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Abstract

This paper is an attempt to both expound and expand upon, from an approximation theorist’s point
of view, some of the theoretical results that have been obtained in the sparse representation (compressed
sensing) literature. In particular, we consider in detail ℓm

1 -approximation, which is fundamental in the theory
of sparse representations, and the connection between the theory of sparse representations and certain n-
width concepts. We try to illustrate how the theory of sparse representation leads to new and interesting
problems in approximation theory, while the results and techniques of approximation theory can further
add to the theory of sparse representations.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Recent years have witnessed an abundance of research devoted to the subject of sparse and
redundant representations; see Bruckstein, Donoho, Elad [1], Elad [7]. The fundamental problem
therein is the following. Assume that we are given an n × m matrix A of rank n over R (or C).
Given any vector b ∈ Rn (or Cn), the solution set to Ax = b is an affine space of dimension
m − n; i.e., we have for m > n an underdetermined system of linear equations. The aim is
then to characterize and identify a solution with minimal support (the sparsest representation). A
successful solution to this problem has applications in signal and image processing.

The main idea behind characterizing sparse representations is to look for a solution x to Ax =

b of minimal ℓm
1 -norm. Finding a minimal ℓm

1 solution is equivalent to a linear programming
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problem, and thus is considered, to some extent, as tractable. On the other hand, searching for
the solution x to Ax = b of minimal support is not, in general, computationally efficient. The
theory then asks for conditions on when the minimal ℓm

1 solution is also necessarily a solution
of minimal support. Minimal norm solutions are generally not solutions of minimal support.
However, the ℓm

1 -norm can be, and often is, the exception to this rule.
In this paper, we consider this problem from an approximation theory perspective. For any

vector b, the solution set {x : Ax = b} is given by x + Y , where x is any fixed element thereof
and Y is the right kernel of A, and hence is an (m − n)-dimensional subspace, independent of
b. Thus, finding a minimal norm solution to Ax = b is equivalent to looking for x − y∗, where
y∗ is a best approximation to x from Y . In Section 2, we ask for conditions on when, if x has its
support {i : xi ≠ 0} in some fixed index set I , its best ℓm

1 -approximation from Y is necessarily
the 0 vector. That is, what are conditions on A and I such that if the support of x lies in I
then x is a minimal ℓm

1 -norm solution to Ax = b. In Section 3, we consider this same problem
when x is any vector whose support is of a certain size (cardinality), i.e., when x is sufficiently
sparse. This is a central problem considered in the sparse representation literature. We take a
somewhat different approach from that found in the literature by introducing an ancillary norm
on Rm and considering its dual norm and approximation therein. We show, in what we believe is
a rather intuitive manner, some of the central results of the theory for matrices with given mutual
incoherence. In Section 4, we look, in somewhat more detail, at mutual incoherence and what it
implies. Finally, in Section 5, we look at the best possible estimates available on the size of the
support of the vector x guaranteeing that it is a minimal ℓm

1 -norm solution to Ax = b, as we vary
over all n × m matrices. That is, assuming we want to maximize the possible size of the support
while maintaining for every vector x, with support of that size, the minimal ℓm

1 -norm property,
what is the best we can hope for and how can we construct the associated n × m matrix A? This
leads us to a consideration of n-widths, and we review known results and their relevance. We
state all results in this paper for R rather than C. Many of these results are also valid over C.

This paper is an attempt to both expound and expand upon, from an approximation theorist’s
point of view, some of the theoretical results that have been obtained in the sparse representation
literature; see also DeVore [2, Section 5], for a somewhat different approach. We do not consider
many of the other aspects of the theory, neither the more practical and computational parts of
this theory nor the probabilistic approach to these problems. It is gratifying to see approximation
theory applied to such problems. It is also a pleasure to acknowledge the insights and the new
results in approximation theory that have resulted from this theory. This paper is written for the
approximation theorist. Hopefully, however, the ideas, results, and techniques of approximation
theory can further add to the theory of sparse representations.

2. Fixed minimal support

Set

‖x‖1 :=

m−
i=1

|xi |,

and let Y be any finite-dimensional subspace of ℓm
1 in Rm . To each x ∈ Rm there exists

a best approximation to x from Y . We start by summarizing well-known results concerning
characterization, uniqueness, and strong uniqueness of the best ℓm

1 -approximations from Y to
elements of Rm .
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Theorem 2.1. Let Y be any finite-dimensional subspace of ℓm
1 in Rm . The vector y∗

∈ Y is a
best approximation to x from Y if and only if

−
{i :xi −y∗

i ≠0}

[sgn (xi − y∗

i )]yi

 ≤

−
{i :xi −y∗

i =0}

|yi |

for all y ∈ Y . The vector y∗
∈ Y is the unique best approximation to x from Y if and only if

−
{i :xi −y∗

i ≠0}

[sgn (xi − y∗

i )]yi

 <
−

{i :xi −y∗
i =0}

|yi |

for all y ∈ Y \ {0}. Assuming that y∗
∈ Y is the unique best approximation to x from Y , then we

also always have strong uniqueness, namely

‖x − y‖1 − ‖x − y∗
‖1 ≥ γ ‖y − y∗

‖1

for all y ∈ Y , where the optimal γ > 0 in this inequality is given by

γ := min
y∈Y,‖y‖1=1

 −
{i :xi −y∗

i =0}

|yi | −

−
{i :xi −y∗

i ≠0}

[sgn (xi − y∗

i )]yi

 .

This result may be found in Pinkus [28], see Chapters 2 and 6. See also the more exact
references therein, especially James [16] and Kripke, Rivlin [18].

Consider now the equation

Ax = b,

where A is an n × m matrix of rank n. For each b, the solution set is an affine subspace (flat) of
dimension m − n. That is, setting

Y := {y : Ay = 0},

the right kernel of A, then Y is a subspace of dimension m − n, and for any x ∈ Rm satisfying
Ax = b we have A(x − y) = b if and only if y ∈ Y .

Let I = {i1, . . . , ik} ⊆ {1, . . . , m} denote an index set, I c the complimentary set to I in
{1, . . . , m}, and |I | = k the cardinality (size) of I . For each x = (x1, . . . , xm), let

supp x := {i : xi ≠ 0}.

The first question we ask is as follows. What are conditions on I implying that if supp x ⊆ I
then necessarily

‖x‖1 = min
Az=Ax

‖z‖1?

This is not the central problem considered within the context of sparse representations. However,
it is of interest both in and of itself and because the results herein will also be used in Section 3.

Proposition 2.2. Let A, Y , and I be as above. Then we have the equivalence of the following.
For all x ∈ Rm satisfying supp x ⊆ I ,
(a) ‖x‖1 = minAz=Ax ‖z‖1.
(b) miny∈Y ‖x − y‖1 = ‖x‖1.
(c)

∑
i∈I |yi | ≤

∑
i∈I c |yi | for all y ∈ Y .
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Proof. (a) ⇔ (b). The set {x − y : y ∈ Y } represents all z satisfying Az = b.

