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n-Widths of  Sobolev Spaces in L p 

Allan Pinkus 

Abstract. Let W~ r) = {f:fecr-J[O, l ] , f  (r- l)  abs. cont., Ilftr)IIp < oo}, and set 
B~) = {f: f~ ~ ' ) ,  I[/~r)llp ~ 1}. We find the exact Kolmogorov, Gerfand, linear, 
and Bernstein n-widths of B~p r) in L p for all pE(l, oo). For the Kolmogorov n-width 
we show that for n _> r there exists an optimal subspace of splines of degree r - 1 
with n - r fixed simple knots depending on p, 

1. Introduction 

Let X be a normed linear space and A a subset of  X. For  ease of  exposit ion we assume 

that A is closed, convex, and centrally symmetric  (i .e. ,  x e A  implies - x e A ) .  We in- 
troduce four quantities to be studied for specific choices of  A and X. These four quanti- 
ties are the Kolmogorov,  l inear,  Gel ' fand,  and Bernstein n-widths. They are defined 
as follows: 

1) The Kolmogorov n-width of A in X is given by 

dn(A; X) = inf sup inf  I I x -  Yll 
x. ~E~ yEx. 

where the X. range over  all subspaces of  X of  dimension at most n. The Kolmogorov 
n-width measures the extent to which n-dimensional subspaces approximate A. I f  there 
exists an X~* o f  dimension at most n for which 

dn(A;X) = sup inf IIx-yll 
x~A Y~'~n 

then X~ is said to be optimal for dn(A;X). 
2) The linear n-width of A in X is defined by 

tS,(A;X) = inf sup IIx - en(x)ll 
Pn x~A 

where the Pn range over  the set o f  continuous linear operators of  X into X o f  rank at 
most n, i .e. ,  whose range is of  dimension at most n. The linear n-width replaces the 
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best approximation of the Kolmogorov n-width by a linear approximant. This is often 
more useful in practice. If 6.(A;X) = sup {IIx-P*(x)II: x~a} and rank P* _ n, 
then P* is said to be optimal for 6.(A;X). 

3) The Gel'fand n-width of A in X is given by 

d"(A;X) = inf sup Ilxll 
I~ x ~ A O L  n 

where the L. range over all closed subspaces of X of codimension at most n. The 
Gel'land n-width is important as a lower bound in problems of optimal recovery (see, 
e,g., Traub, Wozniakowski [17] and Micchelli, Rivlin [11]). It measures the extent 
to which one can determine x~A given the value of n linear functionals on x. (It is 
also useful because of its duality relationship with the Kolmogorov n-width.) If 
d"(a;x) = sup {llxll: nz~} and codim L* _< n, then L* is said to be optimal 
for d"(A;X). 

4) The Bernstein n-width of A in X is given by 

b.(A;X) = sup sup {X: XS(X.+ 0 ~_ A} 
Xn+l 

where S(X.+ i) = {x: xeXn+ I, IIxll -< 1 } and X.+ 1 ranges over all subspaces of X of 
dimension at least n + 1. [From the definition, X.+~ must lie in span (A).] The Bern- 
stein n-width, in general, is a tool used in determining lower bounds for the Kolmogorov 
and Gel'land n-widths. In the setting of this paper it has an additional meaning, which 
will be given later. If dim X.*+~ > n + 1 and b.(A;X)S(X*.+O c A, then X.*+~ is said 
to be optimal for b.(A;X). 

The topic of n-widths in approximation theory is concerned with the study of these 
quantities (especially the first two), their properties, characterizations of optimal sub- 
spaces or operators (if possible), and the determination of their asymptotic behaviour 
as n 1" ~ .  In this paper we shall, for specific choices of A and X, characterize optimal 
subspaces and operators. 

Before discussing the specific problem to be considered we state here two well-known 
relationships among the above four quantities. Since these inequalities are important 
we sketch a proof. 

Theorem 1.1. 
space X. Then 

Let A be a closed, convex, centrally symmetric subset of a normed linear 

6.(A;X) > d.(A;X), d"(A;X) > b.(A;X). 

Sketch of proof. 
tion. To prove that ~.(A;X) >_ d"(A;X), 
operator P. may be written in the form 

The inequality 6n(A;X) -> d.(A;X) is a consequence of the defini- 
note that any linear, continuous rank n 

P,(') = ~-]f~(')xi 
i= l  

where the {xi}~=l are a basis for the range ofP.  a n d f e X ' ,  i.e., continuous linear func- 



n-Widths of Sobolev Spaces 17 

tionals on X. Set L, = {x: fi(x) = 0, i = 1 . . . . .  n}. Then L,, is a closed subspace 
of  codimension _< n and 

sup {llx-P.(x)ll: x a} >_ sup {llxll: n Z,,}, 

from which follows the desired inequality. 
The inequality d"(A;X) >_ b,(A;X) is a simple consequence of  the fact that given 

X,+~, dim X,+~ _> n + 1, and L,, codim L,, _< n, there exists an x~X,,+~, x r O, such 
that xeL , .  

The more interesting and more difficult inequality to prove is the last, d,(A;X) >_ 
b,(A;X). It rests on the fact that given X, and X,+~ (dim X,, _< n, dim Xo+~ _> n + 1) 
there exists an x~X,+l, x ~ 0, such that E(x;X,) = inf {l lx-yl l :  yeS,,} = Ilxll, i.e., 
the zero function is a best approximation to x from X,. This fact was first proved by 
Krein, Krasnosel 'ski ,  and Milman [6] as a consequence of  the Borsuk Antipodality 
Theorem. �9 

The Sobolev space W~p)[0, 1] of  real-valued functions on [0, 1] is defined by 
W(~ ) = Wtp[0, 1] = {f:f(r-,)abs.cont.,f~r)eLp}. SetBg) = { f : f e W ~  ~, IIf~% ___ 1}. 
One of  the interesting problems in the study of  n-widths has been the determination 
of  the n-widths and the characterization of  optimal subspaces and operators when 
A = B~) and X = L q f o r p ,  q~[1 ,  oo]. (No a priori relationship is assumed to exist 
between p and q.) This problem was considered by Kolmogorov [5] in 1936 for 
p = q = 2; it was this article in which the concept of  n-widths was introduced. 

The c a s e p  = q = ~ was solved the Tihomirov [15] in 1969 in a paper that moti- 
vated much of  the subsequent work on n-widths. He proved the existence, for n _> r 
(if n < r, then all the n-widths are infinite), of  two particular sets o f  points 0 < ~t 
< . .  �9 < ~n-~ < 1 a n d 0  < ~ < . . . < ~, < l. Thesubspace  

X~* = span {1, x . . . . .  x r-',  (x - ~l)~_- ~ . . . . .  (x - ~,_~)~.-~} 

(i.e., splines of  degree r - 1 with simple knots at the ~) is optimal for d,(B~); L~ 
The subspace 

L* = {f:  feB~),  f(~li) = O, i = 1 . . . . .  n} 

is optimal for d"(B~;LO*). P*,, the operator that interpolates tof~B~) at the {~/i},"=t from 
X*,  is optimal  for  6,(B~);L~ and 6n(B~);L ~0) = d,(B~);L | = d,(B~);L ~) = 
b,(B~);L~ [He also identified an optimal subspace for b,(B~);L=).] Micchelli and 
Pinkus [10] extended this same result t o p  = 0% every qe [1 ,  oo], andp~[1  oo], q = 1. 
That is, there exist points {~i}~'=f and {7/,.},."= j (which do depend on p and q) such that 
X* is optimal for d,, L,* is optimal for d", and P,* is optimal for 6,. In all these cases 
we also have d, = d" = 6,, although b, is unknown except wher /p  = q e { 1 ,  oo}. 
Melkman and Micchelli [8] returned to the case p = q -- 2 that had been considered 
by Kolmogorov and proved that here too there were optimal subspaces and operators 
of  the above form, a fact that had eluded Kolmogorov.  In a slightly different vein, 
Tihomirov and Babadjanov [ 16] proved the analogous result for p = q e [ 1, oo] when 
r = 1, while Makovoz [7] extended this to p >_ q and r = 1. The case for r = 1 
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is more tractable. One expects and obtains that the points will be evenly spaced. This 
is no longer true for r _> 2. 

On the basis of the above results it has been conjectured that for all p _> q, 
p,q~[1,  oo], there exist points {~i}']2( and {~/i}~=1 (dependent on p and q) such that 

i) X* is optimal for d,(B~);Lq). 
ii) L* is optimal for d"(B}O;Lq). 
iii) P,* is optimal for 6,(B}~);Lq). 
iv) 6n(B~r);L q) = d,,(B~");L q) = d"(B~r);Lq). 

[Actually, (iii) and (iv) imply (i) and (ii).] In this paper we prove these four conjec- 
tures for allp = q~[1, oo] and every r, and also determine b.(B~');LP), which has the 
same value as these other n-widths. 

The quantity b.(B~:);L p) is related to Markov-Bernstein-type inequalities. It is not 
difficult to prove that 

b.(B~r);L') = sup inf IIf. I], 
X._r+ 1 fir)EXn_r+l IIf r ll/ 

where X~_~+1 ranges over all subspaces of dimension at least n - r  + 1. A Markov- 
Bernstein-type inequality is an inequality of the form 

IIf~r~ll~ -< Cllfll~ 
that is valid for all f in a certain subspace (e.g., algebraic polynomials of some fixed 
degree). The constant C is understood to be the smallest constant for which the inequality 
holds. If we minimize this constant C when varying over all subspaces of dimension 
n - r + 1, then the resulting value is simply [b,,(B~);LP)] -~. From an optimal subspace 
for b,,(B~;L P) we obtain a subspace for which this minimum value is obtained. 

We prove our result by showing that 6,(B~');ff) = b,(B~r);L p) and that (iii) holds. 
From Theorem 1.1 it follows that both d,,(B~;L p) and d"(B~);L e) are equal to this value. 
From (iii) we see that X* is optimal for d,(B~>;L p) (since X* is the range of the optimal 
operator P* of ~i,(B~;Le)) and L* is optimal for d"(B~;L p) (since L* is the null space 
of P*). 

Let us outline how this result is obtained. For n < r, all n-widths are infinite. We 
therefore assume that n _> r. Also, since the cases p = 1 and p = oo have been solved, 
we consider only p e (1, Qo). The idea of the proof is the following: Assume that there 
exists a function f ~  W~) satisfying 

I 
1 

(1.1) x ' [ f . ( x ) [ ' - '  sgn (f.(x)) dx = O, 
0 

and 

i = 0, 1 , . . . , r - 1  

1 
P 11 (x--y)'+-'lf.(x)lP-' sgn (f.(x)) dx = XP.lf~r)(y)] p- '  sgn (frO(y)) (1.2) ( r -  1)~---~ 0 

for all ye[0 ,  1], where X. is some constant and f .  has exactly n sign changes on 
[0, 1]. (The concept of sign changes will be made more precise later.) It then follows 
thatf,  has exactly n simple zeros in [0, 1] (i.e., at its sign changes), which we denote 
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by {7/i}~=l, andfg~ has exactly n - r  simple zeros (sign changes) in (0, 1) at {~i}~s 
Equations (1.1) and (1.2) come from considering the zeros of the Gateaux derivative 
of the ratio Ilfll,,/llf~r>ll,,. In Section 2 we prove that from (1.1) and (1.2) one obtains 
~,,(Bg);L p) <_ ~,,, and Xn -< bn(Bg); Lp) so that equality obtains. In addition, the first 
inequality (the upper bound) is proved using the the interpolation operator P*. The 
result therefore follows if we can prove, for n _> r, the existence off~e Wg ~ with n 
sign changes which satisfies (1.1) and (1.2). This, for us, was the more difficult result. 
It is proven in Sections 5 and 6 by going to a "smoothed" version of the problem and 
then discretizing to the matrix case. 

Every f e  W~v~> may be written in the form 

~-~ f(i)(O) 1 ~1 
f ( x )  = , ~ "  " " x i 4 - ~ (x - y )~ ' f t " ) ( y )  dy. 

i=0 i! (r 1)! 0 

This is simply Taylor's formula with the remainder in integral form. We see that, aside 
from the free r-dimensional subspace spanned by 1, x . . . . .  x r-~, B~) is essentially 
of the form 

A = f :  f ( x )  = K(x,  y )h (y )  dy, Ilhllp -< 1 
o 

where for B~ r), K(x, y) is the kernel (x - y ) ~ + - J / ( r -  1)! and h(y)  = flr~(y). In problems 
of n-widths, this form should always be at the back of one's mind. It was found (see, 
e.g., Micchelli and Pinkus [9, 10] and Melkman and Micchelli [8]) that the essential 
property of B~ r) that allows us to calculate its n-widths (in the known cases) is the 
fact that the kernel ( x -  y)~.-~ is totally positive. In other words, the result that was 
presented previously may and should be considered as a special case of a more general 
result. 

Let Kp = {f: f ( x )  = f~ K(x,  y )h (y )  dy, Ilhllp -- 1}. We prove in Section 4 that if 
K is extended totally positive, then there exist distinct points {(i}~=t and {~i}I'=~ in 
(0, 1) such that 

X* = span {K(', ~j) . . . . .  K( ' ,  ~)} 

is optimal for d,,(Kp;LP), 

L* = {f:f~Kp,  f(~l~) = O, i = 1 . . . . .  n} 

is optimal for d"(Kp;LP), interpolation to f e K p  at the {~}7=t from X* is optimal for 
5~(Kp;LP), and 6n(Kp;U') = d,,(Kp;L") = d"(Kp;U') = b,,(Kp;LP). 

This is essentially the result we are obtaining for A = B~). Two problems arise. The 
first is that the kernel ( x -  y)~.-~ is totally positive in a weak sense. The second is the 
existence of the free r-dimensional subspace spanned by algebraic polynomials of degree 
r -  1. The overcoming of these problems involves a fair degree of technical work. 
However, we cannot overemphasize the fact that the main ideas are connected with 
Kp and total positivity (or more precisely with the variation diminishing property that 
holds for such kernels). 

To prove our result for Kp we consider Ilghll~/llhll~ (gh(x) = $~ g(x ,  y )h(y )  dy) and 
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the zeros of the Gateaux derivatives of this ratio. The resulting equation is 

S' 
(1.3) o K(x, y ) ] K h ( x ) l , - '  sgn (Kh(x)) dx = Xplh(y)lp-I sgn (h(y)) 

for all ye[O, 11. We prove the existence of solutions (kn, hn)~%0 to (1.3) where 
Xo > kl > X2 > �9 . �9 > 0 and hn has exactly n sign changes. This is a direct gener- 
alization of the eigenvalue problem 

Sl(Sl0 ) (1.4) K(x, y)K(x, z) dx h(z) dz = X2h(y). 
0 

Equation (1.4) is simply (1.3) withp = 2. The Gel'land and Bernstein n-widths may, 
in this setting, be considered as generalizations of the minmax and maxmin characteri- 
zations, respectively, of the eigenvalues of the self-adjoint, nonnegative, compact 
operator induced by the kernel M( y, z) -- I~ K(x, y)K(x, z) dx. In the determination 
of X~ and L~, the {~}L~ are the zeros of hn, and the {~}L~ the zeros of Kh~. Fur- 
thermore, the value of the n-widths is X~. For p = 2, this was the result obtained by 
Melkman and Micchelli [81. 

