
Some Remarks on
Zero-Increasing Transformations

Allan Pinkus

Abstract. Let T be a linear operator which maps polynomials of degree
n to polynomials of degree n, for every n. We discuss the problem of trying
to characterize the set of all such operators which satisfy

ZI(p) ≤ ZJ (Tp)

for every real-valued polynomial p, where ZI counts the number of zeros
on the interval I of IR.

§1. Introduction

Let Π denote the space of all real-valued polynomials, and πn the subspace
of all polynomials of degree at most n. In this paper we will consider linear
operators T : Π → Π for which

T : πn → πn

for each n ∈ ZZ+. For each polynomial p, we let ZI(p) denote the number of
zeros of p, counting multiplicity, on the interval I ⊆ IR.

The problem we will discuss is that of characterizing those T for which

ZI(p) ≤ ZJ (Tp)

for all p ∈ Π. We call such operators zero-increasing (ZI). Problems of this
type have a long and distinguished history. The interested reader may wish to
browse in the books of Marden [18], Obreschkoff [19], and Pólya–Szegő [23].

Let us start with a few simple examples of such operators in order to
convince ourselves that they do exist and can be non-trivial. Perhaps the
simplest (but trivial) example is

(Tp)(x) = (x − a)p′(x)
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2 A. Pinkus

where a ∈ I. From Rolle’s Theorem (the most basic and fundamental of the
zero counting methods on IR) we have

ZI(p) ≤ ZI(Tp)

for every polynomial p and any interval I. Similarly it is easy to generalize
this example to

(Tp)(x) = qk(x)p(k)(x)

where qk is some fixed polynomial of degree k with k zeros in I. A somewhat
more complicated example is the following. Let Hk denote the kth degree
Hermite polynomial with leading coefficient 2k. Then

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

akHk(x)

)

for every choice of {ak} and n. We will “prove” this inequality later. We also
have

Z[−1,1]

(

n
∑

k=0

akxk

)

≤ Z[−1,1]

(

n
∑

k=0

akTk(x)

)

and

Z[−1,1]

(

n
∑

k=0

akxk

)

≤ Z[−1,1]

(

n
∑

k=0

akUk(x)

)

where Tk and Uk are the Chebyshev polynomials of the first and second kind,
respectively, i.e.,

Tk(cos θ) = cos kθ

and

Uk(cos θ) =
sin(k + 1)θ

sin θ
.

This and similar results are sometimes stated only for the special case
where if

n
∑

k=0

akxk

has only real zeros, then
n
∑

k=0

akHk(x)

has only real zeros. Or if
n
∑

k=0

akxk

has all its zeros in [−1, 1] then

n
∑

k=0

akTk(x)
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(or
∑n

k=0 akUk(x)) has all its zeros in [−1, 1]. We will later discuss this varia-
tion on the general problem. In this form the result for Hermite polynomials
and for the two Chebyshev polynomials appears in Iserles and Saff [13], al-
though their proof actually gives the more general result. In fact these results,
in the general case, were already in Burbea [4]. Examples of other ZI opera-
tors can be found in the above two references and in Iserles, Nørsett [11], and
Iserles, Nørsett and Saff [12].

We can list more and more of these transformations. But we will not.
Rather we will try to develop the general theory, if at all possible. We will
mainly consider the cases where I is the whole real line or one of its rays.

§2. Some Classic Theorems

We start with a result called the Hermite–Poulain Theorem. It is based on
questions posed by Hermite [8], and answered by Poulain [24].

Hermite–Poulain Theorem. Assume

g(x) =

m
∑

k=0

bkxk

is a polynomial with all real zeros and b0 6= 0. Then for any polynomial p

ZIR(p) ≤ ZIR

(

m
∑

k=0

bkp(k)

)

.

Proof. The main idea in the proof of this result consists in noting that

m
∑

k=0

bkp(k) = (g(D)p)(x)

where

g(D) =
m
∑

k=0

bkDk =
m
∑

k=0

bk
dk

dxk
.

