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ABSTRACT 

For a strictly totally positive M × N matrix A we show that the ratio IlAxllp/llxllp 
has exactly R = min{ M, N ) nonzero critical values for each fixed p ~ (1, ~ ) .  Letting 
~ denote the i th critical value, and x ~ an associated critical vector, we show that 
~l > " " " > An > 0 and x i (unique up to multiplication by a constant) has exactly i - 1 
sign changes. These critical values are generalizations to I p of the s-numbers of A and 
satisfy many of the same extremal properties enjoyed by the s-numbers, but with 
respect to the I p norm. 

1. I N T R O D U C T I O N  

In  the  course  of our  inves t iga t ions  in to  n-widths  of Sobolev  spaces  in L p, 

w e  w e r e  led to a cons ide ra t ion  of the  fo l lowing  mat r ix  problems.  

L e t  A be  an M × N matr ix ,  and  p c [1, ~ ] .  F o r  x ~ R " ,  set Ilxllp = 

(E?llxil")  x/p, 1 ~< p < ~ ,  and  Ilxll~ = max{[xil:i = 1 . . . . .  m } .  Cons ide r  the  

fo l lowing  th ree  quant i t ies :  

o2(p)  = min  max  II(A - P")x 11~ (A) 
eo ~ . o  Ilxllp ' 
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where P,, ranges over all M × N matrices of rank u, 

t lAxt lp  
o,~( p ) = min max - -  

x ~ ~x, ,  llxlt,, 
(B) 

where  X,, is any subspace of R '~ of dimension n; 

IIAxil , ,  
o,~( p ) = max rain 

x ~ 0  

t O )  

where X,,+l is any subspace of R "~' of dimension n + 1. 
It  is easily proven that  o~(p)>/o ,7(p)  -/o,~(p).  For p = 2, it is well known 

that  equality holds for any matrix A, i.e., a,~(p) = a ~ ( p ) =  o,3(p) (by the 
Rayleigh-Ritz characterization of eigenvalues). The common value is the 
square root of the (n + 1)st eigenvalue of ATA (arranged in nonincreasing 
order of magnitude),  i.e., the singular values or s-numbers of A. Appropria te  
opt imal  P,,  X , ,  and X n ~ t in (A), (B) and (C), respectively, may  be obtained 
from the singular value decomposi t ion of ArA. For p ~ 2 very little is known 
except  when A is a diagonal matrix (see [6]), or when p = i, ~ and A is 
strictly totally positive (STP) (see Micchelli and Pinkus [5] for p = ~ .  and a 
duality a rgument  gives p = 1). 

We prove the following result. 

THEOREM 1.1. Let A be an M × N STP matrix and p ~ [1, ~ ] .  1hen for 
each n, 0 ~< n < rank A = min ( M, N } = R, 

~l )  o ~ ( p ) =  ~ , ~ p )  = o,:?(p)- o,,(p~ 

(,2) o 0 ( p )  > • • • > oi, ~(p ) > 0. 

We also identify an optimal rank n matrix in (A) and optimal subspaces in 
(B) and (C). 

For  A as above it follows by a theorem of Gan tmacher  and Krein [1] that  
ArA has simple, distinct, positive eigenvalues ~1 > " " " > ~ > 0, mad if x ' is 
the eigenvector  of ArA associated with ~i,  then S ~ ( x ~ ) = S  ( x i ) = i - l ,  
i = 1 . . . . .  R (see the next section for a definition of S + and S - ). When /9  = 2, 
Melkman and Miechelli [4] constructed an optimal  rank n matrix in (A) and 
an optimal  subspaee in (B) which were not derived from the singular value 
decomposi t ion of A, but  depended  on the STP proper ty  of A and the sign 
change proper ty  of the eigenvectors, These are the results which are gener- 
alized here. The  case p = 1, ~ has been solved, and we therefore consider 
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only p ~ (1, oo). Effectively, we set 

IIAxllp 
F(x) 

