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1. INTRODUCTION 

Let W’i’ denote the Sobolev space of functions in C’+ ‘) [0, 1 1 whose 
(r - 1 )st derivative is absolutely continuous and whose rth derivative is an 
clement of L ’ 10, 11, i.e., 

I+‘(J) = W,?[O, 11 = (f: f” ” abs. cont. and IIf”” /I, < co }, 

B’i’ shall denote those functions fin W’:’ for which I~f(r’~l,i < 1. 
Sattes. in his dissertation 1121 (see also [ 13)) considered the problem of 

approximating a continuous function, in the uniform norm, by functions of 
B’r’ . He obtained the following result. 

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then 
f”EB$’ is a best approximation to g, in L” (such a best approximation 
necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and 
a positilse integer M > r + 1 for which the following conditions hold 

(i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -- 1 knots 
arzd I.f”““(s)l = I a. e. on [u,pI. i.e., there exists a = c,, < <, < ... < 
s’ II I I < 4, , = /I for which 

f*““(x) = E((l)I. <j 1 < My < Ti * 

i=l...., M-r,where&=+l or-1,Jxed. 

(ii) (g - f*)(x) equioscillates on M points a = x, < ... < x,, =/I in 
1~. [Il. i.e., 

(g-f *)(xi)=d(-l)i l/g-f*llm? i = l,..., M, 

itthere 6 = + 1 or - 1, fixed. 
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(iii) .vi , , < ti < xi+ I, i = l..... A4 ~ Y ~- I. 

(iv) E = (-I)‘& or equivalently f‘*“‘(x) = sgn(( g -~ f’“)(x,,)) fbr 
x E (L, r , 3 r, r 1. 

Furthermore every best approximation to g(x) from B’:’ agrees with f*(s) 
on Ia.81. 

This theorem evoked our interest for various reasons. Firstly, the class of 
approximants, unlike those generally considered in problems of approx- 
imation theory, is neither a finite dimensional subspace nor is it a varisolvent 
family of functions (see Rice Ill I). Secondly the fact that one obtains an 
interval of uniqueness, namely [a,/?], is reminiscent of results obtained in 
approximating continuous functions by splines of some fixed degree with a 
fixed number of variable knots (see, e.g., Braess [ 11). Thirdly this result is an 
additional example of the importance of Perfect splines which have been 
shown to be fundamental in a number of extremal problems in L’ (see, e.g.. 
Fisher and Jerome [ 3 1, Karlin 171, Pinkus 1101, Tichomirov I14 1 and 
references therein). 

Motivated by Sattes’ result we were led to a consideration of best approx- 
imations to continuous functions, in the uniform norm, from the class 

Y= )f(x):f(x)= )‘K(x. ~)h(l.)dl..l(~)4h(~)~u(?,)i, 
I . 0 

where U, I E C[O, 1 1. fixed, u > I. and where K(x, r) is a strictly totally 
positive kernel. For this class we obtain existence, uniqueness and charac- 
terization of the best approximant to g E ClO, 1 I from / (Theorem 3. I). 

Stimulated by Theorem 3.1 and very much using the full characterization 
obtained therein, we then discuss best approximations from sets of the form 

and 

For each of the sets (4, and Y”,’ (which are very much analogous to Perfect 
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splines) we prove uniqueness of the best approximation as well as a full 
characterization result (Theorem 4.1) which is similar to that obtained in 
Theorem 3.1. In Section 4 we also consider the problem 

as well as the analogous problem for .4: and once again, we are able to give 
a concise description of the unique best approximant (Theorem 4.2). 

In Section 5, we replace the set R by ,,HW = (f(x):f(x) = 
,I’: K(x, 4’) tip(y)), where p is any nonnegative finite Bore1 measure and 
obtain analogues to Theorems 4.1 and 4.2. An interesting problem somewhat 
similar in structure to the above is given in Theorem 5.6. 

2. PRELIMINARIES 

In this work we shall consider functions both of the form f(x) = 
,I:: K(x, J) h(y) dq’, where h E Lm [0, 11, and of the form f(x) = 
_/ :, K(x, Y) 4o)Y where p is a finite Bore1 measure on [0, 11, and where 
K(x, J,) is a strictly totally positive kernel. This section contains preliminary 
material which shall be used in the subsequent sections. 

DEFINITION 2.1. A kernel K(x, rl)) E C( 10, 1 ] x [0, 11) is said to be 
strictly totally positive, abbreviated STP, if 

K ( r:::::::::, ) = det (K(x~, JJi))y,j= l > 0 

for all choices of 0 <x, < ... < x, < 1, 0 < y, < ... < y, < 1 and all n > 1. 

A full exposition of the theory of totally positive kernels may be found in 
the books of Gantmacher and Krein [4], and Karlin [6]. One particular 
property of STP kernels which very much interests us in this work, and 
which is of fundamental importance in problems of L”3-approximation is 
that of variation diminishing. To fully explain this property, we shall use the 
following definitions. 

DEFINTION 2.2. Let x = (x1,..., x,) E Rm. Then S-(x) denotes the 
number of sign changes in the sequence obtained from x, ,..., x,,, by deleting 
all zero entries. S+(x) denotes the maximum number of sign changes in the 
sequence x, ,..., xmr where we allow each zero entry to be replaced by 1 or 
-1. 
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DEFINITION 2.3. Let f E CIO, 11. We define S ‘(f) = sup S + 1 f (x,) ,.... 
f (x,) 1, where the supremum is taken over all sets 0 < x, < ... < x, ,< 1, and 
rn arbitrary. 

DEFINITION 2.4. A finite Bore1 measure ,u defined on 10. 1 1 is said to 
have m relevant sign changes, denoted by S &) = m. if 

(i) there exist disjoint sets A , ,**., A,, , of [O, 11 with Ai < A,, , (i.e.. 
x < y for all x E Ai, y E Ai+ ,), and UT-;’ Ai = 10, 11. 

(ii) ,u(Ai) # 0, i = l...., m + 1, and p is either a nonnegative or 
nonpositive measure on A i. 

(iii) ,u(Ai),&4;, I) < 0, i= l...., m. 

When considering functions of the form f(s) = .I:, K(s. 1‘) h( J,) d~x for 
hEL”-, then by S(h)=m we mean that S-f$) = m, where h(y)&= 
40). 

THEOREM 2.1. Let K(x. J’) be an STP kernel and p a finite Bore1 
measure. Set 

Then. 

(i) s’(f‘)<s Cub 
(ii) ry S- (f) = S (,a) < GO, then f and ,a exhibit the same arrangemerlt 

of generalized signs. That is to say that if the first nonzero sign of ,u near 
zero is. sajl. positive. then f(0) > 0, and if f (0) = 0, therl f(c) < 0 Jar all 
c > 0 sufJcient/jl small. 

The proof of the above theorem is essentially to be found in Karlin 
16. p. 233 I. However, for completeness. and in order that the reader have a 
familiarity with the techniques, we present the proof here. The proof depends 
on the following facts to which we shall have frequent recourse. 

DEFINITION 2.5. LetuiECIO.l],i= l,..., m+l. (U ,,.... u,+~} issaidto 
be a Tchebycheff (T’ ) system if 

u x, . . . . . x’,,, , , 
1 

= det(ui(Xi))r”-‘l > 0 
. . . . . m+l 

for all choices of 0 < .Y, ( . . . < x,, , < 1. We say that {u, ,..., U, + , } is a 
Descartes system if (u;,...., u,~} is a T’ system for all choices of 
l<i,<...<i,<m+l,andk=l,..., mtl. 
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The following proposition may be found in Karlin and Studden (8, p. 25 1. 

PROPOSITION 2.2. Assume that (u, ,,.., u,,,+, } is a Descartes system on 
10. 11, and 

“, + 1 
u(x) = \‘ aiui(x). 

i-1 

(i) S*(U) < s-(a). rz,here a = (a, ,..., a,,,, ,). 

