > 0

this immediately implies that

λ0λ1 · · ·λp−1 > λ0λ1 · · ·λp−2λp

for each p = 1, 2, . . . , and thus

λ0 > λ1 > · · · > λp > · · ·

i.e., the eigenvalues of K are all simple. The simplicity of the eigenvalue
λ0λ1 · · ·λp−1 of K[p] implies that the associated eigenfunction, namely φ0 ∧
· · ·∧φp−1, is uniquely determined up to multiplication by a nonzero constant.
Multiplying φp−1 by an appropriate constant we may therefore choose the
φp−1 so that (φ0 ∧ · · · ∧ φp−1)(x) > 0 for all x ∈ intSp, p = 1, 2, . . . . This is
exactly Property (D).

The above theorem is proven only for symmetric kernels. However it
contains the main ideas used in the proof of almost all the analogous results.
Firstly, prove that for a suitably positive kernel the largest eigenvalue is pos-
itive and simple and the associated eigenfunction may be chosen positive.
Secondly, use K[p] to obtain results for all eigenvalues and eigenfunctions.
The two general results needed in this context had essentially been proven
about a decade before the papers of Kellogg. They are theorems of Jentzsch
(a generalization thereof is actually needed) and Schur. These theorems gener-
alize the analogous results for matrices by Perron and Kronecker. We discuss
these results in the next sections.

Gantmacher and Krein, in their book Gantmacher, Krein [13], present
an analogous proof of the above result for a continuous, symmetric kernel
K (referencing Kellogg). Their proof follows much the same pattern. They
prove Proposition 3.3 by considering the maximum of (Kφ, φ) over all φ of
norm 1. This maximum is attained by an eigenfunction of the eigenvalue λ0.
They then prove the various properties from this fact (see the next section).
They also prove Lemma 3.5 by a different method. They return to the Mercer
expansion

K(x, y) =

∞
∑

i=0

λiφi(x)φi(y)

and show directly (essentially by a generalization of the Cauchy-Binet for-
mula) that

K[p](x,y) =
∑

0≤i1<···<ip

λi1 · · ·λip

(

φi1 ∧ · · · ∧ φip

)

(x)
(

φi1 ∧ · · · ∧ φip

)

(y) .
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Before ending this section and Kellogg’s contribution to total positivity,
let us note that Kellogg also explains, in [24], how he came to consider kernels
satisfying Property (K). Since we find this of interest, we will briefly explain
what he does. Kellogg was interested in determining necessary and sufficient
conditions on a (symmetric) kernel K so that its eigenfunctions satisfy Prop-
erty (D). To exactly determine such conditions is all but impossible. However
he noted a common property of kernels whose eigenfunctions satisfy Property
(D), and that is that

∫ 1

0

K(x, y)





n
∑

j=0

ajφj(y)



dy

has, and I quote verbatim, no more sign changes in the interior of (0, 1)
than

∑n
j=0 ajφj(x), and in many cases, this property holds for any continuous

function f , (see Kellogg [24, p. 146]). Kellogg then assumes that K has the
property that

S(0,1)

(
∫ 1

0

K(·, y)f(y) dy

)

≤ S(0,1)(f)

for any f ∈ C[0, 1], and then argues as follows. Choose 0 < y0 < y1 < · · · <
yn < 1. It is not difficult to see that the above variation-diminishing property
implies (via a limiting argument) that

n
∑

j=0

cjK(· , yj)

has at most n sign changes in (0, 1). (Choose f with support in the neighbor-
hoods of the yj, and approximate the appropriate linear combinations of the
point measures at the yj .) Thus given any n+ 2 points 0 < x0 < x1 < · · · <

xn+1 < 1, the (n+2)× (n+1) matrix (K(xi, yj))
n+1
i=0

n
j=0, as an operator from

IRn+1 to IRn+2, does not include in its range any point of the interior of the
quadrant containing a = (1,−1, 1, . . . , (−1)n+1). This may be seen to imply
that no two of the n+ 2 numbers

det (K(xi, yj))
n+1
i=0

i6=r

n
j=0

can have strictly opposite sign. Since K is symmetric, we can interchange the
role of the {xi} and the {yj}. Assuming some “irreducibility” of the kernel
(for example, assuming condition (b) of Property (K)), it then follows that
for some εn ∈ {−1, 1} we have

εnK

(

x0, x1, . . . , xn

y0, y1, . . . , yn

)

≥ 0

for all 0 < x0 < x1 < · · · < xn < 1 and 0 < y0 < y1 < · · · < yn < 1.
This is far from a full, correct proof. However Kellogg is, in effect, saying

that he was motivated by the fact that if the symmetric kernel K is variation
diminishing (V D), then it is sign regular (SR).
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§4. The Kernel Case

In this section we present a full proof of the theorem concerning spectral prop-
erties of the integral equation with totally positive kernel. (We will demand
more than total positivity but less than strict total positivity.) This theorem
was announced in Gantmacher [16], with indications as to a proof.

Theorem 4.1. Let K ∈ C([0, 1]× [0, 1]) satisfy

K

(

x1, . . . , xp

y1, . . . , yp

)

≥ 0, p = 1, . . . ,

for any 0 ≤ x1 < · · · < xp ≤ 1, and 0 ≤ y1 < · · · < yp ≤ 1, and

K

(

x1, . . . , xp

x1, . . . , xp

)

> 0, p = 1, . . . ,

for any 0 ≤ x1 < · · · < xp ≤ 1. Then every eigenvalue of the integral equation

∫ 1

0

K(x, y)φ(y) dy = λφ(x)

(as a root of the Fredholm determinant of K) is positive and simple. Let

λ0 > λ1 > · · · > λp > · · · > 0

denote these eigenvalues, and

φ0, φ1, . . .

the associated (real) eigenfunctions. Then
1) for every choice of non-trivial (am, . . . , an)

m ≤ S

(

n
∑

i=m

aiφi

)

≤ Z

(

n
∑

i=m

aiφi

)

≤ n ,

2) the zeros of φn and φn+1 strictly interlace.

Remark. Gantmacher states this result with the second condition holding
only over 0 < x1 < · · · < xp < 1 and thus the zero counting in (1) is also
restricted to (0, 1). There is no difference in the proof in these two cases.