Ilxllp 

and consider critical vectors of this map, i.e., vectors for which tgF(x)/tgx k = O, 
k = 1 . . . . .  N. These equations are 

M 

E aikl(Ax),  I p -  ' sgn( (Ax) i )  = XPlxk] p- l  sgn(xk), 
i = l  

k = 1 . . . . .  N. (1.1) 

For p = 2, this simply reduces to the eigenvalue problem ArAx = h2x. 
[Multiplying each side of (1.1) by x k and summing over k, it follows that 

= IIAxllp/Llxllp.] We say that (h,x)  is a critical value of our problem, for 
fixed p, if (h,x)  satisfies (1.1). We call h a critical number, and x a critical 
vector. (Note that we may multiply x by any nonzero constant, so that we 
consider critical vectors up to multiplication by constants.) For A STP we 
obtain the existence of exactly R critieal values ( X , ( p ) , x " ( p ) ) ,  n = 1 . . . . .  R 
[with An(p) > 0, n = 1 . . . . .  R] where 

(1) h i ( p ) > - - - > h n ( p ) > 0 ,  
(2) S + ( x i ( p ) ) =  S - ( x i ( p ) ) = i -  1, i = 1 . . . . .  R, 

and the critical vector xi(p) associated with the critical value hi (p)  is unique 
(up to multiplication by constants). (There is also an N - R  dimensional 
subspace YN-R such that (0,x) is a critical value for all x ~ YN-R') Further- 
more, 

IIAx"+'(P)II  

iix + (p)ll  ' 
n = 0 , 1  . . . . .  R - 1 .  

The optimal rank n matrix of (A) and optimal subspaees of (B) and (C) are 
constructed from x"+l (p )  [and do not depend on the other xi(p)]. 

The following questions immediately present themselves. Firstly, does 
o,~(p) = on~(p) = o~(p) for all p ~ [1, oo] and every matrix A? Secondly, do 
there exist at most R critical values of F (x) /o r  arbitrary A of rank R (with 
nonzero critical numbers)? We do not know the answers to these questions. It 
is known that when considering IlAxllp/llxllq, p, q ~ [1, oc], p #: q, i.e., 
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different norms oll the numerator and denominator, then the answer to both 
questions is in the negative even for diagonal matrices. 

The organization of the paper rtms as follows. In Section 2 we define the 
notation and present some known results which will be subsequently used. In 
Section 3 we first assume that (1.1) has a critical value (Mx) with S (x)= n 
and show, from this property, how to prove Theorem 1.1. We then prove the 
existence of the required solutions of (1.1). 

We note that in the terminology of approximation theory, o2(p) is known 
as the linear n-width of ~¢_ = { a x :  IIxllp ~ 1} in l;, ~, o~(p) is the Gel'fand 

• • '~1 v 3 - ~ l  n-width of ~p  Ill l p ,  and o~ (p)  is the Bernstein n-width of ~p  in l~. A 
fourth quantity, called the Kolmogorov n-width, is not introduced here, but its 
value is the same as these others for ~/, in lff (see [6] for a riffler exposition). 

2. PRELIMINARIES 

~M N Let A =~aq) i=l  t=l, a~f ~ R, and R = min{ M, N }. 

DEFINITION 2.1. The matrix A is said to be strictly totally positive (STP) 
if 

il . . . . .  i k } = d e t (  ) k ~ > 0  
A Jl . . . .  .Jk ai"i" .,=1,,=1 

for all choices of 1~<i 1< .--  < i  k~<M, l~<j l  < " '"  <jk~<N, and 'all k =  
1 . . . . .  R. It is said to be totally positive (TP) if inequality replaces strict 
inequality. If 

A (ij ..... it, ) 
• > 0  

• h . . . . .  Jk 

for ordered { i m }, { Jn } as above and k = 1 . . . . .  r, then A is said to be strictly 
totally positive of order r (STP r). 