That is,
∑m

k=0 bkp(k)is obtained from p by the application of a constant co-
efficient ordinary differential equation. In addition, this ordinary differential
equation is what we now call disconjugate. In this case, this simply means
that g has only real zeros, i.e.,

g(D) = bm

m
∏

j=1

(D − αjI)

and αj ∈ IR. We also impose the condition b0 6= 0 which implies αj 6= 0.
Otherwise the resulting polynomial loses degree and the theorem is not correct
in the stated form.
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As the D − αjI commute, to prove the theorem it suffices to verify

ZIR(p) ≤ ZIR((D − αI)p)

for α ∈ IR\{0}.
This may be done in a variety of ways. The most elegant I have seen is

that due to Poulain himself. He writes

(D − αI)p = eαxD(e−αxp) .

As α 6= 0 and p is a polynomial, e−αxp(x) has an additional “zero” at ∞ or
−∞ depending upon the sign of α. We now apply Rolle’s Theorem.

Note, in fact, that if α > 0 then D(e−αxp) has a zero interlacing those of
p and to the right thereof. Thus, refining a bit the above we also have:

Hermite–Poulain Theorem (II). Let

g(x) =

m
∑

k=0

bkxk

be a polynomial with all positive zeros. Then

Z[A,∞)(p) ≤ Z[A,∞)

(

m
∑

k=0

bkp(k)

)

,

for every polynomial p, and A ∈ IR.

Disconjugate ordinary differential equations have an inverse given by in-
tegrating against a Green’s function with certain desirable qualities. We will
consider the inverse of g(D), operating as a map from polynomials to poly-
nomials of the same degree. The operator g(D) formally exists since b0 6= 0
and

g(D)xn = b0x
n +

n−1
∑

k=0

bn,kxk .

But this is not an especially useful form of g from which to derive its inverse.
Let us start with the simplest case g(D) = D − αI, i.e., the operator

(D − αI)p = q .

This is equivalent to
eαxD(e−αxp) = q

which then easily translates into

e−αxp(x) =

∫

e−αyq(y) dy
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for some appropriate antiderivative.
For the above to make sense, in that it takes polynomials to polynomials,

it follows that for α > 0

p(x) = −

∫ ∞

x

eα(x−y)q(y) dy ,

and for α < 0

p(x) =

∫ x

−∞

eα(x−y)q(y) dy .

In other words, if

(Sq)(x) =

{

−
∫∞

x
eα(x−y)q(y) dy, α > 0

∫ x

−∞
eα(x−y)q(y) dy, α < 0

then S = T−1 and
ZIR(Sq) ≤ ZIR(q)

for every polynomial q.
This is not a surprising result. S not only takes polynomials of degree

n to polynomials of degree n, but it is an integral equation with a totally

positive difference kernel (called a Pólya frequency function). It was proven
by Schoenberg [25] (see also Karlin [14]) that an operator given by such an
integral equation is variation diminishing, i.e., satisfies

ZIR(Sq) ≤ ZIR(q)

for all continuous functions for which the above integral makes sense (and not
only polynomials) if and only if the kernel is totally positive (or to be more
precise sign regular). (We might possibly call this property zero decreasing.
However the term variation diminishing is well established. What is actually
meant by the term is that the number of variations in sign of the Sq is less
than or equal that of q.)

What we just did applies to the simple operator D−αI. However multi-
plying such operators is equivalent (for the inverse) of convolving the difference
kernels. Thus the appropriate inverse operator to

m
∏

j=1

(D − αjI)

is an integral equation whose kernel is obtained by convolving totally positive
kernels, and thus is also totally positive. There is one further fact which we
wish to highlight using this simple example. The kernel of the above S, i.e.,
of (D − αI)−1, is for α > 0

Kα(x) =

{

0 , x > 0
−eαx, x < 0
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and has the two-sided Laplace transform

1

s − α
=

1

g(s)
for s < α .

For α < 0 the kernel is given by

Kα(x) =

{

eαx, x > 0
0 , x < 0 ,

and has the two-sided Laplace transform

1

s − α
=

1

g(s)
for s > α .

Note that in both cases the two-sided Laplace transform equals 1/g(s), i.e.,
is intimately connected with the ordinary differential equation, and exists in
some neighborhood of the origin.