(b) ⇔ (c). From Theorem 2.1, the vector 0 is a best approximation to x from Y if and only if −
{i :xi ≠0}

[sgn xi ]yi

 ≤

−
{i :xi =0}

|yi |

for all y ∈ Y . If (c) holds, then for each x ∈ Rm with supp x ⊆ I we have, for all y ∈ Y , −
{i :xi ≠0}

[sgn xi ]yi

 ≤

−
{i :xi ≠0}

|yi | ≤

−
i∈I

|yi | ≤

−
i∈I c

|yi | ≤

−
{i :xi =0}

|yi |,

and thus (b) holds. Now assume that (b) holds for all x ∈ Rm with supp x ⊆ I . Then, for all
such x, −

{i :xi ≠0}

[sgn xi ]yi

 ≤

−
{i :xi =0}

|yi |

for all y ∈ Y . Given y ∈ Y , choose any x such that sgn xi = yi for i ∈ I , and xi = 0 for i ∈ I c.
Thus we obtain (c). �

There is one additional characterization of when every x ∈ Rm with supp x ⊆ I satisfies
Proposition 2.2; see also Fuchs [11, Theorem 4], for an approach using duality in linear
programming. In what follows, we let cℓ, ℓ = 1, . . . , m, denote the ℓth column vector of A.

Proposition 2.3. Let A, Y , and I be as above. Then, for all x ∈ Rm satisfying supp x ⊆ I , we
have

‖x‖1 = min
Az=Ax

‖z‖1

if and only if, for every given ε ∈ {−1, 1}
I , there exists a dε

∈ Rn satisfying ⟨dε, ci
⟩ = εi , i ∈ I ,

and |⟨dε, cℓ
⟩| ≤ 1, ℓ = 1, . . . , m.

Proof. (⇐). Assume that for every given ε ∈ {−1, 1}
I there exists a dε

∈ Rn satisfying
⟨dε, ci

⟩ = εi , i ∈ I , and |⟨dε, cℓ
⟩| ≤ 1, ℓ = 1, . . . , m. Given y ∈ Y and i ∈ I , let εi = sgn yi

if yi ≠ 0 and εi ∈ {−1, 1} be arbitrarily chosen if yi = 0. Let dε
∈ Rn be as guaranteed above.

Since y ∈ Y , we have
m−

ℓ=1

yℓ⟨dε, cℓ
⟩ = ⟨dε, Ay⟩ = 0.

Thus,−
i∈I

|yi | =

−
i∈I

yi [sgn yi ] =

−
i∈I

yi ⟨dε, ci
⟩

= −

−
i∈I c

yi ⟨dε, ci
⟩ ≤

−
i∈I c

|yi ||⟨dε, ci
⟩| ≤

−
i∈I c

|yi |,

and therefore (c) of Proposition 2.2 holds.

(⇒). Assume that for all x ∈ Rm satisfying supp x ⊆ I we have

‖x‖1 = min
Az=Ax

‖z‖1.
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From Proposition 2.2 this implies that

min
y∈Y

‖x − y‖1 = ‖x‖1.

We recall from duality that

min
y∈Y

‖x − y‖1 = max
g∈Y ⊥

|⟨x, g⟩|

‖g‖∞

,

where Y ⊥ is the orthogonal complement to Y . Now, since Y = {y : Ay = 0}, it follows that Y ⊥

is the n-dimensional space given by the span of the rows of the matrix A. Thus g ∈ Y ⊥ if and
only if g = (⟨d, c1

⟩, . . . , ⟨d, cm
⟩) for some d ∈ Rn . For x with supp x ⊆ I , we therefore have

‖x‖1 = min
y∈Y

‖x − y‖1 = max
d

 m∑
i=1

xi ⟨d, ci
⟩


max

j=1,...,m
|⟨d, c j ⟩|

.

Given x, with supp x ⊆ I , there therefore exists a d ∈ Rn for which

max
j=1,...,m

|⟨d, c j
⟩| = 1

and  m−
i=1

xi ⟨d, ci
⟩

 =

m−
i=1

|xi |;

i.e.,  k−
j=1

xi j ⟨d, ci j ⟩

 =

k−
j=1

|xi j |.

This implies that

⟨d, ci j ⟩ = sgn xi j

if xi j ≠ 0. Given ε, as in the statement of the proposition, take any x with supp x ⊆ I satisfying
sgn xi j = εi j . Thus there exists a d ∈ Rn satisfying the desired conditions. �

The conditions of Proposition 2.3 are difficult to verify. There is, however, a somewhat simpler
sufficient condition given by this next result. In the following, e j denotes the j th coordinate
direction in Rk .

Proposition 2.4. Let A and I = {i1, . . . , ik} be as above. Assume that there exists a k ×n matrix
D satisfying

Dci j = e j , j = 1, . . . , k,

and

‖Dcℓ
‖1 ≤ 1, ℓ = 1, . . . , m.

Then the conditions of Proposition 2.3 hold.
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Proof. For any given ε, as in Proposition 2.3, set

dε
=

k−
j=1

εi j d
j ,

where the d j , j = 1, . . . , k, are the rows of D. Then the result holds trivially, since

|⟨dε, cℓ
⟩| ≤

k−
j=1

|⟨d j , cℓ
⟩| = ‖Dcℓ

‖1 ≤ 1. �

Remark. A particular case of Proposition 2.4 may be found in Tropp [31, Theorem 3.3]. (Note
that, if ‖Dcℓ

‖1 < 1, ℓ ∉ {i1, . . . , ik}, then, since ‖Dcℓ
‖2 < 1, it follows, as in the terminology

of Tropp [31], that both BP and OMP converge.)

The condition in Proposition 2.4 is probably not equivalent to that in Proposition 2.3.
However, it is equivalent in certain cases.

Proposition 2.5. Let A, Y , and I be as above. For k = 1, k = 2, and k = n, the conditions
of Propositions 2.3 and 2.4 are equivalent.

Proof. If k = 1, then the result is immediate.
Let us consider the case k = n. Assume, without loss of generality, that I = {1, . . . , n}. Let

A = [B, C], where B is an n×n matrix and C an n×(m−n) matrix. From (c) of Proposition 2.2 it
easily follows that the first n columns of A, i.e., the columns of B, must be linearly independent.
Set D = B−1. Let di denote the i th row of D = B−1. Since the dε of Proposition 2.3 satisfy

⟨dε, c j
⟩ = ε j , j = 1, . . . , n,

it follows that the dε must have the explicit form

dε
=

n−
i=1

εi di .