(ii ) If S+ (u) = S (a), then the same arrangement of generalized signs 
occzlrs in S + (u) and S (a). Thus, if ui > 0, ui = 0, j = I,..., i - 1, then 
u(O) > 0 and if u(0) = 0. then u(e) < 0 for all c > 0 sufficiently small. 

Proof of Theorem 2.1. Assume that S (,u) = m, and let {A,},“+,’ be as in 
the definition of S-(,u). Without loss of generality, we assume that 
(-1)” ‘,a(Ai) > 0. i = l,.... m + 1. Form 

ui(s) = (- 1 )” ’ ,/I K(.u, y) dp( y), i = I,..., m + 1. 

We claim that since K(x, I’) is STP, (u, ,..., U, . , } is a Descartes system 
on [O,l].Toprovethisfact,let l~i,<~..<i,~m+l,andO~.r,<~~~< 
.Y~ < 1. Then, by the basic composition formula, see Karlin (6, p. 17 1, 

since K is STP and Ip( > 0 for all i = I..... m + 1. 
Thus 

f(x) = “ (-l)‘+ ‘Ui(X) 

;-I 

and from Proposition 2.2, the statements of Theorem 2.1 follow. 

DEFINITION 2.6. A function g E CIO, 1 ] is said to equioscillate on k 
points if there exist 0 < x, < . . < xh < 1 for which 

a(XJ-lY = /IgIl, 3 i = l,..., k, 

where F = + 1 or -1, fixed. If, in addition, E = $1, then we say that g 
equioscillates on k points, starting positively, while if E = -1, then we say 
that g equioscillates on k points, starting negatively. 

The following easily proven results shall be used repeatedly throughout 
this work. 
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PROPOSITION 2.3. Assume that g, h E C(0, 11, llgil,X > llhli,r, and g 
equioscillates on k points. Then 

S’(g-h)>kp 1. 

Furthermore, tf St (g - h) = k - 1 and the equioscillations of g(x) start 
positively, then the generalized sign pattern of (g - h)(x) starts positively. 

For each n, set 

A, = (5: 5 = (4 ,...’ r,),r”=o<r,<“‘<r,,<5,,+,=11 

and for each 5 E .4 n, let 

f+(y) = C-U’, t, , < y < &, i = l...., n + 1. 

PROPOSITION 2.4. (a) Ifs E A,, q E A,, then 

S (hr. k h,,) < min(n, k). 

(b) If& rl E A,, then 

S(ht-h,)<n- 1. 

3. MAIN THEOREM 

Let u, 1 E C[O, 1 1 and u(y) > I(J)) for all J‘ E (0. 1 1. (This condition may 
be weakened.) Set 

= f(x):f(x) = ,( KG, Y) hCv) &, I(Y) < h(y) G U(Y), Y E IO, 111 . 

THEOREM 3.1. Assume that K(x, y) is STP and g E CIO, 1 ]\ fl. Then 
there exists a unique best approximant to g from 4. This best approximant 

is uniquely characterized as follows. 
There exists a nonnegative (Jinite) integer M, knots r,* = 0 < (F < . ( 

r,; < 1 =G+,3 A4 + 1 points of equioscillation 0 < XT < . . . < x$, , < 1, and 
an F = *l, such that 
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0) &(s-f*)(.~t)(-l)‘+‘=/Jg-f*/):I.i= l),.., M+ 1 
(ii ) if e = 1, then a.e. 

h*(.v) = U(Y), ri*_, < y < <T,iodd 

= 4Y)Y 5:. , < y < CT, i even 

kchile if F = - 1, then a.e. 

h*O*) = 4.~1, <,*_ , < .l’ < C;;, i even 

= l(Y), &Y,<y<rjr,iodd. 

Furthermore, if for any g E C[ 0, 1 1 there exists a nonnegative integer M, 
and a function f * E H satisfying (i) and (ii), and if I/ g - f * Ilir > 0, then 
g6z 4. 

Remark. Upon completion of this research, C. A. Micchelli brought to 
our attention a preprint of K. Glashoff, which has since appeared as [S]. In 
this elegant paper, Glashoff proves the above theorem, except for the full 
characterization. He proves existence, uniqueness, and also that the above h* 
is either equal to u or I with a finite number of jumps. Glashoffs proof is 
somewhat differnt than ours in that we also prove the full characterization 
which will be used in the next sections. His motivation in considering such a 
problem stems from a finite bang-bang principle which has applications in 
optimal control theory. 

We divide the proof of the theorem into a series of lemmas. 

LEMMA 3.1. To each g E C(0, 11, there exists a best approximant 
J'*cs K 

Proof. The set (h: I(]*) <h(y) < U(J)} is a bounded set and K: h(.)- 
.I.;, K( ., JX) ho,) do is a compact linear operator. Hence 4 is compact, and a 
best approximation necessarily exists. 

LEMMA 3.2. Let f * be a best approximant to g E C[O, 1 ]\ H from 4. 
Then (g - f*)(x) equioscillates on at most a finite number of points. 

Proof Since g-f + is uniformly continuous on the compact interval 
IO. 1 I, there is a 6>0 such that i(g-f*)(x)-(g-f*)(y)l< 
2Ilg-f”ll,.3 h w enever /X - JJ/ < 6. Thus the distance between consecutive 
points, of a set on which g - f * equioscillates, is at least 6. This proves the 
finiteness of the set. 

For any Lebesgue measurable set E of [0, 11, m(E) shall denote its 
Lebesgue measure. 
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LEMMA 3.3. Let 

EL {~:h*(?,)=u(!,)orh”(?~)=I(?,)}. 

Then m(E)= 1. 

Proof: Assume m(E) < I. Let 

Since FE+, c FC,, and nz:, FC, = E, it follows that lim,,,J m(F’i) = m(E) < 1. 
Thus there exists an n for which m(F,) > 0. Assume that (g - f*)(x) 
equioscillates on exactly N f 1 points (N > 0). Since m(F,) > 0, there exist 
points O=/?, </?, < ... </IV <pV+, = 1, for which 

Let Gi = (/I, , . /Ii) n F,,. and set 

Ci(X) = ) K(x. .,I) dv. i- l...., N + I. 
(1, 

Since K(x. ~5) is an STP kernel, the set /v, ,.... ls, i , ) spans a Descartes 
system on 10. 1 I. By the well known characterization theorem. the zero 
function is not the best approximation to g - f j’ from this subspace. For 
some I’ = s> ‘,I a;~‘,. we have 11 g - J’” - PIi , < /I g -~~ f * I/ , Choose 
/1 E (0, 11 such that /la,1 < l/n. i = I...., :1; i- I. Then j‘” f /it, E fl. and 
I/ g-f": -All, < 11 g --f"!l, . This contradicts the optimality off ‘k. Thus 
m(E)= 1. 

As in Definition 2.4, given measurable sets I and J of 10, 11, we say that 
I < .I if x < 4’ for all x E I and y E J. 

LEMMA 3.4. Assume that there exist M + 1 sets I, c . . . < I,, , , \t*ith 
m(Zi) > 0, j = I . . . . . M + 1. ,for \\,hich a.c. 

or 

h”(y) = u(y), on I,. k odd. 

= I( ?‘). on I,. k even. 

h*( J,) = u(y). on I,. k ellen, 

= l(y). on I,. k odd. 

Then g - f * equioscillates on at least M + I points. starting positirel),, or 
negaticel!: respectice&. 
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Prooj: Assume that the former case holds, i.e.. II* = U(F) on I,, 
etc... . We must show that g - f* equioscillates on at least M -t 1 points, 
starting positively. Suppose that g-f * equioscillates on exactly N + 1 
points. If N > M, then we can. by deleting suitable points of equioscillation. 
obtain our result. Set 

Vi(.Y) = / K(s. y) lip,, i = I..... A4 + 1. 

Case I. g ~ j”‘kequioscillates on ,V + 1 points. N < M. lstarting 
negatively. 