We should like to say a few words about Gantmacher before embarking
upon the proof. Feliks Ruvimovich Gantmacher (1908–1964) was born and
studied in Odessa. In 1934 he moved to Moscow where he resided until his
death. Gantmacher is, of course, known for his excellent book The Theory of
Matrices [7], and his book with Krein [13]. He was also one of the organiz-
ers and editors of the journal Uspekhi Mat. Nauk (Russian Math. Surveys).
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Gantmacher was instrumental in the establishment and organization of the
well-known Moscow Physico-Technical Institute, where from 1953 until his
death he headed the Department of Theoretical Applied Mathematics. An
obituary on Gantmacher may be found in [8].

The proof of Theorem 4.1 is rather lengthy. We will develop two main
preliminary results. The first is Jentzsch’s Theorem, which is a generalization
of Perron’s Theorem (Theorem 5.3). Jentzsch [17] proved this theorem in the
case of a continuous kernel which is strictly positive on its domain. We have
written the statement of Theorem 4.2 in the form in which we will use it.
Because the kernel is not strictly positive on all of its domain of definition,
Jentzsch’s original proof must be modified. This can be done. However we
have taken here a different approach which takes ideas from Anselone, Lee [2].
Recall that

S∗
p = {x = (x1, . . . , xp) : 0 ≤ x1 < · · · < xp ≤ 1} ,

and Sp = S∗
p is the closed p-dimensional simplex.

Theorem 4.2. Suppose L ∈ C(Sp × Sp) satisfies
a) L ≥ 0 on Sp × Sp

b) L(x,x) > 0 for all x ∈ S∗
p .

Then L has an eigenvalue λ∗ which is positive and simple, as a root of the
Fredholm determinant of L, and strictly larger in modulus than all other
eigenvalues of L. Furthermore, the eigenfunction φ∗ associated with λ∗ may
be chosen to be strictly positive on S∗

p .

Proof: For each positive integer n, set

Bn = {x : x ∈ Sp, d(x, ∂Sp) ≥ 1/n} ,

where d(x, ∂Sp) is some measure of the distance from x to the boundary of Sp.
We first restrict our attention to the eigenvalue problem on Bn. We assume
n is chosen sufficiently large such that Bn 6= ∅. Since L(x,x) > 0 for x ∈ Bn,
it follows that

∫

Bn

L(x,y) dy ≥ c > 0

for some constant c and all x ∈ Bn. Thus there exists for any function
φ ∈ C(Bn) with φ > 0 on Bn, some µ > 0 for which

∫

Bn

L(x,y)φ(y) dy ≥ µφ(x)

for all x ∈ Bn. Let λ∗n be the supremum over all such µ as we vary over all
φ > 0 on Bn. That is,

λ∗n = sup{λ :

∫

Bn

L(x,y)φ(y) dy ≥ λφ(x), φ ∈ C(Bn), φ > 0} .
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Let µm ↑ λ∗n, and φm ∈ C(Bn) satisfy φm > 0 on Bn and

∫

Bn

L(x,y)φm(y) dy ≥ µmφm(x) .

Define

ψm(x) =

∫

Bn

L(x,y)φm(y) dy ,

for x ∈ Bn. Then ψm ∈ C(Bn) satisfies ψm > 0 on Bn and

∫

Bn

L(x,y)ψm(y) dy ≥ µmψm(x) .

Normalize ψm to have (uniform) norm equal to one. Since the linear operator
L is completely continuous, as an operator from C(Bn) to C(Bn), there exists
a subsequence of the ψm which converges to some ζ∗ ∈ C(Bn) satisfying
ζ∗ ≥ 0 (ζ∗ 6= 0), and

∫

Bn

L(x,y)ζ∗(y) dy ≥ λ∗nζ
∗(x) .

Let ζ0 = ζ∗, and set

ζr(x) =

∫

Bn

L(x,y)ζr−1(y) dy , r = 1, 2, . . . .

A simple calculation shows that

ζr(x) =

∫

Bn

Lr(x,y)ζ∗(y) dy ,

where Lr is the rth iterate of L (see Section 2) on Bn. For fixed n, there
exists a δ > 0 such that for all x,y ∈ Bn with d(x,y) < δ we have

L(x,y) > 0 .

Thus if x,y ∈ Bn and d(x,y) < 2δ then we have

L2(x,y) > 0 ,

while if x,y ∈ Bn and d(x,y) < rδ then

Lr(x,y) > 0 .

As such for some m, depending on n,

Lr(x,y) > 0
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for all x,y ∈ Bn and all r ≥ m. Let r ≥ m. Note that

∫

Bn

L(x,y)ζr(y) dy ≥ λ∗nζr(x) , (4.1)

for all x ∈ Bn. By the definition of λ∗n there must be equality in (4.1) for
some x∗ ∈ Bn. Therefore

0 =

∫

Bn

Lr(x
∗,y)

[
∫

Bn

L(y, z)ζ∗(z) dz− λ∗nζ
∗(y)

]

dy .

Since Lr is strictly positive on Bn × Bn and the value within the brackets is
non-negative, we must in fact have

∫

Bn

L(x,y)ζ∗(y) dy = λ∗nζ
∗(x) .

for all x ∈ Bn. Thus in addition ζ∗ > 0 on Bn.
Set

η(x) =

{

ζ∗(x), x ∈ Bn

0, x /∈ Bn

and

φ(x) =

∫

Bn+1

L(x,y)η(y) dy .

Then φ ∈ C(Bn+1), φ ≥ 0 (φ 6= 0), and

∫

Bn+1

L(x,y)φ(y) dy ≥ λ∗nφ(x) ,

for all x ∈ Bn+1. This simple fact shows that λ∗n is a nondecreasing sequence
of n. Furthermore λ∗n tends to

λ∗ = sup{λ :

∫

Sp

L(x,y)φ(y) dy ≥ λφ(x), φ ∈ C(Sp), φ ≥ 0, (φ 6= 0)} .

Let ζ∗n be the ζ∗ suitably normalized. Since L is completely continuous there
exists a subsequence of the ζ∗n which converges to a φ∗ ∈ C(Sp) satisfying
φ∗ ≥ 0 (φ∗ 6= 0) on Sp, and

∫

Sp

L(x,y)φ∗(y) dy = λ∗φ∗(x) .