This paper is organized as follows. In Section 2 we prove the results on n-widths 
of B~O in L p, modulo the existence off~ satisfying (1.1) and (1.2). Section 3 is a 
discussion of total positivity and related matters. These results are needed in the 
subsequent sections and are gathered together in one section to facilitate presentation. 
Section 4 parallels Section 2 in that we prove results on n-widths of other classes of 
functions (e.g., Kp in LP), modulo the important existence theorems. Finally, in 
Sections 5 and 6 we prove these existence theorems. 

For a survey of the subject of n-widths, the interested reader is referred to 
Pinkus [ 131. 

2. n-Widths of  Rr in L p u p  

We first prove, modulo one important step in the proof, the major result concerning 
n-widths of B~ r) in L p. Before stating this result, we need a precise definition of zeros 
and sign changes. 

Definition 2.1 Let I be an interval which is either open, closed, or half-open. Let 

fEC(O. 
a) Sl ( f )  will denote the number o f  sign changes (in the usual sense) o f f  on i. In 

other words, S t ( f )  = m i f  m is the maximum integer such that there exist points 
xt < �9 �9 �9 < Xm+~, x ~ I ,  for  which f (x i ) f (x i+ 0 < O, i = 1 . . . .  m. (S~(f) may be 
zero or infinite, with the obvious meaning.) 

b) Zi ( f )  will denote the number o f  distinct zeros o f f  on L 
c) Assume f~Ck( I ) .  Then Z r ( f )  will count the number o f  zeros o f f  on L where a 

zero is counted up to multiplicity at most k + 1. In other words, i f  x ~ I, f (x) = f "  (x) = 
. . . .  fti-I)(X) = O, f<O(X) ~ 0 (or i = k + l), then x is counted as a zero o f  
multiplicity min {i, k + 1}. 
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If the subscript I is omitted from any of the above quantities, then it is to be under- 
stood that I = [0, 1]. 

Consider the following equations for f e  W~pr): 

(2.1) 

and 

I ' x ' l f ( x ) l  p - '  sgn (f(x)) dx = O, 
0 

i = 0, 1 . . . . .  r -  1, 

1 I '  ( x -Y)~- ' ] f ( x ) lP- '  sgn (f(x)) dr = Xplfl"(y)l p-' sgn (flr)(y)), (2.2) ( r - - l ) !  o 

for all ye[0,  1], where X is some constant. Multiplying each side of (2.2) byff ')(y), 
using (2.1) and integrating over y, we obtain [l flip = x]lflr)llp. Thus, iffsatisfies (2.1) 
and (2.2), and IIfllp g: 0, then X > 0 and lift')lip 4: 0. 

Assume f satisfies (2.1) and (2.2), and set 

1 I' 
- (x - y)~.-' If(x)I  e- '  sgn (f(x)) dx (2.3) G(y) ( r -  1)! 0 

= X'lflr~(y) le -~ sgn (ff)(y)). 

From (2.1) and (2.2), 

(2.4) Gto(O) = Gt0(1) = 0, i = 0, 1 . . . . .  r -  1. 

Furthermore, (-1)rG~')(x) = I f ( x ) l ,  -~ sgn (f(x)) [from (2.3)]. Let q~(1, ~)sat isfy 
lip + 1/q = 1. Then from (2.2) we have 

d r 
(2.5) (-lf)~q-~rr[lG~')(x)l q-t sgn (Gtr)(x))] = IG(x)l q-' sgn (G(x)). 

The differential equation (2.5), together with the boundary conditions (2.4), is equivalent 
to (2.1) and (2.2). It is this equation that we will study. 

For p = 2, (2.4) and (2.5) reduce to 

I( 
- 1)r~k2G(2r)(x)  = G ( x )  

(2.6) Gti)(O) = Gr = 0, i = 0, 1 . . . . .  r -  1. 

The eigenvalue problem (2.6) is well-known. For each nonnegative integer m there 
exists a Gin, unique up to multiplication by a constant, and h m positive, for which (2.6) 
holds and Gm has exactly m sign changes. Furthermore, h0 > )h > . . . .  It is this 
result that we generalize for (2.5) together with (2.4). 

We will, for convenience, assume r _> 2. The results may be extended to the case 
r = 1, although there is a slight technical problem. However, since the end result has 
already been solved for r = 1, we allow ourselves this luxury. Note that if f ~  W~) 
satisfies (2.1) and (2.2), then in fact feCr[O, 1]. (More is actually true, but this 
suffices for our analysis.) 

The proof of the following theorem is deferred to Sections 5 and 6. 

T h e o r e m  2.1. Fix p~(1,  o0)and r >_ 2. For each positive integer n, n >_ r, there 
exists an f,~W~) such that S(f,) = n and f ,  satisfies (2.1) and (2.2). 
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Before stating our main result we must know a little more about the zeros and sign 
changes off~ and fff). We first have: 

Proposition 2.2. Assume f E W ~ ) ,  f ~e O, satisfies (2.1) and (2.2), and S ( f )  < o0.  

Then f(~) cannot vanish identically on any interval. 

Remark.  From (2.2) it follows t h a t f  <r) vanishes identically on an interval if and only 
if f vanishes identically on the same interval. 

Proof .  For the above f ,  let G be as previously defined. Assume f(r) vanishes identi- 
cally on some interval [a, b], 0 ___ a < b _ 1. For convenience we shall assume that 
a > 0 and t h a t f  (r) does not vanish identically on any subinterval of  [0, a]. (The other 
cases are proved in the same manner.)  Thus G(0(0) = 0, i = 0, 1 . . . . .  r -  1, 
G~Cr[O, 1], and GO3(a) = O, i = O, 1 . . . . .  r, since G vanishes identically on 

[a, b]. 
We now apply Rolle 's  Theorem repeatedly. Assume fr has k sign changes on 

[0, a]. Then G = Xplf ~) I p-l  sgn (f(~)) has k sign changes on [0, a],  since X > 0. 
Since G(0(0) = G(O(a) = 0, i = 0, 1 . . . . .  r -  1, it follows that G (') has at least 
k + r sign changes on [0, a]. Moreover, G(r)(a) = O, and ( - 1 ) ' G  (r) = I f  ]P-a sgn ( f ) ,  
so t h a t f h a s  at least k + r + 1 distinct zeros on [0, a]. S i n c e f  ~> does not vanish iden- 
tically on any subinterval of  [0, a], it follows that f( ')  has at least k + 1 sign changes 
on [0, a]. This contradicts our definition of  k. �9 

For the f~ of  Theorem 2.1 we need and have the following more precise result. Let 
Gn satisfy (2.3) with respect tof~. For the purpose of  this section, Z r ( f )  counts zero 
up to multiplicity r. 

Proposition 2.3. Let  f~ be as in the s tatement  o f  Theorem 2.1. Then 

n = S(fn) = Z * ( f ~ )  = S ( f ~ ) ) +  r 

= Z(o. i )( f~ )) + r = Z(*o, i)(G~) + r. 

Remark.  From the definition of  G~, we obviously have S(Gn) = S(f~)) .  The above 
proposition states that fn has exactly n simple zeros (sign changes) on (0, 1) (and does 
not vanish at the end points), while f~) has exactly n - r simple zeros (sign changes) 
in (0, 1) (and does not vanish at both end points). 

Proof .  Since neither fn nor f~r) vanishes identically on any subinterval, 

n = S ( f , )  <- Z* ( f , )  <_ S ( f ~  )) + r 

<- Z(o, ,)(f~)) + r = Z(o, 1)(G.) + r 

<- Z,*o. I)(G~) + r = Z*(Gn) - r, 

since G(~ = GO~ = 0, i = 0, 1 . . . . .  r -  1. Now 

Z*(G~) - r <_ S(G~ )) = S( I L I  p - '  sgn (f~)) 

= S ( f ~ )  = n .  
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We therefore have equality throughout, proving the proposition. 

For f~ as above, let 

0 < ~/1 < . . .  < ~/~ < 1 

denote its zeros (sign changes) and let 

0 <  ~jl < . . .  < / j , - r <  1 

denote the zeros (sign changes) o f f ~  on (0, 1). 
For ease of  exposition, we normalize f~ so that IIf~r~ll, = 1 and f~[)(x) > 0 for 

x e ( 0 ,  ~l). Let {g~}~_~§ be defined as follows: 

g~O(O) = O, j = 

g~')(x) = I I f~r)(x)l' 
0 , 

f o r i  = 1 . . . . .  n - r + l ,  whereGo = O, 

Note that 

0, 1 . . . .  , r - 1 ,  

~i-l < x <  ~i, 
otherwise, 

~n-~§ = 1. Thus 

1 I ~i - -  (x -- y)~-~ [ f ~ ) ( y ) l  dy .  gi(x) = ( r -  1)! ~,_, 

r - I  1 I' 
- - -  (x  - y)r+- ~ f~) (y )  d y  f~(x) = ~ a * x  ~4 (r 1)! 0 

r--1 n - r + t  

E a i * x i +  ~ (--1)i+'gi(x). 
i = 0  i = 1  

T h e o r e m  2.4. F/x p c ( l ,  0o), r _ 2, and n >_ r. Let fn satisfy the conditions of  
Theorem 2.1. Let {~h}7=l, {~i}7-[ and {gi}7-1 r+! be as defined above. Then 

On(B~r);L p) = dn(B(pr);L p) = dnfB~);L p) 

= b~(B~pr);L p) = IILll/llf~)ll, = x~. 

Furthermore, 
a) X* = span {1, x . . . .  , x r - I ,  ( x -  ~1)~_ -1 . . . . .  ( x -  ~_r)~. -I} is optimal for 

d~fB(pr);L'). 
b) L~ = {f:  fEB~  ), f(Th) = O, i = 1 . . . . .  n} is optimal for d"(B(pr);LP). 
c) P~, the rank n operator determined by interpolation from X~ to f~B~) at the 

{r/i}~'= ~ is optimal for 5n(B~r);LP). 
d) Y*+~ = span {1, x . . . . .  x ~-~, g,(x) . . . . .  g~-r+,(X)} is optimal for b~(B~pr);LP). 

Proof .  To prove all of  the above results, it suffices to prove that 
1) I I f -P* f l l p  <- Xnllf('~llp for a l l f~W~) ,  and 
2) XnS(Y*+O c B~r), where S(Y*+I ) = {g: geY*+l, IIgL --< 1}. 
The results of  the theorem then follow from Theorem 1.1 and the form of  P* .  
We divide the proof  of  the theorem into a series of  steps: 
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Proposition 2.5. h,S(Y*~+~) ~_ B(; ). 

= I:;= 0 a,x i + b~g,(x), and Ilgll, < ~,, then Proof.  We must prove that i fg(x)  , - t  ~.~-,+~ ~ i =  l 

IIg(r)ilp < 1. Le t  IIg!')ll~ -- c,. i =  1 . . . . .  n - r + l .  Then  c, > 0, all i, and 
~ n - r +  I n - r +  1 

"--- ~':~i= l ,.,,=, c, - IIf~'>ll~ 1. Now g~')(x) = b~glr)(x), and since the gl r) have essen- 
tially distinct support,  i1~.~11, = ~-~=Jm'-'+] [b~lpc,)t/p. The claim thereby reduces to 

proving that 

r - I  n - r + l  P 

E a i  x~ + E bigi(x) 
i = 0  i =  I 

inf n--r+l  "~l/p ~ hn" 

This infinum is necessarily attained by some ~(x) = r.~-~ fi~x~ + r.~2~+' b~g~(x), where 

g = (ao, �9 �9 �9 , a r - , ) ,  and b = (b, . . . . .  b._.+,)  4: O. Set 

~. = I1~11,>/11~<'>11,>. 

Because we are at a minimum value (this value cannot be zero), ~ and ~ must satisfy 

(differentiating with respect to the a~ and b~) 

I' (2.7) ~l~(x) l  ,>-, sgn (~(x)) dx = 0, i = 0, 1, . . . , r -  1 
0 

and 

(2.8) IJ0 gk(x)i~(x)l p-, sgn (~(x)) dx = ~pi/~kl p - '  sgn (bk)c,, k = 1 . . . . .  n - r + 1. 

Recall that 

r--I n - r + l  

f.(x) = ~ a~d + E (- l ) '+'g,  (x), 
i = 0  i= l  

andf~ satisfies (2.1) and (2.2). Let a* = (a~, al* . . . . .  a,*_t) and b* = (1, - 1 ,  
. . . .  ( -  l)~+r)~R n- '+l .  We claim that (2_7) and (2.8) are also valid wherefn replaces 
g, 3,n replaces ~, and a*,  b* replaces ~, b, respectively. To see this, note that (2.7) 
is (2.1) and that (2.8) follows from (2.2) by multiplying each side of  (2.2) by f(~')(y) 
and integrating over  (~k- ~, ~k), k = 1, . . . ,n - r + 1. From the definition of  ~, we 
have h, > ~. We shall prove that h~ = ~. Assume this not to be true, i.e., Xn > ~. 
Iff~ = "y~ for some ,) ,eR,,  then kn = ~, as is easily seen. Thus fn 4: -y~ for every 

~ e R .  
Normal ize~  so that [1)il -< 1, i = 1 . . . . .  n - r +  1, and 1)j = ( - 1 )  j§ for some 

j. Thus 

r - - I  n - r + l  

i = 0  i = 1  
i ~ j  

and a Rolle 's  Theorem argument implies that S ( f n -  g) <- n - 1. 
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F o r  any a , b ~ R ,  

sgn (a + b) = sgn ( ] a I p-  ~ sgn (a) + I b ]p- ~ sgn (b)). 

The re fo re  s ( I fo l  , - '  sgn ( f n ) -  I~1 p-. sgn (~)) _< n - 1. F r o m  (2.7) ,  (2.8) ,  and the 
ana logous  results  for  f ,  

I' 
(2.9)  x~[ ] f~(x) [P-' sgn (f~(x)) - I ~(x)  I p -~ 

0 

i = 0 , 1  . . . . .  r - l ,  

and 

(2.1o) 

sgn (~(x))] c/x = 0, 

f 
l 

o g,(x)[I  f~(x) I p- I  sgn (f,.(x)) - I~(x) l P- l sgn (~(x))] d r  

= [ X ~ ( - 1 ) ~ + ' -  ~,,li,,I p- '  sgn (bk)]Ck, k = 1 . . . . .  n - r +  1. 

I f  X, > ~,  then the sequence  {[X~(-  1) k+j -  plb l -' sgn (bk)]ck};-~ +' s t r ic t ly  
a l ternates  in sign, s ince I b~ I -< 1 for  all  k. Since  { 1, x . . . . .  x r- ~ } is a T c h e b y c h e f f  

(T-) sys tem and {1, x . . . . .  x r-~, g~(x) . . . . .  g,-r+~(X)} is a weak  T c h e b y c h e f f  
(WT-)  system (see Section 3), this implies  that s ( I L I  ,-~ sgn (f~) - I~1 ,-~ sgn (~)) __. 
n. This  is a cont rad ic t ion ,  and there fore  h,  = #. �9 

Before  p rov ing  the upper  bound  we must  f irst  show that  P *  is wel l -def ined .  