For some l)(s) = JJ> ‘,I a, L’;(S), we have /I g - f’ - 1’11 , < )I g -- S” 11 , 
since {z~~I> +,’ spans a Descartes system on 10. 11. Since g-f’* 
equioscillates on N + 1 points, it follows that 11 = (g - f”) - (g - J-‘:” ~ 1’) 
has at least N sign changes. Furthermore g -f * starts negatively and 
therefore 1’ starts negatively. Thus by Proposition 2.2. ai(- I)’ > 0. 
i = I ,.... N + I. Now for all 2 E (0, I I. 

and for A > 0, sufficiently small, f * + AC E.H. This contradicts the 
optimality off * so that case I cannot occur. 

Case II. g-f * equioscillates on N + I points, N < M - 1, starting 
positively. 

For some L’(S) = C\ ‘?? bi~ti(-y), we have Jig-f*-cll, </)g-f*ll.. 
As in case I. it follows that ~1 has exactly N sign changes, and since g-f * 
starts positively. b,(-1)’ > 0. i= 2...., N f 2. A contradiction now follows as 
in case I. 

Since neither case I nor case II may obtain, the lemma is proved. 
Because g ~ f * must equioscillate on at least M + 1 points and since, by 

Lemma 3.2, M must be finite, it therefore follows that there exist (CT...., r,*,) 
as in the statement of the theorem. We have thus proven that every best 
approximation f * from Y to g E C(0. 1 I\ R must satisfy statements (i) and 
(ii) of the theorem. From this fact, it is a simple matter to prove the 
uniqueness of the best approximation. This may be done via a convexity 
argument. However, we wish to prove more, namely. that any function f * 
satisfying statements (i) and (ii) of the theorem is necessarily the unique best 
approximant. 

LEMMA 3.5. Let g E C/O, 1 I\ 4 and let f * E d sati& statemerlts (i) 
and (ii) of Theorem 3. I. Then f * is the unique best approximant to g from 
fl. 
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f*(x) = .I; J&F Y) h*(Y) 4’ 

satisfy statements (i) and (ii) of the theorem and assume, without loss of 
generality, that E = 1. Let 

satisfy II g - fll, G II g - f* II5 ,f f f *. S’ mce (g - f*)(x) equioscillates on 
at least M + 1 points, starting positively, then from Proposition 2.3, 

Furthermore, if equality holds, then the orientation of the generalized sign of 
df - f*)(x) starts positively. Now, 

.I 
(f -f*)(x) =-lo K(x, Y)(h - h”)(Y) 4Y 

Thus from Theorem 2.1(i), 

S’(f-f*)<s (h-h”). 

Since 1(y) < h(y) < u(y) for all y E (0, 11, S (h - h*) < M. Thus, 

S+(f-f*)=S (h-h*)=M. 

Because t; = 1. the orientation of the generalized sign of (h - h*)(~l) starts 
negatively. This fact contradicts Theorem 2.1 (ii), proving the lemma. 

LEMMA 3.6. Let g E CIO. 1 ) and assume that there exists an f‘* E d 
satisfying conditions (i) and (ii) of the statement of the theorem. for which 
/lg-f*llcr >O. Thengg X. 

Proof: Let 

f*(x) =I;; K(x. Y) h*(y) dq’, 

where h*(y) has M knots. Assume g E H. Thus 

g(x) = 1” K(x, y) h(y) d) 
0 
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for some h satisfying I(y) < h(y) < u(y) for all y E [0, 11. Since (g -- f*)(x) 
equioscillates on at least M + 1 points, 

M<S+(g--f*)<S-(h-h*) 

by Theorem 2.1(i). From the form of h*, S- (h - h*) < M. Thus 
M=S’(g-f*)=S-(h-h”). 

A contradiction now ensues from part (ii) of Theorem 2.1 as in the proof 
of Lemma 3.5. 

This lemma completes the proof of Theorem 3.1. 
It is generally impossible to determine the number M. In fact as g 

approaches the set 6, this number may well blow up to co. If, however, 

g(x) = 1” K(x, u) &Y) a$, 
-0 

where h”(y) > u(v) for all y E [0, 1 1, then M = 0, and h*(y) = u(y). 
Similarly if g(y) < I( JJ), then M = 0 and h*(y) = I( JJ). 

At times, bounds on M are available, For example, if 6(,~) 6? [I(y), u(y)] 
for y E IO, 11, and if S- (K- h) = r for every h for which I < h < U, then 
M < r. The proof of this fact is an immediate consequence of Theorem 2.1. 

Since M is in general an unknown quantity, it is natural to ask for some 
sort of algorithmic method by which we may deduce its value. In this next 
section we attempt to provide such a method. 

4. APPROXIMATIONS BY GENERALIZED PERFECT SPLINES 

In this section we consider best approximations from functions of the form 
.I’,: K(x, y) /Z(J)) &, where /h(y)1 = 1, a.e., the number of sign changes of h is 
at most n, and h has a fixed orientation. Thus we here assume that u(y) = 1 
and I(y) = -1. (It should, however, be noted that all results obtained in this 
section apply mutatis mutandis to the case of general U, I E C[O, 11, with 
/(JJ) < u(y), all J).) Hence in this section we have 

For each nonnegative integer n, let /i, be as defined in Section 2. /1, shall 
denote the closure of the simplex /1,, as given by 
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(The signs + and -. on the function S,, denote the sign of h( J’) on the first 
interval (tJ,,. r,).) Now. let 

The interior of Y,, is to be regarded as the set (S,, (s: 5) : 5 E A,,\. with a 
similar statement holding for Y,: . The sets Y’; and P”,: are closed and 
compact and 

For notational ease, for given 5 E %,,, we shall also let 

hs( y) = (- 1)‘. rim , < J’ < ti, i = 1 ,.... /z t I. 

We shall study the problem of approximating, in L ’ 10. 11. functions 
g E C[O, 11 by elements of Y”, and of 9,;. 

THEOREM 4.1. Let g E C(0, 11 and assume that K(s. j’) is an STP 
kernel. 

(a) There exists a unique best approximation f‘*(x; t*) E .4,, to g 
from MY”,. f * is either the best approximation to g from. 6, or <* E A, and 
f ‘k is uniquely characterized b>) the propertJ7 that g-f”’ equioscillates on 
exactlJ3 n t 1 points. starting positir:eiv. 

(b) There exists a unique best approximation J‘“(x: 5”) E p”,; to <g 
from P,i . f * is either the best approximation to g from .Y. or 5” E A,, and 
f * is uniquelJ9 characterized by the property that g - f” equioscillates on 
exactly n + 1 points, starting negativel!). 

Remark. Note that the characterization of the best approximation given 
above is very similar to that given in Theorem 3.1. The important difference 
is that the orientation between the points of equioscillation of (g ~~ J”‘)(S) 
and the sign of h*(r) is reversed if f * is not the best approximation from 
H. 

For convenience, the proof of this theorem is also divided into a series ot 
lemmas. 

LEMMA 4.1. To each g E CIO. 1 1. there exists a best approximant jiiom 
7’ ,, and from P”,: . 
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Proof. The lemma follows from the fact that ,Y”, and .-P,’ are compact. 
Because of the symmetry between Y”, and ,Yi, we shall only prove the 

theorem for .4,. The proof of the theorem for .4,: is entirely analogous. 
Before proving the existence of a function f*(x; 5”) E, Y”, with 5” E ,I,,, 

for which g-f * equioscillates on n + 1 points, starting positively. under 
the assumption 

min{llg-fljy :SE.“PI1}>rnin((lg-fll, :fE 4). (1) 

we shall first prove that any such function is necessarily the unique best 
approximation. 

LEMMA 4.2. Assume that there exists an f * E Y; satisjjYng the 
conditions given in Theorem 4.1(a). Then f * is the unique best approx 
imation to g from Y,;. 

Proof: If (1) does not hold, then the uniqueness of the best approx- 
imation from Y”, is a consequence of the uniqueness proven in Theorem 3.1. 
Assume that (1) holds, and g-f * equioscillates on n + 1 points. (If the 
equioscillations start negatively, then (1) does not hold by Theorem 3.1.) 

