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1. Introduction

Some time ago Burkhard Lenze asked me the following question: For
which functions _ # C(R) is

span {_ \\ `
d

i=1

(xi&bi)+: \, b1 , ..., bd # R=
dense in C(Rd)? Here we consider C(Rd) with the topology of uniform con-
vergence on compact subsets. Lenze's interest in this question was
prompted by a mathematical model from the theory of neural networks.
More specifically, a type of multilayer feedforward network with a single
hidden layer, see Lenze [11] and [12]. The consideration of this specific
problem led us to the study of a more general question on translation and
dilation invariant subspaces. In this paper we will report on some of the
results, both old and new, in this area and apply them to the analysis of
three different mathematical models which appear in the theory of neural
networks.

The present form of this paper owes much to Aharon Atzmon of
Tel-Aviv University. In particular, he brought the important references
Schwartz [18] and Harasymiv [6] to our attention, and also gave
willingly and patiently of his time and knowledge.
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2. Preliminaries and History

We recall that a subspace W of C(Rd) is translation-invariant if f # W
implies f ( } &b) # W for all b # Rd. The subspace W of C(Rd) is dilation-
invariant if f # W implies f (a1 } , ..., ad } ) # W for all a=(a1 , ..., ad) # Rd. We
say that a subspace is a TDI-subspace if it is closed translation and dilation
invariant subspace. For each f # C(Rd), we set

Mf=span[ f (a1 } &b1 , ..., ad } &bd): a, b # Rd],

where a=(a1 , ..., ad) and b=(b1 , ..., bd). That is, Mf is the closure of the
smallest TDI-subspace which contains (or is generated by) f.

This paper contains two main results regarding TDI-subspaces. Firstly
we identify those f # C(Rd) which generate non-trivial TDI-subspaces
(Theorem 3), i.e., for which Mf is neither the empty set nor all of the
space C(Rd). Secondly we characterize the TDI-subspaces themselves
(Theorem 4). These two problems are connected, but distinct. In Section 4
we apply Theorem 3 and also the related Proposition 2, due to Schwartz,
to certain problems motivated by mathematical models from the theory of
neural networks.

We first recall some standard notation. For r=(r1 , ..., rd) # Zd
+ we set

D r=
�| r |

�xr1
1 } } } �xrd

d

where |r|=r1+ } } } +rd . We let C �
0 (Rd) denote the set of C� functions

defined on Rd with compact support. For f # C(Rd) and p a polynomial of
degree m of the form

p(x)= :
|r|�m

a rx
r

we say that f satisfies the differential equation

p(D) f: = :
|r|�m

a r D rf=0

in the weak sense (or generalized sense) if

|
Rd

f ( p*(D) ,)=0

for all , # C �
0 (Rd), where p*(x)=� | r |�m a r(&1) | r | xr.

Translation invariant subspaces have been much studied over the years.
It is an important topic in harmonic analysis. In the space C(Rd), with the
topology of uniform convergence on compact subsets, this subject was con-
sidered by Schwartz in [19]. He introduced the class of mean-periodic
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functions (functions whose linear span of translates are not dense in C(Rd))
and was able to characterize such functions in the case d=1. Unfortunately
for d>1 the theory does not seem to have a simple extension, see Gurevich
[5]. TDI-subspaces are somewhat simpler. It is well-known that the only
TDI-subspaces of L2(Rd) are trivial ones. This result was extended to
Lp(Rd) for all 1<p<� by Harasymiv [6]. The case p=1, where non-
trivial TDI-subspaces do exist, is considered in Harasymiv [7]. See also
Harasymiv [8] for other related results, and Alexsandrov, Kargaev [1]
for examples of non-trivial TDI-subspaces in L p(Rd) where 0<p<1. In
another direction, Brown, Schreiber, Taylor [3] considered translation and
rotation invariant closed subspaces of C(Rd), while Sternfeld, Weit [20]
classify the TDI-subspaces of C(C). For some similar problems relating to
the space C0(R), see Atzmon [2].