In general, if

g(D) = bm

m
∏

j=1

(D − αjI) ,

then the two-sided Laplace transform of the difference kernel of the inverse
operator is given by

1

bm

∏m
j=1(s − αj)

=
1

g(s)
,

and exists for all s in some neighborhood of the origin. (It actually exists in
the strip

{z : max
αj<0

αj < Re z < min
αj>0

αj} .)

We will shortly return to the Hermite–Poulain Theorem. However we first
pick up another thread. There is an additional class of operators which lead
to operators with the ZI property. This is a result due to another outstanding
19th century French analyst, namely Laguerre [16].

Laguerre’s Theorem. Assume g is a polynomial with only real zeros, all of
which lie outside the interval [0, n]. Then for every polynomial p of degree at
most n

p(x) =
n
∑

k=0

akxk

we have

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

akg(k)xk

)

.

These are different types of operator from those in the Hermite–Poulain
Theorem. They are “diagonal” in the sense that

Txk = g(k)xk
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for k = 0, 1, . . . , n. Note that there is a restriction here in that these operators
only have the ZI property for polynomials of degree at most n, although there
is no restriction on the degree of g. Thus these operators in themselves need
not be ZI operators on all of Π. However we will use them to construct other
ZI operators.

Proof. The idea of this proof is again linked to ordinary differential equations.
If

g(x) = b
m
∏

j=1

(x − αj)

then

(Tp)(x) =
n
∑

k=0

akg(k)xk = b
m
∏

j=1

(xD − αjI)p(x)

simply because

b

m
∏

j=1

(xD − αjI)xk = b

m
∏

j=1

(k − αj)x
k = g(k)xk ,

for each k. Thus

Tp = g(xD)p .

The ordinary differential equation g(xD) is an Euler equation. Again, as the

xD − αjI

commute, it suffices to prove that

ZIR(p) ≤ ZIR((xD − αI)p)

for α /∈ [0, n].
Why is this true? We consider separately zeros of p which are at zero,

positive and negative. As p and (xD−αI)p have the same order zero at x = 0,
there is no problem with zeros at zero. For x > 0

(xD − αI)p = xα+1D(x−αp(x)) .

Now x−αp(x) has a zero at zero, for α < 0, while for α > n, x−αp(x) has a
“zero” at ∞ (since p is of degree at most n). In both cases, applying Rolle’s
Theorem we get

Z(0,∞)(p) ≤ Z(0,∞)((xD − αI)p) .

For x < 0, a similar argument holds.

From the above we also have
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Laguerre’s Theorem (II). Let g be a polynomial with all negative zeros.
Then

Z[0,A]

(

n
∑

k=0

akxk

)

≤ Z[0,A]

(

n
∑

k=0

akg(k)xk

)

,

for every polynomial p, and A > 0 (and similarly on [−A, 0]).

If there is a zero of g in [0, n], then both the above argument and the
results are not valid. However, if we agree to count the number of zeros of the
zero polynomial as infinite, then the above result will also hold for polynomials
g with all real zeros outside [r, n], r a positive integer, if g(0) = · · · = g(r−1) =
0, see Craven and Csordas [6].

Laguerre’s Theorem (III). For any r ∈ ZZ+, let h be a polynomial of the
form

h(x) = x(x − 1)(x − 2) · · · (x − r)q(x)g(x)

where g is as in Laguerre’s Theorem, and q is any polynomial with all real
zeros in [0, r + 1). Then

ZIR(
n
∑

k=0

akxk) ≤ ZIR(
n
∑

k=0

akh(k)xk) .

Proof. To prove this result it suffices to prove it for h of the form

h(x) = x(x − 1)(x − 2) · · · (x − r)q(x) .

We then apply Laguerre’s Theorem to obtain the full result.
As previously, for p(x) =

∑n
k=0 akxk we have

n
∑

k=0

akh(k)xk = h(xD)p .

Now it is readily checked that

xD(xD − I)(xD − 2I) · · · (xD − rI)p = xr+1p(r+1)(x) .

From Rolle’s Theorem we have

ZIR(p) ≤ r + 1 + ZIR(p(r+1)) = ZIR(xr+1p(r+1)(x)) .