Assume f; (x: c) E .‘Y”,, and 

II d.1 - f,(. ; S)ll, < II g(.) - .f*c. ; 5*>ii I 

Since g - f * equioscillates on n + 1 points 

s+((g-f*)-(g-ff,))~n. 

Now 

s+((g-f*)-(g-f,,))=S+(f, -f”h 

and 

f,(x; 5) -j-*(x; 5*) = 1” K(x. ,v)Ih&v) - h&41 4,. 
0 

Thus by Theorem 2.1, 

However. 5” E il,, and 5 E L?,,, , and thus by Proposition 2.4. 

S~-(h,-hC.),<n- 1. 

This contradiction proves the lemma. 
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It thus remains to prove the existence of an f* E .4,, satisfying the 
conditions of the theorem under assumption (1). Our proof is based on an 
induction argument and repeated use of Theorem 3.1. It is therefore 
necessary that we first prove the case n = 0. 

LEMMA 4.3. Theorem 4.1 holds for n = 0. 

Proof. We assume that (1) holds for n = 0. The set 4,, is simply the 
function f,, (x) = -I,$, K(x, ~1) djl. Since (1) holds , 11 g -- f. 11, > 0, and there 
therefore exists a point x3 such that / g(.x*) - f,;(x*)l = I/ g - f; 11, If for 
some ,Y* E 10. 11, (g-f ,; )(x*) = -11 g - f,, lIJ. then from Theorem 3.1, we 
contradict (I). Thus (g-f‘,, )(x*) = 11 g-f ,; /I1 and at no point does 
g ~ f ,; take on the value -I/ g - f,, ~1, 

LEMMA 4.4. Theorem 4.1 holds for all n. 

Proof. Let II > 1, and assume that the results of the theorem hold for 
k < II - 1. Let f * E Y,; denote a best approximation to g from 9,; which 
is not the best approximation from d. We distinguish three cases. 

Case I. 5” E ,4,,. Assume that g -./ * does not equioscillate on a set of 
II + 1 points. Then there exists a 

I, 
1’(S) = \‘ a;K(x. <,“, 

,-I 

such that 11 g ~ f * - 1’11, < 11 g - .f* /I , . Thus for ,J E (0. 1). 

IJg-f*-lcil, <iI:g-f’“i/, -AC, 

where 

c=ll g-f’*ii, - li g ~ j’:!: ~ I’ ,I , > 0, 

Let 6 = (8, ,.... is,,). Assume that the 6, are sufficiently small so that 
max{gT. <,: + Si} < min{&!+ ,, rF+, + bi / ,}, i = 0, l,..., 12, where $ = 6,, = 
b ntl = 0. and rz, , = 1. Then, 

= 1‘ 2(-l)’ 6$(x, tpi”, + o(6). 
i I 

Let 6, = (+)(-I )jai,t for A: > 0, small. Then, 

f” (x: 5” + 6) - f”(x; YE*) -h = o(A). 
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Thus. 

Ils-f,(~;5*+~)/l,~//g-f*-~~/l,+llf,(~~~*+~)-f*~-~~ll, 
< II g - f” II1 -kc + o@), 

which. since c > 0, contradicts the optirnality off *. 
If there are more than n + 1 points of equioscillation or if the equi- 

oscillations start negatively, then f * is optimal in 4 by Theorem 3.1. So the 
result holds. 

Case II. f* E 9,,. Since f * is the best approximation to g from 
.9”,-. i (and not from M) it follows from the induction hypothesis that h* has 
exactly n - 1 sign changes at <F < . . . < C;,*-, and that g ~ f * equioscillates 
at exactly n points, starting positively. Put <,T = 1. Then there exists a 
function 

c(x) 1 c aiK(x, (J+) 
I I 

such that 11 g - f * - L’//, < /( g-f * 11~. We wish to apply the analysis of 
case I. To do this we must choose 6, < 0, so that r,T + 6,, E 10, 11. It 
therefore suffices to show that ~~(-1)” i > 0. Since g - f * has n points of 
equioscillation, starting positively, it follows, by the reasoning given in the 
proof of Lemma 3.4, that c = (g-f*) ~ (g-f * - c) has exactly II - 1 
sign changes, starting positively. Thus, by Proposition 2.2. a,(-1 )’ + ’ > 0, 
i = l...., n, and the result follows. 

CaseIII. f*E.d,;m,. This case is totally analogous to case I1 except 
that we add the point r$ = 0. 

Since the boundary of ‘P,; is contained in 4,, , U F,y , , the proof of 
Theorem 4.1 is complete. 

Let Y’“, and .Y,’ be as defined above. We are now interested in the 
problem 

min{IIg-c& : f E Y,;. ~30) 

for g E CIO, 1 1. Our approximating class is now the set of functionsfof the 
form 

where c > 0, arbitrary, and r, = 0 < 5, < ... < <,, < r, + , = I. The difference 
between this problem and the previous one is that we allow c to vary over 
11’ *. We, of course, also ask this same question with Y,, replaced by Y,:. 
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THEOREM 4.2. Lef g E CIO. I I and K(x. .y) be an STP kernel. Set 

c4’=sup(c:c>0,min(//g-cJI1, :fE I’,, }=rnin{IIg-c3rII, :SE S}}. 

(i) O<c” < a, 

(ii) min(l(g-cf/I,,.~E.~~,, . c 2 O} = min(lI g - c*flI,, : J‘ E b,, }. 

(iii) For c < c*, min{// g -- cfli, : f E ip,, } is a strictly decreasing 
function of c. and min(/l g - cfll, : f E Y,, ) = min(/l g -- cJil I! : f E fl}. 

(iv) For c > c*. min{j/ g - cf Ij i : f E Y; 1 is a strict/J’ increasing 
frtnction of c, and mini /I g ~ cfil i : .f E 4,, 1 > mini // g - cf 11 , : f E 41. 

(v) Let f*(x) = I:, K(x, y) h*( ~9) dy be the uniquefunction in Y,, for 
,l,hich 

min( /I g - c*f /I,, : f E ?,) } = jl g - c*f * /I , . 

Then, ifg f c”.f *. 

(a) S (h*)=k<n. 

(b) (g- c*f*)(x) exhibits at least I,1 > n + 1, points of 
equioscillution, 

(c) 12 k + 2. 

The proof of this theorem we again divide into a series of lemmas. For 
ease of notation. let f;, E “;) satisfy 

minII g - cfll I : f E y,, t = II g - cfJl, . 

LEMMA 4.5. Let c > 0 and 

min{llg-41, :S~~4=l/g-cL~ll,~ 

Then for all d E IO. c). 

minlll g - df IL : f E (HI = II g - dfdllc, 

Proof: The lemma is trivial for d = 0. We therefore take d E (0, c). First 
assume that g # c&,.. Thus g @L c 67 and since d < c, g 6Z d ~7. From the 
uniqueness and characterization of Theorem 3. I, we have that 

minII g - dfjl,, : f E 4) > min(// g - cf // I : f E Xi. 

Let J;.(x) = {:, K(x, J’) h,.( .b)) dy. Thus S (h,.) = k(c) < n, and if k(c) = n, then 
the sign pattern of h,,(l)) starts negatively. Let f$ E. R, f$(x) = 
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,I‘: K(x, JJ) h:(y) do denote the unique function in d for which 
min(l/ g-Q/I,,: f E 4) =/I g-df$lIir_,. We shall prove that f,T =f(,. 

Set S (h$) = k(d). Thus (g - df:)(x) exhibits, by Theorem 3.1, at least 
k(d) + 1 points of equioscillation. Since 11 g - df $ II,, > 11 g - cjJ, . the 
function (g - df z)(x) - (g - cJ;.)(x) = (cf,, - df i)(x) exhibits at least k(d) 
sign changes on 10, 1 ) (Proposition 2.3). Because, 

(cf, - dfd*)(x) = IO’ K(x, y)(ch, - dh,*)(y) dy, 

it follows from Theorem 2.1 that 

k(d) < S + (cf,. - df $) < S (ch,. - d/z;). 