Propos i t ion  2.6 .  P *  is wel l -def ined.  

P r o o f .  F o r  ease  o f  expos i t ion ,  set K(x ,  y) = (x- -y)r+ -I  for  x,  y e [ 0 ,  1], and 
K(x ,  i) = x ~- ~ for  i = 1 . . . . .  r.  W e  def ine  

1 x I . . . x~-I (xl - yt)~ - I  . . . ( X !  - -  Ym)V 1 

(x, �9 , . , X r + m ~  

K \ I , ' . . . ,  r,  Yl . . . . .  Ym./ 

r - I  X r - I  1 X~+m �9 �9 �9 Xr+m ( r+m--Yl)+ �9 �9 �9 ( X r + m - - y m ) r +  - I  

I t i s a w e l l - k n ~  " " " ' X~+m~_ > 0 
�9 �9 , r ,  Yl . . . . .  Y m J  

for  all  0 < x~ < . . . < Xr+ m ~___ 1 and 0 < y~ < . . . < Ym --< 1, and is s t r ic t ly  
pos i t ive  i f  and on ly  i f  xi < y~ < x~+,, i = 1 . . . . .  m. 

P *  is wel l -def ined  i f  and only  i f  

1 . . . .  r , ~ j  . . . .  ~n_ > 0 .  

W e  must  the re fore  p rove  that  ~i < ~; < ~+r ,  i = 1 . . . . .  n -  r.  Because  fn has n 

ze ros  in [0, 1] a n d f ~ '  has n - r s ign changes  (zeros)  in (0, 1), it fo l lows that  f~0 has 
exac t ly  n - i  zeros  (sign changes)  in (0, 1) at 0 < ~ < . . . < ~'/_~ < 1, i = 0, 
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1 . . . . .  r, where ~ = 7band ~': = ~j. From Rolle 's  Theorem we have ~-~-1 < ~-~ <~ 

~'ju for i = 1 . . . . .  r a n d j  = 1 . . . .  , n - i. Thus 1]i < ~i < ~i+r, i = 1 . . . . .  
r / - - r .  �9 

Proposition 2.7. I lf-  e:(f)ll, ~ X, llfll, for all f~W<p '). 

P r o o f .  

where 

P*  is well-defined and 

M(x, y) - 

f(x) - (P* f ) (x)  = I l 
0 

M(x, y)f(O(y) dy, 

We must show that 

1 . . . .  r .~j ,  . . . . .  ~ . . . .  

( r -  1)! K{~ . . . . .  TI'~ 
\1 . . . .  r, ~1 . . . . .  ~ , -  4 

I 1 M(. ,  y)fl~)(y) dy <- ~.llflr)l[. 
P 

for all f e  W~ r). To prove this we make use of  the following facts: 

I' 
i) M(x, y ) f f ) ( y )  dy = f~(x). This is valid since (P~f~)(x) = O. 

0 

ii) sgn (f,(x))M(x, y) sgn (fg)(y)) >_ 0 for all x, ye[O,  1]. I' 
iii) M(x,y)lf.(x)l,-' sgn (f,(x)) dx = XP[fg~(y)l'-' sgn (f~r)(y)), 

0 
y ~  [0, 1]. TO prove this, note that 

for all 

I ' M(x, y) I f.(x) I p- '  sgn (f.(x)) dx 
0 

_ 1 I ~ (x - yy+-' I f . (x )  I p-  ' sgn  ( f . (x ) )  dx 
( r -  1)! o 

r - I  

+ ~ a, o x'lL(x) ] ' - '  sgn (f.(x)) dx 

n - - r  ii 
+ Z b; (x - ~j,)%-~ [ f.(x) [ ' - '  sgn (f.(x)) dr. 

i=1 0 

The latter two terms of  the last expression are zero by (2.1), (2.2), and the definition 
of  the {~i}?-(. Again by (2.2) we obtain the desired result. 
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The quantity 

I i  M( . ,  y)h(y) dy 
P sup. 

hste ilhllp 

is attained and occurs at a critical point, i.e., by h and ~ where 

S' g,(x) = M(x, y)h(y) dy 
0 

satisfies 

(2, I I )  I ' M(x, y)l~(x)l  p- '  sgn (~(x)) dx = ~pf~(y)) ip- '  sgn (h(y)),  
0 

for all y e [0 ,  1], and where 

[lIiM(., Y)h(y)dyl e 
= ]1~11, __ sup 

Ilhll, h~z, Ilhllp 
The sign pattern of  M(x, y) is well-defined [see (ii)], and it therefore follows, mul- 

tiplying by - 1 if necessary, that we may assume h(x) f~(x)  >_ 0 and g(x)fn(x) > 0 
for all x~[O, 11. 

From (iii) we see that (2.11) holds where f~'~, f , ,  and X, replace h, ~, and ~, respec- 
tively. We claim that X, = ~. Assume hn < ~. The function If~)(x)lp -I sgn (fg)(x))~ 
Cr[O, 1], and has simple zeros at El . . . . .  ~n--r and zeros of multiplicity exactly r 
at 0 and at 1. (This function is X2PG,, where G, is as in Proposition 2.3.) From the 
form of  M(.~, y) and from (2.11), it follows that Ih(x) I p-t sgn (h(x)) is at least a C '-~ 
function (recall that r _> 2), vanishes at ~t, �9 �9 �9 , ~ . . . .  and is C" at x = 0 and x = 1, 
with zeros of  multiplicity at least r at 0 and at 1. 

We claim that there exists a/3 < 00 such that Ih(x)] _< /31f~)(x)] for all x~[0,  1]. 
To find such a/3, we must consider what happens in neighborhoods of  zeros offg~(x). 
Set 

7, = lim [h(x)l p-t sgn (h(x)) i = 1 . . . . .  n - r .  
�9 -'~, I fg)(x) I ' - '  sgn (f~)(x))' 

This limit exists by L'Hospital 's  rule ('y~ > O) and because I f~)(x)Ip -~ sgn (ff.r)(x)) 
has a simple zero at ~. For e > O, small, there exist ~ > 0 such that for all 
xe(~i - ~, ~ + ~) 

Ih(x)l,-' 
<- ~ + e, i = 1, . . .  , n - r ,  

I f(.')(x) I p-'  

i .e. ,  Ih(x)l ---('t, + O'/~-'lf~)(x)l. This same result holds at x = 0 and x = 1, 
since both Ih(x)l  ~-~ sgn (h(x)) and Jf(,,*)(x)Je - t  sgn (f~)(x)) have zeros  o f  
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multiplicity r there, are C' functions in "the appropriate neighborhoods and 
I f~)(x)I~-~ sgn (f~)(x)) has zeros of exact multiplicity r at 0 and 1. Thus, there exists 
a 8 such that 

Ih(x)l - 81f~)(x)l 

for all xe[0 ,  1]. 
Set 

(2.12) 

and 

(2.13) 

Now, 

Bo = inf {8: IT*(x)l - 81f~(x)l ,  all x~[0, ll}. 

Thus 0 < 80 < 00 and Ih(x)l --- ~olfff~(x)l for all xe[O, 11. Let L(x, y) = 
IM(x, Y)I. From the sign patterns of M, f ~ ,  f,, h, and ~, and from (2.11) and (iii), 

s' )" oL(X, z) L(x, Y)ih(Y)l dy dx -- ~,~l~,(z)l ~-' 

and therefore 

oL(X, z) L(x, y)lfV)(y)l dy dx --- x~lf~')(z)l "-L. 

I' I' ~o L(x, y) [ f~)( Y) I dy > L(x, y) ] h( y) I dy 
0 0 

~o-' Ii L(x, z ) ( I i  L(x, y) l f~(y) l  dY)"-ldx 

s y' ~--- I L(X, Z) Z(x ,  y) lh(y)l dy dx. 
0 

From (2.12) and (2.13) this translates into 

/~o-'),~lf~>(x)lp-, >_ ~plh(x)le-' 

for all xe  [0, II. Thus/~o(X,/t~)P/0'-t) I f~)(x) I ->- I h(x) I for all xe  [0, 11, and from the 
definition of/3o we obtain X, - ~. �9 

This proves Theorem 2.4. 
As a matter of interest, f~ is unique (up to multiplication by constants). 

Proposition 2.8. Fix p~(1, o~) and n, n >- r >_ 2. Let f, g~Wg ~ satisfy (2.1) and 
(2.2) with S(f) = S(g) = n. Then f = ag for some tx~R. 

Proof. From Theorem 2.4 it follows thatfand g satisfy (2.1) and (2.2) with the same 
X, X > O. Thus for all or, 8 e R ,  

I~o xi[[t~f(x)lp -I sgn (txf(x)) + I/3g(x)lP -1 sgn (Bg(x))] dx = O, (2.14) 

i = 0 , 1  . . . .  , r - 1  
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and 

(2.15) 
1 I l  
- (x -y)r+-l[lotf(x)[P-' sgn (off(x)) + ]/3g(x)] p-l sgn (/3g(x))] dr  

(r 1)! 0 

= UP[] c~fr ]P- l sgn (cefC~(y)) + I/3#~)(y) I t,- ~ sgn (BgCr)( y))] 

for all y r  1]. 
We now parallel the proofs of Propositions 2.2 and 2.3 (with slightly more care). 

Use the fact that sgn (I,xf(x)l ~-I sgn (oLf(x)) + I/3g(x)lP-' sgn (/3g(x))) = sgn (otf(x) + 
/3g(x)) for all x~[0 ,  1], and the analogous result where f~) and #r) replace f and g, 
respectively. The resulting analysis proves that S(~f+ 13g) = Z*(~f+ [3g) for all c~, 
/3eR unless ~ f + / 3 g  --- 0. Assumingfand g are linearly independent, a contradiction 

ensues simply by choosing ,x,/3 (,x 2 +/3 2 > 0) such that, for example, (co f+ /3g) (0)  = 
0, in which case S(olf + ~g) < Z*(otf + /3g). �9 

These same ideas may be used to prove that the { ,},=r are a strictly decreasing 
sequence. 

Proposit ion 2.9. F /xp~(1 ,  oo) and let n >_ r >_ 2. Assume Theorem 2.1 holds. Then 
X. > X.+,. 

Proof .  Since, by definition, the n-widths are a nonincreasing sequence of  n, it follows 
that ~.. > ~n+l"  If ),. = }kn+l, then we may apply the proof  of  Proposition 2.8 t o f .  
and f .+l (of Theorem 2.1) to obtain S(~f.+/3f.+l) = Z*(af.+/3f.+O for all ,x, 
/3 (c~2+/32 > 0). A contradiction follows as above. �9 

The class.W~ ) is defined via the semi-norm IIf~r>llp. For some purposes it is more 
convenient to consider the following subset rather than B~ r). Set 

n~p~.'p = {f:f~W~p "), Ilflt~+ tlf~r)llp --< 1}. 

Thus B~)p is a bounded subset of  L p. On the basis of  Theorem 2.4, it is an easy matter 
~r to deduce the n-widths of  B~)p in Le. X,*, L*, P,*, Y,~+ t, and X, will be as in Theorem 

2.4. We also assume r _> 2. First note that the value of  the n-widths for n _ r - 1 
is easily seen to be equal to 1. For n ___ r we have: 

Proposi t ion 2.10. For B(pr,)p as above, and assuming Theorem 2.1, 

6.(B~)p;L p) = d.(B~)p;L p) = d"(B~,)p;L p) = b.(B~)p;L p) = h. / (1  + h.). 

Furthermore, 
a) X*. is optimal for d.(B~Tp; LO, 
b) L* is optimal for d"(B~r)p;LP), 
c) P.*/(1 + ~,.) is optimal for 6.(B~>p;LO, and 
d) Y*.+l is optimal for b.(B~)p;LO. 

}" . From Theorem 2.4, Proof .  The upper bound is proved as follows. Set #, = 1 + ),, 
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IIf-e*~fl lp ~ [If(r)llp x. for all f~W~ ~). Thus 

~.(BE)p;L p) -< sup IIf- (1 - ~,)e~*fllp 
f -  (r) EIJp, p 

-< sup 
fEB(~)p 

_ sup 
f i t(r)  E--p, p 

= sup 
fE B~)p 

= X./(1 + X,). 

{~.llfll, § (1 - ~ . ) l l f -  P*~f[lp} 

{~.llfll, § ( 1  - ~.)11 f(r)ll,X.} 

(llfll, + IIf'~)ll,)Xo/( 1 + x.) 

The lower bound argument is the following. From Theorem 2.4 it follows that 
Ilgll~ >- IIg(%Xn for all geY*+t. Thus 

b,(B~r)p;L") >- inf Ilgllp/(llgll, + IIg(%) �9 
ge Y~+I 

g ~ : 0  

If g<') --- 0, then the above ratio is one. It therefore suffices to assume that II g<'~ll, = 1. 
Thus 

b,(B~)p;L') >__ inf Ilgll,/(llgll, + 1). 
gEY*n+ 1 
IIg(r)llp = 1 

Since Ilgll~ - X. and x/(1 +x) is an increasing function of x, we have 

b,(B~)e;Le ) >_ hn/(1 + ~kn). �9 

The analysis of this section allows us to determine the Kolmogorov n-widths of the 
following class of functions. This class is considered because of its relationship with 
the K-functional used in interpolation theory and because of the simple form of the 
result. We concern ourselves with the evaluation of the n-widths of this set, regarding 
this as an application of the methods of this section. The idea behind the proof of this 
result derives from the work of Saates [14]. 

Assume 60(0 is a nonnegative, nondecreasing function on [0, co) for which o~(t)/t 
is nonincreasing. Note that if co is a concave modulus of continuity then it satisfies these 
assumptions. Let V(W~), w)denote those f eC[0 ,  1] for which 

inf { l l f - g l l p +  tllg(r)llA <-- c0(t) 
g e W(p r) 

for all r 

Proposition 2.11. Under the assumptions of  Theorem 2.4, 

dn(V(W (r), ~ ) , L  p)  = oa(d.(B(p');LP)) 

and X* is optimal for n >_ r. 
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Proof.  The upper bound is simple and uses none of the properties of  o~. Let X* be 
as above. Then for each g~  W~ ~, 

inf ] ] g -  hl]p <- ][g(r)l]pd,(B~);LP). 
h~x* 

Thus 

d~(V(W(pr);~o);L 9) <__ sup inf IIf-h L 
f E V ( W  (r), co) hEX~n 

< sup inf inf { I l l -  gll~ + IIg- hL} 
f~ V( W (r) .co) h G X :  ~ E W (r) 

= sup inf {llf-gllP+hinf~x: Ilg-hL} 
ff~ ll(w(r),~d) g e W(p r) 

< sup inf {(llf- gll, + llg<'II/~ 
:~ v(w(; I, ~) g~ w(/' 

<_ ~o(d.(B(:);V)). 