Since L(x,x) > 0 for x ∈ S∗
p , it follows that φ∗ > 0 on S∗

p . λ∗ is a positive
eigenvalue with associated eigenfunction positive on S∗

p . It remains to prove
the remaining properties.
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If λ is any other eigenvalue of L with associated eigenfunction ψ, then

λψ(x) =

∫

Sp

L(x,y)ψ(y) dy .

Thus

|λ| |ψ(x)| ≤

∫

Sp

L(x,y)|ψ(y)|dy ,

which implies, by the extremal property of λ∗, that |λ| ≤ λ∗.
From this fact, and by the same arguments as above, there exists a left

eigenfunction ϕ∗ associated with the eigenvalue λ∗. That is, a function ϕ∗ ∈
C(Sp) which is strictly positive on S∗

p and satisfies

λ∗ϕ∗(y) =

∫

Sp

ϕ∗(x)L(x,y) dx .

Assume λ is an eigenvalue with associated eigenfunction ψ and |λ| = λ∗. Then

λ∗
∫

Sp

ϕ∗(x)|ψ(x)|dx =

∫

Sp

ϕ∗(x)|λ| |ψ(x)|dx

≤

∫

Sp

ϕ∗(x)

[

∫

Sp

L(x,y)|ψ(y)|dy

]

dx =

∫

Sp

[

∫

Sp

ϕ∗(x)L(x,y) dx

]

|ψ(y)|dy

= λ∗
∫

Sp

ϕ∗(y)|ψ(y)|dy .

Since ϕ∗ is strictly positive on S∗
p we must have

λ∗|ψ(x)| =

∫

Sp

L(x,y)|ψ(y)|dy ,

for all x ∈ Sp. This together with

λψ(x) =

∫

Sp

L(x,y)ψ(y) dy .

implies that there exists a constant γ, |γ| = 1, such that

|ψ(x)| = γψ(x)

for all x ∈ Sp. Thus if λ is an eigenvalue with |λ| = λ∗, then λ = λ∗, and
the associated eigenfunction may be assumed to be positive on S∗

p . This also
implies that the geometric multiplicity of λ∗ is one, for otherwise there exists
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an eigenfunction with at least one change of sign. If the algebraic multiplicity
is not one, then there exists a φ∗∗ ∈ C(Sp) such that

∫

Sp

L(x,y)φ∗∗(y) dy = λ∗φ∗∗(x) + αφ∗(x) ,

for some α 6= 0. Now

λ∗
∫

Sp

ϕ∗(y)φ∗∗(y) dy =

∫

Sp

[

∫

Sp

ϕ∗(x)L(x,y)dx

]

φ∗∗(y) dy

=

∫

Sp

ϕ∗(x)

[

∫

Sp

L(x,y)φ∗∗(y) dy

]

dx =

∫

Sp

ϕ∗(x) (λ∗φ∗∗(x) + αφ∗(x)) dx

= λ∗
∫

Sp

ϕ∗(x)φ∗∗(x) dx + α

∫

Sp

ϕ∗(x)φ∗(x) dx .

This implies that α
∫

Sp
ϕ∗(x)φ∗(x) dx = 0. However, α 6= 0, and ϕ∗ φ∗ > 0

on all of S∗
p , which is impossible. This proves the theorem.

The other preliminary result which we will use is due to Schur, generalizes
Kronecker’s Theorem (Theorem 5.4), and may be found in Schur [32]. It is
given in Theorem 4.4. To prove it we will use this next result, which is of
independent interest. In both Theorem 4.3 and Theorem 4.4 we are following
the proof of Schur.

Let M ∈ C ([0, 1]p × [0, 1]p). Associated with each eigenvalue λ∗ of M
is its algebraic multiplicity m (i.e., the multiplicity of the zero 1/λ∗ of the
Fredholm determinant of M). There exist m (and no more than m) linearly
independent functions ψ1, . . . , ψm (generalized eigenfunctions) such that

∫

[0,1]p
M(x,y)ψi(y) dy =

m
∑

j=1

bijψj(x) , i = 1, . . . ,m,

and det(bij − λδij)
m
i,j=1 = (λ∗ − λ)m. We will call such a system of functions

a complete invariant system for the eigenvalue λ∗.
A countable (or finite) system of functions {φi}i=1 is said to be a complete

system of principal functions for M if
1) Each φi ∈ C([0, 1]p), and the φ1, . . . , φk are linearly independent for each

finite k.
2) For each i,

∫

[0,1]p
M(x,y)φi(y) dy =

i
∑

j=1

aijφj(x) , i = 1, 2 . . . ,

with aii 6= 0.
3) If ψ1, . . . , ψm is a complete invariant system for an eigenvalue λ∗, then

each ψj is a linear combination of a finite number of the {φi}i=1.

We should think of a complete system of principal functions for M as a con-
venient form for dealing with the eigenvalues and (generalized) eigenfunctions
of M . The eigenvalue associated with each φi is simply aii.

The first result to be proved has to do with tensor products.
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Theorem 4.3. Let Lk ∈ C ([0, 1]× [0, 1]), k = 1, . . . , p, and

L(x,y) =

p
∏

k=1

Lk(xk, yk)

where x = (x1, . . . , xp),y = (y1, . . . , yp) ∈ [0, 1]p. Assume {φik}i=1 are, for
each k ∈ {1, . . . , p}, a complete system of principal functions for Lk. Then
{φi11 · · ·φipp}i1,...,ip=1 is a complete system of principal functions for L.

Remark. We use the expression φi11 · · ·φipp for the function Φ(x1, . . . , xp) =
φi11(x1) · · ·φipp(xp).

Proof: We wish to prove that the {φi11 · · ·φipp} are a complete system of
principal functions for L. We first order them, and then prove that they
satisfy the three properties in the definition of such a system.

We order the i = (i1, . . . , ip) ∈ INp in the usual fashion. We say i > j if
|i| > |j| (|i| = i1 + · · · + ip) or if |i| = |j| and the first non-zero term in the
sequence i1 − j1, . . . , ip − jp is positive.