In addition, from Proposition 2.3, we have

1 ≥ |⟨dε, c j
⟩| =




n−
i=1

εi di , c j


for each j = n + 1, . . . , m, and for every choice of εi ∈ {−1, 1}. Choosing εi = sgn ⟨di , c j

⟩, we
obtain

n−
i=1

|⟨di , c j
⟩| ≤ 1.

This proves the result for k = n.
If it can be shown that the vectors dε of Proposition 2.3, as ε varies over all possible choices as

in Proposition 2.3, span a k-dimensional space, then the conditions in Propositions 2.3 and 2.4
are equivalent. This follows easily using the above method of proof. When k = 2, this is valid as
it suffices to consider only the two vectors dε associated with ε = (1, 1) and ε = (1, −1). �

As a consequence of Theorem 2.1 and the above analysis, we also have this next result. Note
that strong uniqueness is said to provide for numerical stability.
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Proposition 2.6. Each x ∈ Rm satisfying supp x ⊆ I is the unique solution to

min
Az=Ax

‖z‖1 = ‖x‖1

if and only if−
i∈I

|yi | <
−
i∈I c

|yi |

for all y ∈ Y \ {0}. Furthermore, in this case, there exists a γ ∗ > 0 such that, for all z satisfying
Az = Ax, we have

‖z‖1 − ‖x‖1 ≥ γ ∗
‖z − x‖1.

The largest γ ∗, dependent on A and I , but independent of x, is given by

γ ∗
:= min

y∈Y,‖y‖1=1

−
i∈I c

|yi | −

−
i∈I

|yi |


.

How large can |I | be, assuming that it satisfies Proposition 2.2? In fact, it can be n. As Y is of
dimension m−n, this is the largest value of |I | for which (c) of Proposition 2.2 can possibly hold.

Proposition 2.7. Given any m > n, there exists an n × m matrix A with every n columns of A
linearly independent such that I = {1, . . . , n} satisfies the conditions of Proposition 2.2.

Proof. Let Y = span{en+1, . . . , em
}, where e j is the j th unit vector in Rm . Set I = {1, . . . , n}.

Then obviously

0 =

n−
i=1

|yi | <

m−
i=n+1

|yi |

for all y ∈ Y , y ≠ 0.
Any matrix A associated with Y has columns n + 1, . . . , m all zero. No one likes matrices

with m − n zero columns. But a small perturbation of A implies a small perturbation of Y which,
in turn, implies that the above property of I is maintained under small perturbations. Thus we
can get rid of the zero columns and in fact ensure that for the new matrix A all choices of n
columns are linearly independent. �

A more interesting question is that of the largest possible value of k such that for every n × m
matrix A of rank n there exists an I ⊆ {1, . . . , m} satisfying |I | ≥ k and such that Proposition 2.2
holds. A simple lower bound is the following.

Proposition 2.8. Let A and Y be as above. Then there always exists an I ⊆ {1, . . . , m} satisfying
the conditions of Proposition 2.2 with |I | ≥ [m/(m − n + 1)].

Proof. Let r = [m/(m − n + 1)]. We divide the m indices {1, . . . , m} into r groups of m − n + 1
distinct indices and discard whatever might be left over. Since Y is a subspace of dimension
m − n, for each given group of indices { j1, . . . , jm−n+1} there exists an a ∈ Rm

\ {0} such
that ai = 0, i ≠ jk , and ⟨a, y⟩ = 0 for all y ∈ Y . Let jp be such that 1 = |a jp | ≥ |a jk |,
k = 1, . . . , m − n + 1. Thus we have
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|y jp | =

 m−n+1−
k=1,k≠p

a jk y jk

 ≤

m−n+1−
k=1,k≠p

|y jk |

for all y ∈ Y . Summing over the r groups of indices, the result now follows. �

A less elementary result is the following asymptotic result in m (or n) for m − n fixed. We do
not present its proof here. It may be found in Pinchasi, Pinkus [25].

Theorem 2.9. Let A be any n ×m matrix of rank n. For m −n fixed, there exists a subset I of the
indices {1, 2, . . . , m} of cardinality (1/2 − o(1))m satisfying the conditions of Proposition 2.2.

Note that this is not really a result about A, but is a result about the (m − n)-dimensional
subspace Y of Rm . It says that asymptotically, for m and n large but m − n fixed, there is a fixed
subset of indices of cardinality almost m/2 such that, for every x ∈ Rm with support in this
subset, the 0-vector is a best approximation to x from Y .

3. k-sparsity

We consider the same setting as in Section 2, but now ask the following question. What are
conditions on A implying that, if supp x ⊆ I and I is any subset of {1, . . . , m} with |I | ≤ k, then
for all x with supp x ⊆ I we have

‖x‖1 = min
Az=Ax

‖z‖1?

For ease of expression, we will say that x is k-sparse if it has at most k nonzero coordinates,
i.e., |supp x| ≤ k. Thus we ask when we can find and identify a positive integer k such that for
all k-sparse x we have

‖x‖1 = min
Az=Ax

‖z‖1.

From Proposition 2.2(c), we see that this is equivalent to demanding that−
i∈I

|yi | ≤

−
i∈I c

|yi |

for all y ∈ Y and for all I ⊆ {1, . . . , m} with |I | ≤ k. We rewrite the above inequality as

2
−
i∈I

|yi | ≤ ‖y‖1.

While
∑

i∈I |yi | is not a norm on Rm for a fixed I and k < m, the following is a norm:

|||y|||k := max
|I |=k

−
i∈I

|yi |.

For convenience, set

Rk := max
y∈Y

|||y|||k

‖y‖1
.

Thus we have the following.
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Proposition 3.1. Let A and Y be as previously. For all k-sparse x ∈ Rm we have

‖x‖1 = min
Az=Ax

‖z‖1

if and only if

Rk ≤
1
2
.

Furthermore, if Rk < 1/2, then, for all x, as above, and for every z satisfying Az = Ax, we have

‖z‖1 − ‖x‖1 ≥ (1 − 2Rk)‖z − x‖1.

The latter statement in the above proposition is a direct consequence of Proposition 2.6. The
constant 1 − 2Rk therein is best possible.

Thus we wish to determine conditions on A (or Y ) and k such that

Rk ≤
1
2
.

We start with a simple bound.

Theorem 3.2. Let A and Rk be as above. If Rk ≤ 1/2 then necessarily

k ≤
n + 1

2
.

Proof. We will show that for every Y of dimension m − n we have

Rk ≥
k

n + 1
,

from which the above result immediately follows.
Let X be any subspace of dimension n + 1. As Y is a subspace of dimension m − n, the

subspace X ∩ Y is of dimension at least 1. Thus,

max
y∈Y

|||y|||k

‖y‖1
≥ min

x∈X

|||x|||k

‖x‖1

for every such X . Thus,

max
y∈Y

|||y|||k

‖y‖1
≥ max

dim X=n+1
min
x∈X

|||x|||k

‖x‖1
.