The lower bound is less general and depends on the following consequence of Theorem 
2.4. Let Y*§ be as in Theorem 2.4. Then for every f~Y~§ 

Ilfllp - I[ftr)llpdn(ng);ZP) �9 

Set 

M,+, = {f:  f~Yn+t, IIfL - ~~ 

From Theorem 1.1, it suffices to prove that M~+ t G V(W~p r), ~o), i.e., 

inf {llf- gll~ + tllg(')llp}-< o~(t) 
g E W (r) 

for all t > 0 and all f~M~+ t. 
First assume that t >_ d~(B~);LP). Then 

inf {llf- gL + tllg(r'llp} <- IIfll, 
g ~ W(p r) 

< o(d,(B~pr);LP)) 

<_ ogt) 

for all f~Mn+ 1, since o~ is a nondecreasing function of t. 
For t <_ d,(B~);L p) and feM,+ l ,  

inf {llf- gll, + tllg(r)ll~} <-- tllf~)ll, 
g ~ W (r) 

<- t l l f l l , /d . (B~);LO 

<_ t~o(d,(Bg);LP)) /d,(B~p');L p) 

<- o~(0 

since o~(t)/t is a nonincreasing function of t. �9 
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Remark. The methods of this section and those of the following sections may be used 
to deduce the n-widths of  

Bp --- {f: IlZfll, -< 1} 

in L p, where L is an rth order disconjugate ordinary differential equation. The ana- 
logues of (2.4) and (2.5) may also be written in the form 

gO)(O) = gel>(1) = 0, i = 0, 1 . . . . .  r - 1 ,  

g = L(I f lP-t sgn ( f ) ) ,  

hqf = L*(Igl  q-'  sgn (g)), 

where ( l i p  + 1/q) = 1, 1 < p < ~ ,  and L* is the adjoint of L. 

3. Total Positivity and Tchebycheff Systems 

In the remaining sections of this paper, extensive use will be made of the concept of 
total positivity and related matters. As such, we have collected in this section those 
definitions and results that are necessary for the subsequent analysis. We start first with 
the matrix case. 

Let A M N = (ao)i=~j=l, ao+R, and R = min {M, N}. 

Definition 3.1. The matrix A is said to be totally positive (TP) if  

(3.1) A( j : :  . . . . ,  J,/ik~ = det (ai,jym n=,, ---0 

for all choices o f  integers 1 <_ i~ < . . . < ik <-- M, 1 < jj < . . . < Jk < N, and 
all k = 1 . . . . .  R. It is said to be strictly totally positive (STP) i f  strict inequality 
replaces the inequality in (3.1). I f  strict inequality holds only for k = 1 . . . . .  r in 
(3.1), with no restrictions for  k > r, then A is said to be strictly totally positive of  
order r (STPr). 

One important property of  STP matrices is that of variation diminishing. To explain 
this property we need the following. 

Definition 3.2. Let x ~ R  m. Then for  x ~ O, 
i) S-(x)  counts the number of  ordered sign changes in the vector x = (xl . . . . .  xm) 

where zero entries are discarded. 
ii) S § (x) counts the maximum number o f  ordered sign changes in the vector x = 

(x~ . . . . .  Xm) where zero entries are given arbitrary values. 

For convenience we set S § = m. 
Thus, for example, i f x  = (1, 0, 1, 0, - 1), then S-(x)  = 1 and S+(x) = 3. Note 

that if S + (x) = S -  (x), then 
1) xl, xm ~ O 

and 
2) xl = 0 implies xi_lxi§ < O. 
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Proposition 3.1. Let A be an M • N STP matrix and x ~: O. Then 

S + (Ax) _< S -  (x). 

In particular, i f  Ax  = 0 then S - ( x )  _> M. 

The fol lowing facts concerning the spectral  and osci l lat ion propert ies  of  STP matr ices  
wi l l  be used. 

Proposition 3 .2 .  Let A be an N x N STPr matrix o f  rank r. I f  IX, I ~ �9 �9 �9 ~ I XNI 
denote the eigenvalues o f  A listed to their algebraic multiplicity, then 

hi > . . .  > h , >  hr+l . . . . .  h N = O .  

Furthermore, i f  A x  ~ = hjx ~, (x ~ , :  0),  then 

S § i) = S - ( x  i) = i - l ,  i = 1 . . . . .  r.  

F ina l ly ,  the fo l lowing  fact  wi l l  a lso  be used.  

Proposition 3.3.  Let  xk~R m, k = 1, 2 . . . . .  Assume that l im x k = x,  x ~a 0. Then 
k~oo 

S - (x) __< l im S + (x k) and l im S - (x k) _ S + (x). 

The  cont inuous  vers ion  o f  these resul ts  deals  with kernels .  Let  K(x, y )~  C([0 ,  1] • 

[0, 11). 

Definition 3.3. 
i) The kernel  K ( - ,  .)  is said to be totally positive (TP) i f  

gin) (3.2)  K x~ . . . .  , = det  (K(xi, y~))~j = i ~- 0 
\ Y l ,  , Ym 

for  all choices ofO <_ x~ < . . . < xm <_ 1 , 0  N Yt < �9 �9 �9 < Ym <-- 1, andre  = 1, 
2, . . . .  

ii) The kernel K ( . ,  �9 ) is said to be strictly totally positive (STP)  i f  strict inequality 
holds in (3.2).  

iii) The kernel K ( . ,  �9 ) is said to be extended totally positive (ETP) i f  K~C| 11 X 
[0, 11) a n d  

K . ( X ,  . . . . .  Xz)  > 0  
\ Y | ,  , Ym 

for  all choices o f  O < xl < �9 �9 �9 <<- Xm <--- 1 , 0  <-- Yl <-- �9 �9 �9 < Ym < 1, and m = 1, 
2 . . . . .  I f  both the xi 's  and the yi ' s  a r e  distinct, then 

( Xm I IXy:: "'~ Xm I K* x~, . . . ,  = K ' . 
\ Y l ,  , Ym , Ym 

When a block o f  n equal x ' s  occurs, then the corresponding rows are determined by 
successive derivatives with respect to x, i .e. ,  
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arK( x, Yl) OrK( X, Ym)~ 
Oxr , . . . .  ~X ~ 7 ,  r = O, 1 . . . . .  n - - 1 .  

This same rule is applied to equal blocks o f  y's.  

Thus, for example, 

aK(x, Y) l K ( x , y )  ~ 

OK(x, y) 

ax axOy 

Associated with each of  the above definitions is a variation diminishing property. 
To explain this property we need various sign changes and zero definitions. 

Definition 3.4. 
i) Let f~L~[O, 1]. We say that S ( f )  = n i f  there exist n + 1 disjoint ordered inter- 

vals I t . . . . .  In+ 1 (by ordered we mean that x < y for  all x~Ij,  yel~+ l, j = 1, . . . ,n) 
whose union is [0, 1], and such that f ( x ) ( -  1)-Je _> 0 a.e. on I~, j = 1, . . . ,n + 1, 
where c e { - 1 ,  1} , f i xed ,  and where meas {x: xEIj,  f ( x )  ~: 0} > 0, j = 1 . . . . .  
n + 1. I f  no such n exists, we set S ( f )  = oo. 

ii) Let f~C[O,  1]. Z ( f )  will denote the number o f  distinct zeros o f f  on [0, 1]. 
iii) Let feC~ 1]. Z * ( f )  will denote the number o f  zeros o f f  on [0, 1], counting 

multiplicities. 

The following holds: 

Proposition 3.4. Let K~C([0 ,  1] • [0, 1]). For heLl[0 ,  1], h ~ 0, set 

S 1 Kh(x) = K(x, y)h(y) dy. 
0 

i) l f  K is TP, then S(Kh) <- S(h). 
ii) l f  K is STP, then Z(Kh) <_ S(h). 
iii) l f  K is ETP, then Z*(Kh) <_ S(h). 

Intermediate between matrices and kernels are sets of  functions. 

Definition 3.5. L e t f ~ C [ 0 ,  1], i = 1 . . . . .  m. 
i) We say that {f}~=l is a weak Tchebycheff  (WT-) system on [0, 1 ] / f  

for  all choices o f  O <_ xt < �9 �9 �9 < Xm < 1. 
ii) We say that {f/}m= 1 is a Tchebycheff (T-) system on [0, 1] i f  strict inequality holds 

in (3.3). 
iii) Let f /~C=[0,  1], i = 1 . . . . .  m. Then {f}m= I is said to be an extended 
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Descartes  (ED-) system on [0, 1] i f  

F*(x .  ' . . . . .  xk~ > 0  
\ h ,  , tk / 

f o r  all O <_ xa < �9 �9 �9 <- xk < 1, 1 < il < �9 �9 �9 < ik < m (ik integer) and k = 1, 
�9 ~ ~ , m .  

Remark.  Ifx~ < . . .  < x kthen 

. . . . .  . . . . .  

U l, , ik \ h ,  �9 , tk/" 

In case of  blocks of  equal x ' s  we apply the convention of  Definition 3.3 (iii). 

P r o p o s i t i o n  3 .5 .  

i) I f  {f/}m= l is a WT-system, then 

ai < _ m - 1 .  

ii) I f  {fi}7'=l is a T-system and a = (al . . . . .  am) ~ O, then 

ai <_ m - 1 .  

iii) I f  {fi}~J is an ED-system,  and a = (al . . . . .  am) ,1: O, then 

Z *  a i <_ S - ( a l ,  . . , am). 

The following two results will also be used. 

Propos i t i on  3.6. Assume {f,}m= I is a T-system and g~Ll[O, 1]. Set 

S' 
bk = fk(x)g(x) dx, k = 1 . . . . .  m. 

0 

l fbkbk+l < 0, k = 1 . . . . .  m -  1, then S(g)  >_ m -  1. 

Pr opos i t i on  3.7. Let  gn, geC~176 1], n = 1, 2 . . . . .  and g =/= O. Assume g , ~  g 
uniformly on [0, 1]. Then 

Z*(g)  >_ lim S(gn) >- S(g) .  
n ~ o o  

Proofs of  the results of  this section may be found in Gantmacher and Krein [2], Karlin 
[3], or Karlin and Studden [4]. 
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4. n-Widths of Other Classes of Functions 

In this section we develop results analogous to those obtained in Section 2, and again 
defer to Sections 5 and 6 one of the major steps of the proof. We consider six distinct 
classes of functions, two of which are presented as an aid in the proofs of Section 5. 
However, we only give a proof for the first class. The other cases may be proven in 
a similar manner. The first class is the following. 

A. Continuous Kernels 

Let p c ( l ,  oo) be fixed. Define 

Kp = (x) = K(x, y)h(y)  dy: Ilhlb~ -< 1 . 

We wish to determine the n-widths of Kp in L p where K is an ETP kernel. (We 
always assume the underlying interval to be [0, 1].) 

We defer to Section 5 the proof of the following result. 

Theorem 4.1. F/xpe(1, oo). Assume K is an ETP kernel. For each nonnegative integer 
n there exist an hn~L p, IIh~ll, -- 1, and ~ such that S(h~) = n and 

S' (4.1) K(x, y)lKh~(x)l p-l sgn (Kh~(x)) dx = Xglh~(y)l~ -~ sgn (h~(y)), 
0 

for all yff[0, 11. 

Multiplying both sides of (4.1) by hn and integrating, we obtain IIKh~ll~ = X~llh~ll~. 
Since IIh~ll~ -- 1 and K is ETP, we have Ilgh~ll~ > 0 and thus kn > 0. Thus (4.1) 
actually implies that h~eC[O, 1], and since KeC~([0, 1]) 2, Ih~l p-~ sgn (hn)~C~*[0, 1]. 

The following facts will prove useful. 

Lemma 4.2. Assume (h,, h~) satisfy (4.1) with S(h,) = n. Then 

n = S(Kh~) = Z*(Khn) = Z*(Ih~l"- '  sgn (hn)). 

Remark. This immediately implies that S(h~) = Z(h,) = n. 

Proof. 
9~, > 0. By (4.1) the last quantity equals 

Z*( I~oK(X.. )lKhn(x)l p-' sgn (Kh,(x,) dr ) .  

Applying Proposition 3.4 (iii), the above quantity is seen to be less than 

S(IKhn I p-~ sgn (Khn)) = S(Kh~) 

<- Z*(Khn) <- S(hn). 

Equality holds throughout. 

n = S(h~) <- Z(h,) = Z(~,.Ih.lP -~ sgn (h,)) _ Z*(~. lh . I  p- '  sgn (h,)), since 



n-Widths of Sobolev Spaces 37 

For h. as above, let 

0 < ~ 1 < . . . < ~ , < 1  

denote its zeros (sign changes), and let 

O < ~ l  < . . .  < ~ n <  1 

denote the zeros (sign changes) of  Kh,. Let P*  denote the rank n operator that inter- 
polates t o f e C [ O ,  1] at r h . . . . .  ~/, from X,*, = span {K(- ,  ~1) . . . . .  K ( . ,  ~,,)}. 

Such an operator is well defined, since K (  ~ . . . . .  W"~ > O. Set 
\~,, , ~,, / 

~lh,(x) l, ~i-I <~ X <~ ~i, 
f,(x) ( 0 , otherwise, 

i = 1 . . . . .  n +  1, where Go = 0 and ~,+l = 1. Define g~(x) = (Kf)(x) ,  i = 1, 
. . . .  n + l .  

T h e o r e m  4.3. F/x p c ( l ,  oo). Assume K is ETP and (h. ,)~.)  satisfy (4.1) with 
S(h.) = n. Let {~i}~=l, {7/i}~'=j, {gi}~__+t l, and P*. be as defined above. Then 

~.(Kp; Lp) = d.(Kp; Lp) = d"(gp; Lp) = b.(Kp; Lp) = Ilgh,,llJllh.ll, = X.. 

Furthermore, 
a) P*~ is an optimal rank n operator for 5.(Kp;LP); 
b) X* = span { K ( ' ,  ~1) . . . . .  g ( . ,  ~.)} is optimal for  d.(Kp;LP); 
c) L* = {f:  feKp,  fOli) = O, i = 1 . . . . .  n} is optimal for d"(Kp;LP); and 
d) Y*+I = span {gl . . . . .  g.+~} is optimal for b.(Kp;LP). 

Proof .  To prove all the above results it suffices to show that 
1) Ilgh -e*(gh)llp <- X.llhllp for all h e L  p, and 
2) 11~7:; ~,g, llp < X. implies ~ " + '  

- - ,= ~,f ,  llp -< I. 
Here we are proving a result analogous to Theorem 2.4. The proof of this result 

is even easier. 

Propos i t i on  4 .4 .  If 11~7=+, ' ~,g, llp ~ x. ,  then 11~7:1 t ~ifllp ~ 1. 

Proof .  We must prove that 

i=~l otigi P 
min 

a~:O ~i=l O/ifi p 

_>x.. 

(The minimum is easily seen to be obtained.) From the definitions o f f .  we see that 
they have essentially distinct support and 
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where c~ = [~,_, I hn(x) l" dx > 0, i = 1 . . . . .  n + 1. We must therefore prove that 

i=~l ot igi p 
min -> hn. 

This minimum is attained for some ~ = (&~ . . . . .  &n+t) ~ 0 and ~, i.e., 

= 

~-'~J ~igi p ~ otigi P 
i = 1  ~--- min ~= l  

Since we are at a minimum value (~ > 0) and p ~ ( l ,  oo), differentiating with respect 
to each c~ k, we obtain 

(4.2) ~ gk(x) E ~t'gi(x) &,g,(x) dx = ~P I&, I P-' sgn" (&k)C,, 
d 0 i = 1  \ i = l  

k =  1 . . . . .  n + l .  