Since c > d, S (ch, - dh$) < k(c) < n. Thus k(d) < k(c) < n, which implies 
that f$E ?;U.YT. If k(d)(=k(c)) = n, then again by Theorem 2.1, the 
orientation of the sign patterns of (g - df g)(x) - (g - cfC)(x) and ch,.( ~1) - 
dh,*(~) must agree. Since the latter function has n sign changes, starting 
negatively, (g - df $)(x) has exactly n + 1 points of equioscillation, starting 
negatively. Theorem 3.1 now implies that the sign pattern of h$(;~) must 
start negatively since df z is the unique best approximation to g from d l 
and S (h$) = n. Thus f z E F”,; and the lemma is proved in this case. 

Assume now that g = cfc. Since d < c, s@dN> and 
min{llg-dfJl,:f E.,X}=I/g-dfBIJm,>O, where f:(x) is as defined 
above. Once again k(d) ,< S + (cfC - df $) < S (c/z,, - d/z,*) < k(c) < n. We 
prove that f$ E Y; by the same reasoning as that given above. This proves 
the lemma. 

The above lemma implies that the set of c > 0 for which 

min(IIg-cfI/,:f E.~“,}=min()lg-cfI/,:f E.R}, 

in an interval (closed by continuity considerations), whose left hand endpoint 
is zero. Note that in the above lemma we proved that if 0 ,< d < c < c*. then 
k(d) < k(c), an interesting fact in and of itself. We also proved 

LEMMA 4.6. For c < c*, c < c/3, min(() g - cf //, : f E 7’; } is a strictl) 
decreasing function of c, and 

min{iig-cfI1. :fE Y,;}=min(llg-cf/(,:fE a/}. 

LEMMA 4.1. c* < 03. 

Proof: min()/ g -cf II1 : f E H) < 11 g//, < 03 for all ~20, while it is 
easily shown that min{)/ f 11, : f E Y,; } > 0. This latter fact assures us that 
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$m min( 11 g - cf‘ 11 , : J E f,, } = co. 

Thus we cannot have 

minIIIs-cfIIC, :fE Y,, I=min{lIg-cfll, :fE 4) 

for all c > 0. 

LEMMA 4.8. Let gE CIO. 11 and c” < c < d. Then 

ProoJ: Set f,,(x) = .I‘:, K(x, ~1) h,.( .)I) dJ% and A)(x) = Ii, K(x, J’) h,,(y) dj,. 
From Theorem 4.1. S-(h,.)= S(h,)= n, both h,.(J)) and h,(y) start 
negatively, while (g - C&)(X) and (g - df<,)(x) each exhibit exactly n f 1 
points of equioscillation, starting positively. 

Thus, by Theorem 2.1, 

‘I G s + (( g - CA.) - (g - @<,)I = S + (dJ, - cf,,) < S (dh, - ch,.). 

Since d > c, S (dh, - ch,.) = n, and the sign pattern starts negatively. 
Hence n = S ’ ((g - cS,,) - (g - dfcl)) and the sign pattern thereof must also 
start negatively. This is only possible (Proposition 2.3) if 

II g - &Ii , < II g - 4, II , . 

It remains to prove statement (v) of the theorem. Let f‘*(x) = 
,I‘:, K(x. ~1) h “( JS) dy denote the unique function in Y,, for which 
min(/~g-~~~f~~,:fE.f,~}=//g--c~f~~~,. Assume g f c*f *. Since 
./‘* E Y,, I it is certainly true that S (h*) = k < n. and if S (A*) = jr. then 
since min{llg-c*fll,: fE .?;}=min(lig-c*fil, :fE tf}, (g-c”*)(x) 
exhibits at least n + 1 points of equioscillation, starting negatively. Let I 
denote the number of points of equioscillation of (g - c*f*)(x). 

LEMMA 4.9. I>max(n+ I, k+2). 

Proof. For c > c*, (g - &)(x) exhibits exactly II + 1 points of 
equioscillation. starting positively. Because lim,,lCI f,,(x) = f*(x). and 
g f c*f *, (g ~ c*f*)(x) exhibits at least n + 1 points of equioscillation. 
Thus 12 n + I. Furthermore if I = n + 1, then these points of equioscillation 
start positively. However, if k = n (the only case we must yet consider) then 
I> n + 2. Otherwise we contradict the orientation of the sign pattern of the 
equioscillations of (g ~ c*f*)(x). 

This proves the theorem. 
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Let c 30, f- E Y,; be such that min(ll g-cfjl, : c> 0, f E Y,, } = 
/I g - c-f 11% and ci 3 0. f’ E 4,: be such that min(l/ g - cfll,. : c > 0. 
.fE ~,;i=lls-c’f’ll,. T o o bt ain additional information on the number 
of equioscillations of (g - c-f-)(x) and (g - c’j” ’ )(x). it is necessary to 
discuss a more general minimum problem. 

Set /f =. 4,; U Y”,:. We shall consider the problem 

minII/ s-cflL :.fE <,,cZO/. 

(Note that from Theorem 4.2, the functions cift and c-f are the only 
possible solutions to this problem.) 

THEOREM 4.3. There exists a unique solution $ c^ > 0. f E r,, to the 
problem 

min/l)g-cf)l,, :J‘E.y:,,c>O}. 

If g f 8, then 8 is unique@ characterized by the fact that (g - $)(x) 
equioscillales on at least n f 2 points. 

An immediate consequence of the theorem is the following corollary. 

COROLLARY. llg-C’f” IL as-cmf’ III unless c ’ = c = 0. 
t7urthermore if, sa)‘, Ij g - c*f ’ il i < II g - c f /I,, , then (g -- c 'f ' )(x) 
equioscillates on at least n + 2 points and (g - c-;f )(.Y) equioscillates OII 
esactly n + 1 points. (If 11 g - c-.f /I, < 11 g - c ‘f ’ !I, , then the reverse 
holds.) 

Various methods exist for proving Theorem 4.3. We shall not present a 
proof here. Suffice it to say that the set {c Y:“,,: c > 0) is a class of varisolvent 
functions all of degree II + I. We can therefore apply Theorem 7.3 of 
Rice 11 I I. 

For fixed g E CIO, I], the values c 1 and c , as defined above, depended 
on the choice of n. Let us indicate the dependence on .Y,,! and P,, by setting 
c’ (n) = c+ and c-(n) = cm We have no way of determining which of c (n) 
and c (n) is smaller except by calculating /I g - C+ (n)f 11, and 
II g - c (n)f II,.’ . However, an immediate application of the definitions and 
the fact that Y,, s P,i, , ~ c / (and the analogous statement for y,,’ ) does 
give this next result. 

PROPOSITION 4.4. Forfixed g E C[O. 1 I. 

c ’ (n), c (n) < c + (n + I), c (n + 1). 
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5. GENERALIZATIONS TO NONNEGATIVE MEASURES 

Let d denote the set of finite Bore1 measures on 10. 1 ) and 

fl, = ji.:f(.= (‘K(s.~~)d/l(y).pi “&?O(, 
0 

where by p > 0 we mean that p is a nonnegative measure. We are interested 
in the problem of approximating a function g E CIO, 1 1 by functions in fl, 
The following result and its proof parallel those of Theorem 3.1. 

THEOREM 5. I. Let g E C(0. 1 I\ H, and K(s. .I,) be an STP kernel. Then 

min(ll g--J‘l!, :f‘E fl, } 

is uniqueI)- attained bv f * E H, of the.form 

f”(s) = ;’ a”K(x, r,?). 
i-1 

(2) 

I\,here M is a nonnegative integer, a;‘: > 0. i = I..... M. and 
0 < r;” < . < r; Q 1. Furthermore, f*(x) is uniquel~~ characterized as 
,fo~lon~s. 

(I) If‘ M = 0. i.e., f*(s) z 0, then there exists an ,Y* E IO, 11 for which 
g(Y”) = -I( gl( , . 

(II) If M >, 1, and 

(i) 0 < <: < ... <r,*, < 1, then (g-f*)(x) equioscillates on at 
least 2M t 1 points, starting negatit’el),. 