Let us now consider

(xD − αI)xD(xD − I)(xD − 2I) · · · (xD − rI)p .

As the (xD−αI) commute, the order here is unimportant. From the previous
analysis it therefore follows that this equals

(xD − αI)xr+1p(r+1)(x) ,
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and a simple calculation shows that this is equivalent to

xr+1(xD − (α − r − 1)I)p(r+1)(x) .

Thus we have

(xD − α1I) · · · (xD − αkI)xD(xD − I)(xD − 2I) · · · (xD − rI)p(x) =

xr+1(xD − (α1 − r − 1)I) · · · (xD − (αk − r − 1)I)p(r+1)(x) .

As each αi ∈ [0, r + 1), we have αi − r − 1 < 0 and thus from Laguerre’s
Theorem and Rolle’s Theorem

ZIR(p) ≤ r + 1 + ZIR(p(r+1)(x))

≤ r + 1 + ZIR((xD − (α1 − r − 1)I) · · · (xD − (αk − r − 1)I)p(r+1)(x))

= ZIR(xr+1(xD − (α1 − r − 1)I) · · · (xD − (αk − r − 1)I)p(r+1)(x))

= ZIR((xD − α1I) · · · (xD − αkI)xD(xD − I)(xD − 2I) · · · (xD − rI)p(x)),

which is exactly the result we wanted.

Can we easily invert g(xD)? Obviously yes. The inverse is simply given
by the diagonal operator taking xk to xk/g(k), k = 0, 1, . . . , n. But this
form of the inverse is not really useful. Another form of the inverse is more
insightful. We first state it for g(xD) = xD − αI.

For α < 0
1

k − α
=

∫ 1

0

tk−α−1dt

=

∫ 1

0

t−α−1tkdt

and thus for x > 0

xk

k − α
=

∫ x

0

( y

x

)−α−1 1

x
ykdy .

Similarly for α > n (and 0 ≤ k ≤ n) it follows that

xk

k − α
= −

∫ ∞

x

( y

x

)−α−1 1

x
ykdy .

Thus for each p of degree at most n, the operator Sα = (xD − αI)−1 is given
by

(Sαp)(x) =

∫ x

0

( y

x

)−α−1 1

x
p(y) dy

for α < 0, and by

(Sαp)(x) = −

∫ ∞

x

( y

x

)−α−1 1

x
p(y) dy
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for α > n, and for such p we have

Z(0,∞)(Sαp) ≤ Z(0,∞)(p) .

(The above integrals do not converge for all p ∈ πn if 0 ≤ α ≤ n.) A similar
result holds on (−∞, 0). In some sense we have just complicated things.
However two things are worth noting. Firstly,









m
∏

j=1

Sαj



 p



 (x)

also has the form
∫ ∞

0

L
(y

x

) 1

x
p(y) dy

for some appropriate L. Secondly, if we substitute y = eu and x = ev, then
the “kernel” of the integral operator Sα has the form

eα(v−u)e−u ,

where it is not zero. This is “essentially” the same kernel we saw previously,
in reference to the inverse of (D − αI).

§3. Consequences of the Hermite–Poulain Theorem

The question we now pose is the following. Are the two sets of operators we
have so far discussed, i.e., those obtained from the Hermite–Poulain Theorem
and those from Laguerre’s Theorem, in some sense the essential building blocks
of all linear ZI operators taking polynomials of degree n to polynomials of
degree n, all n?

Assuming we are interested in “all linear operators” then we must consider
not only the specific operators given by the Hermite–Poulain Theorem and
Laguerre’s Theorem, but also those operators in their “closure”. (And we
must understand which operators are in their closure.) Note, for example,
that neither the translation nor the dilation operator in contained in what we
have so far discussed, and these operators obviously must be considered.

The Hermite–Poulain Theorem tells us that an operator

T = g(D)

determined by any polynomial g with all real zeros has the desired property.
From continuity considerations the same will be true for all operators which
are obtained as limits of g(D)’s of the above form. So what is the appropriate
limit of the set of polynomials with all real zeros?