Equation (4.2) is also satisfied for c~, = ( -  ly  § i = 1 . . . . .  n + 1 and # = )~, 
i.e., 

(4.3) I gk(x) ~ (-1)~+~g~(x) sgn (-1) '+~gj(x)  dx = h~(--1)k+~ck, 
0 i = 1  \ i = 1  

k =  1 . . . . .  n + l .  

To verify (4.3), note that choosing hn to be positive on (0, ~) ,  we have Kh,, = 
ET__+~ ~ (-1)i+~g i. Equation (4.3) now follows from (4.1) by multiplying both sides of  
of  (4.1) by Ihnl and integrating over  (~k-I, ~k), k = 1 . . . . .  n + 1. 

By definition, )~ _ ~. We claim that from (4.2) and (4.3) it follows that )~n ----- ~, 
proving the proposition�9 

Normalize {&k}~_-+~ SO that I&kl <-- 1 for all k and &j = ( - 1 )  j+~ for s o m e j .  I f  
&k = ( -  1) T M  for all k, then ~ = )~n. We therefore assume this not to be the case. 

For  ease of  notation set I:~'__+d &ig~ = Kh. The function 

n + l  

= ( ( - 1 ) ' + , - a , )  K(x, y)lho(y)) dr 
i=l ~i--1 

satisfies Z*(Khn - Kh) ~ n - 1 as a consequence of  Proposition 3.4 (iii). Set F(x) = 
IKhn(X)l'-' sgn (Khn(x))-  IKh(x)],-' sgn (/~(x)). Since sgn ( a - b )  = sgn (lalo2' 
sgn a - Ib lp - '  sgn b) for all a, beR, it follows that S(F) = S(I~n-I~) <_ Z*(Khn-IO0 
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_ n - 1 .  Fur thermore,  f rom (4.2) and (4.3), ~togk(x)F(x)dr = ( h p ( - l )  k + l -  
;,,l&kl,-, sgn (&D)ck, for k = 1 , . . .  , n + 1. If  3,,, > ~, then since I~,1 -< I for all 
k, we have Io ~ gk(x)F(x) d x ' [  1 gk+,(x)F(x) dr < O, k = 1 . . . . .  n. The {gk}~__+/are 
a T-system on [0, 1]. Thus from Proposition 3.6, S(F)  _> n. A contradiction has been 
reached. Therefore h. --. /t. �9 

Propos i t ion  4.5. sup {IIKh-P*(Kh)II,,: Ilhll. - 1} ___ X,,. 

Proof .  Set 

K x, r h . . . .  , 
\y ,  ~,, , ~. 

m(x ,  y) = 
K(~, . . . . .  ~1,,'~ 

Then (Kh)(x) -P*(Kh)(x)  = Mh(x) = I~ M(x, y)h(y) dy. The following facts will 
used: 

i) Mh,,(x) = Kh,,(x), since Kh,,(rli) = O, i = 1 . . . . .  n. 
it) sgn (Kh,(x))M(x, y) sgn (h,(y)) >_ 0 with equality if and only if x = ~ or 

y = ~ j .  

iii) Io ~ M(x, y)lMh,(x)lp- '  sgn (Mh,(x)) dx = Xplh,(y)lp -~ sgn (h,(y)) for all y~[0 ,  
1]. This ' is  a result o f  (i) and (4.1). 

Set L(x, y) = I M(x, y) I. Thus L(x, y) >_ 0 with equality if and only if x = ~/i or 
y = (j by (it). Furthermore,  from (it) and (iii) it follows that for H,(y)  = Ih.(y) l 

I' (4.4) L(x, y)(LH,,(x))p-I dx = Xp(H.(y))p-t  
0 

for all y~[0 ,  1]. 
From (it) we see that 

sup IIMhll. _ sup IILhll~. 
h . 0  IIhL h . 0  IIhL 

This latter supremum is attained b y / ) ,  ~, where we may assume tha t /4  _ 0 and 
satisfies 

S' (4.5) L(x, y)(L[-l(x))p-' dx = [z(~l(y))p-', 
0 

for all ye[O,  1], and 

= IlUTII. = sup I1~11. 

We claim that there exists a/7,  finite, such that 13H,(x) >_ [-I(x) for all x e [ 0 ,  1]. 
Now H,(x) >_ 0 with equality only at x = ~i, i = 1 . . . . .  n. From (4.5),/~(~3 = 0, 
i = 1 . . . . .  n. Set h(x) = H(x) sgn (h,(x)). It is easily seen that Ih(x)l"-' sgn (h(x)), 
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Ih.(x)lp -~ sgn (h,(x))eC| 1], since MeC**([0, 1] x [0, 1]). Furthermore, 
Ih.(x)lp -~ sgn (h,(x)) has a simple zero at ~,, i = 1 . . . .  ,n. Set 

7~ = lim Ih(x) l ' - '  sgn (h(x)) i = 1 . . . . .  n. 
�9 ~ [ h,(x) Iv- 1 sgn (h,(x))' 

These limits exist by L'Hospital's rule and 3'~ >- 0. For e > 0, small, there exist 
6~ > 0, i = 1 . . . . .  n, such that for x~(~,. - 6;, ~ + ~3, 

= l --- + , ) , / c , - . i h . ( x ) l  = (v, + e) t)H.(x). 

There therefore exists a/3 such that/4(x) ___ [3H,(x) for all x~[0, 1]. Let 

/30 = inf {/3: /4(x) ~ /3H,(x)}. 

Thus 0 < /30 < 0o and/4(x) _ /3oH,(x). From (4.4) and (4.5) it now follows that 

~"(/ 't(y))"-'  -< ~-'X~(H.(y))P- '  

for all y~[O, 1]. From our definition of/3 0 we obtain ~,, _> ~. This proves the propo- 
sition. �9 

Theorem 4.3 has been proved. 
The uniqueness of the above hn is a consequence of Theorem 4.3. 

Proposition 4.6. F/xp~(1,  0o) and n, a nonnegative integer. Let f, g~L v satisfy (4.1) 
with S ( f )  = S(g) = n. Then f = otg for some ot~R. 

Proof. 
Thus 

From Theorem 4.3 we see thatfand g satisfy (4.1) with the same )~, k > 0. 

I t K(x, y)[lc~Kf(x)lp-' sgn (c~Kf(x)) + I/3Kg(x)l p-~ sgn 03Kg(x))] dx 
0 

= Xp[ l~f (y ) l  p- '  sgn (ot f (y))+ l[3g(y)lp-' sgn (/3g(y))] 

for all ye[0 ,  1] and a , / ~ R .  We now parallel the proof of Proposition 2.8 to obtain, 
in this case, Z * ( a f + / 3 g )  = S(otf+/3g) for all o~, /~R.  Obviously such an inequality 
cannot hold for all a ,  /3~R unless f = czg for some ~ R .  �9 

In this same way we may parallel the proof of Proposition 2.9 to obtain X, > ~,+~ 
for all n. 

We presented Theorem 4.3 and its full proof to emphasize two points which bear 
consideration vis-a-vis Theorem 2.4. Firstly, the result (and this will be seen again in 
Sections 5 and 6) depends on the total positivity properties and only on these proper- 
ties. The proof of Theorem 4.3 is technically simpler and the ideas are, we hope, more 
self-evident. Secondly, the existence of the free {xi}f-~ in Theorem 2.4 is a technical 
problem and may be overcome because together with the kernel (x - y)~- ~ certain total 
positivity properties still hold. 

The following result is also valid. Its proof is a combination of the methods of proof 
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of  Section 2 and the results so far presented in this section. We state it because it is, 
we hope, of interest, and also because it is necessary in the proof of  Theorem 2.1. 

Let p~(1,oo) ,  fixed, and set 

I 1 K~ = a,k~(x) + g ( x ,  y )h (y )  dy: Ilhll,, --< l ,  a ,~R,  i = 1 . . . . .  r . 
i = l  0 

We wish to determine the n-widths of  K~ in L p under the following assumptions�9 

Property A. 
1) K~C~([O, 1] • [0, 1]), and k ~ C ~ [ O ,  1], i = 1 . . . . .  r. 

2) K * ( x .  I . . . . .  x~+~] > 0 for all 0 <_ x I m~ . �9 �9 m~ XS+ k ~ l ,  
\ t l  . . . . .  i,, Yl . . . . .  Yk,/ 

O < y~ < . . . < yk < 1, 1 < i~ < . . . < i~ < r, and all s = O, 1 . . . . .  r, 

k = O ,  1 , 2  . . . . .  
For distinct r-iJ ~" ~+k~= ~ and { y~}~= t, 

\ t  I . . . . .  i~, yj . . . . .  y J  

kil(X|) 

k~,(x~+k) 

�9 �9 �9 ki(xO 

\ i t  . . . .  , is, Yl . . . . .  Yk 

K(x l ,  YO �9 �9 �9 K(x l ,  Yk) 

�9 " �9 k i s ( X s + k )  g ( x s + k ,  YO �9 �9 �9 K(xs+k, Yk) 

When we have a block of  equal x 's  or y 's  then we use the definition corresponding 
to Definition 3.3 (iii), i .e.,  consecutive derivatives. 

The following variation diminishing property holds. 

Proposi t ion 4.7. For  {ki}~=�91 and K satisfying Property  A ,  

Z *  aiki + Kh  <- S(h)  + S - ( a  I . . . . .  a r )  

i f  )']jr aiki + Kh  ~ O. i = 1  

In fact, to be precise, equality can hold only if the last nonzero sign in (al . . . . .  at) 
and the sign of  h near 0 (i.e., its first sign as we count from the left) are not equal. 

The proof  of  the following result is deferred to Section 5. 

k r Theo rem  4.8. F/x p c ( l ,  oo). Assume  { i } i = 1  and  K satisfy Property  A.  For  each 
integer n, n >_ r, there exists an f , (x )  = E~=~ a*ki(x) 4- ~ K ( x ,  y )h , ( y )  dy and a X, 
such that S ( f , )  = n and  
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I' sgn (f~(x)) dr  = O, i --- 1, . . . ,r, 
0 

I ' K(x.  y) I f.(x) l o-,  sgn (f.(x)) dr  = XP. I h.(y)  I . - '  sgn (h.(y)) 
0 

for all y~[0,  1]. 

On the basis of  Theorem 4.8 we easily obtain )~, > 0 and the next two results. 

Proposition 4.9. Under the assumptions o f  Theorem 4. 8, 

n = S( f . )  = Z*( f . )  = S ( h . ) + r  = Z * ( I h . l p - '  sgn (h . ) )+r .  

Let {*/i}~=l denote the zeros o f f .  and {~i}Tzr the zeros o f h . .  Let P*  be the rank n 
operator determined by interpolation from X* = span {k I . . . . .  k r, K ( - ,  ~l) . . . . .  
K ( ' ,  ~,_r)} t o f e K ~  at the {~i}f:,, and set 

S t, gi(x) = K (x, y) I h.(y)  I dy , i = 1 . . . .  ,n - r + 1, 

where ~o = O, ~._~+l = 1. 

Theorem 4.10. Under the assumptions o f  Theorem 4.8, 

~.(K~;L p) = d.(K'p;L p) = d"(K~;L') = b,(K'p;L p) = IILII,/llh.ll, = x.. 

Furthermore, 
a) P* is optimal for  ~.(K~p;LR); 
b) X* is optimal for  d,(Krp;LP); 
c) L* = {f :  feKrp, f(n~) = O, i = 1 . . . . .  n} is optimal for  d"(Krp;LP); and 
d) Y*+l = span {k, . . . . .  kr, gl . . . . .  g,-r+,} is optimal for  b,(K~;L'). 

B. Matrices 

In the proofs of  Theorems 4.1 and 4.8, a matrix analogue of  these results will be used. 
Let A = (a0)~:~, ~v be an M •  matrix. F o r p ~ ( 1 ,  Qo), set 

A, = {Ax: Ilxll  -< 1}. 

We consider the n-widths of  Ap in g, n. This problem was studied and solved in Pinkus 
[12], although in that paper there is little reference to n-widths, per se. This problem 
in a matrix setting has an additional meaning. The n-widths in the sense of  Gel ' land 
and Bernstein are, for p q: 2, generalizations of  the minmax and maxmin, respectively, 
characterizations of  the eigenvalues of  ArA (the s-numbers of  A). The following results 
are proved in [12]. 

Theorem 4.11. Fix p ~ (1, oo). Let A be an M x N STP matrix and R = rain {M, N}. 
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For each integer n, 0 <_ n < R - 1, there exists an x"~RU for  which S-(x '9  = n and 
a h. such that 

M 

agkl (Ax"),l"- '  sgn ((Ax'%) = X~.lxgl'-' sgn (x~). 
i = l  

k = 1 . . . . .  N. 

P r o p o s i t i o n  4.12. Under the assumptions o f  Theorem 4.11, ~,, > 0 and 

n = S -  (x") = S + (x") = S -  (Ax") = S + (Ax").  

The following result may also be found in [12], although this exact statement is not 
given. 

T h e o r e m  4.13. Under the assumptions o f  Theorem 4.11, 

n �9 M �9 M 6 . ( a . ; ep  M) = d,,(ap;e~) = d (A . , ep )  = b,,(a, ,e,  ) -- I lax"l l , / l lx" l l .  = X,,. 

The exact form of  the optimal subspaces and operator for these n-widths is rather 
complicated. The interested reader should consult [12]. 

Let A be as above and p c ( l ,  co). For 1 _< r < N -  1, set 

Ap = Ax: Ix/lP <__ 1 . 
i = r +  I 

Note that there is no restriction on x~ . . . . .  Xr. 
The following will be proved in full detail in Section 6. 

T h e o r e m  4.14. F/x p c ( l ,  co). Let A be an M • N STP matrix, R = min {M, N} 
and 1 <_ r < R - 1. For each integer n, r < n <_ R - 1, there exists an x"eRN for  
which S-(x")  = n and a ~, such that 

M 

Z a,kl(Ax")il p-'  sgn ((Ax"),) = 0, k = 1 . . . . .  r 
i = l  

and 

M 

Z ai,[ (Ax")ilP-' sgn ((Ax%) = Xp[x~lP-t sgn (x~), 
i = 1  

From Theorem 4.14, the following results hold. 

k = r + l  . . . . .  N. 

P r o p o s i t i o n  4.15. Under the assumptions o f  Theorem 4.14, h, > 0 and 

n = S - ( x " )  = S + (x") = S - (Ax")  = S + (Ax") 

= r+S- (x~+t  . . . . .  X~N) = r+S+(x~+l . . . .  ,x~). 
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Theorem 4.16. Under the assumptions of Theorem 4.14, 

/~.(A~;e~) = d.(Arp;e~) = d"(Arp;e~) = b.(Arp;e~) 

= IIAx%/ IxTl" = X.. 
i 1 

C. Systems of Functions 

Intermediate between kernels and matrices are systems of  functions. The next few results 
will be used as intermediate results in Section 5 and are used to simplify the proofs 
therein. 

Let {gi}~=l be an ED-system on [0, 1]. Fix p e ( 1 ,  oo) and set 

Gp=I~-~ja,gi(x':a=(ali=�91 . . . . .  a~), [laIIp ~ 11. 