(The results of this paper actually hold for a class of matrices called strictly 
sign regular of order r, and rank r; see e.g. Karlin [2] for the definition. 
However, it is simpler to assume that A is STP and of full rank.) 

An important property of STP matrices is that of variation diminishing. 
To explain this property we need the following. 
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DEFINITION 2.2. Let  x (= R m. Then  for x ~: 0: 

(i) S - (x )  counts the number  of ordered sign changes in the vector  
x = (x I . . . . .  Xm) where  zero entries are discarded. 

(if) S + (x) counts the maximum number  of ordered sign changes in the 
vector  x = (x 1 . . . . .  Xm) where zero entries are given arbitrary values. 

For  convenience,  we set S + ( 0 ) =  m. 
Thus, for example,  if x = ( 1 , 0 , 1 , 0 ,  - 1), then S - ( x ) =  1 and S+(x) = 3. 

Note  that  if S + ( x ) =  S-(x) ,  then 

(1) x 1, x m ~ O, 
(2) x i = 0 implies xi_lx i+ 1 < O. 

These facts will be  repeatedly used. 

PROPOSITION 2.1. Let  A be an M X N STP matrix and x ~ O. Then 

S+(Ax) S- (x). 

In particular, i f  A x  = 0, then S-(x)>~ M. 

A proof of this s ta tement  and many  other facts concerning STP matrices 
m a y  be found in Karlin [2]. 

3. T H E  MAIN R E S U L T  

We assume that  A is an M × N  STP matrix, R = m i n { M , N } ,  and 
p ~ (1, o¢), fixed. For  x ~ R N \ (0) ,  set 

F(x)  = IlAxllp/llxllp, 

and Gk(x ) = cOF(x)/ax k, k = 1 . . . . .  N, G(x) = (Gl (x )  . . . . .  GN(x)) .  An easy 
calculation shows that  G ( x ) =  0 if and only if 

M 

E a , k l (Ax ) ,  I p l s g n ( ( A x ) i )  = ~°lxklP-X sgn(xk) ,  
i = 1  

k = l  . . . . .  N, (3.1) 

where  h is some constant.  We say that  (h ,x) ,  x ¢ 0, is a critical value of our 
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problem (for fixed p) if (h,x)  satisfies (3.1). We call X a critical number, and 
x a critical vector. (Note that if x is a critical vector, then so is ax for all 
a ~ R \ { 0 ) 4  

We first prove some simple facts. 

LEMMA 3.1. / f  (?t,x) is a critical value, then X = IlAxllp/llxli,). 

Proof. Multiply each equation in (3.1) by x k and stun over k. 

LEMMA 3.2. I f  (X,X) is a critical value and S (x)-%< R - 1, then h > O. 

Proof. From Lemma 3.1, I I A x l l p  = 2q lx l lp ,  x # 0. If X = 0, then Ax = 0. 
Now R = min{M, N} and A is of rank R. Since Ax = 0, then by Proposition 
2.1 S (x)>~ M>~ R. By assumption S (x)~< R -  1. • 

PROPOSITION 3.3. /f (?t, x) is a critical value and ~ > O, then 

S (x)=S+(x)=S ( A x ) = S ' ( A x ) .  

Proof. This proposition is an application of Proposition 2,1 and the fact 
that a and [al p-I  sgn(a) have the same sign for a ~ R. To be precise, since 
h > 0 ,  

S ( x )<~S ' ( x )=S+({Xr ' t x k f  sgn(xk) } ]= ,  [ 

A, , .  i ~') 
= s+ ii=l' E a,~l(Ax) I" sgn(( Ax)~)f a.=~,, 

from (3.1). By Proposition 2.1, 

1 ~,1 ) 

= s  (Ax)~<S~IAx)~<S (xt. 

Thus equality holds throughout, and the proposition is proved. • 
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Note that since R = min{ M, N) ,  and x ~ ~N, Ax ~ R M, it follows that if 
()~,x) is a critical value, then h > 0 if and only if S-(x) ~< R - 1. 