(This latter quantity is called the Bernstein n-width of Y .)
Let X = span{e1, . . . , en+1

}. For x ∈ X , we have x = (x1, . . . , xn+1, 0, . . . , 0). Assume
without loss of generality that |||x|||k = 1 and |x1| ≥ |x2| ≥ · · · ≥ |xn+1|. Thus,

1 = |||x|||k =

k−
i=1

|xi |

and

|xi | ≤ |xk | ≤
1
k
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for i = k + 1, . . . , n + 1. Therefore,

‖x‖1 =

n+1−
i=1

|xi | =

k−
i=1

|xi | +

n+1−
i=k+1

|xi | ≤ 1 + (n + 1 − k)
1
k

=
n + 1

k
,

implying that

min
x∈X

|||x|||k

‖x‖1
≥

k

n + 1
.

Here is a simpler proof of this same fact. As Y is of dimension m − n, there exists a nontrivial
y ∈ Y \ {0} that vanishes on any given m − n − 1 indices; i.e., there exists a y ∈ Y \ {0} with

|supp y| ≤ n + 1.

If k > (n + 1)/2, then for this y we necessarily have

|||y|||k

‖y‖1
>

1
2
. �

What we have shown above is that the appropriate Bernstein n-width is bounded below by
k/(n + 1). It is an open question as to whether this is the true value of this n-width.

We now consider in somewhat more detail the norm ||| · |||k . We defer to the Appendix a proof
of the following facts.

Proposition 3.3. The dual norm of ||| · |||k is given by

|||x|||
∗

k = max

‖x‖∞,

‖x‖1

k


.

In addition, the extreme points of the unit ball of ||| · |||
∗

k are the vectors of the form

k−
j=1

ε j ei j

for all choices of ε j ∈ {−1, 1}, and for all choices of 1 ≤ i1 < · · · < ik ≤ m.

Let a1, . . . , an denote the (linearly independent) rows of A. Thus,

Y = {y : ⟨ak, y⟩ = 0, k = 1, . . . , n}.

Let A := span{a1, . . . , an
}. The subspace A = Y ⊥ is always uniquely defined, although, for any

given (m − n)-dimensional subspace Y , as above, the matrix A is not uniquely defined.
We will use the dual norm and the following well-known duality result.

Proposition 3.4. For A and Y as above,

Rk = max
y∈Y

|||y|||k

‖y‖1
= max

|||x|||
∗
k≤1

min
a∈A

‖x − a‖∞.

When maximizing on the right-hand side it suffices to maximize over all extreme points. Thus,
from Propositions 3.3 and 3.4, we have

Rk = max
ε j ∈{−1,1}

i1<···<ik

min
a∈A

 k−
j=1

ε j ei j − a


∞

.
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This is the problem we now consider in detail in the remainder of this section. We recall that
we want conditions on A and k such that Rk ≤ 1/2. From the above characterization of Rk we
realize that our problem is one of bounding the error in approximating, in the uniform norm,
certain specific linear combinations of k unit vectors. Given our n × m matrix A, then, for every
matrix B with n columns, the rows of B A are in A. In what follows, we look for suitable choices
of B so as to facilitate this approximation problem. We choose m × n matrices B so that B A has
the desirable property that its m rows are reasonably good approximations to the m unit vectors.
This may be far from optimal, but with a lack of any further structure it is a reasonable strategy.

In the remainder of this section we assume that the column vectors cℓ, ℓ = 1, . . . , m, of our
n × m matrix A are all nonzero. Set

M := max
i≠ j

|⟨ci , c j
⟩|

⟨ci , ci ⟩
.

We also assume, in what follows, that M < 1. In the literature of sparse representations, one
considers matrices A with column vectors of unit Euclidean norm, and then the above M is
called the mutual incoherence of A. This is a minor generalization thereof. (We will discuss
bounds on M in the next section.)

We start with a now classical result due to Donoho, Huo [6].

Proposition 3.5. Let A and M be as above. Then

Rk ≤
k M

1 + M
.

Thus, if

k ≤
1
2


1 +

1
M


,

then, for all k-sparse x ∈ Rm , we have

‖x‖1 = min
Az=Ax

‖z‖1.

Proof. We present two proofs of this result.
For every choice of ε j ∈ {−1, 1}, and 1 ≤ i1 < · · · < ik ≤ m, we have

min
a∈A

 k−
j=1

ε j ei j − a


∞

≤

k−
j=1

min
a∈A

‖ei j − a‖∞.

Let D denote the m × m diagonal matrix with diagonal entries di i = 1/⟨ci , ci
⟩, i = 1, . . . , m.

The matrix G = D AT A is an m ×m matrix whose rows all lie in A, i.e., are linear combinations
of the rows of A. The i th row, which we denote by gi , has j th entry equal to ⟨ci , c j

⟩/⟨ci , ci
⟩,

i = 1, . . . , m. Thus its i th entry equals 1, and its j th entry, j ≠ i , is bounded in absolute value
by M .

Consider ‖ei j − α j gi j ‖∞. This equals

max{|1 − α j |, |α j ||⟨ci j , ck
⟩|/⟨ci j , ci j ⟩ : k ≠ i j , k = 1, . . . , m}.

We wish to choose α j which minimizes this quantity. It is easily checked that a good universal
choice of α j is

α j =
1

1 + M
,
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where the M is defined as above. Thus, for each j , we have

‖ei j − α j gi j ‖∞ ≤
M

1 + M
,

and therefore

Rk ≤

k−
j=1

M

1 + M
=

k M

1 + M
.

Here is an even simpler proof due to Gribonal, Nielsen [14]. Let y ∈ Y , i.e., Ay = 0. Thus,
m−

j=1

y j c j
= 0,

whence

yi ci
= −

−
j≠i

y j c j .

Therefore,

yi ⟨ci , ci
⟩ =


ci , −

−
j≠i

y j c j


,

implying that

|yi | ≤

−
j≠i

|y j |M.

The above can be written as

(1 + M)|yi | ≤ ‖y‖1 M.

Thus, for each i ∈ {1, . . . , m}, we have

|yi |

‖y‖1
≤

M

1 + M
,

and therefore
|||y|||k

‖y‖1
≤

k M

1 + M
. �

Another approach is the following. Set

µ(s) := max
|Γ |=s

max
j ∉Γ

−
i∈Γ

|⟨ci , c j
⟩|

⟨ci , ci ⟩
,

where Γ is any subset of {1, . . . , m}. This result is due to Tropp [31].

Proposition 3.6. Let A and µ(s) be as above. Then

Rk ≤
µ(k)

µ(k) − µ(k − 1) + 1
.