(ii) O=[F < . . . < <z < I. therl (g - f”“)(x) equioscillates on at 
least 2M points, starting positi13elJS. 

(iii) 0 < {f < ... < <,*, = 1, then (g -f*)(x) equiosci[fates on at 
least 2M points, starting negatively. 

(iv) 0 = (,* < . . . ( <,*, = 1. then (g-f‘*)(x) equioscillates otl at 
least 2M I points. starting positirelJ>. 

Theorem 5. I is similar to Theorem 3.1. However. before entering into the 
analysis thereof. let us note that such a theorem holds essentially as a 
limiting case of Theorem 3.1. What we shall now provide is a sketch. rather 
than a proof. 



BEST APPROXIMATIONS BY SMOOTH FUNCTIONS 167 

In Theorem 3.1, let /(JJ) = 0 and u(,I~) =A, where A is some large constant 
which we shall eventually send to infinity. Set 

Then 4’, c 6Yr and lim,,T, <, n C[O. 11 = & n ClO, 1 I. Theorem 3.1 tells 
us that for each g E C(0, 1 I\ ~7~ (*g E CIO, 1 I\ Y!), there exists a unique 
approximant f.7 E H,. This unique approximant is characterized as follows. 

There exists a nonnegative integer N(A), and knots 

such that either 

and (g -fT)(.u) equioscillates on at least N(A) + 1 points, starting 
positively, or 

and (g -Sy)(.u) equioscillates on at least N(A) + 1 points, starting 
negatively. 

Since 0 < mini// s-fll, :fE 41 <I(/ gll, < ~0. and IlfTll, < 2 (1 gll,, 
for all A, it follows that both N(A) andf,(x) remain bounded as A T co. This 
is possible only if lim,,_,-(<i, ,(A) - r,(A)) = 0 for j even in case (a) and j 
odd in case (b). In fact we must have 

.<, ,( 0 

\im A ( K(x. ,I’) dv = a,K(x. 5;). 
+ (,I I) 

where a, > 0. and (JA), ti ,.,(A) --) ti, where again this holds for j even in 
case (a) and j odd in case (b). In other words, knots must either come 
together in pairs or run off to one of the endpoints. For this reason, the 
optimal f*(x) is of the form (2), and the number of equioscillations is essen 
tially double the number of knots, with the orientation as given. As was 
stated, this is not a proof, although it might be made rigorous. We prefer. 
mainly for technical reasons, to give a more direct proof. 

We first prove that if J*(X) exists, satisfying condition (I) or (II), then it 
is the unique solution to our problem. 
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LEMMA 5.1. Assume that there exists an f a: of the Jbrm (2) satislving 
condition (I) or (II) of Theorem 5.1. Then f * is the unique best approximant 
to g from Hx 

Proof: Assume A4 = 0. i.e.. f * = 0 and g(x*) = -11 gl/, for some 
s* E (0. I I. Let fE fl, satisfy II s -~./I I G II d i Then 
-g(.u”) -t (g ~~ f )(x”) > 0. and thus f(x*) GO. Since f’(s*) = 
.I’: K(s”, J’) dp(Jl). where ,LI E, d, p > 0, and min,,-- ~’ , K(.u*. ~7) 2 a > 0, it 
follows that dp = 0. i.e., f E 0. 

We shall now assume that M >, 1. We prove the result only under the 
assumption (II)(i). The other cases are proven in a similar manner. Assume 
that 

f :!:@) _ ;’ _, 
, 

a?K(x, <,“) (=I ’ K(s. y) d,a*(.v)) . 
0 

where a* > 0. i = I ,..., M and 0 < <I’ < I. < rc < I. and (g ~~ f”)(s) 
equioscillates on at least 2M + 1 points. starting positively. Let f E R, . 
where f(x) = I:, K(x, y) d,a( y), ,u E, ti, ,u > 0, and assume that /I g -f 11, < 
// g -- f * I/, The equioscillations of (g ~-- J*)(X) imply that 

and equality holds only if the sign pattern begins negatively. B) 
Theorem 2.1. 

,y’((g -f”)--(g~f))‘S’(f’-~ f”)<,s (&~~,a”). 

From the form of p and ,U *, S QI - ,D” ) < 2M, and equality implies that the 
sign pattern begins positively. Thus we contradict Theorem 2.l(ii) and 
uniqueness is proven. 

LEMMA 5.2. There exists an f * E fl, for which 

inf(l! g fll., : f E H, } = 11 g - J‘+’ ii, 

Proof: Since the zero function is in Y,, we have 

Wls-fll,,:fE ~LI<llgl/. which easily implies that it suffices to 
consider only f E ~7~. satisfying Ilf IId < 2 11 gl/,, . K(x, r) is STP and 
therefore inf(K(x. ~1): x, J E (0, 1 I} > u > 0. These facts together imply that 
the set 

is compact for each fixed g E CIO, 1). Thus the infimum is attained. 
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Let f”(x) = .I‘:, K(x, JI) &*(J~) denote a best approximant to 
gECI0, lI\Y, from /a,. 

LEMMA 5.3. (g-f*)(x) equioscillates on at most a Jinite number of 
poim. 

Proof: The proof is exactly that given in Lemma 3.2. 
To every nonnegative finite Bore1 measure p there exists the decomposition 

where ,n I and put are also nonnegative finite Bore1 measures, ,u, is purely 
atomic and ,u,. is continuous. Let p * = ,u f + ,uu,?. 

LEMMA 5.4. dp,* s 0. 

Proof: Assume that dp,* f 0. Let N + 1 denote the number of 
equioscillations of (g-f*)(x). For a given a < ,f?, let x,,,~~,(J) denote the 
characteristic function of the interval ((z, /?). Since dp,? f 0. there exist points 
O=p,, </I, ( . . . </I, </I,+, = 1, for which 

.I,, Xh4 ,.n,,W 4?(y) > 0. i = I..... N + 1. 

Set U;(X) = j‘b K(x, ~9) x ,11,+,.3!j(~.) &F(J), i = l,..., N + 1. Since K(.u, J!) is an 
STP kernel, the set of functions (u, ,..., u,, + , } forms a Descartes system on 
10, 11. We now apply the proof of Lemma 3.3 to obtain a contradiction to 
the optimality of f*(,u). Thus dp: = 0. 

We have therefore so far proven that 

f*(X) = ,: a,XK(x, ti* ), 
I 

where a* > 0 all i, the r,+ are distinct points of 10, 11, and M is either a 
nonnegative integer or infinity. We first show that A4 is not infinite. Let N be 
as given above. Then. 

LEMMA 5.5. M<N. 

Proof: If M > N + 1, set ui(x) = K(x, l,?), for some i = l...., N + 1, where 
0 < {T < . . < <:+, < I. Then {u, . ..., u,v+ , ) is a Descarte system and we 
again obtain a contradiction as in Lemma 5.4. 

Since we know M to be finite, we can now show that f * must be of the 
desired form. 
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LEMMA 5.6. Let ,f‘* E 0. Then there exists a)? .y* E jo, 1 1 Jbr ~t,hich 
g(P) = --I/ gJ/, . 

Proof: Assume not. Thus g(x) 3 L( _. (/ g((, for some (1 > 0 and all 
.Y E [O, I\. Form f‘(x) = .i’:, K(s, y) do,. Since K(s. .v) is STP. J(.Y) > 0 on 
(0. I 1. For c ? 0, sufficiently small jj g -.- [$\I , < j/ g]l , . while ,!j’E R’, This 
contradicts the optimality of f * z 0. 

We now assume that M > I, and f*(x) = 2;’ , u,*K(s, (7). where Q,? > 0. 
I’= I,.... M, and 0 < l: < . . , CC ;,“r < 1. There are now four cases to consider 
depending on whether 5: = 0 and/or <: = I. The reasoning in all these eases 
is the same except for technical details. As such we shall only deal with one 
of the cases. namely. 