We will recall two results of Schwartz [18]. For a given f # C(Rd), set

Gf=span[ f (* } &b1 , ..., * } &bd): * # R, b # Rd]

where b=(b1 , ..., bd). Note that the same dilation is used in each variable.
Then,

Theorem 1 (Schwartz [18]). Let f # C(Rd). Then Gf{C(Rd) if and
only if there exists a non-trivial homogeneous polynomial p such that
p(D) f=0 in the weak sense.

We will not prove this theorem here. We quote this theorem for two
reasons. Firstly, this result is related to Theorem 3, and we use essentially
the same method of proof in our proof of the first part of Theorem 3.
Secondly, one consequence of Theorem 1 is the following result, also due
to Schwartz, which we will apply later in Section 4.

Proposition 2 (Schwartz [18]). Let f # C(Rd) and Gf be as defined
above. Let Rf denote the closed rotation invariant subspace generated by Gf .
Then Rf{C(Rd) if and only if 2mf=0, in the weak sense, for some positive
integer m, where 2 is the Laplacian operator.

3. TDI-Subspaces

We first delineate those f # C(Rd) for which Mf{C(Rd).

Theorem 3. For f # C(Rd) the following are equivalent:

(a) Mf{C(Rd).

(b) For some r # Zd
+ , D rf=0 in the weak sense.
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(c) For some r # Zd
+ , f has the form

f (x1 , ..., xd)= :
d

i=1

:
ri&1

j=0

gij (x1 , ..., xi&1 , xi+1, ..., xd) x j
i , (1)

where gij # C(Rd&1) for all i and j.

Remark 1. For d=1 we understand (1) to mean that the g1j are con-
stants, i.e., f is a polynomial. For the case d=1 we have Mf=Gf .

Proof. For convenience we will abuse notation and write

(a } x&b)=(a1 x1&b1 , ..., ad xd&bd).

((a) O (b)). Since Mf{C(Rd) there exists a non-trivial Borel
measure + of finite total variation and of compact support such that

|
Rd

h(x) d+(x)=0

for all h # Mf . Since + is non-trivial and polynomials are dense in C(Rd) in
the topology of uniform convergence on compact subsets, there exists an
r # Zd

+ such that

|
Rd

xr d+(x){0.

It is relatively simple to show that for each , # C �
0 (Rd), the convolution

( f V ,) is contained in Mf . Since both f and , are in C(Rd), and , has com-
pact support, this can be proven by taking Riemann sums of the convolu-
tion integral, see e.g. [13]. We consider taking derivatives as a limiting
operation in taking differences. Since ( f V ,) # C�(Rd), and thus it and all
its derivatives are uniformly continuous on every compact set, it follows
that for each a, b # Rd

� r

�ar ( f V ,)(a } x&b)=xr(D r( f V ,))(a } x&b) # Mf ,

i.e., the appropriate difference operator converges uniformly to the corre-
sponding derivative on each compact subset of Rd. Thus

|
Rd

xr(D r( f V ,))(a } x&b) d+(x)=0.
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Letting a=0, we see that

(D r( f V ,))(&b) |
Rd

xr d+(x)=0

for each choice of b # Rd and , # C �
0 (Rd). This implies, since

�Rd xr d+(x){0, that

D r( f V ,)=0

for all , # C �
0 (Rd). (b) follows readily from this fact.

((b) O (c)). We were surprised not to have found this explicit form in
the literature. We feel certain it is there somewhere. It is a folk theorem, is
well-known, and is not particulary difficult to prove. It follows from the
fact (found in a number of different books) that if

�
�xi

h(x1 , ..., xd)=0

in the weak sense, then

h(x1 , ..., xd)=g(x1 , ..., xi&1, xi+1 , ..., xd).

That is, h is a function independent of xi .

((c) O (a)). Assume f has the form (1) for some gij # C(Rd&1). Then
for each a, b # Rd, the function f (a } x&b) is also of the form

:
d

i=1

:
ri&1

j=0

hij (x1 , ..., xi&1, xi+1, ..., xd) x j
i

for some hij # C(Rd&1). That is,

Mf�A={ :
d

i=1

:
ri&1

j=0

hij (x1 , ..., xi&1 , xi+1 , ..., xd) x j
i : hij # C(Rd&1)= .