Thus, Rk ≤ 1/2 if

µ(k) + µ(k − 1) ≤ 1.
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Proof. We recall that G = D AT A, as in the proof of Proposition 3.5, is an m × m matrix whose
rows all lie in A, i.e., are linear combinations of the rows of A. We approximate

∑k
j=1 ε j ei j by

α(
∑k

j=1 ε j gi j ) for some appropriate α. As (gi )i = 1, a simple calculation shows that, for each
i ∈ {i1, . . . , ik}, we have


k−

j=1

ε j ei j − α


k−

j=1

ε j gi j


i

 ≤ |1 − α| + |α|µ(k − 1),

while, for i ∈ {1, . . . , m} \ {i1, . . . , ik}, we have


k−
j=1

ε j ei j − α


k−

j=1

ε j gi j


i

 ≤ |α|µ(k).

Thus, the uniform norm of
∑k

j=1 ε j ei j − α(
∑k

j=1 ε j gi j ) is bounded above by

max{|1 − α| + |α|µ(k − 1), |α|µ(k)}

for each α. As µ(k) ≥ µ(k − 1), we take

α =
1

µ(k) − µ(k − 1) + 1
,

from which the result follows. �

Note that M = µ(1) ≤ µ(2) ≤ · · · ≤ µ(m − 1), and µ(s) ≤ s M for each s. Thus the bottom
line of Proposition 3.5 also follows from this result.

In the sparse representation literature there are considered various estimates in the special case
where A is an n × nL matrix of the form

A = [Φ1, . . . ,ΦL ],

and the Φ1, . . . ,ΦL are L n × n unitary matrices, i.e., ΦT
i Φi = I . Note that, for convenience, we

have assumed that the columns vectors of A are all of unit Euclidean norm.
The main result here is the following due to Donoho, Elad [5]; see p. 530.

Theorem 3.7. Let Φ1, . . . ,ΦL be L n × n unitary matrices. Let A denote the n × nL matrix

A := [Φ1, . . . ,ΦL ].

Set M = maxi≠ j |⟨ci , c j
⟩|, where the ci are the columns of A. Then, for all L ≥ 2, we have

Rk ≤ 1/2 if

k ≤

[
√

2 − 1 +
1

2(L − 1)

]
1
M

.

For L ≥ 3, we also have that Rk ≤ 1/2 if

k ≤


1

2 −
1

L−1


1
M

.

This latter bound is better when L ≥ 4.
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Proof. From the previous analysis, there exist 1 ≤ i1 < · · · < ik ≤ nL and ε j ∈ {−1, 1}

such that

Rk = min
a∈A

 k−
j=1

ε j ei j − a


∞

.

Define

C p := { j : (p − 1)n + 1 ≤ i j ≤ pn},

and set rp := |C p|. Thus r1 + · · · + rL = k. Consider

AT A =


I ΦT

1 Φ2 · · · ΦT
1 ΦL

ΦT
2 Φ1 I · · · ΦT

2 ΦL
...

...
. . .

...

ΦT
L Φ1 ΦT

L Φ2 · · · I

 .

We will approximate
∑k

j=1 ε j ei j using rows i1, . . . , ik from G = AT A. We use the
approximant

L−
p=1

αp

−
i j ∈C p

ε j gi j

 ,

where gi is the i th row of G. It follows that the error is bounded above by

max
p=1,...,L


|1 − αp| +

L−
j=1, j≠p

|α j |r j M


,

since the diagonal entries of C are identically 1, while the off-diagonal entries are either 0 or
bounded above by M , as may be seen from the form of C . Assume, without loss of generality,
that r1 ≥ r2 ≥ · · · ≥ rL . Set

αp :=
1 + rL M

1 + rp M
, p = 1, . . . , L .

Note that we therefore have 0 < α1 ≤ α2 ≤ · · · ≤ αL = 1, and, for each p = 1, . . . , L ,

|1 − αp| +

L−
j=1, j≠p

|α j |r j M = (1 + rL M)


L−1−
j=1

r j M

1 + r j M


.

Set r := rL , and thus r1 +· · ·+ rL−1 = k − r . As r = rL ≤ r j for all j and r1 +· · ·+ rL = k,
we have r ≤ k/L . It is easily verified that

max
r1+···+rL−1=k−r

L−1−
j=1

r j M

1 + r j M
=

(k − r)M

1 +
(k−r)M

L−1

,

i.e., the maximum is attained by choosing ri = (k − r)/(L − 1), i = 1, . . . , L − 1. Thus our
error is bounded above by

max
0≤r≤k/L

(1 + r M)(k − r)M

1 +
(k−r)M

L−1

. (1)
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We now determine the maximum of the above quantity as a function of r . Differentiating with
respect to r M , we obtain that the derivative vanishes at

r M = k M + L − 1 −


(k M + L)(L − 1). (2)

We recall that k M < 1 and L is an integer, of value at least 2.
Thus the maximum of the expression (1) is attained at one of the three values r = 0, r = k/L ,

and the above r as in (2) if it lies in [0, k/L]. It may easily be verified that the value of the above
maximum at r = 0 is

k M

1 +
k M
L−1

,

while its value at r = k/L is

k M(L − 1)

L
.

Thus, assuming that k M ≤ 1, the value at r = 0 is larger than that at r = k/L .
Whether the maximum of (1) over r ∈ [0, k/L] is attained at (2) depends on whether the r

satisfying (2) is contained in [0, k/L].
Substituting r satisfying (2) in (1), we have that

(1 + r M)(k − r)M

1 +
(k−r)M

L−1

= (L − 1)
√

k M + L −
√

L − 1
2

.

This value is an upper bound on Rk . Thus this value is at most 1/2 if and only if

(L − 1)(
√

k M + L −
√

L − 1)2
≤

1
2
.

A calculation shows that this holds if and only if

k M ≤
√

2 − 1 +
1

2(L − 1)
. (3)

Now r ≥ 0 if and only if

k M ≥
√

L − 1

√
L + 3 −

√
L − 1

2


. (4)

If (3) does not hold, then the quantity in (1), as a function of r in [0, k/L], is decreasing, and thus
its maximum is at r = 0. Note that for (3) and (4) to hold we must have L = 2 and L = 3. For
L ≥ 4 they cannot simultaneously hold.

Thus, if (4) does not hold, i.e.,

k M ≤
√

L − 1

√
L + 3 −

√
L − 1

2


,

then the maximum equals

k M

1 +
k M
L−1

.



A. Pinkus / Journal of Approximation Theory 163 (2011) 388–412 403

In this case, Rk ≤ 1/2 if

k M ≤
1

2 −
1

L−1

=
L − 1

2L − 3
.

Thus, if

k M ≤ min


√

L − 1

√
L + 3 −

√
L − 1

2


,

1

2 −
1

L−1


,

then Rk ≤ 1/2. For L ≥ 3, it follows that

min


√

L − 1

√
L + 3 −

√
L − 1

2


,

1

2 −
1

L−1


=

1

2 −
1

L−1

.