This and related questions were examined by Laguerre [15] who was the
first to characterize those functions which can be uniformly approximated by
polynomials whose zeros are all real, or whose zeros are all positive, and also
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by Pólya [20], [21] who proved and generalized some of these results. These
facts may be found in a variety of texts such as Hille [9], Hirschman and
Widder [10], and Levin [17]. The set of functions

A1 =

{

Cxme−c2x2+ax
∞
∏

k=1

(1 + αkx)e−αkx

}

where C, c, a, αk ∈ IR, m ∈ ZZ+, and
∑∞

k=1 α2
k < ∞, are those functions

which may be obtained as the uniform limit (on [−A, A] for any A > 0) of
polynomials having only real zeros. Defined on |C, these are entire functions.
(Note that this is a rather restricted set, and it should be contrasted with
what the Weierstrass Theorem tells us about approximation by polynomials.)
We sometimes call this set of functions the first Pólya–Laguerre (or Laguerre–
Pólya) class.

In the Hermite–Poulain Theorem we also need the fact that g(0) 6= 0.
This simply implies that m = 0 (and C 6= 0) in the above. Thus we have that
if

g(D) = Ce−c2D2+aD
∞
∏

k=1

(I + αkD)e−αkD

then

ZIR(p) ≤ ZIR(g(D)p)

for every polynomial p. We understand the e−c2D2

and eaD as given by their
power series expansion and as such g(D) is well-defined on the set of polyno-
mials.

What are each of the operators e−c2D2

, eaD, and (I + αkD)? The third
operator we have already discussed. It is also readily checked that

(eaDp)(x) = p(x + a) ,

i.e., eaD is just the shift operator, and obviously

ZIR(p) = ZIR(eaDp) .

The operator e−c2D2

is more interesting. It may be shown, see Carnicer, Peña,
Pinkus [5], that

e−c2D2

xk = ckHk

( x

2c

)

where Hk is the kth degree Hermite polynomial (with leading coefficient 2k).
Thus

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

akHk(x)

)

,

as claimed in the introduction of this paper.
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What about the converse? That is, if T is a linear operator taking πn to
πn for all n and satisfying

ZIR(p) ≤ ZIR(Tp)

for every polynomial p, does this imply that

T = g(D)

for some g ∈ A1?
The answer is no!! For g ∈ A1 (m = 0) we have g(0) = C(6= 0) which

immediately implies that

g(D)xn = Cxn +

n−1
∑

k=0

bn,kxk .

Thus g(D) is an operator on the set of all polynomials which acts, on the
monomials, as a triangular matrix with “constant diagonal entries”.

What if we therefore ask the same question, but restrict ourselves to
operators of this particular form? That is, assume T is a linear operator of
the form

Txn = Cxn +

n−1
∑

k=0

bn,kxk ,

which satisfies
ZIR(p) ≤ ZIR(Tp)

for every polynomial p. Does this imply that T = g(D) for some g ∈ A1? The
answer now is yes. This result may be found in Carnicer, Peña, Pinkus [5].

What can we say about the inverse of such T = g(D)? As g ∈ A1

(g(0) 6= 0) is the limit of the previously considered polynomials with all real
roots, we can identify the inverse operator S = T−1 = (g(D))−1. There are
two possibilities. If T = g(D) = CeaD then, up to the constant C, T is just a
shift and thus S is the reverse shift and is given by (1/C)e−aD. If, however,
g ∈ A1, g(0) 6= 0, and g(x) 6= Ceax, then there exists a kernel K whose
two-sided Laplace transform is 1/g in some neighborhood of the origin, i.e.,

1

g(s)
=

∫ ∞

−∞

e−sxK(x) dx ,

in some neighborhood of the origin, and

g(D)p = q

if and only if

p(x) =

∫ ∞

−∞

K(x − y)q(y) dy .
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This result is actually due to Pólya [21] who was motivated to consider this
question for the same reasons which we have so far described. That is, he
started with the Hermite–Poulain Theorem, considered the limiting operators
obtained from functions in A1, and then considered the inverse of these op-
erators. The fact that K, as a difference kernel, is totally positive and other
related facts were proven by Schoenberg [25], [26] (also in Schoenberg [27]). It
is for exactly these reasons that Schoenberg called such kernels K Pólya fre-
quency functions. These results are also discussed in Hirschman and Widder
[10], Karlin [14], and Widder [28].