In Section 5 we prove 

Theorem 4.17. Fix p~(1, oo). Let Gp be as above. For each integer n, 0 <_ n < N, 
there exists an a"~R~ for which S-(a")  = n and a h, such that 

I ~ t~n t~ k . . . ogk(x) aTgi(x) aTgi(x) dx = xp ~,lp-i sgn (a~),k = 1, N. 
i = 1  

On the basis of  Theorem 4.17, we have: 

Proposi t ion  4.18. Under the assumptions of Theorem 4.17, )~, > 0 and 

n = S- (a" )  = S+(a  ") = a~g~ = Z* a~g i . 

Theorem 4.19. Under the assumptions of Theorem 4.17, 

6.(G.;L') = d,,( Gp;L p) = d"( G,;L t') = b.( Gp;L p) 

= aig, Ilia" = x~. 
i = 1  

Set 

N 

azi(x); a = (at . . . . .  aN), ~ la, t e <- 1 
i=r+ 1 

for some fixed r, 1 _ r < N. In Section 5, we also prove: 
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Theorem 4.20. Fix p c ( l ,  Qo). Let {g~}/N= I be an ED-system and G~, as above. For 
each integer n, r <_ n < N, there exists an a"~RN for which S- (a" )  = n and a X,, 
such that 

and 

I [ p - I  

fog,(x) ~aTgi(x)  sgn(i=~a'/g~(x, ) 

Io gk(x) E a~gi(x) sgn a~'gi(x) 
i=1 i=1 

On the basis of  Theorem 4.20, we have: 

d x = 0 ,  k =  1 . . . . .  r, 

dx = X~', t a~l"- t sgn (a~), 

k = r + l  . . . . .  N. 

Proposition 4.21. Under the assumptions of Theorem 4.20, X, > 0 and 

n = S - ( a " )  = S+(a  ") = afg i = Z* afgi 

= r + S -  (a~+ i . . . . .  a~) = r + S § (am+ l . . . . .  a~). 

Theorem 4.22. Under the assumptions of Theorem 4.20, 

cS~(G~;L p) = d~(G~;L') = d~(G~;L ") = b~(G~;L p) 

= l a ~ l  p = x n .  
i=  1 i "1 

5. Existence Theorems: Part A 

We are concerned in this section with proving the existence of  functions and vectors 
satisfying Theorem 2.1, Theorem 4.1, etc. There are two parallel  lines o f  proof  to be 
given. On the basis of  Theorem 4.11 we prove Theorem 4.17, and from that prove 
Theorem 4.1. Similarly,  we shall prove Theorem 4.14 and on the basis of  Theorem 
4.14 obtain Theorems 4.20, 4.8,  and 2.1,  in that order.  Because of  its length, we defer  
the p roof  o f  Theorem 4.14 to the next section. We start with the first of  these cases. 

Proof of Theorem 4.17. Theorem 4.17 is based on Theorem 4.11, which was proved 
i 

in [12]. Let M be large (M > N) .  Set x~ = ~ r '  i = 1 . . . . .  M, and gj(x~) = 

i = 1, . . . , M,  j = 1 . . . .  ,N.  T h e n  B M = (b~) is an M • N STP matrix. F rom 
Theorem 4.11 we have, f o r p ~ ( 1 ,  oo), fixed, and each n, 0 < n < N, the existence 
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of  an a M = (a~ . . . . .  a ~ c  R N and a X M for which S - ( a  M) = n and 

M 

1 ~ bffl(BMaM)~lp_, sgn ((BMa~,) = Xf~laflP -~ sgn ( a ~ ,  k = 1 . . . . .  N. 
M i=1 

In other words,  

M 
1 a) gj sgn M (5.1) ~ ~ gk = X~,laUI p-' sgn (a~, 

i 1 ' =  j= l  j= l  

k = l  . . . . .  N. 

Furthermore,  from Proposit ion 4.12, XM > 0 and n = S - ( a  M) = S+(a  M) for all M. 
Normalize  a M so that IlaMIl~ = 1. (a M is in fact uniquely determined up to multipli- 

cation by a constant.)  As a function of  M it is easily seen that X M > 0 is bounded 
above. There therefore exists a subsequence (again denoted by M) such that a M ~ a 
and XM--*X as Ml"oo. Thus 0 _ X < oo and Ilallp = 1. 

From (5.1) we obtain the desired equalities, namely 

(5.2) [ ] SI gk(X) ~--]a~gj(x) sgn ~-]ajgj(x) 
j= l  j= l  

k = l  . . . . .  N. 

d r  = Xp [ ak I p - '  sgn (ak), 

It remains to prove that S - ( a )  = n. Now, S § (a M) = S - ( a  M) = n for all M. From 

Proposit ion 3.3 it follows that 

S+(a)  > lim S - ( a  M) = n = lim S+(a  M) > S - ( a ) ,  
M~oo M~oo 

Since a satisfies (5.2) and S - ( a )  < n, then from Proposit ion 4.18, S+(a)  = S - ( a )  
and X > 0. Thus S - ( a )  = n. This proves Theorem 4.17. �9 

P r o o f  of  T h e o r e m  4.1.  We want, for each fixed p c ( l ,  oo) and nonnegative integer 
n, to prove the existence of  an hcLp and )xcR such that S(h) = n, and 

f ~ K(x, y) I I p sgn (Kh(x)) [ h(y) I p sgn y)), Kh(x) 1 dr Xp (h( 
0 

for all y c [0, 1 ]. 
Set gi(x) = ar UN K(x, y) dy, i = 1 . . . .  . N. Then {gi}/~=l is an ED-system on 

[0, 1] as a consequence o f  the ETP property of  K. Assume N > n. From Theorem 
4.17 there exists a vector (actually a unique vector) a n t  u for which S - ( a  N) = n, 

[laNllp = 1, al ~ > 0, and a X N > 0 such that 

Io ~---~at/g(x)i=l p-- I  sgnli=~a~gi(x)ld x 

= X~lafl ,-I  sgn (af ) ,  k = 1 . . . . .  g .  
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Set h,(y) = a~A nit' for y e [ ( i -  1)/N, i/N), i = 1 . . . . .  N. Thus IlhNll,, = 1, and 

(5.3) N K(x, z)lKhN(x)l,'-' sgn (KhN(x)) dx dz 
d(k- I)/N 0 

= X%IhN(Y)I"-' sgn (hN(y)), 

for y ~ [ ( k -  1)/N, k/N), k = 1 . . . . .  N, where X~ = NX~. Note that IlghNIl,, = 
L, IIhNII, = XN. Thus X~ is bounded above by sup {llghll,: Ilhll, ~ l}. Nwi l l  be used 
as a general index. We will be repeatedly taking subsequences of  N as Ni" oo. From 
the fact that XN is equal to certain n-widths, it follows, at least on the subsequence 2 N, 
that ~,2 N is a nondecreasing sequence. Thus there exists a subsequence for which XN--* 
X a s N l " o o a n d 0  < X < oo. 

Now IIhNII, = l for all N. Taking subsequences, there exists an heL  p, Ilhll, ~ l, 
such that hN~ h weakly on [0, 1] as N t  oo. Since K induces a compact operator from 
L p to C, it follows that 

f f 1 o K(x, y)hN(y) dy ~ o K(x, y)h(y) dy 

uniformly on [0, 11 as N~ ~ ,  and thus 

~1K(X, z)lghN(x)l"-' sgn (KhN(X)) dx--* ~' K(x, y)lKh(x)lp -~ sgn (gh(x)) dx 
d 0 J 0 

uniformly on [0, 1] as N ~  co. Therefore 

N K(x, w)lKhN(X)l p-I sgn (KhN(X)) dx dw 
d (k N -  I)/N 

Sl --* z) I Kh(x) I p- ' sgn (Kh(x)) dx 

uniformly on [0, 1], where k N -  1 < Z < kN N - ~ for all N. From (5.3) we obtain that 

S' ~IhN(Z)IP -~ sgn (hN(Z))--' K(x, z)lKh(x)l,-' sgn (Kh(x)) dx 
o 

uniformly on [0, 11 as N--, ~ .  
Now XN--' X and hN~h weakly on [0, 11. Thus 

~1 hN (Z) I p-' sgn (hN(Z)) --" XP I h(z) I '- '  sgn (h(z)), 

uniformly on [0, 11, and 

I' (5.4) K(x, z)lKh(x)l, -1 sgn (Kh(x)) dx = Xelh(z) l , - '  sgn (h(z)), 
0 

for all z~[0,  1]. Since X > 0, we have proved that hN~h uniformly on [0, 1] and 
Ilhllp = 1. 

It remains to prove that S(h) = n. From Proposition 4.18, S(KhN) = Z*(KhN) = n 



48 Allan Pinkus 

for all N. Thus, from Proposition 3.7, S(Kh) <_ n <_ Z*(Kh). However, from Lemma 
4.2, S(h) = S(Kh) = Z*(Kh). Thus S(h) = n and we have proved Theorem 4.1. 

[] 

If Theorem 4.14 is true then the above arguments, with minor modifications, prove 
Theorems 4.20 and 4.8. We assume the validity of Theorem 4.8 and on that basis prove 
Theorem 2.1. The final step of the proof will be to prove Theorem 4.14. 

Proof of Theorem 2.1. We are assuming the validity of Theorem 4.8. Our aim is 
to prove, for fixed pe (1 ,  0o) and r _> 2, the existence, for each positive integer n, 
n __ r, of a n f r  ) and X~R for which S( f )  = n and 

I I 'oXil f(x)lP- '  sgn ( f ( x ) )dx  = 0, i : 0 , 1  . . . . .  r - 1 ,  

(5.5) ~ 1 f~0 (x_yy+_~lf(x)lp_ ~ sgn ( f ( x ) )dx  = ),plfl~)(y)l "- '  sgn (flr,(y)), 

for all ye[0 ,  1]. 
We first simultaneously "smooth" {x ~- ~ } r= t and (x - y)r+- V(r -- 1) ! (i.e., convolute 

1 
with the kernel M,(x, y) - ex/-2~r exp { - ( x  - y)2/2E2}) to obtain {~}~=~ and K'(e > 0) 

which satisfy Property A of Section 4. Note that ~(x)--* x i-~, i = 1 . . . .  , r, and 
K'(x, y) --, (x - yy+- l/(r - 1)! uniformly as e J, 0. From Theorem 4.8 there exists an 

and a X, 

2 f' f ' (x )  = a ~ ( x )  + K'(x, y)h'( y) dy 
i=1  0 

> 0 such that S( f ' )  = n, Ilhql~ = 1, and 

(5.6) I I I ~(x) I f ' (x)I  v-~ sgn (f ' (x))  dx = O, i = 1 . . . . .  r, 
0 

I ' K'(x, y ) l f l ( x ) l  v-t sgn (f ' (x))  dx = Xflh'(y)l  p-I sgn (h'(y)), 
0 

for all ye[O, 1]. 
It is an easy matter to show that the a~ remain bounded as does X' as e + 0. Further- 

more, a Birman and Solomjak [1] type argument proves Chat X' _ An -r for some 
A > 0 independent of n, r, and e. Thus X' is bounded below away from zero. There- 
fore, along some subsequence (always indexed by e), a~ ~ ai, i = 1 . . . . .  r, X' ~ X, 
0 < X < r and h' --* h weakly on [13, 1]. We now apply the reasoning of the previous 
proof. Thus f '  ~ fun i fo rmly  on [0, 1], which in turn implies that I f '  ]p-I sgn (f9- '*  
I f l  p-' sgn ( f )  uniformly on [0, 1]. From (5.6) it follows that X'lh'] v-l sgn (h') --* 
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Xlhl t'-~ sgn (h) uniformly on [0, 1], and since X > 0, h ' ~ h  uniformly on [0, 1]. We 
therefore obtain from (5.6) the existence of  an f c  W~ r~ (note that f~r) = h) that satis- 
fies (5.5) and such that IIf~r~ll, = 1. 

It remains to prove that S( f )  = n. Since S ( f ' )  = n for all e > 0 and f ' ~ f  
uniformly on [0, 1], it is a simple matter to prove that S(f )  <_ n. Sincefsat isf ies  (5.5) 
it follows from Proposition 2.3 that S( f )  = Z*( f ) ,  where here Z*  counts zeros up 
to multiplicity at most r. Recall that r _> 2, so that all the zeros of  f a r e  in (0, 1) and 
are simple. Now S( f ' )  = Z*(fO = n for all e > 0 by Proposition 4.9, i.e., f '  has 
n simple zeros and no others. I f  S(f )  < n, then as e + 0 some of  the zeros o f f '  either 
go to the end points or collapse on each other (coalesce). In either case we would ob- 
tain S(f )  < Z*( f ) .  This contradicts Proposition 2.3, so S(f )  = n. �9 

6. Exis tence  Theorems:  Part B 

It remains to prove Theorem 4.14. This is a generalization of Theorem 4.11, which 
was proved in [12]. Theorem 4.11 is a special case of  Theorem 4.14, i.e., for r = 0. 
While Theorem 4.11 was proven by a fairly short elegant proof  using the Liusternik- 
Schnirelman Theorem on critical points, we were unable to extend that method to this 
case. We do believe, however,  that this shorter proof  will extend, and a proof  along 
these lines would be of  interest. The idea of  the proof  of  Theorem 4.14 presented here 
is to start at p = 2, where the theorem may be directly verified, and then to extend 
the result via the Implicit Function Theorem to all p c ( 2 ,  oo). For the case r = 0 
(Theorem 4.11) this suffices, f rom duality considerations, to prove the result for all 
p c ( l ,  oo). For r > 0, the dual problem is different in character and we must sub- 
stantially rework the proof  to verify Theorem 4.14 for p c (1, 2). Our proof of  Theorem 
4.14 is rather lengthy and is therefore divided into a.series of  steps. Before proceeding 
with the proof,  we restate, for convenience, our final goal. 

Fix p c ( l ,  co). Let A be an M •  STP matrix and R = min {M, N}. Fix r, 
1 < r < R -  1. For each integer n, r _.< n < R -  I,  we claim that there exists an 
x c R  u for which S - (x )  = n and a o such that 

M 

(6.1) Z a,*l(Ax),lP-' sgn ((Ax),) = 0, k = 1 . . . . .  r, 
i=1 

and 

M 

(6.2) Z a,kl(Ax)i[ p-I sgn ((Ax)i) = olxkl~- '  sgn (x,), 
i=1 

k = r + l  . . . . .  N. 

(For convenience we have replaced XP by o). Note that Ilaxllg = O'(~']N=r+ i IXk I p) from 
(6.1) and (6.2). It therefore follows from Proposition 3.1 that if Y:Y Ix, I ~ = 1, k=r+  I 
then since r _< S - (x )  = n < R -  1 we have Ax q: 0, so that a > 0. We start by 
first proving the case p = 2. 
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P r opos i t i on  6.1.  T h e o r e m  4 . 1 4  ho lds  f o r  p = 2. 