Each of the φi11 · · ·φipp ∈ C([0, 1]p) and it is easily seem that any finite
number of them is linearly independent. Thus the first property holds. To
prove the second property, recall that for each k ∈ {1, . . . , p} and i = 1, 2, . . . ,

∫

[0,1]

Lk(x, y)φik(y) dy =
i
∑

j=1

a
(k)
ij φjk(x) ,

where a
(k)
ii = λik 6= 0. Thus

∫

[0,1]p
L(x,y)(φi11 · · ·φipp)(y) dy =

p
∏

k=1

[

∫

[0,1]

Lk(xk, yk)φikk(yk) dyk

]

=

p
∏

k=1





ik
∑

j=1

a
(k)
ikjφjk(xk)





=
∑

j≤i

Ai,j (φj11 · · ·φjpp)(x) ,

where Ai,i =
∏p

k=1 a
(k)
ikk = λi11 · · ·λipp.

The above simply implies that what we thought were eigenvalues and
eigenfunctions are, in fact, eigenvalues and eigenfunctions. The third prop-
erty is the more interesting. It says that there are no others. Let λ∗ be an
eigenvalue of L and ψ1, . . . , ψm an associated complete invariant system. Thus

∫

[0,1]p
L(x,y)ψs(y) dy =

m
∑

t=1

bstψt(x) , s = 1, . . . ,m ,
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and det(bst − λδst)
m
s,t=1 = (λ∗ − λ)m. Set

ζs(x1, . . . , xp) =

∫

[0,1]p−1

L2(x2, y2) · · ·Lp(xp, yp)ψs(x1, y2, . . . , yp) dy2 · · ·dyp .

Thus for each s = 1, . . . ,m,

∫

[0,1]

L1(x1, y1)ζs(y1, x2, . . . , xp) dy1 =
m
∑

t=1

bstψt(x1, x2, . . . , xp) . (4.2)

Multiplying both sides by L2(·, x2) · · ·Lp(·, xp) and integrating with respect
to x2, . . . , xp, we see that

∫

[0,1]p
L(x,y)ζs(y) dy =

m
∑

t=1

bstζt(x) , s = 1, . . . ,m .

This simply says that ζ1, . . . , ζm is another complete invariant system for the
eigenvalue λ∗ of L. (It follows from (4.2) that the ζ1, . . . , ζm are linearly
independent.) Thus each ζs is a linear combination of the ψ1, . . . , ψm, and
substituting in (4.2) we obtain

∫

[0,1]

L1(x1, y1)ψs(y1, x2, . . . , xp) dy1 =

m
∑

t=1

dstψt(x1, x2, . . . , xp), (4.3)

for each s = 1, . . . ,m, for some non-singular matrix (dst)
m
s,t=1.

Since the {φi1}i=1 are a complete system of principal functions for L1,
it follows that for each fixed x2, . . . , xp, each ψs, s = 1, . . . ,m, is a linear
combination of a finite number of the φi1. Thus for each fixed x2, . . . , xp,

ψs(x1, x2, . . . , xp) =

N
∑

i=1

f
(1)
si φi1(x1) , s = 1, . . . ,m .

We may prove, using (4.3), that the vector (f
(1)
sN )m

s=1 is an eigenvector of the

matrix (dst)
m
s,t=1 with eigenvalue a

(1)
NN . The a

(1)
ii (eigenvalues of L1) tend to

zero. Thus we can obtain a bound for N , which is independent of x2, . . . , xp.
Therefore

ψs(x1, x2, . . . , xp) =

N
∑

i=1

f
(1)
si (x2, . . . , xp)φi1(x1) , s = 1, . . . ,m .

where the {f
(1)
si }N

i=1 are uniquely defined functions of x2, . . . , xp. What has
been done with respect to L1 and the variable x1 can also be done for Lk and



22 Allan Pinkus

the variable xk for each k ∈ {1, . . . , p}. Thus for some N sufficiently large,
and each s = 1, . . . ,m and k = 1, . . . , p we have

ψs(x1, . . . , xp) =

N
∑

i=1

f
(k)
si (x1, . . . , xk−1, xk+1, . . . , xp)φik(xk) . (4.4)

A simple lemma now shows that since (4.4) holds for k = 1, . . . , p, where the
(φik)N

i=1 are linearly independent, then we must have

ψs(x1, . . . , xp) =

N
∑

i1,...,ip=1

c
(s)
i1,...,ip

φi11(x1) · · ·φipp(xp) ,

for each s = 1, . . . ,m. This proves property three and the theorem.

We can now prove the theorem of Schur which we shall use. Let K ∈
C([0, 1]× [0, 1]) and K[p] ∈ C(Sp × Sp) where

K[p](x,y) = K

(

x1, . . . , xp

y1, . . . , yp

)

for each x = (x1, . . . , xp),y = (y1, . . . , yp) ∈ Sp.

Theorem 4.4. Let K ∈ C([0, 1] × [0, 1]). Assume {φi}i=1 is a complete
system of principal functions forK, with associated eigenvalues {λi}i=1. Then
{φi1 ∧ · · · ∧ φip

}1≤i1<···<ip
is a complete system of principal functions for

K[p] ∈ C(Sp × Sp) with associated eigenvalues {λi1 · · ·λip
}1≤i1<···<ip

.

Proof: To prove that {φi1 ∧ · · · ∧ φip
}1≤i1<···<ip

is a complete system of
principal functions for K[p], we must first order then and then prove that they
satisfy the properties of such a system.

The ordering will be the usual lexicographic ordering of (i1, . . . , ip), i.e.,
(i1, . . . , ip) > (j1, . . . , jp) if the first non-zero term of the sequence i1 −
j1, . . . , ip − jp is positive. The first property holds since the φi1 ∧ · · · ∧φip

are
continuous and linearly independent (see Section 2). Assume

∫ 1

0

K(x, y)φi(y) dy =
i
∑

j=1

aijφj(x)

for each i = 1, . . . , where aii = λi 6= 0. Then from the Basic Composition
Formula

∫

Sp

K[p](x,y)
(

φi1 ∧ · · · ∧ φip

)

(y) dy
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=
(

(Kφi1) ∧ · · · ∧ (Kφip
)
)

(x)

=









i1
∑

j1=1

ai1j1φj1



 ∧ · · · ∧





ip
∑

jp=1

aipjp
φjp







 (x)

=
∑

j1<···<jp

j`≤i`, `=1,...,p

A

(

i1, . . . , ip
j1, . . . , jp

)

(

φj1 ∧ · · · ∧ φjp

)

(x) .