PROPOSITION 3.4. A s s u m e  (k,x) and (~,y) are cri t ical  va lues  w i t h  the 

same  h > O. Then  x = a y  f o r  some  a ~ R .  

Proof .  Assume not, i.e., x and y are linearly independent. We use 
the following simple fact. For any a,  b ~ R, sgn(a + b) = 
sgn(lal p-~ s gn ( a ) +  Ibl p-~ sgn(b)). Thus for any a,/3 ~ R (assume a2 +/32 

> 0) 

sgn(axk +/3Yk) = sgn(lal p l sgn(a) Ixkl "-x sgn(xk) 

+ 1/31 p-1 sgn(/3)lykl "-~ sgn(yk) ). 

Now, from (3.1), 

M 

E aik [lal p-x sgn(a)l(Ax), I"- 1 sgn((Ax)i) 
i = 1  

+ 1/310-1 sgn(/3)l(Ay), I p -1 sgn((Ay)/)]  

= ~,~[lal .-~ sgn(a)lxkl p l sgn(xk) 

+ I/3l p-x sgn(/3)lykl p-1 sgn(Yk)], k = l  . . . . .  N. 

Following the method of proof of Proposition 3.3, we see that 

S - ( a x +  fly) = S + ( a x +  fly) = S- (A(ax + fly)) = S + (A(ax + fly)) 

for all a, fl ~ R, a z + f12 > 0. This cannot hold for all a,/3. For example 
choose a,/3 such that a x  l + /3 ya = O. T h e n  S -  ( a x  + /3 y)  < S+ ( a x  + /3 y ). • 

Proposition 3.4 will not be directly used in this section, but is important in 
the next section together with the corollary to the following main result. 

THEOREM 3.5. 
Then  

L e t  (h,x) be a cri t ical  va lue  w i t h  S-(x)= n ~< R -  1. 

o 2 ( p )  = = o (p) = 
IIAxllp 

tlxll~ 
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REMnnx. The full s tatement concerning the form of an optimal rank n 
matrix for Onl(p) and optimal subspaces for o~(p)  and o~3(p) will be given 
after the proof of the theorem. 

Assuming the theorem to be true, we have the following corollary. 

COBOLLn_r~Y 3.6. I f  (k ,x)  and (# ,y )  are critical values with S (x)= 
S -  (y) ~< R - 1, then )~ = t~ and x = ay for some a ~ R. 

Proof. From Theorem 3.5, ~ =/~, and thus from Proposition 3.4, x = ay. 

It  therefore follows, on the basis of Theorem 3.5, that there exist at most 
R critical values (k,  x) with )~ > 0. In the next section we prove the existence 
of R such critical values. 

Proof o f  Theorem 3.5. Recall that we have fixed p ~ (1 ,  o~). Since 
o~(p)>~ o~(p)>~ o~(p),  we shall prove that od(p)~< ~ ~< o~(p). For ease of 
notation we normalize x so that Ilxllp -- 1 and x I > 0. [From Proposition 3.3, 
S- (x)  = S+(x), so that x I ~: 0.] 

Claim 1. )~ <~ o~(p). Since S (x)=  S" (x )=  n, there exist indices 1 ~< k l 
< - . -  < k  n < N s u c h t h a t  

xi(--1)~ 1>~0, k r l+l~<j~<kr, 

r = l  . . . .  n + l ,  where k 0 = 0 ,  k n + l = N ,  and for each r there exists a j, 
kr_l+l<~j<~kr ,  for which x j~ :0 .  Let B denote the M × ( n + l )  matrix 
whose r th  column b r is given by 

~r 
b r = ~ aqxjt ,  r = 1 . . . . .  n + 1 

i=k~ 1+l 

where  a i is the j t h  column vector of A. A multilinear expansion easily 
shows that  B is STP, and since n + l ~ < M ,  r a n k B = n + l .  Let z 
= (1, - 1 . . . . .  ( - 1 ) n ) ~ R  n÷l, and note that Bz = Ax. 