Therefore, if L ≥ 3 and

k M ≤
1

2 −
1

L−1

,

then Rk ≤ 1/2.
For L = 2, 3, the former bound is better. For L ≥ 4, this bound is better. �

Remark. The above Theorem 3.7 is the last (so far) in a series of estimates. Elad, Bruckstein [8]
first proved the bound Rk ≤ 1/2 if

k ≤

√
2 − 1/2

M
,

when L = 2. In addition, it has been shown that this constant of
√

2 − 1/2 is best possible
in the above form of the inequality when considering all pairs of unitary matrices; see Feuer,
Nemirovski [9]. The inequality Rk ≤ 1/2 if

k ≤

[
√

2 − 1 +
1

2(L − 1)

]
1
M

is contained in Gribonval, Nielsen [14]. An easier proof also gives the bound of Rk ≤ 1/2 if

k ≤
1

(2 −
1
L )M

.

4. Grassmannian

The results discussed in this section may be found in Pinkus [26, Chap. VI], where proofs
are also provided. These results are also used in the theory of n-widths, which is the reason they
appear in Pinkus [26]. We will utilize this connection in the next section, when we consider the
problem of best possible n × m matrices A.

We recall that, for an n × m matrix A, with normalized column vectors ci , its mutual
incoherence is defined by

M := max
i≠ j

|⟨ci , c j
⟩|.

As the bounds of Proposition 3.5 and Theorem 3.7 depend upon M (in an inverse manner), it is
of interest to try to determine the minimal possible value of M (depending on n and m), when it



404 A. Pinkus / Journal of Approximation Theory 163 (2011) 388–412

can be attained, and what attaining it implies regarding the structure of A. We review this theory
in the section.

We start with the following result, which is essentially due to van Lint, Seidel [32]. It also
follows from n-width results as found in Pinkus [27].

Proposition 4.1. For any unit vectors {c1, . . . , cm
} in Rn , m > n, we always have

M = max
i≠ j

|⟨ci , c j
⟩| ≥


m − n

n(m − 1)

 1
2

.

Furthermore, we have equality if and only if

|⟨ci , c j
⟩| =


m − n

n(m − 1)

 1
2

for all i ≠ j .

This next result considers the case of equality in more detail. It is proven in Melkman [22]. It
also uses results from the theory of n-widths.

Theorem 4.2. The following are equivalent.

(a) There exists an m × m rank n matrix C satisfying ci i = 1, for all i , and |ci j | = M, for all
i ≠ j , where

M =


m − n

n(m − 1)

 1
2

.

(b) There exists an n × m matrix A such that C = AT A is as in (a) and AAT
=

m
n I .

(c) There exists an m × m rank m − n matrix D satisfying di i = 1, for all i , and |di j | = L, for
all i ≠ j , where

L =


n

(m − n)(m − 1)

 1
2

.

(d) There exists an (m − n) × m matrix B such that D = BT B is as in (c) and B BT
=

m
(m−n)

I .

Unfortunately, it is known that such matrices do not exist for all values of m and n. In fact,
we have the following limiting values on m and n. This result is contained in [21]. Its proof,
however, is from [19].

Theorem 4.3. Assume that matrices C, A, D, or B exist satisfying Theorem 4.2. If 1 < n <

m − 1, then we then necessarily have

m ≤ min{n(n + 1)/2, (m − n)(m − n + 1)/2}.

In certain cases, we can attain the desired bound. For example, as pointed out by Melk-
man [21], see also Lemmens, Seidel [29], equality in Proposition 4.1 holds when m = 2n if
there exists a symmetric conference matrix. Sufficient conditions for the existence of such matri-
ces are m = pk

+1, if p is a prime and m = 2 (mod 4). There are other cases where Theorem 4.2
holds; see Melkman [22] and Strohmer, Heath [30]. In Strohmer, Heath [30], some of these re-
sults were reported upon. They also discuss other contexts where these concepts arise. They call
such matrices Grassmannian. As may be seen (it follows easily from the proofs of the above
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result), Grassmannianism is more concerned with approximating the unit vectors. That is, it is
more applicable to approximating the unit ball of ℓm

1 in the ℓm
∞-norm than to approximating the

unit ball of the ||| · |||
∗

k -norm. We return to this fact in the next section.

Remark. The results in this section are also valid when we replace R by C. There are slight
differences. For example, in Theorem 4.3, we have, over C and if 1 < n < m − 1, the bounds

m ≤ min{n2, (m − n)2
}.

There are additional constructions over C of matrices satisfying equality in Theorem 4.2. For
example, when m = 2n, if there exists an m × m skew Hadamard matrix S (S has entries 1
or −1, its rows are mutually orthogonal, and S + ST

= 2I ), then we can construct C as in
Theorem 4.2, over Cm . C is given by

C =


1 −

i
√

2n − 1


I +

i
√

2n − 1
S.

This result is from Melkman [21].

5. n-widths and optimal sparse representations

As we vary over all n × m matrices A, what is the largest possible value of k such that, if
x ∈ Rm is k-sparse, then x satisfies

‖x‖1 = min
Az=Ax

‖z‖1?

That is, what is the largest possible value of k such that Rk ≤ 1/2 when considering all n × m
matrices A? And what are good matrices A? These questions are essentially questions regarding
n-widths. Let us explain. We recall from Proposition 3.4 that

Rk = max
y∈Y

|||y|||k

‖y‖1
= max

|||x|||
∗
k≤1

min
a∈A

‖x − a‖∞.

Here, Y is a given (m − n)-dimensional subspace and A = Y ⊥ is an n-dimensional subspace. If
we wish to find an n × m matrix A with largest k for which Rk ≤ 1/2, then we are led to the
consideration, for fixed n, m, and k, of the minimum of Rk over all possible (m −n)-dimensional
subspaces Y , or equivalently all possible n-dimensional subspaces A. Thus, we should consider

min
Y

max
y∈Y

|||y|||k

‖y‖1
= min

A
max

|||x|||
∗
k≤1

min
a∈A

‖x − a‖∞,

where Y and A vary, as above. These are general n-width quantities that have been considered in
other contexts.

To explain, we start with some definitions. Assume that X is a normed linear space with norm
‖ · ‖X , and that C is a closed, convex, and centrally symmetric (i.e., x ∈ C implies that −x ∈ C)
subset of X . The quantity

dn(C; X) := inf
Xn

sup
x∈C

inf
y∈Xn

‖x − y‖X

is called the Kolmogorov n-width of C in X . Here, Xn varies over all possible n-dimensional
subspaces of X . The quantity

dn(C; X) := inf
Ln

sup
x∈C∩Ln

‖x‖X
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is called the Gel’fand n-width of C in X . Here, Ln varies over all possible subspaces of
codimension n in X . We also define the quantity

δn(C; X) := inf
Pn

sup
x∈C

‖x − Pn x‖X .