Proof .  Let B = A r A .  B is a symmetr ic  N x N matr ix  and is STP of  order  rank B, 

where  rank  B = rank  A = R = min  {M, N}. Equat ions  (6.1) and (6.2) are equiva-  

lent ,  for p = 2, to 

0 ,  k = 1 . . . . .  r, 
(BX)k 

axk, k = r + 1 . . . . .  N .  

Set (1 . . . . .  
B / ,  , r ,  

Cij ~ -  i , j  = r +  1, . ,N ,  

and C = (cu)~,j=,+~. ~ F r o m  Sylves ter ' s  De te rminan t  Ident i ty  (see, e .g . ,  Kar l in  [3], p. 

3), it fol lows that C is an STP ( N -  r) x (N - r) mat r ix  of  order  rank C = R - r. 

Thus  f rom Proposi t ion 3.2,  C has R - r posit ive dist inct  e igenvalues  

Or+ l > O'r+ 2 > . . . > O" R > 0 .  

Let i i  = (x~r+ t . . . .  , x~N), i = r + 1, . . . ,R, denote the associated eigenvectors,  i .e. ,  

C i  ~ = a~i*, i = r +  1, . . . ,R. F r o m  Proposi t ion 3.2 we have S + ( i  ') = S - ( i  ~) = 
i - l - r , i  = r + l  . . . . .  R. 

Def ine  x i = (xil . . . . .  x i, x i§  ~ . . . . .  x D ,  i = r + 1 . . . . .  R ,  where the x{ . . . .  , 

x~ are un ique ly  de te rmined  by the condi t ions  

2 2 bkjxj + bkjxj = O, k = 1 . . . . .  r, 
j = l  j = r + l  

for each i = r + 1 . . . . .  R. W e  first c la im that 

0 , k = 1 . . . . .  r ,  
(Bx')k 

oixL k = r + 1 . . . . .  N .  

For  k = 1 . . . . .  r ,  this holds by construct ion.  For  k = r + 1 . . . .  ,N, 

o ( 1  
~ , x ~  = , , r ,  (1 . . . . .  :) 

~=r+t B 1, 

= ~ b~,~+ Y', (--1)'r-' 
j = r + l  j = r + l  e = l  

 (ll . . . . .  ' . . . . .  r k)r 1 
B 1, 
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Z bkj~+ (--1) e+'- '  
j = r +  I g= I 

" ( '  . . . . .  ~ . . . . .  r "r) S 
\ 1 . . . . .  bejz), 

B ( I  . . . . .  r )  j=~+, 

1, , r  

where the ^ on the index e indicates that that row is deleted. Since ee  {1 . . . . .  r}, 

N 2 Z bct~ = - boxj 
j=r+l  j= l  

Thus 

2 ( -  1)e+,'-* 
e=l 

.( . . . . .  ~ . . . . .  r'r) 
1 . . . . .  ~ bejxj 

B(  11, . . . . .  , ; )  S=r+, 

. (1  . . . . .  ~ . . . . .  r.,.r) 
2 = ( _ 1) e+' 1 . . . .  Zbejx~ 

e=l B 1, , 

. (1 . . . . .  . . . . .  r , , )  
_-- ~-] (e__~l(_l)e+r 1, B ? I , .  __' r b O)x). 

\1, , 

For j = 1 . . . . .  , r, 

B{1  . . . . .  r, k )  B{1  . . . . .  l, . . . , r, kr) 
\ 1 ,  . 0 = \ 1 ,  , r, = bkJ + ( - 1 )  e+~-~ . , b0" 

B{I\I, . . . . .  , ; )  e=, B( 11, . . . . .  , ; )  

Substituting, we obtain 

N 2 
j=r+l  j=l  

It remains to prove that S-(x*) = i -  1, for i = r +  1 . . . . .  R. Since S- (~  i) = 
S+(~ i) = i - l - r ,  we have S+(O, . . .  , O, aixi+L . . . . .  ~rix~) >_ i - 1 .  Thus 
i - 1  < S+(Bx9 _ S- (x  ~) _<_ S+(x i) _< r+S+(~  ~) < i - 1 ,  implying that S-(x9 = 
S + ( x  i) = i -  1, i = r +  1 . . . . .  R. �9 

For x = (x~ . . . . .  XN)ER N, o~R,  and p~(1,  oo), let 
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G(x, a, p) = (G1(x, o, p) . . . . .  GN+I(X, a, p ) ) ~ R  N+I, 

where 

M 

Gk(X, o, p) = E aik } (Ax)i I p-1 sgn ((Ax),), 
i = l  

k = 1, . . . ,r, 

M 

Gk(x, a, p) = E aik ] (Ax)i I p -1 sgn ((Ax),) - ~lx~ I "-1 sgn (Xk), 
i=1  

and 

k = r + l  . . . . .  N, 

N 

a.+l(x, o, p) = ~ Ix~l ' -  1. 
k = r + l  

For ease of  notation we shall sometimes write xN+~ for o. 
To use the Implicit Function Theorem (to vary p), we must prove that a certain 

Jacobian is nonzero. This is the crux of  the next series of  results. 

Lemma 6.2. Forpe(2,  ~ ) ,  G(x, o, p ) e C l ( R  N+2, RN+J). 

Proof .  The continuity o f  G(x, o, p) as a function o f x  1 . . . . .  x N, a a n d p ~ ( 1 ,  ~ )  
is obvious. Since we shall need the partial derivatives for later analysis, we simply 
evaluate them to show that they too are continuous. 

For k = 1 . . . . .  r, 

0Gk(x, a, p) _ ( p _  1) a,ka,el(Ax)ilp -2 , 
axe 

e =  1 . . . . .  N, 

is continuous for p > 2. The function aGk(x, a, p)/aa = 0, while #Gk(x, a, p)/ap = 
r, ff= 1 a~ I (Ax)IIP- ~ sgn ((Ax))ln( I (Ax)il). This latter expression is continuous for p > 1, 
since lim I x l . - q n ( I x l )  --- 0 for a l l p  > 1. For k = r +  1 . . . . .  N, 

x ~ 0  

OG~(x, o, p) _ ( p _  1) a,w.l(Ax)~l p-2 - o l x ~ l ' - % ,  
OXe 

and 

aGk(x, tr, p) 
ap 

aG,(x, ~, p) 
0o 

= -Ixkl .-1 sgn (x,), 

e = 1 . . . . .  N, 

M 

- E ai, ] (Ax), I p-I sgn ((Ax)i)ln(I (Ax)~ I) - ~rlx, I p -~ sgn (xk)ln(lx, I). 
i=1  

The second and thirdexpressions are continuous for p > 1, while the first expression 
is continuous for p > 2. 

For k = N +  1, 
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aGn+l(x, ~, p) = 0, 
axr 

e = l  . . . .  ,r, 

aGN+~(x, a, p) = plxe lp_  ~ sgn (xt), 
axe 

e = r + l  . . . . .  N, 

0GN+j(X, a, p )  = 0,  
0a 

and 

N 

aG~+,(x, ~,p)= ~ Ixkl'ln(lxkl), 
~P k=r+l 

are all continuous for p > 1. 
One of  our problems is that of  starting the analysis at some point p.  The only 

information we presently possess is at p = 2, where G(x, a, p)  is not necessarily a 
C I function. Let ~ = (x~+l . . . . .  xN). A reading of  the proof  of  Lemma 6.2 proves: 

L e m m a  6.3. I f  ~ and A x  have no zero entries, then G(x, a, p)  f o r  p = 2 is locally 

a C 1 function. 

It is to be understood that we are taking right limits. 
The crux of  the proof  of  Theorem 4.14 for p e (2, ~ )  is contained in the next result. 

Proposi t ion  6.4. Let (x*, a*,  p*) ,  p* > 2, satisfy G(x*, a*,  p*)  = 0, a* > 0. In 

addition assume that i f  p* = 2, then ~* and Ax* have no zero entries. Then 

FaGk] ~v+ l ix* ~, p*) ~ 0 .  det / #x, J ,.e=l . . 

Proof .  Recall that for notational ease we have set XN+~ = a. Assume that the 
determinant is zero. There therefore exists a vector z e R  N+1, z ~ 0, such that 

,v+ 1 ze E #Gk = O, k = 1, . . .  , N +  1. 
e=l ~ X e  (x*,a*,p*) 

This translates into 

(6.3) 

(6.4) 

(p* -- 1) aikaitl(Ax*)i[P*-2Zt = O, k = 1 . . . . .  r, 
i=l 

(p* - 1) aikaie [ ( / Ix*) / Ip*-2z t  - •* [x~ Ip*-2zk 
i=l 

- [x~'l p*-I sgn (x~)z~+, = O, k = r +  1 . . . . .  N,  
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and 

N 

(6.5) P* Z Ixr l : - '  sgn (xg)Ze = O. 
f = r + l  

We multiply (6.3) and (6.4) by x~', sum over k, and use the fact that G(x*, o*, 
p*)  = 0 to obtain zu+~ = 0. 

Since zu+~ = 0, we now consider z = (z~ . . . .  , zu), z ~ 0, in R N satisfying 
(6.3)-(6.5).  These equations may be rewritten as 

N M 

(6.6) Z Z a~ka, l(Ax*)~lP*-2ze = O, k = 1 . . . . .  r, 
~=1 i=1 

N M 

(6.7) ~ ~ a ~ a , l ( A x * ) i l : - %  = o*}x~lP*-2z,, k = r + 1 . . . . .  N, 
f = l  i=1 

and 

(6.8) ~ Ix / ' [p*- '  sgn (x~)ze = O. 
e = r + l  

From G(x*, a*,  p*) = 0, we see that (6.6) and (6.7) also hold where x* replaces 
z. Since x* satisfies (6.6), it follows that S - (x* )  _> r. Furthermore,  since a* > 0, 
it is easily proven that S - (x*)  _ R - 1. Now x*, z are linearly independent solutions 
of  (6.6) and (6.7). We prove that z = 0, which implies the proposition. 

Case L 
�9 . . , N .  

Set B u = (b~e)k,e= 1 where 

Assume x*, z satisfy (6.6) and (6.7), and x~z~ = 0 for  all k = r + 1, 

M 

bke = ~ a,ka,e [ (Ax*) i [" -2 .  
i=I 

From (6.6), (6.7), and our assumption, it follows that Bz = 0. B is an N x N matrix�9 
Set d i =  {(Ax*)i[ : - 2 .  By the Cauchy-Binet  formula, 

B (  {1 . . . . .  ik ) = ~ A (  a. , . . . .  , otk ~A(Ot,, . . . ,.~k ~d~ . . . d~k" 
\Jl, ,Jk l~,~<...<,~ksM \q .... ,ik / \Jl,'-" ,J~ / 

Thus B is STP of order rank B, where rank B = rain {N, #{i, dl ~ 0}}. If rank B = 
N, then since Bz = 0, it follows that z = 0. Assume therefore that rank B = 
#{i: d~ ~ 0} < N�9 From Proposition 3.1 it follows that S-(z)  > rank B. Let m = 
S- (x*)  = S+(x *) = S-(Ax*)  = S+(Ax *) = r+S+(x~+l, . . . ,  x~r (Proposition 
4.15). Thus m = S-(Ax*)  = S-(d~ . . . . .  d:~) <_ #{i: dl 4= 0} - 1 = rank B - 1, 
i.e., rank B > M +  1. On the other hand, since S-(z)  ___ rank B, it follows that 
#{i: zi ~ 0} _> rank B + 1. From our assumption, z~ :~ 0 implies x* = 0 for i = 
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r + l  . . . . .  N. Therefore, #{ i :x*  = 0, i = r + l  . . . . .  N} _ #{i :zi  # 0, 
i = r + l  . . . . .  N} _> r a n k B + l - r ,  and thus m = r+S+(x*§ . . . . .  x~) >_ 

rank B + 1. This is a contradiction. 

Case II. Assume x*, z satisfy (6.6) and (6.7) and z satisfies (6.8). Assume also that 
there exists a j ,  r + 1 < j < N, such that x*zj ~ O. 

x* and z are linearly independent. Hence for every o teR,  o tx*+ z #: O. Thus 
S-(A(otx*  + z))  < S+(A(otx * + z ) )  _< S-(otx*  + z) _< S+(otx * + z )  < S+(0 ,  
�9 . . , 0, a*lx*+,lP*-2(aXr*+l "JI-Zr+l) . . . . .  a*Ix~IP*-2(aX~+ZN)). If  the vector 
{~* Ix~'l'*-Z(~:+Zk)ff=r+, is identically zero, then Ix~ ~ 0 implies zk = - a x e .  
Substituting in (6.8), we obtain 

o--Z 
/ = r + l  

I x* I p*+' sgn (xI')ze 

N 

t = r + l  

= m o t .  

Since ot = 0 we see that x~ ~ 0 implies zk = 0, k = r +  1 . . . . .  N. This con- 
tradicts our assumption�9 The above vector is therefore not identically zero. From (6.6), 
(6.7), and Proposition 3.1, 

s+ (o . . . . .  o, a* I x~*+, I r 2(O/-X*r+ 1 "4" Zr + I) . . . . .  O'" I x~,l r ~(~x~ + zu)) 

= S + ait a i e l ( A x * ) i l P * - 2 ( o t x ~  ' + z t )  
t=l k=l 

< S -  aie[(Ax*)ilP*-2(otx~ ' +Ze) 
i=l 

N 

= S-(A(otx* + z)). 

We have come full circle so that equality holds throughout. In particular, S-(otx* + z) = 
S+(otx* + z) for all ot~R. This is a contradiction, since we may choose a * ~ R  for 
which (ot*x* + z)u = 0. (From Proposition 4.15, x* :# 0.) �9 

Fix n, r _< n _< R - 1. We know from Proposition 6.1 that Theorem 4.14 is valid 
fo rp  = 2. We now extend this result t o p e ( 2 ,  oo) under the assumptions of  Lemma 6.3. 

Proposi t ion 6.5. Set r <_ n <_ R - 1 .  Let G(x, a, 2) = 0 with S-(x) = n, and 
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assume that i and Ax  have no zero entries. Then Theorem 4.14 is valid for  this n and 

all p c ( 2 ,  ~ ) .  

Proof .  Starting from p = 2, there exists, by the Implicit Function Theorem and Prop- 
osition 6.4, a/3 > 2 such that for all p c [ 2 , / 3 )  there are continuously differentiable 
functions of  p ,  x (p)  = (xl(p) . . . . .  x~(p)) and a(p) ,  for which G(x(p),cr(p), 
p) = 0. Furthermore,  since S+(x) = S-(x)  = n and a > 0 for p = 2, we have 
n = S+(x(p))  = S - (x (p ) )  for p near 2. 

Let p*  > 2 be the largest value for which for all p c [ 2 ,  p*)  there exist x (p)  and 
a(p)  such that G(x(p) ,a (p) ,  p) = 0 and S - (x (p ) )  = n. We claim that p*  = ~ .  
Assume p* < ~ .  Then there exists a subsequence pkTp* such that along this 
subsequence x(/~) ~ x* and a ( p  k) ~ a*. (The boundedness of  the x ( p  k) and cr(p k) is 
easily proven.)  From Proposition 4.15, S-(x(pk))  = S + ( x ( f ) )  = n and a ( p  k) > 0. 
Thus, f rom Proposition 3.3, S- (x*)  ___ n ___ S+(x*), and G(x*, a*,  p*)  = 0. Since 
Gk(x*, a*, p*) = 0, k = 1, . . . ,r, it follows from Proposition 3.1 that S-(x*)  _> r. 
Applying Proposition 4.15 once again, we see that S-(x*)  = S+(x *) and a* > 0. In 
particular, this implies that S-(x*)  = n. F o r p  = p*  we may again apply the Implicit 
Function Theorem and Proposition 6.4 to contradict the definition of p* .  Thus 

It remains to consider the case where x satisfies G(x, a, 2) = 0, S-(x)  = n, but 
the vectors i and/or Ax have zero entries. This is a technical problem, which we over- 
come by perturbation. 