We  now define n + 1 vectors in R ~" as follows: Set 

[xil, k~ l+l<~j<~kr ,  
(yT) i = 0, otherwise, 

r = 1 . . . . .  n + 1. Define X* ~ l = span{y ~ . . . . .  y,,+ l }. Since dim X*~ l = n + 1, 
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we have 

IIAxllp 
an3(p)>/min  Ilxllp 

/.+1 
= A t r ~ = l ° t r y r ]  p 

i i°r'  

- -  : x  E X . +  1 \ { 0  

; ~t= (O~ 1 . . . . .  O~n+l) =/= 0 / .  

By definition, b ~ = A y  r, r = 1 . . . . .  n + I, and 

t ary ~ = larlPcr 
r = l  \ r = l  

where  c~ = Ilyrll~ (since the y '  have distinct support),  Cr > 0, r = 1 . . . . .  n + 1, 
and ~"  + 1 ~.-.,r=lCr = Ilxll~ = 1. Thus 

o~3(p) >~ min{ \r=X (~IIBcxlIpI~rI%)1/o : ~ 0  

I t  is easily seen that  this min imum is necessarily attained at a critical value 
(g,et*) for B, i.e., where  the derivatives, with respect  to each at ,  of the above 
ratio vanish. (Note that  g > 0, since M >/n  + 1, and B has rank n + 1.) Thus 
ff 

then 

i x -  IIBa*llp = mint IIBotllp : ot~ 01 

M 
E b, rl(Ba*),l  p-1 sgn((Bet*) , )  =/xPcrla*l " -1  sgn (a* ) ,  

i=1 

r = l  . . . . .  n + l .  (3.2) 

We  claim that  (h ,  z) also satisfies (3.2) as a result of (3.1). To  see this multiply 
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each side of (3.1) by x k, sum on k between k r 1 + 1 and k~, and recall that 
Bz = Ax. 

We  wish to prove that X = g. We use the STP property of B and the fact 
that  z strictly alternates in sign to prove this fact. 

Assume that  a* and z are linearly independent  vectors (otherwise it 
follows that  k =/z).  An application of the method of proof of Proposition 3.4 
(and 3.3) shows that for all y, 3 ~ R, ,/2 + 6 2 > 0, 

' #  1 .  , ,  • . . . .  = 8~ r }~=, )< s ((+=r + ~,*};' :/i 

Since G > 0, r = 1 ,.. n + 1, and/~,  ~ > 0, this reduces (setting 7 = i ) to 

 o.t 

for every 8 ~ R. 
We may assume a~' < 0. [Since S ~ ( a  *) = S ( a * ) ,  we have a~' ~ 0.1 Set 

6 o = m a x { 6 : 6 > 0 , 1 + 6 a * (  .... i ) ~ ' l > ~ O , r = l  . . . . .  n + l } .  

Recall that z ~ = ( - l Y  ' j ,  r = l  . . . . .  n + l .  Now, 0 < 8  o < o o , a n d f o r 0 < 8 <  
8 o, S ( z +  6 a * ) =  n, while S ( z +  door* )~< n -  1. Thus S ' ( z +  
(#  / ~ )P/(" l~6oa* ) ~< n - 1, which implies that (1~ / ~ ) p / I r '  1~8 o > 6 o, i.e.,/~ > 
~. This contradicts the definition of/~. Therefore a* = 7z for some y e t~ and 

= g. This proves Claim 1. 
Claim 2. o , ~ ( p ) < ~ .  Let 0 = k o < k l <  . . - < k , , < N = k , , ~ l  be as 

previously defined, i.e., x j( - 1) r+ 1 >~ O, k r_ 1 + 1 <~ j <~ k r ,  r = 1 . . . . .  n + 1, 
with the additional proviso that if x~ = 0, then i = k~ for some r. [Recall that 
since S+(x) = S-(x),  then x i = 0 implies x i lxi ~l < 0.] Thus for r = 1 . . . . .  n, 
either 

(a) xkxk ,  +1 < O, or 
(b) xk,= 0, xkr lxkr+l > 0. 
We define vectors (e ~ };'=1 as follows: 

(a') If XkrXk, + l < 0, set 

( e , ) = f l x ,  f , , ,  i ,  i = k , , k r + l ,  
[ 0, otherwise. 