There exist many appropriate linear functionals which annihilate the
subspace A. This implies that A{C(Rd), and therefore Mf{C(Rd). Let
us construct such a continuous linear functional. If lk is any continuous
linear functional with compact support which annihilates

:
rk&1

j=0

hj (x1 , ..., xk&1 , xk+1 , ..., xd) x j
k

(for all hj # C(Rd&1), j=1, ..., rk&1), and such that the lk commute, then
>d

k=1 lk annihilates A. For example, we can take lk to be a sufficiently
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high order difference in the variable xk . That is, we let lk be defined as
follows: For f # C(Rd) and some h>0, fixed,

lk( f )=(Sh, k)rk f (x1 , ..., xd)

for any choice of (x1 , ..., xd) # Rd, where Sh, k is the linear operator

Sh, k f (x1 , ..., xd)=f (x1 , , ..., xk+h, ..., xd)&f (x1 , ..., xk , ..., xd).

There are many other possible choices of lk , k=1, ..., d. K

In the proof of (a) O (b) in the above, we obtained a result well worth
highlighting. We also use this fact in the subsequent analysis.

Corollary 4. Let f # C(Rd). If D rf{0 (in the weak sense), then
xr # Mf .

Remark 2. Functions of the form (1) (for d�2) have been termed
quasipolynomials (see e.g., Brudnyi [4]), and generalized polynomials (see
e.g., Vaindiner [21]).

Remark 3. It follows from Theorem 3 that if f # C(Rd) & L1(Rd),
( f{0), then Mf=C(Rd). One can also obtain this result more directly by
using the representation of the linear functionals on C(Rd) and Fourier
transforms. In fact the translation invariant subspace generated by f
(without dilation) is itself dense in C(Rd).

Theorem 3 delineates those functions f which generate non-trivial TDI-
subspaces of C(Rd). However it does not characterize the subspaces them-
selves. We now do just that. We identify all TDI-subspaces, of which there
are only a countable number. They have a rather simple elegant structure.

To explain, we first set

Z=Z� d
+=[k=(k1 , ..., kd): ki is a nonnegative integer or infinity].

For k # Z, we let

Ak=span[x j1
1 x j2

2 } } } x jd
d : j # Z, j�k],

where by j�k we mean ji�ki , i=1, ..., d. (We have slightly abused nota-
tion. If, for example, ki=�, then we mean that x j

i appears for all non-
negative integers j.) If k1= } } } =kl=�, and kl+1 , ..., kd are each finite
nonnegative integers, then

Ak=span[h(x1 , ..., xl) x jl+1
l+1 } } } x jd

d : 0�ji�ki , i=l+1, ..., d, h # C(Rl)].
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Note that if k=(�, ..., �), then Ak=C(Rd). It is simple to check that
each Ak is a TDI-subspace. The result is the following.

Theorem 5. Every TDI-subspace is a finite sum of spaces Ak .

We divide the proof of Theorem 5 into a series of steps.

Lemma 6. Any sum of a countable number of the Ak is also a sum of a
finite number of the Ak .

Proof. For each k # Z, let

Bk=[j: j # Z, j�k].

Let B be any set in Z with the property that if k # B then j # B for all
j�k. We claim that B is the union of a finite number of Bk . This is equiv-
alent to the statement of the lemma. It is important to recall that some of
the ki may be infinite, and this should be allowed for in what follows.

Let K be the set of maximal points in B, i.e., the set of k # B for which
if j # B and k�j, then k=j. Obviously B is the union of the Bk with k # K.
Our claim is thus equivalent to the claim that K is finite.

Let d=2. If k=(k1 , k2) and m=(m1 , m2) are in K, then
(k1&m1)(k2&m2)<0 (with the proper understanding if some of the com-
ponents equal �). If K has a countable number of distinct points, then
ordering them so that their first component is increasing, we see that the
second component thereof is a countable strictly decreasing sequence of
non-negative integers. This is impossible.