Now

A

(

i1, . . . , ip
i1, . . . , ip

)

=

p
∏

`=1

ai`i`
= λi1 · · ·λip

6= 0 .

Thus property two holds (and λi1 · · ·λip
for 1 ≤ i1 < · · · < ip will be all

the eigenvalues of K[p] listed to their algebraic multiplicity as roots of the
Fredholm determinant of K[p]).

It remains to prove property three. Let λ∗ be an eigenvalue of K[p] and
ψ1, . . . , ψm an associated complete invariant system. Thus

∫

Sp

K[p](x,y)ψs(y) dy =
m
∑

t=1

bstψt(x) , s = 1, . . . ,m ,

with det(bst − λδst)
m
s,t=1 = (λ∗ − λ)m. Consider K[p] as being defined on

Rp ×Rp (Rp = [0, 1]p) and anti-symmetric thereon. Extend ψs from Sp to Rp

to also be anti-symmetric thereon. It is easily checked that
∫

Rp

K[p](x,y)ψs(y) dy = p!

m
∑

t=1

bstψt(x) , s = 1, . . . ,m .

For any f ∈ C(Rp) which is anti-symmetric, let επ ∈ {−1, 1} satisfy

f(yπ(1), . . . , yπ(p)) = επf(y1, . . . , yp)

where π = (π(1), . . . , π(p)) ∈ Π, the group of permutations of {1, . . . , p}.
Then

∫

Rp

K[p](x,y)f(y) dy

=
∑

π∈Π

επ

∫

Rp

K(x1, yπ(1)) · · ·K(xp, yπ(p))f(y1, . . . , yp) dy1 · · ·dyp

=
∑

π∈Π

∫

Rp

K(x1, yπ(1)) · · ·K(xp, yπ(p))f(yπ(1), . . . , yπ(p)) dy1 · · ·dyp

=
∑

π∈Π

∫

Rp

K(x1, yπ(1)) · · ·K(xp, yπ(p))f(yπ(1), . . . , yπ(p)) dyπ(1) · · ·dyπ(p)

=
∑

π∈Π

∫

Rp

K(x1, y1) · · ·K(xp, yp)f(y1, . . . , yp) dy1 · · ·dyp

=p!

∫

Rp

K(x1, y1) · · ·K(xp, yp)f(y1, . . . , yp) dy1 · · ·dyp .
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Thus for each s = 1, . . . ,m
∫

Rp

K[p](x,y)ψs(y) dy

=p!

∫

Rp

K(x1, y1) · · ·K(xp, yp)ψs(y1, . . . , yp) dy1 · · ·dyp

=p!
m
∑

t=1

bstψt(x) ,

which implies that ψ1, . . . , ψm is a complete invariant system for the kernel
∏p

`=1K(x`, y`). From Theorem 4.3, this implies that each ψs(x1, . . . , xp) may
be written as a finite linear combination of φi1(x1) · · ·φip

(xp) (for arbitrary
positive ij , j = 1, . . . , p).

Assume

ψs(x1, . . . , xp) =

N
∑

i1,...,ip=1

ai1,...,ip
φi1(x1) · · ·φip

(xp) .

Then

ψs(xπ(1), . . . , xπ(p)) =

N
∑

i1,...,ip=1

ai1,...,ip
φi1(xπ(1)) · · ·φip

(xπ(p)) .

The function ψs is anti-symmetric. Multiplying this last term by επ and
summing over all possible p! terms π ∈ Π, we obtain

p!ψs(x1, . . . , xp) =
N
∑

i1,...,ip=1

ai1,...,ip

(

φi1 ∧ · · · ∧ φip

)

(x1, . . . , xp)

=
∑

1≤i1<···ip≤N

bi1,...,ip

(

φi1 ∧ · · · ∧ φip

)

(x1, . . . , xp) .

This proves the third property and the theorem.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1: We start by repeating the proof of Theorem 3.2. Let
λ0, λ1, . . . , denote the eigenvalues of K listed to their algebraic multiplicity
as roots of the Fredholm determinant of K, and such that

|λ0| ≥ |λ1| ≥ · · · .

Let φi denote associated (generalized) eigenfunctions. For each p we have
from Theorem 4.4 that all the eigenvalues and (generalized) eigenfunctions of
the integral equation

∫

Sp

K[p](x,y)φ(y) dy = λφ(x)
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are {λi1 · · ·λip
} and {φi1 ∧· · ·∧φip

}, respectively, for 0 ≤ i1 < · · · < ip. From
Theorem 4.2 applied to K[p], it follows that the largest eigenvalue of K[p] is
positive and simple, and the associated eigenfunction may be chosen to be
strictly positive on S∗

p . This immediately implies that

λ0λ1 · · ·λp−1 > |λ0λ1 · · ·λp−2λp|

for each p = 1, 2, . . . , and thus

λ0 > λ1 > · · · > λp > · · ·

i.e., the eigenvalues of K are all positive and simple. The simplicity of
the eigenvalue λ0λ1 · · ·λp−1 of K[p] implies that the associated eigenfunc-
tion, namely φ0 ∧ · · · ∧ φp−1, is uniquely determined up to multiplication by
a nonzero constant. Multiplying φp−1 by an appropriate constant we may
therefore choose the φp−1 so that (φ0 ∧ · · · ∧ φp−1)(x) > 0 for all x ∈ S∗

p ,
p = 1, 2, . . . . It remains to prove properties (1) and (2) of the eigenfunctions.

Since for all x = (x1, . . . , xn+1) ∈ S∗
n+1

(φ0 ∧ · · · ∧ φn)(x) = det(φi(xj))
n
i=0

n+1
j=1 > 0 ,

(this is the same as saying that {φ0, . . . , φn} is a T -system on [0, 1]) then
a contradiction immediately ensues if some non-trivial linear combination of
φ0, . . . , φn vanishes at n + 1 distinct points 0 ≤ x1 < · · · < xn+1 ≤ 1. That
is, in this case

det(φi(xj))
n
i=0

n+1
j=1 = 0 .