(b') If xk~ = 0, set (e r)~ = 8i. ~. 

The vectors {er}'/=l form a weak Descartes system of degree n, i.e., the 
N × n matrix formed by the columns e ~ is TP and of rank n. Furthermore, 
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each e r is orthogonal to the vector  

(Ix,I p-1 sgn (x l )  . . . . .  IXNI p-1 sgn(XU) ). 

We  construct  {fr )r"=~ in a totally analogous manner ,  but  with respect  to 
A x [recall that  from Proposition 3.3, S + ( A x ) =  S - ( A x ) =  n ], except that here 
we  set p = 2, i.e., (Ax,  f r) = 0, r = 1 . . . . .  n. We now construct the M X N 

= (d  ~M N matrix D ~ ij?i=lj=l, where 

di j  

( f l ,  A e  1 ) . . .  ( f l ,  A e  n) (f 1 ,aJ )  

(f n, Aet ) . . .  (f n, Ae" ) (f ~, a j)  

( A e l ) ,  - - .  (Aen) ,  a , j  

det ( ( f* ,Aet ) )7 , t= 1 

Thus 

D y =  

( f l ,  Ae l )  . . .  ( f l ,  A e n ) ( f a ,  A y )  

( f . ,Ae  x) . . .  (fn, Ae.) (f",Ay) 
Ae 1 • • - Ae n A y  

de t ( ( f  s, Aet))~s.t=l 

where  the numera tor  is to be  understood via an expansion by  the last row. 
Since the {e t }t"--~ and {fs },,=~ form TP matrices of rank n and A is STP, the 
denominator  is positive. 

Note that  

D y  = a y  - P . y ,  

where  P. is an M × N matrix of rank n. From the form of D we see that  the 
range of P~ is spanned by  the vectors Ae 1 . . . . .  Ae n. Thus 

o~(p) <~ max 
y:#0 

I I (A - e. )r lip 

IlYllp 

IIDyllp 
= m a x - -  

y :~ 0 IlYlI, 



152 A. PINKUS 

We list and prove some properties of D: 
(i) Dx = Ax, since ([r  A x ) =  0, r = 1 . . . . .  n. 
(ii) sgn(Ax)i dij  sgn(x i)>~ 0 for 'all i, j ,  because of the particular form of 

the {er }r~=l and (fr }~'= t. 
(iii) If X k = O ,  then d , k = O ,  i = 1  . . . . .  M. If Xk=0 ,  then (e ' )~=6ik for 

some r, and therefore (f~, Af t )  = (P , a  k) and ( A d ) i  = a~k, so that d,k = 0. 
• _ M N 0v) Set C - ( q j ) ~ = l j =  1, cq = Ida1 ]. Then C is TP by  an application of 

Sylvester's determinant identity; see e.g. Karlin [2, p. 3]. 
(v) E~= fl,~l(Dx),l v- ~ sgn( (Dx) ,  ) = XV[x~] v- t sgn(x~), r = 1 . . . . .  N. 

From (i), Dx = Ax, and furthermore, di i  = a, t  - E~=l(Aek)~bkj  for some 
c o n s t a n t s  b k i .  R e c a l l  t h a t  e k i s  o r t h o g o n a ]  to  
(Ix,I v ~ sgn(x~) . . . . .  [x,:lv-1 sgn(xN))" Thus 

M M 

E dirl(Dx)il p i s g n ( ( D x ) i )  = ~ a~ r l (Ax) i f  ~ s g n ( ( A x ) , )  
i = 1  i = !  