Now assume d>2. For each pair of distinct points k=(k1 , ..., kd),
m=(m1 , ..., md) in K there exists a pair of indices (i, j), where
(i, j) # [1, ..., d], i{j, such that (ki&mi)(kj&mj)<0. This is the important
property we will use. Assuming K has an infinite number of points all
with equal r th coordinate, for some r # [1, ..., d]. This then implies that
for such points in K the property mentioned above holds for
i, j # [1, ..., d]"[r], i{j. An induction argument then proves the result.

We divide the proof into two cases. Firstly assume that for each k # K we
have max[ki: i=1, ..., d]=�. Since K has an infinite number of points
there must exist an r # [1, ..., d] and an infinite subset of K such that
kr=� for all points in this subset. This proves the case.

We now assume the existence of a k # K for which ki<�, i=1, ..., d. For
each m # K, m{k, there exists a pair of indices (i, j) where i, j # [1, ..., d],
i{j, such that (ki&mi)(kj&mj)<0. Since K has an infinite number of dis-
tinct points there must exist a pair of indices (r, s), as above, such that this
property holds for this particular pair and an infinite number of points
in K. Thus for an infinite number of points in K either mr<kr or ms<ks
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for fixed r and s. Assume mr<kr for an infinite number of points m in K.
Since each mr # [0, 1, ..., kr&1] and kr is finite, there must exist an infinite
number of points in K with equal r th coordinate. K

Let f # C(Rd) be such that Mf{C(Rd). Thus f has the form

f (x1 , ..., xd)= :
d

i=1

:
ri&1

j=0

gij (x1 , ..., xi&1 , xi+1 , ..., xd) x j
i . (2)

Consider each gij # C(Rd&1). If D sgij{0 (in the weak sense) for each
s # Zd&1

+ , then we leave gij as it is. If, however, D sgij=0 (in the weak sense)
for some s # Zd&1

+ , then we may write gij as a sum, as in (2), of functions
of fewer variables times monomials in the other variables. That is, it is
possible, after a finite number of steps, to bring f to the form

f (x1 , ..., xd)= :
l, i, j

g i , j(xi1 , ..., xil) x jl+1
il+1

} } } x jd
id (3)

where the (finite) sum is taken over l # [0, 1, ..., d], the i=(i1 , ..., id) vary
among the possible permutations of [1, ..., d], the j=( jl+1 , ..., jd] vary
over the nonnegative integers less than some constant (depending on f ),
and

D sg i , j(xi1
, ..., xil){0, (4)

(in the weak sense) for each choice of s # Zl
+ . (If l=0, then g i, j is a con-

stant.) The reason for writing f in the form (3) may be seen from the next
two propositions. The essential ingredient is contained in the statement of
Corollary 4.

Proposition 7. Let k # Z where k1= } } } =kl=�, and kl+1 , ..., kd are
each finite nonnegative integers. Let

f (x1 , ..., xd)=g(x1 , ..., xl) xkl+1
l+1 } } } xkd

d

where g # C(Rl) is any function for which D sg{0 (in the weak sense) for
each s # Zl

+. Then Mf=Ak .

Proof. Since D sg{0 (in the weak sense) for each s # Zl
+ we have

D rf{0 where r=(s1 , ..., sl , kl+1 , ..., kd). It thus follows from Corollary 4
that xr # Mf for each such r # Zd

+. A simple argument shows that the TDI-
subspaces (only translation invariance is in fact necessary) generated by the
xr is exactly Ar . (That is, it includes all monomials of lower order power.)
Since Ar�Mf for each choice of non-negative integers (s1 , ..., sl) in
r=(s1 , ..., sl , kl+1 , ..., kd), it follows that Ar�Mf . On the other hand
Mf�Ak by inspection. K
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Proposition 8. Mf is a finite sum of the Ak .

Proof. Let f have the form (3) where each g i , j from (3) satisfies (4). It
suffices to show that

g i , j(xi1 , ..., xil) x jl+1
il+1

} } } x jd
id # Mf

for some such g i , j . For if this is the case, then the associated Ak is in Mf

(by Proposition 7) and since Mf is a closed linear space, it also follows that

f (x1 , ..., xd)&g i , j(xi1 , ..., xil) x jl+1
il+1

} } } x jd
id # Mf .