Thus for 0 ≤ m ≤ n,

Z

(

n
∑

i=m

aiφi

)

≤ n

for every non-trivial choice of (am, . . . , an).
Let ψi denote the left eigenvector of K with eigenvalue λi. The {ψi} and

{φi} are biorthogonal. Since KT and K share the same properties, we may
assume that for all x ∈ S∗

m

(ψ0 ∧ · · · ∧ ψm−1)(x) > 0 .

If f ∈ C[0, 1], and

∫ 1

0

f(x)ψi(x) dx = 0 , i = 0, . . . ,m− 1 ,

then S(f) ≥ m. This follows from the fact that given any k points (0 ≤ k ≤
m− 1) 0 < z1 < · · · < zk < 1, the function

ψ(x) = det(ψi(yj))
k
i,j=0
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where y0 = x, yj = zj , j = 1, . . . , k, is a linear combination of the ψ0, . . . , ψk

which strictly changes sign at the zj , and has no other zeros in [0, 1]. Thus

S

(

n
∑

i=m

aiφi

)

≥ m.

This proves (1).
According to (1), φn has exactly n zeros, each of which is a sign change.

Let us denote these zeros by 0 < w1 < · · · < wn < 1. Set w0 = 0 and wn+1 =
1. We will prove that φn+1 has a zero in each of (wi, wi+1), i = 0, . . . , n.
There are various proofs of this fact. We present a proof partially based on
an argument in Kellogg [23], and partially on an argument in Gantmacher,
Krein [13].

We first prove that φn and φn+1 have no common zero. Assume to the
contrary that φn(z) = φn+1(z) = 0 for some z ∈ (0, 1). (None of the φm vanish
at the endpoints.) Let F1, . . . , Fn−1 be n − 1 linearly independent functions
in span{φ0, . . . , φn−1} which all vanish at z. Let G ∈ span{ψ0, . . . , ψn−1}
be non-trivial and orthogonal to each of the F1, . . . , Fn−1. Such a G exists.
Now Z(G) ≤ n − 1 from (1) applied to the left eigenvectors ψi. Thus we
may choose d0 = 0 < d1 < · · · < dn < 1 = dn+1 such that z ∈ {d1, . . . , dn},
and G is of fixed sign on each of (di, di+1), i = 0, . . . , n. Set Fn = φn and
Fn+1 = φn+1. Since the F1, . . . , Fn+1 are linearly independent, there exists a
non-trivial linear combination thereof, F ∗, satisfying

∫ di+1

di

F ∗(x)G(x) dx = 0 , i = 0, . . . , n− 1 .

Furthermore
∫ 1

0

F ∗(x)G(x) dx = 0

since G is orthogonal to each of the F1, . . . , Fn+1. Thus

∫ di+1

di

F ∗(x)G(x) dx = 0 , i = 0, . . . , n .

Because G is of fixed sign on (di, di+1), the function F ∗ must change sign at
least once on each (di, di+1), i = 0, 1, . . . , n. Furthermore F ∗(z) = 0, and z is
one of the di. Thus

F ∗ =
n+1
∑

i=0

aiφi

has at least n + 2 distinct zeros, contradicting (1). Therefore φn and φn+1

have no common zero.
Set

f(x) =
φn+1(x)

φn(x)
.
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Obviously f is continuous in (wi, wi+1) for each i = 0, . . . , n. Assume f is
strictly monotone thereon as well. Then φn+1 cannot possess two zeros in any
of the (wi, wi+1). However, from (1), φn+1 has exactly n+ 1 zeros, and none
of these are at the w0, w1, . . . , wn+1. Thus φn+1 has exactly one zero in each
of the (wi, wi+1), proving (2). Thus it suffices to prove the strict monotonicity
of f in each (wi, wi+1).

If f is not strictly monotone in some (wi, wi+1), then there exists a w∗ ∈
(wi, wi+1) and α0 ∈ IR such that

f(w∗) = α0

and f−α0 is either non-negative or non-positive in some neighborhood of w∗.
Depending also on the sign of φn in (wi, wi+1) it follows that

φn+1 − α0φn

vanishes at w∗ and is either non-negative or non-positive in some neighbor-
hood of w∗. Assume, for the sake of exposition, that φn+1 − α0φn is non-
negative in some neighborhood of w∗ and φn > 0 on (wi, wi+1). The function
φn+1 − α0φn has, by (1), at least n sign changes and at most n + 1 zeros in
[0, 1]. Since this function does not change sign at w∗, it has n sign changes at
points other than w∗. For ε sufficiently small

φn+1 − (α0 + ε)φn

has n sign changes close to the n sign changes of φn+1 − α0φn. For ε > 0,
small, φn+1 − (α0 + ε)φn has two additional sign changes in the neighborhood
of w∗, i.e., at least n + 2 sign changes. This contradicts (1), and proves the
theorem.

For another approach, in a somewhat more restrictive case, see Karlin
[18]. In Lee, Pinkus [26] may be found a generalization which has applications
in the theory of ordinary differential equations.

In Pinkus [29] (see also Buslaev [4]) there is to be found a generalization
to a non-linear eigenvalue problem. The motivation for this problem came
from the study of n-widths. We do not go into details here. The linear case,
Theorem 4.1, is the L2 version of the theory which has been generalized to Lp

(1 ≤ p ≤ ∞), where a result analogous to Theorem 4.1 is obtained. A matrix
version of this theory may be found in Pinkus [28] and Buslaev [5].