L e n u n a  6.6. Let G(x, a, 2) = 0 and S-(x)  = n, r_<  n ___ R - 1 .  For e > 0, 
small, there exists A, STP such that A,--, A as e ~0, and x~eR N such that x' --, x as e J,0. 
Furthermore, 

1) S- (x ' )  = n, 

2) A~A,r = a(O . . . . .  O, X'r+l . . . . .  x'N) r, and 

3) neither ~ nor A0x' has zero entries. 

Proof .  
N - 1 .  Set B, = (bq ~ where x i j l i , j = l ,  

1 , i = j , i ~ : k , k + l ,  

l - e  , i = j , i = k , k + l ,  

b[j = ~/2E-~2 , i = k + l , j  = k, 

- 2~/2~-S~-~ 2, i = k , j  = k +  1, 

0 , otherwise, 

Assume xk = 0, r +  1 _ k - N. From Proposition 4.15, r + 2  _ k _< 

for e > 0, small. Since B, is close t o / ,  A, = AB, is STP for ~ sufficiently small. 
Furthermore,  B, is unitary; i.e., B71 = B r. Thus ArA, = BTtArAB,. Let 
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i x i , i ~ k , k +  1, 
(x')i = x/~e - e2xk+ l, i = k, 

( 1 - e )xk+  I , i = k + l .  

Then B~x' = x and S-(x ')  = n. Furthermore, arA , r  satisfies (2). We apply this result 
as many times as is necessary so that ~' has no zero entries. The perturbation used 
to obtain A~x' with no zero entries is similar. We construct an M x M STP matrix C~ 
similar to B, and set At = C,A. (The vector x is left unchanged.) The rest of  the proof 
now follows. �9 

In this manner we perturb away from our problem at p = 2. We can now apply 
Proposition 6.5 to obtain the desired result for all p e ( 2 ,  oo), but for A, rather than 
A. We must then perturb back. 

L e m m a  6.7. Assume that A, is STP, and At --' A as e ~ O. Let G(x ', tr', p) = 0, where 
A, replaces A, and assume S - ( x  ~) = n, r _< n _< R - 1, for  all e > O. Then there 
exists (x, tr, p) such that G(x, a, p) = 0 and S- (x )  = n. 

The proof  is a reworking of  a part of  the proof of  Proposition 6.5. The details are 
left undone. 

We have proven Theorem 4.14 for all p e [ 2 ,  co). It remains to consider the case 
p c ( l ,  2). This case depends on a dual version o f  our problem. This is easily done if 
r = 0, and basically reduces to the same problem as that already considered except 
that A r replaces A and q replaces p,  where l i p  + 1/q = 1. However,  because of  the 
conditions Gk(x, tr, p) = O, k = 1 . . . . .  r, the dual version for r > 0 is more 
complicated. We prove the following directly, although it might well be obtained by 
means o f  Lagrange multipliers. 

ProposRion 6.8 Assume that there exists y e R  u and numbers #~ . . . .  , #r such that 
for some q ~ ( 1 ,  oo), 

(6.9) (yA) i = 0, i = 1 . . . . .  r 

and 

(6.10) 

N 

akil(yA)ilq-l sgn ((yA)i)+ ~ akilz i 
i = r + l  i = l  

= ),q[ykl q-t  sg n  (Yk), k = 1 . . . . .  M,  

where S-  (y) = n, r < n _< R - 1 .  Then for  p~( l ,  oo), I / p +  1/q = 1, there exists 
an x e R N f o r  which S-(x)  = n and G(x, Xp, p) = 0. The converse is also true. 

Proof.  Set xi = /zi, i = 1 . . . . .  r, and xl = }(yA)~}q-' sgn ((yA)3, i = r + 1 . . . . .  
N. From (6.10), r- Ni=~ a ~ ;  = M[y~lq-x sgn (Yk), k = 1, . . . , M, which implies that 
[(Ax)il "-I  sgn ((Ax)/) = k~-J)yi  = kPyi, i = 1 . . . .  M. Therefore, 
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M M 

Z a , k l ( A x ) , l P - '  sgn ( ( A x ) , ) =  hP Z a,ky, 
i=1 i~ l  

= XP(yA)k,k = 1, . . . , N .  

F r o m  (6 .9 ) ,  (yA)k = 0,  k = 1, . . . ,  r .  F r o m  the  d e f i n i t i o n  o f  x k, 

]xkl p - l  sgn (xk) = (yA)k, k = r +  1, . . . , N. Thus  G(x, XP, p)  = 0. 

It remains  to prove  that S - (x )  = n.  I f  ~ = 0, then f rom Proposi t ion 3.1,  S-(#~,  

. . . .  /~r, (yA)~+ ~ . . . . .  (YA)N) --> R unless the vector  is identically zero. I f  the vector 

is ident ical ly zero,  then (yA)~ = 0,  i = r + 1 . . . . .  N, together with (6.9) implies  

that yA = 0. F r o m  Proposi t ion 3.1,  S - ( y )  > R, contradict ing our  assumption.  I f  

= 0, then 

r 

S + (yA) = S + (0 . . . . .  0, (yA),+ 1, �9 �9 � 9  (yA)N) 

--> S+(/zl, �9 �9 �9 , /~r, (yA)r+l . . . . .  (yA)N) 

> R .  

This ,  together  with Proposi t ion 3.1,  again implies  that S - ( y )  > R. Thus  X > 0. 
Since sgn (Ax),. = sgn Yi, i = 1 . . . . .  M, it follows that S- (Ax)  = S - (y )  = n. A 

variant  o f  Proposi t ion 4.15 shows that if  S-(Ax)  = n,  then S - (x )  = S+(x) = S-(Ax)  

= S + ( A x )  : r W S - ( x r +  ! . . . . .  XN) = r + S + ( X r + l  . . . . .  XN).  In  pa r t i cu la r ,  
S - (x )  = n. The converse  is p roven  in a s imilar  manner .  �9 

In  the course of  the above p roof  we also obtained:  

P ropos i t i on  6,9.  Let y ~ R  u and/~j  . . . . .  ~r sa t i s f y  (6.9) a n d  (6.10) wi th  S - ( y )  = n ,  

r <_ n < R - 1 .  T h e n  

n = S - ( y )  = S+(y) = S-(/~,,  . . . , t~,, (yA),+~, . . . , (Ya)u) 

= S+(~1 . . . .  , ~r, (Ya)r+t . . . . .  (yA)N) = S+(yA) 

= r + S+( (yA) r+l ,  . . . , (YA)N) 

= r + S - ( ( y A ) r + l  . . . . .  ( yA)u) .  

Set H(y,  #,  o, q) = (Hi(y, /~, a, q) . . . . .  Hr+M+,(Y, #,  a, q ) ) E R  r+u+l,  where  

N 

Hk(Y, /~, a, q) = Z aki ] (yA)i [q-1 sgn ((yA),.) 
i=r+l 

+ ~ aki#i - a[yk I q-I sgn (Yk), 
i=l 

k =  1 . . . . .  M, 

M 

Hk+M(Y, /~, o, q) = Z Y~aik, 
i=l 

k =  1 , . . . , r ,  
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and 

M 

H,+M+I(y, /~, a, q) = ~ lyil~- 1. 
i=l 

To prove Theorem 4.14 f o r p ~ ( 1 ,  2) we set q~(2 ,  oo), l ip  + l /q  = 1, and prove 
for each such q the existence of  y, /z, and a satisfying H(y,  #, tr, q) = 0 and 
S- (y)  = n, r _ n < R -  1. From Propositions 6.1 and 6.8 we know this result to 
be true for q = 2. The remaining proof  is similar to that used for p c ( 2 ,  oo). The 
analogues of  Lemmas  6.2, 6.3, 6.6, and 6.7 and Proposition 6.5 are easily proven. 
The key to the proof  is the analogue of  Proposition 6.4, which we now prove. 

Proposi t ion  6.10. Let (y*, #*,  a*,  q*), q* > 2, satisfy H(y*,  #* a*, q*) = 0, 
a* > O. In addition, assume that i f  q* = 2, then y* and y'~'A = ((y*A)r + 1 . . . . .  ' 
(y*A)N) have no zero entries. Then 

[aHk 1 r + M + l  (Y~', ~ 0 ,  det l_~ye j k.e= 1 ~*, e,*, q*) 

where for convenience we have set Yk+M = I~k, k = 1 . . . . .  r, and Yr+M+ 1 = ~Y. 

Proof .  Assume that the determinant is zero. There therefore exists a z = (z~ . . . . .  
Zr+M+ I) ERr+M+ 1 for which 

r+M+ I OMk 
~=1 ~ 

Ze 
(y*, /l*, (7 ~r, q*) 

= 0, k = 1 . . . .  , r + M +  1. 

This translates into 

(6.11) (q* - 1) [e=, i = r + l  ak'aeil (Y*A)ilq*-2Ze - (r* ly~q*-2zk 

M+r 

+N 
I=M+l 

ak.t-uze- ly~l q*-~ sgn (y~)*zr+M+l = 0, k = 1 . . . . .  M, 

M 

(6.12) ~ Zeaek = 0, k = 1 . . . . .  r, 
t = l  

and 

M 

(6.13) q* ~-a lYe~ q*-I sgn (Yl')ze = O. 
t = l  

We first claim that zr+M+~ = 0. To  prove this fact, multiply Eq. (6.11) by y ' a n d  sum 
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over k to obtain 

(q* - 1) a,,l(y*A),lo*-' sgn ((y*A),)z ,-a* [y~q*-' sgn (yff)z, 
i = r +  I k=  I 

M + r  M M 

+ ~ ~ Z e a k . e - M Y ~ - - E  lY/'lqZr+u+l 
e = M + I  k = l  k = l  

= 0 .  

Repeated application of  H(y*, #*,  a*, q*) = 0 reduces this to 

'q" Z' I a4z' =O 

We now apply (6.12) to obtain Zr+M+ 1 : O. 
For ease of  notation, set z = (z~ . . . . .  z~) and h = (h~ . . . . .  ~,r), where 

X~ = zi+M/(q* - 1), i = 1 . . . . .  r. From (6.11)-(6.13) we have 

M N 

(6.14) E E ak, a,il(Y*A),l q*-2ze-a*ly~q*-2zk+ aki)~, 
e = l  i f r + l  i=1 

= 0 , k =  1 . . . . .  M, 

M 

(6.15) E zeaek = 0, k = 1 . . . . .  r, 
e = l  

and 

M 

(6.16) ~ lye~q*-' sgn (Yl')ze = O. 
e = l  

For convenience we say that (z,)~) satisfies (6.14)-(6.16). Now (y*, /~*) also 
satisfies (6.14) and (6.15), since H(y*, Iz*, a*, q*) = 0. We prove that (z, 
),) = or(y*, #*) for some o~eR. It then follows that ot = 0, proving the proposition. 
Note that i fz  = 0, then, from (6.14), we have )~ = 0. We therefore assume thatz :~ 0. 

Case L Assume that (z,)~) satisfies (6.14) and (6.15), and yrzk = 0 for k = 1, . . . , M. 

From (6.14), 

N M 

E akl Ea , l ze l (Y*A) , l  q*-2+ akiXi = O, 
i = r + l  t = l  i = l  

k =  1 . . . . .  M. 

From Proposition 3.1, either 
i) S-()~ . . . . .  )~, {~=~ ae, zel(Y*A),lq*-2}7=r+O > R, or 
ii) hi = 0, i = 1 . . . . .  r, and (zA)~((y*A)i) q*-2 = O, i = r+  1 . . . . .  N. 
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Assume (i) holds. I f R  ( = m i n  {M, N}) = N, then (i) cannot hold. (The vector is 
simply not of  sufficient length.) We therefore assume that R = M < N. Thus 

S-((za)r+l  I(y*A)r+, I q*-2, �9 �9 �9 , (za)NI (y*A)r+, [q*-2) ~_~ M -  r, 

which implies that S+((ZA)r+I . . . . .  (zA)~) _> M -  r. From (6.15), (zA) i = 0, i = 1, 
. . . .  r. Therefore,  S+(zA) _> M. From Proposition 3.1, if z :~ 0, then S-(z)  _> M. 
Since z e R  M, this is impossible. 

Assume that (ii) holds. Thus (zA)il(y*A)ilq *-2 = 0, i = r +  1 . . . . .  N. I f  
(y*A)i #= 0 then (zA)~ = 0 for i = r +  1 . . . . .  N. In addition, (zA)~ = 0,  i = 1, 
. . . .  r, f rom (6.15). Therefore 

#{i: (zA)~ = 0} _> r + #{i: (y*.4), =~ 0, i = r + 1 . . . . .  N} 

_>_ r + S-((y*A)r+t  . . . . .  (Y*A)N) + 1 

= S + ( y * )  + 1 

from Proposition 6.9. Since S-(z)  > S+(zA) > #{i: (zA)i = 0}, it follows that 
S-(z)  > S+(y  *) + 1. 

Now, S-(z)  _< #{i:  z~ ~= 0}  - 1, and by hypothesis zi =/= 0 implies y* = 0.  Thus 

S-(z)  _< #{i: y* = 0} - 1 _< S+(y  * ) -  1. 

This, together with the previous inequality, leads to a contradiction. 

Case 1L Assume that (z, ~,) satisfies (6.14)-(6.16) and there exists a j e  {1 . . . . .  M} 
for which y~ zj ~ O. 

For every ot~R,  

S+(oty * + z) _< S+({a*l yff ]q*'-2(otyff @ Zk)}M=I). 

From our hypothesis, (6.16), and a* > 0, it follows that this latter vector is not 
identically zero unless z = 0. We therefore have, f rom (6.14) and Proposition 3.1, 

S+(oty * + z) < S + aki(Ott~ + hi) + ak/((oty* + z)A)i I (y*A)ilq*-2 
i=l i=r+l  J k = l /  

_< S-({o~t~* + Xi}7=l, {((oty* + z)A)il(y*A)ilq*-2}~=r+O 

---~ S-({o~/~" --1- •i}r=l, {((c~y* + z)a),}/N=r+,) 

r 

_< S+(0 . . . . .  0, ((o~y* + z)A)r+l . . . . .  ((oty* + z)A)N). 

From (6.15), ((~y* + z)A)i = 0, i = 1 . . . . .  r. Thus 

S+(oty * + z) < S+((~y * + z)A) 

< S-(oty* + z) 

< S+(~y * + z). 
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We have come full circle and therefore S-(oty* + z) = S+(ay * + z) for all a e R .  This 
cannot hold unless z = -o~y* for some a e R .  But this implies, from (6.16), 
that z = 0. �9 
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