We can then continue this process, and in this way show that each term in
the expansion (3) is in Mf , and the result then follows from Proposition 7.

Among the (non-zero) terms in the sum (3) choose l # [0, 1, ..., d] maxi-
mal for which

gp , q(xp1
, ..., xpl

) xql+1
pl+1

} } } xqd
pd

appears, and (ql+1 , ..., qd) is also maximal in the sense that there is in (3)
no other non-zero term in the form

gp , j(xp1
, ..., xpl

) x jl+1
pl+1

} } } x jd
pd

with qi�ji , i=l+1, ..., d, and with strict inequality for some such i.
Assume for ease of notation that pi=i, i=1, ..., d. Let r=(r1 , ..., rl ,

ql+1 , ..., qd). For ri sufficiently large, i=1, ..., l, the operator D r will
annihilate all terms in the sum (3) except

gp , q(x1 , ..., xl) xql+1
l+1 } } } xqd

d .

Thus xr # Mf for all such r # Zd
+ (Corollary 4) which implies that Ak # Mf

where ki=�, i=1, ..., l, ki=qi , i=l+1, ..., d. Thus

gp , q(x1 , ..., xl) xql+1
l+1 } } } xqd

d # Mf .

This proves the proposition. K

Proof of Theorem 5. Let M be any TDI-subspace of C(Rd). Set

K=[k: Ak�M].

If M{�k # K Ak , then there exists an f # M"�k # K Ak . Now Mf�M, but
Mf �3 �k # K Ak . Thus from Proposition 7 As�M for some s � K. This con-
tradicts the definition of K. Thus

M= :
k # K

Ak .
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By Lemma 6 we can rewrite this as a sum over a finite number of
terms. K

Remark 4. It follows from the proof of Theorem 5 that every TDI-sub-
space may be represented in the form Mf for various choices of f # C(Rd),
i.e., is generated by a single function.

Remark 5. This same type of analysis on C(C) is done in Sternfeld,
Weit [20].

4. Applications to Neural Network Models

We were motivated to look at these problems because of specific
examples which arose in neural networks models. Two of these examples
are related to Theorem 3 and are special cases of functions f of the form
_( p( } )), where p is a specified polynomial on Rd and _ # C(R). The
question asked was to characterize, for a given p, those _ for which
M_( p)=C(Rd). Obviously if _ is itself a polynomial then M_( p){C(Rd).
This follows from Theorem 3, but also much more simply from the obser-
vation that if _ is a polynomial, then M_( p) is a (finite-dimensional) space
of polynomials. In the first example, we also consider the matrix version of
the problem. The third example is related to a model based on radial-basis
functions. Here we will use Proposition 2 to characterize those functions
for which density holds in C(Rd).

Example 1. In [13] it is proved that if _ # C(R), then

C(Rd)=span {_ \ :
d

i=1

aixi+b+: (a1 , ..., ad) # Rd, b # R=
if and only if _ is not a polynomial. For a discussion of this problem in
neural network, see [13]. In fact, it follows quite easily, again see [13],
that the above holds for all d�1 if and only if it holds for d=1. Thus this
result is also a consequence of Theorem 1 due to Schwartz [18].

We might also consider this result as a special case of Theorem 3. Set

f (x1 , ..., xd)=_(x1+ } } } +xd).

Thus

f (a1x1&b1 , ..., adxd&bd)=_ \ :
d

i=1

ai xi&\ :
d

i=1

bi++.
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Now

D r_(x1+ } } } +xd)=0

in the weak sense is equivalent to

_( | r | )=0

in the weak sense. As is well-known, this implies that _( | r | )=0 in the usual
sense. That is, _ is a polynomial of degree at most |r|&1.

A different (and totally equivalent) approach is based on (c) of
Theorem 3. If Mf{C(Rd), then

_(x1+ } } } +xd)= :
d

i=1

:
ri&1

j=0

gij (x1 , ..., xi&1 , xi+1 , ..., xd) x j
i . (5)

Now

`
d

k=1

(Sh, k)rk _(x1+ } } } +xd)=0

since this linear operator annihilates the right-hand side of (5). Moreover

`
d

k=1

(Sh, k)rk _(x1+ } } } +xd)=(Sh) |r | _(t)

where t=x1+ } } } +xd , and

Sh _(t)=_(t+h)&_(t).