LEMMA 5.7. Assume j’“(x) = \ ,;’ , a~K(.u, cy), u,here a,:i’ > 0, 
i= 1 . . . . . M, and 0 < <,* < . . < <,*; < I. Then (g - f’“)(x) equioscillates 011 at 
[east 2M + 1 points, starting negatice!lv. 

Proof. Set v?~(s) = K(x, <,?), i = I...., M. and 

I’?, ,(x) = 1:. K(x. J’) dj,. i = l...., ,W i- 1. 
.(, I 

where <,T = 0. cz+ , = I. Then {r*, . IS, . . . . . IS :,, , , / is a Descartes system on 
(0 I 1 If Z’(X) = ylf’fl ’ . . bi P,(S), where b,(-1 )’ > 0. i = I . . . . . 2M + I. and 
bzi <a:, i = I....,-’ M, ihen f*(s) - CL’(.Y) E K, for all I: E 10, I). Utilizing 
perturbations of this form and the method of proof of Lemmas 3.3. 3.4. in 
can be shown that Lemma 5.7 is valid. 

This completes the proof of Theorem 5.1. 
We wish to obtain an analogue to Theorem 4.1 for fl, The analogucs of 

y” ,, and ?‘,f differ depending on the parity of II. We therefore define the 
following four sets. For 17 2 I. let 
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while we set Q; = {O) (i.e., only the zero function) and Q,,+ is not defined 
(does not exist). The plus and minus above the Q, indicates whether a knot 
exists at zero or not. Note that unlike P,y and. f,, , the sets Q,: and Q,; are 
not closed. 

THEOREM 5.2. (I) Let g E CIO, 1 ) and assume that 

Wg-fli, :fEQ,,)>min(/lg-Sl/,fE Cl. 

Ther? there exists a unique function f“!: E Q,,; for lrshich 

f”’ is unique/J’ characterized by the fact that (g-f*)(x) exhibits exactl?’ 
m + 1 points of equioscillation, starting positive!,>. 

(II) Let g E C/O. 11 and assume that 

Wllg-0, :fEQ,iI >minI/lg-fl/..fE 4 1. 

Then there exists a unique function f * E Q,;, for Ivhich 

.f”l: is uniqueI)! characterized bJ1 the fact that (g-f*)(x) exhibit,s exactI>, 
111 + 1 points of equioscillation, starting negatively. 

The above theorem should be viewed as a generalization of Section 5 of 
Braess 12 1. In our theorem, the boundary behavior is detailed. 

The existence of f x of the desired form shall be proven by induction on 
1~. As was the case in the preceding theorems, the proof is via a series of 
lemmas. We first prove the uniqueness of f * E Q,, for which (g --f*)(s) 
suitably equiosciliates. If Q,; is replaced by Q,;. then the proof is totally 
analogous. 

LF-MMA 5.8. lj- f:‘: E Q,,, and (g - f*)(x) equioscillates OH m + I 
points. therl.for all fE e,,, ,f&f*. 1/g -f‘ll, > II g - f"il, . 

Pro?/: Assume the existence of an f‘E On, for which 
'lg-J‘,l, <ilg-f*ij,. Thusn-l<S’((g-f”)- (g-f))=S'(j-f*). 

We first consider the case where vz = 2n. Set f*(s) = 1: , a,%(x. <T) 
and f (.u) = 1; , b,K(x. rfi). Therefore 

,f(s) ~ f "(x) = ;" b;K(x. ,li) - e’ 
i-1 ;-I 

a,*K(s. c,?). 
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The functions (K(x, vi)}; , U {K(x, &)}l~ , span a Descartes system of order 
at most 2n = tn. Proposition 2.2(i) then implies that S + (f --- f *) < 2n - 1 = 
m - 1. This contradiction proves the lemma for m = 2n. 

Set m = 2n -~ 1. Thus f*(s) = xy , a,?K(.u,rj!:) and f(x)= 
x:9-, bi K(x. tl;). where lz = tl,, = 1. Therefore J’(X) ~ J*(S) -m 
1; ,’ b,K(s. tl;) - x;- , a,*K(?c, <T) +(b,, ~ u,“) K(x, I ). Again the functions 
{K(x, rl,)}r- II U {K(x, tF)}y -)I U { K(s. l)} span a Descartes system of order 
at most 2(n - I) $- I = m. We apply Proposition 2.2(i) to obtain a con 
tradiction. 

We shall in the course of the proof of the existence of J‘* assume, unless 
otherwise stated, that 

inf///g-f‘il, :f EQ,:,} >rnin{llg ~./‘li, :J’E fl, 1 (3) 

for a particular choice of +. -. and tn. Note that if (3) holds for Q,;, or Q,,, . 
then it also holds for Q,;, , and Q,,! , . 

To start the induction. we first prove the result for Q,, 

LEMMA 5.9. Theorem 5.2 holds jbr Q,, . 

ProoJ We assume (3) holds for Q,, . Since g E C[O, 1). there exists a 
point x* E (0. 1) for which ig(x*)\ = /I gl/, . If g(x*) = -11 gl/,,, then we 
contradict (3) by Theorem 5.1. Thus g(.u”)= l(g//, and there exists no 
x E 10. 1 1 for which g(x) = -// gl/ , 

The proof of the result for Q, and Q,’ is instructive and yet simple. Since 
the proofs in these two cases are analogous, we only prove the theorem for 

Q, 

LEMMA 5.10. Theorem 5.2 is validfor Q, 

Proof We assume (3) to hold for Q, (and thus for Q,, ). Now. 

Q, = (aK(s. 1): (I > 01. 

Since K(x, 4’) is STP. K(x. 1) > 0 and 

min(K(.x, 1) : 0 < .Y < 11 > 0. 

Because (3) holds for Qo, there exists a J E 10, 11 for which g(y) = I/ gl/ , . 
while there does not exist an .Y for which g(x) = --// gl/, . Consider 
g(x) - aK(x, 1) as a varies from zero to infinity. Since 
lim,tx,(g(-~) - aK( X, 1)) = --cc uniformly for x E (0. 11, there must exist an 
c1* E (0, co), and points X, , x? E 10, 1 1 satisfying 

g(Xi)-U**K(Xi, 1)=(-l)‘+’ llg(‘)-“*K(‘, ‘)11,, 
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i = 1. 2. If x, > x2, or if there exist more than two points of equioscillation. 
then from Theorem 5.1, we contradict (3). Thus x, < x2 and we are finished. 

Because of the different nature of Qzn and Q:,, we found it necessary, in 
order to advance the induction. to develop two different methods of proof. 
The first of these methods may be used to advance the induction for Qi,,. 
Qi,, 1 and Q, ~, . The second method is suitable for proving the result for 
Q:,,. Qi,, -, and Q,_ ,. As such we shall prove the theorem for Q;n and for 
Qz,. The cases Qz,, , and Q;, , may be proven by either method. 

LEMMA 5. Il. Assume that Theorem 5.2 is L%alid for Q: and Q,. 
I, < 2n ~ I. and that (3) holds for Qi,,. Then Theorem 5.2 holds .for Qi,,. 

Prmf: Set g,,(x) = g(s) - aK(s. I). We shall consider the best approx- 
imation to g,,(s) (for a 3 0) from Qi,, , . Set 

We first claim that a,, < GO. Assume that this is not the case. Let 
.f;,(.~) E Q,:, , denote the unique best approximant to g,(x) from Qz’,~-, . Thus 
.f,,(.\-) > 0 for all x E [O. 11 and all a > 0. and &(x)/a is the unique best 
approximant to g(x)/a - K(x, I) from Qi,, , . Since min,,..,., , K(x, I) > 0. 
there exists an a’ > 0, sufficiently large. such that g(x)/6 - K(x, 1) < 0 for all 
.Y E 10. I 1. For every nonpositive function, the unique best approximant from 
H’, is the zero function. &(x)/a’ is not the zero function. This contradiction 

implies ag < co. 
For a E [O. a,,) (a,, > 0 by continuity considerations) set 

where a,(a) > 0. i = l..... ?I, and 0 = [,(a) < ... < <,,(a) < 1. The function 
(g,, - f;,)(.~) equioscillates on exactly 2n points, starting negatively. Since 
ilL,ll L G 2 II &II,, 3 LA- Y 1s uniformly bounded for a < a, and thus the coef- ) 
ficients a,(a) are uniformly bounded for a < a,,. Therefore as a T LI,), there 
exists at least a subsequence along which 

.f&) + f,,,W = \I’7 i-1 ai K(x, &(a”)h 

where ai > 0, i = l,..., n, and 0 = <,(a,) < ... < <,(a,) < 1. Furthermore, 
(g,” - f,,)(x) equioscillates on at least 2n points, starting negatively. 