This is called the linear n-width of C in X . Here, Pn varies over all possible linear operators of
rank at most n taking X into X . For more on n-widths (including the Bernstein n-width defined
earlier), see Pinkus [26] and Lorentz, v. Golitschek, Makovoz [20].

Setting X = ℓm
∞ in Rm , and Ck := {x : |||x|||

∗

k ≤ 1}, we see that

dn(Ck; ℓm
∞) = min

A
max

|||x|||
∗
k≤1

min
a∈A

‖x − a‖∞,

where A is as above. Let B(X) denote the unit ball in the normed linear space X , and Zk be the
normed linear space Rm with norm ||| · |||k . Then

dn(B(ℓm
1 ); Zk) = min

Y
max
y∈Y

|||y|||k

‖y‖1
,

since an (m − n)-dimensional subspace in Rm is exactly the same as a subspace of codimension
n in Rm . The fact that for these choices of Ck and Zk we have

dn(Ck; ℓm
∞) = dn(B(ℓm

1 ); Zk)

is a special case of a general duality result; see Proposition 3.4.
Note that we are considering these n-width quantities from a somewhat nonstandard point of

view. One usually keeps the sets fixed and looks at dn or dn as a function of n. Here, we are
considering dn and dn , for fixed n, and letting Ck and Zk vary with k. Obviously these n-widths
are nondecreasing functions of k, for fixed n. We therefore seek the largest value of k such that
the associated n-width is less than or equal to 1/2. Unfortunately, we know of no precise values
for these n-widths. We only have estimates.

We already have one estimate, and that is the lower bound contained in Theorem 3.2. Namely,
dn(Ck; ℓm

∞) = dn(B(ℓm
1 ); Zk) ≥ k/(n + 1) (from which follows the bound k ≤ (n + 1)/2 on

possible “admissible” k). Note that there is no m in this bound. This is not optimal.
Let us start by considering upper bounds. These upper bounds are obtained using known

estimates of other, more classical, n-widths, and come from a simple application of Hölder’s
inequality. Let ‖ · ‖p denote the ℓm

p norm on Rm . For each Y , as previously defined, set

Sp := max
y∈Y

‖y‖p

‖y‖1
.

Proposition 5.1. Let A, Y , Rk , and Sp be as above. Then, for each p ∈ (1, ∞],

Rk ≤ k1/p′

Sp,

where 1/p + 1/p′
= 1. Therefore, if k satisfies

k ≤
1

(2Sp)p′
,

then, for all k-sparse x ∈ Rm , we have

‖x‖1 = min
Az=Ax

‖z‖1.
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Furthermore,

dn(Ck; ℓm
∞) = dn(B(ℓm

1 ); Zk) ≤ k1/p′

dn(B(ℓm
p′); ℓm

∞) = k1/p′

dn(B(ℓm
1 ); ℓm

p ).

Proof. The proposition is an immediate consequence of Hölder’s inequality, namely,

|||y|||k =

k−
j=1

|yi j | ≤ k1/p′


k−

j=1

|yi j |
p

1/p

≤ k1/p′

‖y‖p. �

We will consider and apply the above result in the two cases: p = ∞ and p = 2.
For p = ∞, since the extreme points of the unit ball in ℓm

1 are the coordinate directions, we
have that

dn(B(ℓm
1 ); ℓm

∞) = dn(B(ℓm
1 ); ℓm

∞) = δn(B(ℓm
1 ); ℓm

∞)

= min
Pn

max
i=1,...,m

‖ei
− Pn(ei )‖∞ = min

Qn
max

i, j=1,...,m
|δi j − qi j |,

where Pn varies over all linear operators from Rm to Rm of rank at most n, and Qn varies over
all m × m matrices of rank at most n.

The exact value of this n-width is not known for all m and n. We do have both upper and
lower bounds. From Proposition 5.1, it would seem that only the upper bounds are relevant
here. However, the known lower bounds are sometimes the exact value of these n-widths. The
following lower bound is from Pinkus [27].

Theorem 5.2. For each n < m, we have

dn(B(ℓm
1 ); ℓm

∞) = dn(B(ℓm
1 ); ℓm

∞) = δn(B(ℓm
1 ); ℓm

∞) ≥
1

1 +


n(m−1)

m−n

 1
2

.

Furthermore, a necessary and sufficient condition for equality is that the conditions
of Theorem 4.2 hold.

As there is a symmetry in Theorem 4.2 between n and m−n, equality in the above is equivalent
to

dm−n(B(ℓm
1 ); ℓm

∞) = dm−n(B(ℓm
1 ); ℓm

∞) = δm−n(B(ℓm
1 ); ℓm

∞) =
1

1 +


(m−n)(m−1)

n

 1
2

.

We may have equality in the above, but, as evidenced in Theorem 4.3 and the remarks thereafter,
it may only hold for limited values of n and m. When it does hold, we have the following.

Corollary 5.3. If equality holds in Theorem 5.2, i.e.,

dn(B(ℓm
1 ); ℓm

∞) =
1

1 +


n(m−1)

m−n

 1
2

,

then there exists an n × m matrix A such that, if k satisfies

k ≤

1 +


n(m−1)

m−n

 1
2

2
,
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then, for all k-sparse x ∈ Rm , we have

‖x‖1 = min
Az=Ax

‖z‖1.

The upper bounds for dn(B(ℓm
1 ); ℓm

∞) are varied. The best of which we are aware is that of
Höllig [15]. It is

dn(B(ℓm
1 ); ℓm

∞) ≤
8 ln m
√

n ln n
.

(A proof may be found in Pinkus [26].) From this we obtain the following.

Corollary 5.4. For each m > n, there exists a real n × m matrix A such that, if

k ≤

√
n ln n

16 ln m
,

then, for all k-sparse x ∈ Rm , we have

‖x‖1 = min
Az=Ax

‖z‖1.

Furthermore, such matrices can be explicitly constructed. A similar result, together with the
construction of A, is contained in DeVore [3]. The existence of such a construction is undoubtedly
aided by the fact that dn(B(ℓm

1 ); ℓm
∞) = δn(B(ℓm

1 ); ℓm
∞), i.e., the problem has a linear element.

Remark. When m = 2n, we have from Elad, Bruckstein [8], see Theorem 3.7 or the remark
near the end of Section 3, when A = [Φ1,Φ2], where Φ1, Φ2 are n × n unitary matrices, that if

k ≤

√
2 − 1/2

M

then for all k-sparse x ∈ Rm we have

‖x‖1 = min
Az=Ax

‖z‖1.