It is known (and easy to prove) that if

(Sh) | r | _(t)=0

for all t # R and h>0, then _ is a polynomial of degree at most |r|&1.
Let us now consider the matrix version of this problem. See Mhaskar,

Micchelli [15] for some partial results. We wish to determine necessary
and sufficient conditions on _ # C(Rm), d�m�1, such that

C(Rd)=span[_(A } +b): A # Rm_d, b # Rm]

i.e., where A ranges over all m_d real matrices. We show that this holds
if and only if _ is not a polynomial.

Proposition 9. Let _ # C(Rm). Then

span[_(A } +b): A # Rm_d, b # Rm]

is dense in C(Rd) if and only if _ is not a polynomial.
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Proof. (O) If _ is a polynomial then the above span is, for each
A # Rm_d and b # Rm, contained in a fixed finite-dimensional space of poly-
nomials. As such it cannot be dense in C(Rd).

(o) We base the proof of this direction on the fact that if _ is not
a polynomial, then

h(t)=_(c1 t+d1 , ..., cmt+dm)

is not a polynomial for some choice of c1 , ..., cm and d1 , ..., dm . In fact we
can take all the cj except one to be zero. That is, from Palais [16], it
follows that there exists an i # [1, ..., m] and constants [bj]j{i such that

h(t)=_(b1 , ..., bi&1 , t, bi+1 , ..., bm)

is not a polynomial.

By the result of [13] (see above)

span[h(a } +b): a # Rd, b # R]

is dense in C(Rd). Substituting it follows that

span[_(A } +b): A # Rm_d, b # Rm]

is dense in C(Rd) for a rather small and special class of matrices and trans-
lates. K

Example 2. This is the example motivated by Burkhard Lenze. For
discussion of this model and some of the mathematical results, see Lenze
[11] and [12]. We consider the problem of characterizing the _ # C(R) for
which the closure of the translates and dilates of _(x1 , ..., xd) (the product
of the xi) span C(Rd). That is, we set

f (x1 , ..., xd)=_(x1 } } } xd),

and then

Mf=span {_ \\ `
d

i=1

( } &bi)+: \, b1 , ..., bd # R=.

The only sufficiently smooth functions _ for which Mf{C(Rd) are polyno-
mials. This may be proven directly from consideration of D r_(x1 } } } xd)=0
which eventually translates into an Euler's equation. However there are
other solutions in C(R). We will prove this result using difference type
operators, rather than via a differential equation.
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Theorem 10. Let d�2 and _ # C(R). Then

f (x1 , ..., xd)=_(x1 } } } xd)

is such that Mf{C(Rd) if and only if

_(t)= :
r

j=0

b0j t
j+ :

r

j=1

:
d&1

i=1

bij t j (ln |t| ) i (6)

for some finite r and coefficients [bij].

We will use the following result to prove Theorem 10.

Proposition 11. Let g # C(R"[0]). For each a # R and k # Z+ set

Tk, ag(t)=g(at)&akg(t).

Then

`
r

k=0

(Tk, a)lkg=0

for all a # R"[0] if and only if

g(t)= :
r

j=0

:
lj&1

i=0

bij t j (ln |t| ) i.

Remark 6. If lj=0, then �lj&1
j=0 is understood to be empty.

Proof. (o)

Tk, a(t j (ln |t| ) i)

=(at) j (ln |at| ) i&akt j (ln |t| ) i=(at) j (ln |a|+ln |t| ) i&akt j (ln |t| ) i

={
:
i

p=0

cp t j (ln |t| ) p, if j{k,

(7)
:

i&1

p=0

cpt j (ln |t| ) p, if j=k, i�1,

0, if j=k, i=0,

where ci{0 if j{k, and ci&1{0 if j=k and i�1. The coefficients cp are
easily calculated. They depend on a, i, j and k, but not on t.
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From the above formula (7) it follows that

(Tk, a)lk \ :
lk&1

i=0

bik tk(ln |t| ) i+=0

for each k, and thus

`
r

k=0

(Tk, a)lk \ :
r

j=0

:
lj&1

i=0

bij t j (ln |t| ) i+=0.