§5. The Matrix Case

We will discuss in this section the matrix case. As we previously mentioned,
this was actually considered after the kernel case. This fact is well worth
recalling. The two main actors in this section are F. R. Gantmacher and
M. G. Krein. We start with a few words about Krein.
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Mark Grigorievich Krein was born in 1907 in Kiev, and died in 1989 in
Odessa. He was a truly eminent and exceedingly prolific mathematician who
contributed significantly to and had a tremendous impact in many different ar-
eas of mathematics (see Gohberg [14] and [15]). The story of M. G. Krein, and
the mathematical schools he built, is fundamentally marred by the tyranny
and anti-semitism which were constant factors in his career. Krein was dis-
missed from his position at the University of Odessa in 1944, and from his
part-time position at the Mathematical Institute of the Ukrainian Academy
of Sciences in Kiev in 1952. We can only speculate on what might have been
if he had been treated with the respect and dignity which was his due. In
1939 he was elected a corresponding member of the Ukrainian Academy of
Sciences. He was never elected a full member. This fact prompted the follow-
ing famous mathematical joke. Ques: How do you know that the Ukrainian
Academy of Sciences is the best academy in the world? Ans: Because Krein
is only a corresponding member. From 1944 to 1954 Krein held the chair in
theoretical mechanics at the Odessa Naval Engineering Institute, and from
1954 until his retirement he held the chair in theoretical mechanics at the
Odessa Civil Engineering Institute.

Altogether Gantmacher and Krein wrote six joint papers and the book
we earlier mentioned (in two editions). In Section 1 we referenced two of
these papers (one was just the announcement of the other). In another of
their papers they proved the Hadamard inequality for TP matrices. That is,

A

(

1, . . . , n

1, . . . , n

)

≤ A

(

1, . . . , r

1, . . . , r

)

A

(

r + 1, . . . , n

r + 1, . . . , n

)

for r = 1, . . . , n − 1. The proof of this is repeated in the fundamental 1937
paper. The other three joint papers are unrelated to total positivity and so
do not interest us here.

In Section 2 we gave the definition of totally positive and strictly totally
positive matrices. There are also a set of inbetween matrices called oscillation
matrices. A is an oscillation matrix if A is TP and some power of A is STP .
The following result was first proved in Gantmacher, Krein [11, p. 454-455].
We shall not prove it here as it is not needed in what follows.

Proposition 5.1. An n × n matrix A = (aij)
n
i,j=1 is an oscillation matrix

if and only if A is TP , non-singular, and ai,i+1, ai+1,i > 0, i = 1, . . . , n − 1.
Furthermore, if A is an oscillation matrix, then An−1 is STP .

Remark. The term “oscillation” matrix was introduced by Gantmacher,
Krein [11]. (Note the use of the term also in Kellogg [23].) They called totally
positive and strictly totally positive matrices “completely non-negative” and
“completely positive”, respectively, (and in French). The term “total positiv”
(in German) was introduced by Schoenberg [30] in 1930, in a paper where he
considers some variation diminishing properties of such matrices, and their
generalizations.
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The main theorem, which we now state, is to be found in Gantmacher,
Krein [11] (Theorems 10 and 14, p. 460–467). A proof also appears in Ando
[1], Gantmacher [8], and Gantmacher, Krein [13].

Theorem 5.2. The n eigenvalues of an n× n oscillation matrix are positive
and simple. In addition, if we denote by uk a real eigenvector (unique up
to multiplication by a non-zero constant) associated with the eigenvalue λk,
where λ1 > λ2 > · · · > λn > 0, then

q − 1 ≤ S−





p
∑

i=q

ciu
i



 ≤ S+





p
∑

i=q

ciu
i



 ≤ p− 1

for each 1 ≤ p ≤ q ≤ n (and ci not all zero). In particular S−(uk) = S+(uk) =
k − 1 for k = 1, . . . , n.

We use two known results in the proof of Theorem 5.2. The first of these
is Perron’s Theorem (Perron [27]).

Theorem 5.3. Let A be an n× n matrix, all of whose elements are strictly
positive. Then A has a simple, positive eigenvalue which is strictly greater
in modulus than all other eigenvalues of A. Furthermore the unique (up to
multiplication by a non-zero constant) associated eigenvector may be chosen
so that all its components are strictly positive.

Proof: There are numerous proofs of this result in the literature, and almost
countless generalizations. For completeness we present here a proof which
seems to be one of the simpler and more transparent (similar, in parts, of
course, to the proof of Theorem 4.2).

For vectors x and y in IRn, we write x ≥ y if xi ≥ yi, i = 1, . . . , n, and
x > y if xi > yi, i = 1, . . . , n. Set

λ∗ = sup{λ : Ax ≥ λx , some x ≥ 0} .

Since all elements of A are strictly positive, we must have λ∗ > 0. A conver-
gence (compactness) argument implies the existence of an x∗ ≥ 0 (x∗ 6= 0)
such that Ax∗ ≥ λ∗x∗. If Ax∗ 6= λ∗x∗, then A(Ax∗) > λ∗(Ax∗) since all en-
tries of A are strictly positive. Setting y∗ = Ax∗ it follows that Ay∗ > λ∗y∗,
which contradicts the definition of λ∗. Thus

Ax∗ = λ∗x∗ .

Now x∗ ≥ 0 (x∗ 6= 0) and thus Ax∗ > 0, whence x∗ > 0. We have found a
positive eigenvalue with a strictly positive eigenvector.

Let λ be any other eigenvector of A. Thus

Ay = λy
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for some y ∈ C|| n\{0}. Now

|λ| |y| = |λy| = |Ay| ≤ A|y| ,

where |y| = (|y1|, . . . , |yn|). From the definition of λ∗, it follows that |λ| ≤ λ∗.
If |λ| = λ∗, then we must have λ∗|y| = A|y| (since otherwise λ∗(A|y|) <
A(A|y|), contradicting the definition of λ∗). Thus for each i = 1, . . . , n,

|λ| |yi| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

aijyj

∣

∣

∣

∣

∣

∣

=

n
∑

j=1

aij |yj| .

This implies the existence of a γ ∈ C|| , |γ| = 1, such that γyj = |yj| for each
j = 1, . . . , n. Thus we may in fact assume that if |λ| = λ∗, then λ = |λ| = λ∗,
and for every associated eigenvector y, we have y ≥ 0. This implies two
consequences. Firstly, for all eigenvalues λ 6= λ∗ we have |λ| < λ∗. Secondly,
the geometric multiplicity of the eigenvalue λ∗ is exactly one. For if not, then
we can easily construct a real eigenvector which is not of one sign.