~l M [p 1 

- E bkr E (Aek) , l (Ax) ,  sgn ( (Ax) , )  
/ , : 1  i = 1  

= ~,Vlxrl" x sgn(xr)  

N M 

-- ~ E bkr(ek)l E ai t [ (Ax) , ]  v tsgn((Ax),) 
k = l  / = 1  i = 1  

= XOlXrl v J sgn(x,.) 

.V 

_ hv ~ bk ~ ~ (ek)llxtlP l sgn(xl ) 
k = l  l = l  

= hplxr[p i sgn(xr) .  

With these properties we now proceed with the proof. Because of the 
checkerboard nature of the sign of D [by (ii)] 

IlDyllp IlCyllp 
m a x -  - m a x -  
y , 0  IlyH, y .O  ItY}Io 

This maximum is attained for some (~t, y*) satisfying 

IlCy*llv IICylI. 
m a x - -  

Ily*ll, y . o  Ily[I, 
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Since C >/0, The maximum is attained by a y* which does not change sign, 
and we may therefore assume y* >/0. The maximum is attained at a critical 
value, i.e., for (bt,y*) satisfying 

M 
~_, cir[(Cy*)i]P-l=l~P(y*,) p-x, r = l  . . . .  ,N. (3.3) 

i=1 

From (if) and (v) we see that (h ,w) also satisfies (3.3), where w = 
(Ix~l . . . . .  I xNI) .  We claim that ~t = ~. The proof of this fact is via a Perron- 
Frobenius type argument. Assume w and y* are linearly independent. (Other- 
wise the result follows immediately.) From (iii), if Xr = 0, then Idirl = c~, = 0, 
i = 1 . . . .  , M, which implies by (3.3) that y* = 0. By the above, there exists a 
smallest number 3' (3, finite) such that 3,1x,I >/Y* for all r. Thus 

p-x ,  . . . . .  M, 

and therefore 

M M 

3 , p - 1 E  cir[(Cw)i] p-I~ E Cir[(Cy*)i] p-1 
i=1 i=1 

for r = 1 . . . . .  N. From (3.3) we obtain 

3,P-xXPIXrIP x~/xP(y~*) p-~, r = l  . . . .  ,N.  

Thus 

} )p / (p -  1) 
3, Ixrl > / y * ,  r = 1 . . . . .  N .  

(Strict inequality in fact holds, but this is immaterial here.) From the 
definition of 3,, it follows that h >//t. Thus h = #, proving the claim and 
completing the proof of the theorem. • 

REMArk. Using the notation of the proof of Theorem 3.5 we may now 
delineate an optimal rank n matrix and optimal subspaces. P, as defined 
above is an optimal rank n matrix for o2(p). The n-dimensional subspace 
X* = span(Arf  1 . . . . .  Arf" ) is optimal for o~(p). The (n + 1)-dimensional 
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subspace Xn*+l = span{y l . . . . .  y,,, 1 } is optimal for %3(p), where the {yi )'/:Zl! 
are as given in the proof of Claim 1. 

REMARK. To better tmderstand P,,, one might think of the case where 
the sign changes of both x and Ax all occur with zero coefficients. (This more 
closely corresponds to the continuous version of this problem.) In this case P,, 
is the rank n matrix which interpolates to Ay at the zero coefficients of Ax 
from the subspace spanned by the n columns of A whose indices are given by 
the n zeros of x. In general, these "zeros" are "spread out," so that we must 
use appropriate linear combinations of consecutive coefficients. 

REMARK. If A is an N X N matrix of rill rank, then the above proof may 
be simplified. Let o~(p)=  o ' (p;  A) to denote the dependence on A. It is 
easily shown that a,~(p; A ) o  3 , L(P; A 1)= 1. Furthermore, if A is STP. 
then A ~ is STP after left and fight multiplication by the diagonal matrix 
with diagonal entries alternately one and minus one. In addition, if (~, x) is a 
critical value for A, then ( I / h ,  Ax) is a critical value for A ~ (with the same 
p ). It therefore suffices to prove o,1( p; A )~< ~ to obtain equality thronghout. 