(O) This direction is most easily proved by induction. The essential
idea is that of peeling off the Tk, a , one by one, and the following unique-
ness result.

If g # C(R"[0]), k # Z+ , and

Tk, a g=0

for all a # R"[0], then g(t)=Atk for some constant A. To prove this let
g* # C(R"[0]) satisfy

Tk, a g*=0.

Then g~ (t)=g*(t)&g*(1) tk is in this same class, satisfies the equation

0=Tk, ag~ =g~ (at)&akg~ (t)

for all a, t # R"[0], and also g~ (1)=0. Setting t=1 in the above equation,
it follows that g~ (a)=0 for all a # R"[0]. That is g*(t)=Atk.

We now prove the result by induction on �r
j=1 lj . For �r

j=1 lj=1 we
just proved the result. Assume therefore that the result holds for
�r

j=1 lj�t&1, (t�2). Let �r
j=1 lj=t. Choose s such that ls�1. Set

l� j={l j ,
l j&1,

j{s
j=s,

and h=Ts, a g.
If

`
r

k=0

(Tk, a)lkg=0,

then

`
r

k=0

(Tk, a)l� kh=0.
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From the induction hypothesis

h(t)= :
r

j=0

:
l� j&1

i=0

bij t j (ln |t| ) i.

That is,

(Ts, ag)(t)= :
r

j=0

:
l� j&1

i=0

bij t j (ln |t| ) i.

From (7) there exists a g~ # C(R"[0]) of the form

g~ (t)= :
r

j=0, j{s

:
l� j&1

i=0

cij t j (ln |t| ) i+ :
l� s

i=0

cists(ln |t| ) i,

where the cij depend on everything (including a) except t, such that

Ts, a g=Ts, ag~ .

Thus

Ts, a(g&g~ )=0.

By the uniqueness result (g&g~ )(t)=Ats. That is

g(t)=g~ (t)+Ats

which is the desired form. K

Remark 7. As has been pointed out by the referee, Proposition 11 also
follows from the substitution y=log t, :=log a, G( y)=g(e y) (for a, t>0)
and solving the resulting difference equation.

We now return to the proof of Theorem 10.

Proof of Theorem 10. From (c) of Theorem 3 we have that Mf{C(Rd)
if and only if

_(x1 } } } xd)= :
d

i=1

:
r

j=0

gj (x1 , ..., xi&1, xi+1, ..., xd) x j
i . (8)

(From the symmetry of the [xi]d
i=1 we may assume ri&1=r and gij=gj

for each i=1, ..., d.)

(o) We will show that each of the t j (ln |t| ) i, j=0, ..., r,
i=0, ..., d&1, may be written in the form (8), (except that the (ln |t| ) i are
not in C(R)).
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Let hij (t)=t j (ln |t| ) i, 0�i�d&1. Then

hij (x1 } } } xd)=(x1 } } } xd) j (ln |x1 } } } xd | ) i

=(x1 } } } xd) j (ln |x1 |+ } } } +ln |xd | ) i.

The expression (ln |x1 |+ } } } +ln |xd | )i may be written as a linear com-
bination of terms of the form >d

l=1 (ln |xl | )ml where the ml are non-
negative integers which sum to i�d&1. Thus in each such term at least
one of the ml equals 0, and hence each term depends on at most d&1
variables. It therefore follows that hij is of the form (8).

(O) We claim that for _ of the form (8),

`
r

k=0

(Tk, a)d _=0, (9)

for each a # R"[0]. If (9) holds then the result follows from Proposition 11,
where we must have bi0=0 for i�1, since _ # C(R) (while (ln |t| ) i is not
continuous at t=0).

Note that Tk, a_(x1 } } } xd)=_(ax1 } } } xd)&ak_(x1 } } } xd). We can con-
sider the a in the first term on the right of the equality sign as belonging
to any of the xl . That is, for f (x1 , ..., xd) and l # [1, ..., d], set

Tk, a, l f (x1 , ..., xd)=f (x1 , ..., axl , ..., xd)&akf (x1 , ..., xd).