It remains to prove that the eigenvalue λ∗ is of algebraic multiplicity one.
Assume not. Then there exists a vector y∗ (linearly independent of x∗) such
that

Ay∗ = λ∗y∗ + αx∗

with some α 6= 0. AT (the transpose of A) has the same eigenvalues as
A (and is obviously strictly positive). As such there exists an eigenvector
w∗ > 0 associated with the eigenvalue λ∗. Now

λ∗(w∗,y∗) = (AT w∗,y∗) = (w∗, Ay∗) = λ∗(w∗,y∗) + α(w∗,x∗) .

Since w∗,x∗ > 0, and α 6= 0, we have α(w∗,x∗) 6= 0, a contradiction. Thus
the algebraic multiplicity of λ∗ is one.

The second result we need is called Kronecker’s Theorem.

Theorem 5.4. Let A be an n× n matrix with eigenvalues λ1, . . . , λn listed
to their algebraic multiplicity. Then the

(

n
p

)

eigenvalues of A[p], listed to their
algebraic multiplicity, are λi1 · · ·λip

for 1 ≤ i1 < · · · < ip ≤ n.

Proof: We will present two proofs. The simpler is the following. Every n×n
matrix A may be written in the form

A = P−1TP

where T is an upper triangular matrix. As such the diagonal entries of T are
simply the eigenvalues of A. Now, from the Cauchy-Binet formula

A[p] = (P−1)[p]T[p]P[p] = (P[p])
−1T[p]P[p] .
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The matrix T[p] is upper triangular and its diagonal entries are simply the
products of p distinct diagonal entries of T . This proves the result.

A simple second proof is the following. Associated with each eigenvalue
λi is a “generalized eigenvector” ui, i = 1, . . . , n, (see Section 2), such that
u1, . . . ,un span C|| n. Now

A[p]

(

ui1 ∧ · · · ∧ uip
)

= Aui1 ∧ · · · ∧Auip

from which it follows that the ui1 ∧ · · · ∧ uip are generalized eigenvectors of
A[p] with associated eigenvalues λi1 · · ·λip

. Since these vectors are linearly

independent, we have determined all the
(

n
p

)

eigenvalues of A[p].

We can now prove Theorem 5.2.

Proof of Theorem 5.2: It suffices to prove the theorem for A STP . For
if A has eigenvalues λ1, . . . , λn, listed to their algebraic multiplicity, then Am

has eigenvalues λm
1 , . . . , λ

m
n . If we show that λm

1 > · · · > λm
n > 0 for all m

sufficiently large, then obviously we must have λ1 > · · · > λn > 0. In addition,
if Au = λu, then Amu = λmu, so that if A has n distinct eigenvalues, then
the eigenvectors of A and Am are exactly the same for all m.

We again follow the reasoning in previous proofs in this paper. Let |λ1| ≥
· · · ≥ |λn| > 0. From Theorems 5.3 and 5.4 applied to A[p] we have that

λ1 · · ·λp > |λ1 · · ·λp−1λp+1|

for all p = 1, . . . , n, whence

λ1 > · · · > λn > 0 .

By a suitable normalization of the associated eigenvectors u1, . . . ,un, it also
follows that

u1 ∧ · · · ∧ up > 0

for p = 1, 2, . . . , n.
It remains for us to prove the sign change properties of the eigenvectors

u1, . . . ,un. Assume S+
(

∑p
i=q ciu

i
)

≥ p. There then exist j0 < · · · < jp and

an ε ∈ {−1, 1} such that

ε(−1)k





p
∑

i=q

ciu
i





jk

≥ 0 , k = 0, . . . , p .

Set u0 =
∑p

i=q ciu
i. Thus

U

(

j0, j1, . . . , jp
0, 1, . . . , p

)

= det
(

ui
jk

)p

i,k=0
= 0
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since u0 is a linear combination of the u1, . . . ,up. On the other hand, when
expanding this matrix by the first column we obtain

U

(

j0, j1, . . . , jp
0, 1, . . . , p

)

=

p
∑

k=0

(−1)ku0
jk
U

(

j0, . . . , jk−1, jk+1, . . . , jp
1, . . . , p

)

.

Since u1 ∧ · · · ∧ up > 0, we have

U

(

j0, . . . , jk−1, jk+1, . . . , jp
1, . . . , p

)

> 0 ,

for each k = 0, . . . , p. Thus we must have u0
jk

= 0, k = 0, . . . , p. This is

impossible since u1∧· · ·∧up > 0 implies that all p×pminors of the n×pmatrix

with columns u1, . . . ,up are non-singular. Thus S+
(

∑p
i=q ciu

i
)

≤ p− 1.

Let v1, . . . ,vn be left eigenvectors with assocated eigenvalues λ1, . . . , λn,
respectively, of A. We assume, by what we have proven, that v1∧· · ·∧vq−1 > 0
for q = 2, . . . , n+ 1, and thus

S+





q−1
∑

j=1

bjv
j



 ≤ q − 2

for any choice of non-trivial (b1, . . . , bq−1). Let u ∈ IRn \{0} be such that

(u,vj) = 0 , j = 1, . . . , q − 1 .

We claim that S−(u) ≥ q − 1. If S−(u) = r ≤ q − 2, there exist 1 ≤ i1 <
· · · ir < n and an ε ∈ {−1, 1} such that

ε(−1)kuj ≥ 0 , ik−1 + 1 ≤ j ≤ ik ,

and uj 6= 0 for some ik−1 + 1 ≤ j ≤ ik, for k = 1, . . . , r+ 1, where i0 = 0 and
ir+1 = n. Let

v =
r+1
∑

j=1

bjv
j

satisfy v 6= 0 and vik
= 0, k = 1, . . . , r. Since S+

(

∑r+1
j=1 bjv

j
)

≤ r, we must

have
δ(−1)kvj > 0 , ik−1 + 1 ≤ j < ik ,

for all k = 1, . . . , r + 1, and also δ(−1)r+1vn > 0, where δ ∈ {−1, 1}. Thus

(u,v) 6= 0 ,

a contradiction, implying that S−(u) ≥ q − 1. Now




p
∑

i=q

ciu
i,vj



 = 0 , j = 1, . . . , q − 1 .
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Thus

S−





p
∑

i=q

ciu
i



 ≥ q − 1 ,

which proves the theorem.

Further information regarding the eigenvalues and eigenvectors may be
found Gantmacher, Krein [13], Karlin [19], [21], and Karlin, Pinkus [22].
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