What about the second version of the Hermite–Poulain Theorem? That
is, we noted that if g has all positive zeros, then

Z[A,∞)(p) ≤ Z[A,∞)(g(D)p)

for every polynomial p and A ∈ IR. Again we should ask for the appropriate
closure of this set of polynomials. It is

A+
2 =

{

Cxme−ax
∞
∏

k=1

(1 − αkx)

}

where C ∈ IR, a, αk ≥ 0, m ∈ ZZ+, and
∑∞

k=1 αk < ∞. The difference

between this and A1 is that there is no e−c2x2

and there is a more restrictive
summability condition on the {αk}, in addition to the sign conditions. That is,
this is the class obtained as the uniform limit, on some interval, of polynomials
having only positive zeros. We let A−

2 be the uniform limit, on some interval,
of polynomials having only negative zeros. Note that g(x) ∈ A−

2 if and only
if g(−x) ∈ A+

2 .
Assuming g(0) 6= 0 (m = 0 and C 6= 0 in the above) then if

g(D) = Ce−aD
∞
∏

k=1

(I − αkD)

for a, αk ≥ 0 and
∑∞

k=1 αk < ∞, then

Z[A,∞)(p) ≤ Z[A,∞)(g(D)p)

for every polynomial p and A ∈ IR. The converse also holds. If T has the
form

Txn = Cxn +

n−1
∑

k=0

bn,kxk ,

and
Z[A,∞)(p) ≤ Z[A,∞)(Tp)

for every polynomial p and A ∈ IR, then T = g(D) for some g as above. It
actually suffices to consider only A ≥ 0 or, A = −∞ and A = 0. This result,
however, is not true if we only demand the above ZI property to hold for one
value of A, see Carnicer, Peña, Pinkus [5].
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§4. The Pólya–Schur Property

Before relating to you the parallel generalization of Laguerre’s Theorem, let
us recall the following. Pólya, Schur [22] in 1914 characterized those linear
operators Γ which are “diagonal” on the monomials, i.e., operators of the form

Γxk = γkxk , k = 0, 1, . . . ,

and have the property that if p is a polynomial with all its zeros real, then
Γp has all its zeros real. As we mentioned in the introduction, this problem
is related to the one we have been considering. If T is a ZI operator, then
for p with only real zeros it follows that Tp has only real zeros. That is,
ZI operators have this Pólya–Schur property. However it transpires that an
operator Γ having this Pólya–Schur property does not necessarily have the ZI
property. If γk = 1+4k2, then the associated Γ has the Pólya–Schur property,
but not the ZI property. A different example appears in Bakan, Golub [3].

What Pólya and Schur proved is the following:

Pólya–Schur Theorem. The operator Γ, as above, has the Pólya–Schur
property if and only if

n
∑

k=0

(

n

k

)

γkxk (= Γ ((1 + x)n)))

has n real zeros all of one sign for all n or, equivalently, the function

φ(x) =
∞
∑

k=0

γk

k!
xk

is either in A+
2 or in A−

2 .

These are the same classes A±

2 which we considered previously, but the
associated operators are totally different. Pólya and Schur also characterized
those “diagonal” operators Γ with the property that if p is a polynomial with
all its zeros real and of one sign, then Γp has all its zeros real. Such operators
are characterized by the fact that the above φ is then in A1.

What if we now ask to characterize all operators of the form

Γxn = Cxn +
n−1
∑

k=0

bn,kxk ,

with this Pólya–Schur property. The ZI operators of this form have the Pólya–
Schur property and we know how to characterize them. But are they all the
operators with this property? Here the answer is in the affirmative. That is, if
Γ has the above form of a “triangular operator with constant diagonal entries”
and satisfies the Pólya–Schur property, then Γ = g(D) for some g ∈ A1.