Then

`
r

k=0

(Tk, a)d _(x1 } } } xd)= `
d

l=1

`
r

k=0

(Tk, a, l) _(x1 } } } xd).

Now, as is readily checked,

\ `
r

k=0

(Tk, a, l)+\ :
r

j=0

gj (x1 , ..., xl&1 , xl+1 , ..., xd) x j
l+=0.

Since the operators Tk, a, l commute, it therefore follows that

`
r

k=0

(Tk, a)d _=0,

which proves our theorem. K

It is an interesting and open question to determine, for a given poly-
nomial p, necessary and sufficient conditions on _ # C(R) such that
M_( p)=C(Rd). We know that if _ is a polynomial, then M_( p){C(Rd), and

284 ALLAN PINKUS



File: 640J 299217 . By:CV . Date:18:06:96 . Time:15:49 LOP8M. V8.0. Page 01:01
Codes: 2790 Signs: 1771 . Length: 45 pic 0 pts, 190 mm

we have seen an example of a polynomial p where _(t)=t j (ln |t| ) i is such
that _( p( } )) also satisfies (c) of Theorem 3. In fact, if pk is a polynomial
of d&1 variables, k=1, ..., d, and

p(x1 , ..., xd)= `
d

k=1

pk(x1 , ..., xk&1, xk+1 , ..., xd)

then _(t)=t j (ln |t| ) i is such that _( p( } )) again satisfies (c) of Theorem 3
for j�1 and i # [0, ..., d&1]. It is also possible to construct polynomials p
for which _(t)=t: is such that _( p( } )) satisfies (c) of Theorem 3 for any
specified rational :. It would be nice to know which possible functions
_ # C(R) are such that M_( p){C(Rd) for some polynomial p, and also to
determine conditions on a polynomial p such that M_( p){C(Rd) holds
only if _ is a polynomial.

Example 3. A different mathematical formulation which addresses the
same basic neural network model leads to the following problem, see e.g.,
Park, Sandberg [17]. Let k # C(R+), and

Hk=span[k(\ & } &a&): a # Rd, \>0]

where & } & is the usual Euclidean norm on Rd. What are conditions on k
such that Hk=C(Rd)? If k(& } &) is also in L1(Rd), then standard arguments
imply that Hk=C(Rd) (see Remark 3). However this is not in the least
necessary. A different condition is that k not be an even polynomial. For
if k was an even polynomial of degree 2n, then k(& } &a&) would be a poly-
nomial (in Rd) of degree at most 2n for each a. Even polynomials are
exactly all the functions for which Hk{C(Rd).

Theorem 12. Let k # C(R+). Then Hk{C(Rd) if and only if k is an
even polynomial.

Proof. We first note that Hk is a rotation invariant space of the form
Gf where

f (x1 , ..., xd)=k((x2
1+ } } } +x2

d)1�2).

Thus it follows from Proposition 2 that Hk{C(Rd) if and only if

2mk=0 (10)

in the weak sense, for some positive integer m. Now, since k is itself rota-
tion invariant, (10) reduces to

\ �2

�r2+
d&1

r
�
�r+

m

k(r)=0 (11)
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for r�0, in the weak sense, where r=(x2
1+ } } } +x2

d)1�2. On (0, �) every
weak solution to this equation is a classical solution.

A simple calculation shows that the 2m linearly independent solutions of
(11) on (0, �) are dependent on m, d, and the parity of d. For d odd, they
are the functions in the span of

1, r2, ..., r2(m&1),
1

rd&2 , ...,
1

rd&2m .

For d even, they are given by the span of the m functions

1, r2, ..., r2(m&1),

and the first m functions in the sequence

1
rd&2 , ...,

1
r2 , ln r, r2 ln r, r4 ln r, . . .

We now return to (10). It is known that every weak solution of this
equation is in fact a C� function. This is sometimes called Weyl's lemma,
see Ho� rmander [9, Theorem 4.4.3] or Ho� rmander [10, Chap. XI]. But the
only C� functions in (x1 , ..., xd) among those listed above are the even
polynomials. This proves the theorem. K
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