There exist A, as above, with M = 1/
√

n for many choices of n. The resulting bound
(
√

2 − 1/2)
√

n is better than the bounds of Corollaries 5.3 and 5.4.

We now consider the case p = p′
= 2. In this case, we get significantly better bounds. It

is known from work of Kashin [17], Gluskin [13] and Garnaev, Gluskin [12] that the n-widths
dn(B(ℓm

2 ); ℓm
∞) = dn(B(ℓm

1 ); ℓm
2 ) are of the order

C min


1,


ln(m/n) + 1

n


.

As an immediate consequence we have the following stronger corollary.

Corollary 5.5. There exists a constant C ′ (independent of m and n) such that for each m > n
there exists an n × m matrix A for which we have that, if

k ≤
C ′n

ln(m/n) + 1
,
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then, for all k-sparse x ∈ Rm , we have

‖x‖1 = min
Az=Ax

‖z‖1.

When m = rn, for any fixed r , we have here a bound of the order n, while the previous
methods when m = 2n only gave us bounds on the order of

√
n. Unfortunately, I am unaware

of any explicit method of constructing such matrices. Any deterministic construction giving
bounds better than of the order of

√
n would be of significant interest. It should be noted, in this

regard, that δn(B(ℓm
1 ); ℓm

2 ) =
√

(m − n)/m is of a totally different order. Another probabilistic
approach giving bounds of this same order for dn(B(ℓm

1 ); ℓm
2 ) may be found in Donoho [4]. The

relevance of these n-width estimates to this problem can be found in Mendelson, Pajor, Tomczak-
Jaegermann [24].

The following was recently proven in Foucart, Pajor, Rauhut, Ullrich [10], based on a
combinatorial result of Mendelson, Pajor, Rudelson [23] and volume estimates.

Theorem 5.6. If for all k-sparse x ∈ Rm we have

‖x‖1 = min
Az=Ax

‖z‖1,

for some n × m matrix A, then k necessarily satisfies m

2k

 k
4

≤ 3n .

Thus, since k ≤ (n + 1)/2 ≤ m, we have

k ≤
Cn

ln(m/(2k))
≤

Cn

ln(m/(n + 1))
,

where C = 4 ln 3.

Note, however, that this can give less information than one might suppose. The maximum of m

2k

 k
4

as a function of k on (0, ∞) is attained at m/2e. Thus, if m ≤ cn, where c = 8e ln 3 ≈ 23.89 . . .,
then  m

2k

 k
4

≤ e
m
8e ≤ 3n,

and this bound on k is always satisfied. That is, getting reasonable and useful estimates for the
constants in these various inequalities is also important.
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Appendix

As promised in Section 3, we present here a proof of Proposition 3.3 regarding the dual norm
||| · |||

∗

k to ||| · |||k . We first recall the statement of Proposition 3.3.
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Proposition 3.3. The dual norm of ||| · |||k is given by

|||x|||
∗

k := max

‖x‖∞,

‖x‖1

k


.

In addition, the extreme points of the unit ball of ||| · |||
∗

k are the vectors of the form

k−
j=1

ε j ei j

for all choices of ε j ∈ {−1, 1}, and for all choices of 1 ≤ i1 < · · · < ik ≤ m.

Proof. To verify the duality we need to prove either

max
|||y|||k≤1

⟨x, y⟩ = |||x|||
∗

k

or

max
|||x|||

∗
k≤1

⟨x, y⟩ = |||y|||k .

We prove the former.
Consider

max
|||y|||k≤1

⟨x, y⟩ = max
|||y|||k≤1

m−
i=1

|xi ||yi |.

Assume that the above maximum is attained by some y with

1 = |||y|||k =

k−
j=1

|yi j |.

Thus we also assume that |yr | ≤ min j=1,...,k |yi j | for each r ∉ {i1, . . . , ik}. For every such y, we
do not alter the value |||y|||k if we set |yr | = min j=1,...,k |yi j | for each r ∉ {i1, . . . , ik}, and this
choice does not decrease the value of

max
|||y|||k≤1

m−
i=1

|xi ||yi |.

Let min{|yi1 |, . . . , |yik |} = ε. As
∑k

j=1 |yi j | = 1, we have 0 ≤ ε ≤ 1/k. Thus, we have

m−
i=1

|xi ||yi | ≤ |xi1 ||yi1 | + · · · + |xik ||yik | + ε
−

r ∉{i1,...,ik }

|xr |

= |xi1 |(|yi1 | − ε) + · · · + |xik |(|yik | − ε) + ε‖x‖1

≤ [(|yi1 | − ε) + · · · + (|yik | − ε)]‖x‖∞ + ε‖x‖1

= (1 − kε)‖x‖∞ + ε‖x‖1 ≤ max

‖x‖∞,

‖x‖1

k


.

This proves the upper bound.
It is easily verified that

max
|||y|||k≤1

m−
i=1

|xi ||yi |
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is at least as large as both ‖x‖∞ and ‖x‖1/k. We get the former by taking |yi | = 1 for some i ,
where |xi | = ‖x‖∞ and y j = 0 for j ≠ i . Taking |yi | = 1/k for all i gives a bound of ‖x‖1/k.
This proves the duality.

It remains to prove that the extreme points of the unit ball of ||| · |||
∗

k are the vectors of the form

k−
j=1

ε j ei j

for all choices of ε j ∈ {−1, 1}, and for all choices of 1 ≤ i1 < · · · < ik ≤ m.
For each such vector, consider

max
|||x|||

∗
k≤1


x,

k−
j=1

ε j ei j


.

As 
x,

k−
j=1

ε j ei j


=

k−
j=1

ε j xi j

and |||x|||
∗

k ≤ 1, it readily follows that the maximum is uniquely attained by the vector
∑k

j=1 ε j ei j

itself. Thus,
∑k

j=1 ε j ei j is an extreme point of the unit ball of ||| · |||
∗

k .
Now, for any y ≠ 0, consider

max
|||x|||

∗
k≤1

⟨x, y⟩.

Assume, without loss of generality, that

|y1| ≥ |y2| ≥ · · · ≥ |yk | ≥ · · · .

If |yk | > 0, set x =
∑k

j=1(sgn y j )e j . If |yℓ| > yℓ+1 = · · · = yk = 0, let x =
∑ℓ

j=1(sgn y j )e j

+
∑k

j=ℓ+1 ε j e j for arbitrary ε j ∈ {−1, 1}. Thus, |||x|||
∗

k = 1 and

⟨x, y⟩ =

k−
i=1

|yi | = |||y|||k .

We see that the above maximum is always attained by a vector of the form

k−
j=1

ε j ei j

for some choice of ε j ∈ {−1, 1}, and for some choice of 1 ≤ i1 < · · · < ik ≤ m. This implies
that the above set of vectors is all the extreme points of the unit ball of ||| · |||

∗

k . �
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