To verify Theorem 1.1, it remains to prove this next result. 

TrIEOaEM 3.7. Let  A be an M x N STP matrix, p ~ (1, ~ ) .  Then for 
each n, 0 ~< n ~< R - 1, R = inin{ M, N},  there exists an x ~ R x for which 
S-(x)  = n and ()~,x) is a critical value, i.e., satis~es (3.1). 

From Corollary 3.6 and the statement thereafter we see that there is at 
most one vector x ~ R N (up to multiphcation by a constant) such that 
S (x)= n, 0 ~< n ~< R -  1, and x is a critical vector. It therefore suffices to 
prove the existence of at least R distinct (pairwise linearly independent) 
critical vectors with nonzero critical numbers. The following proposition is 
used. 

PnOPOSITION 3.8. Let  ()~,x) be a critical value for  A and p ~ (1, ~ )  
with  S ( x ) = n ,  0 ~ < n ~ < R - 1 .  Set y = ( y l  . . . . .  YM), where 

yk = I ( a x ) k t " '  s g n ( ( a x ) k ) ,  k = l  . . . . .  M. 

Then ()t,y) is a critical value for  A r and q, where 1 / p  + 1 / q  = 1, and 
S-  (y) = n. 
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Proof. By Proposition 3.3, S - ( x ) =  S (Ax). Since S-(y)  = S-(Ax) ,  it 
follows that S - ( y ) =  n. We wish to prove 

N 
T q E ak,l( A Y),I lsgn((ArY),)=)~qlYdq-lsgn(Yk) ' 

i = 1  

k = l  . . . . .  M. 

From the definition of Yk, 

lYklq-Xsgn(Yk)=(Ax)k,  k = l  . . . . .  M. 

Since ()~,x) is a critical value for A and p, we have from (3.1) 

M 

E a,k~, = X"lXkl p ' sgn(xk), 
i = 1  

k = l  . . . . .  N, 

i.e., ( A r y ) i  = ~Plxil p-1  sgn(x i ) ,  i = 1 . . . . .  N, which  implies 
i(ATy)ilq i sgn((Ary)i)= )~qxi ' i = 1 . . . . .  N. Thus 

N N 

E ak,l(A~y),l 0-1 ~ = sgn((A y) , )  E ak,hqxi 
i = 1  / = 1  

= Xq(Ax)k 

=hqlYklq-lsgn(Yk), k = l  . . . . .  M. • 

The proof we present is an application of the Ljusternik-Schnirelman 
theorem (see [3], [8]), one version of which is: 

THEOaWM 3.9. Suppose f ,  g E C I(R k, R) with f ,  g even functions and g 
strictly convex. Then f l  (x: g(x)-l ) possesses at least k distinct pairs o f  critical 
vectors. 

Proof o f  Theorem 3.7. Assume M/> N, i.e., R = N. Set f(x) = IIAxllp 
and g(x)= Ilxllp, Then f and g satisfy the hypotheses of Theorem 3.9. The 
vector x is a critical vector if the gradient of f is a multiple, )~, of the gradient 
of g. This is explicitly (3.1). Thus (3.1) holds for at least N distinct pairs (i.e., 
x and - x). If M < N, consider A r and q, l / p +  l / q  = 1, and then apply 
Proposition 3.8. • 
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R E ~ .  We could actually apply a variant of Theorem 3.9 to the case 
M < N without going over to the transpose problem. However to do this we 
must introduce the concept of category (see [3]) or genus (see [8]) in order to 
prove that of the N critical values, at least M = R have nonzero critical 
numbers. 

REMAINS. A different, more "elementary," but much lengthier proof may 
be found in [7], where a generalization of the above result is proved. This 
other proof uses the strict total positivity of A and the implicit function 
theorem to vary from p = 2, where we know the result to be valid. 

I wish to thank Prq~essor P. H. Rabinowi tz  for  some helpful  comments. 
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