Thus with respect to the Pólya–Schur property we know how to char-
acterize all “diagonal operators” and also all “triangular operators with con-
stant diagonal entries”. This begs the question of how to characterize all such
“triangular operators”. Unfortunately these two types of operators do not
commute. The problem remains open and difficult. Are all such operators
simply (possibly infinite) products of operators of the above form?
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§5. Consequences of Laguerre’s Theorem

We now return to our original problem and to the operators given by La-
guerre’s Theorem, namely

Txk = g(k)xk , k = 0, 1, . . . , n,

where g is a polynomial all of whose zeros are real and lie outside [0, n]. These
operators have the ZI property on polynomials of degree at most n.

What is the appropriate closure of these polynomials as n → ∞? It is
neither A1 nor A−

2 , but somewhere inbetween. It is given by

A3 =

{

Cxme−c2x2+ax
∞
∏

k=1

(1 + αkx)e−αkx

}

where C, c, a ∈ IR, αk ≥ 0, m ∈ ZZ+, and
∑∞

k=1 α2
k < ∞. That is, it is exactly

A1 except for the restriction αk ≥ 0. It is definitely not A−

2 . If g ∈ A3, and
g(0) 6= 0, then

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

akg(k)xk

)

,

for every set of {ak} and now also for every n.
For example, if g(x) = eax then g(k) = bk where b = ea is any positive

value. This gives us the dilation map

Txk = (bx)k ,

which exactly preserves the number of real (and positive) zeros. If g(x) =

e−c2x2

, then g(k) = qk2

for some q ∈ (0, 1). Thus

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

akqk2

xk

)

,

for any q ∈ (0, 1). (The same holds on (0,∞).) This g is in A3, but is not in
A±

2 . We also have the classic example of

ZIR

(

n
∑

k=0

akxk

)

≤ ZIR

(

n
∑

k=0

ak

(

n

k

)

xk

)

,

which comes from the fact that the operator

Txk =
xk

k!
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has the desired ZI property since

1

Γ(x + 1)
= eγx

∞
∏

k=1

(

1 +
x

k

)

e−x/k ,

where Γ(·) is the Gamma function, and γ is the Euler constant. This function
is in A3, but not in A−

2 (even discounting the eγx) because
∑∞

k=1 1/k = ∞.
Both the above examples are due to Laguerre.

The question or conjecture which immediately surfaces is whether every
diagonal operator

Txk = ckxk , k = 0, 1, . . .

(assume ck > 0 for all k) with the ZI property necessarily satisfies

ck = g(k) , k = 0, 1, . . .

for some g ∈ A3. This is still an open conjecture. The result is not known in
general. However various cases are known based on work of Bakan, Craven,
Csordas and Golub [2], see also [1], [6] and [7].

They proved, for example, that if T , as above, is such that

Z[0,A](p) ≤ Z[0,bA](Tp)

for some b > 0 and all A > 0, then

ck = g(k) , k = 0, 1, . . .

for some g with e−axg(x) ∈ A−

2 for some fixed a ∈ IR. They also proved that
if

lim
k→∞

c
1/k
k > 0

then again
ck = g(k) , k = 0, 1, . . .

for some g for which e−axg(x) ∈ A−

2 for some fixed a ∈ IR. (Of course, neither

qk2

nor 1/k! satisfy these conditions.)
If this conjecture is valid, then one of its consequences is the following.

Consider g ∈ A3 satisfying g(0) 6= 0. Then one possibility is that g is of
the form g(x) = Ceax in which case g generates the dilation operator, up
to multiplication by the constant C, which exactly preserves the number of
real (and positive) zeros. If g does not have this form then S = T−1, which
corresponds to the operator with diagonal entries {1/g(k)}, is also given on
(0,∞) by

(Sp)(x) =

∫ ∞

0

L
(y

x

) 1

x
p(y) dy

for some appropriate totally positive L. The cases considered by Bakan,
Craven, Csordas and Golub correspond to the case where L has finite support.

Even assuming that this conjecture is true, there still remains the intrigu-
ing problem (as with the Pólya–Schur property) of characterizing all T with
the ZI property on IR. We seem far from a complete characterization. Even
more difficult are these same problems on intervals other than IR, and/or with
respect to polynomials of a fixed degree.
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Sci. 95 (1882), 828–831. Also to be found in Oeuvres de Laguerre, Vol I,
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