We claim that j&,(x) E Qi,--, , i.e., ai(ao) > 0, i = I,..., n, and 0 = 
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<,(a,) c ... < 5,hd < 1. Since (g,,l 
and f&> + q,K(x, 1) E e:,, , 

- f,“)(4 = g(x) - (f;,,W + %Kk 1)). 
any other conclusion will contradict (3). 

Since f,,,(x) E Q:,- 1 and 

(g,,, - f,,,)(s) must equioscillate at least 2n times, starting positively. This 
fact together with the previous fact which said that (g,,, --f(,,,)(x) 
equioscillates on at least 2n points, starting negatively, implies that 
(g,,,, ~ f,,,)(s) actually equioscillates on at least 2n + I points. Now 
(g,,, - J,,,)(.x) = g(x) - (.f&~) ~- ~,K(-L 111, and .f‘V) = ./i,,,bu) t 
a,,K(x 1)E Q;,. If (s-f*K 1 q Y e uioscillates on more than 2n + 1 points 
or on 2n + 1 points. starting positively, then we again contradict (3) by 
Theorem 5.1. This proves Theorem 5.2 for Q;,,. 

LEMMA 5.12. Assume that Theorem 5.2 is &id Jbr Q, nttd Q,, . 
k < 2n ~ I, und that (3) holds for Q?,,. Then Theoretn 5.2 holds for Q:,,. 

Proof: Until now, we have always considered our approximations from 
functions of the form f(.u) = .I‘:, K(s, J) &()I). Since K(s. J,) is STP on 
IO. 11 x (0, 1 I. it is also STP on (0. 1 ] x (0. dl for all d E (0. I I. Set 

i 

.d 
{I(d)= f(x):f(x)= / K(xy)&(y),~~,~.P>0 

0 

the measure defined on IO. d 1. 
It is certainly true that everything we have proven so far in this section ic 

valid if we replace fl( by R, (d) except. of course. that our knots now lie in 
IO. c/l. Let Q,;,(d) and Q,,,(d) be defined analogously to Q,;, and Q,?, except 
that we are now considering the interval IO. dl rather than the interval IO. I 1. 
Since we have assumed that Theorem 5.2 is valid for Qi and Qi for 
li < 2n ~~ I. it also remains valid for Q, (d) and Q, (d) for X b 2tt I. 

Set 

d,,=sup(d:d< 1, inf{!/g~m-f’li, :,f’EQ!,, ,(ti)} 

=min/l/g -,fll, :.f’E if,(d)}\. 

As a reminder. 

II 

Qz,, ,(d) = ’ “ u,K(~. ri): ~1. 
1 ;i 

/ > 0. 0 ( i’, < ” <\ <,, -= cl 

Since (3) holds. then by continuity considerations it follows that [I’,, k 1. 
while, as is easily seen, d,, > 0. 
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For d > d,, let fti E Q?,, ,(d) denote the unique function for which 

inf/l/ s-./ii, :fE Qi,, ,WJ=/lg-./A,. 

Thus f,,(s) = x::‘~ , a,(d) K(x, &(d)), where a;(d) > 0, i:= 1 ,.... n. 
0 < r,(d) ( . < r,,(d) = d, and (g -fd)(x) exhibits exactly 2n points of 
equioscillation on (0. 1 1, starting positively. 

We first prove that d,) > 0. If d, = 0, then it follows that g(x) - tzK(x, 0) 
exhibits, for some a > 0, at least 2n points of equioscillation. This 
contradicts (3). Thus d,) > 0. As in Lemma 5.1 1, it is easy to see that letting 
d 1 d,, we obtain a function f,,,(x) = 2: , a,(&) K(x, <,(&)), where 
fl;(d,,) >, 0. i = l..... n, 0 < r,(d,) < .. . < &,(d,) = d,, . (g - fC,,,)(x) exhibits at 
least 2n points of equioscillation, starting positively, and 
infhlg -fil, :fE QT., m,(d,,)j = ilg-f& . If fdc,@ Qz, ~,(d,,), i.e., either 
knots coalesce together or to endpoints or a;(d,,) = 0, then we contradict (3). 
Thus a,(d,,) > 0. i = l,..., n and 0 < <,(d,,) < ... < <,(d,,) = d, < 1. Since 
inf/!ig -f’i, :fE Qz,, -,(d,,)i = minlllg-fllfr :.fE C(4)\, (g--h,,)(x) 
exhibits at least 212 points of equioscillation, starting negatively. As in 
previous proofs. this implies that (g -&,)(x) exhibits at least 2n + I points 
of equioscillation. Note, however, that f;,,, E Q, since d, < 1, i.e., &,(d,,) is 
no longer an endpoint. Any conclusion other than the desired one contradicts 
(3 ) via Theorem 5.1. 

This proves Theorem 5.2. 
The knots of the unique approximants obtained in Theorem 5.2 exhibit 

I arious interlacing properties. Assume that inf(/I g -f/l,- : f E Q,’ ) > 
mini), g -./‘!I, : f E YU. 1. Let f ,L and f; denote the unique best approx- 
irnants from Q,;{ and Q,,; , respectively, to g. 

I)ROPOSITlON 5.3. Under the abore assumptions. the h-nots off ,:, and f ,,, 
strict!\. interlace. 

Pro@: Assume that m = 2n - 1. Then f j,, ,(x) = x:’ , ajK(x. 5,). where 
n, > 0. 0 = i, < ... < <,, < I. and f i,, ,(x) = x:’ , b,K(x, vi), where 6, > 0. 
0 < 11, c ... C, tl,, = 1. Independent of which of the two quantities 
II s fi,, ,11 , and II g -f ?,, , II , is larger, 

Since (K(s, &)}r , U (K(s, ty,)}j’ , spans a Descartes system of order at 
most 2~. it follows that S ’ (xy , a,K(.r. r,) - C:’ , b,K(x, vi)) ,< .2n - 1. 
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Equality must therefore obtain in all the above inequalities. Since u,. h, > 0. 
i = I..... II. equality in the last inequality holds by Proposition 2.2(ii) oni) if 
the {ri}I’ , and (Fiji , strictly interlace. Because <, = 0. II,, = I. we in fact 
have 

This same argument proves the proposition for m = 211. 
A similar argument may also be used to prove the following result. 

PROPOSITION 5.4. Let the assumptions oj’ Proposition 5.3 hold und 
suppose thut m > 2. Then the knots of both ,f ,t, and j’,,, strictly interlace the 
knots of‘ both f,:, , and J‘,,, , , except where equalit!, must hold at an 
endpoint. 

This next fact concerning the interlacing of knots is proven in exactly the 
same manner as was Proposition 5.3 (see Braess 1 I, Theorem 6.3 / for a 
similar result). 

PROPOSI'TION 5.5. Let the assumptions oj’ Proposition 5.3 hold and 
suppose that m > 3. Then the interior knots of J”,,, strictl!? interlace the 
interior knots off; >, and the interior knots off A strictly interlace those oJ‘ 

J m 2‘ 

The next theorem we present without proof since its proof follows much 
the pattern of the proof of Theorem 5. I. 

We are given a fixed interval [a, b I. where 0 < a ( b K co. Set 

,.r/ = If(x) :J’(,u) = q’ a,,s”. a,, > 0. all ,Ij . 
i ru 

Our problem is. for given g E Clu, b 1. to solve 

infill g -.fll, : fE 'f 1. 

THEOREM 5.6. For ererJ1 g E Cla, b 1 there exists a unique best appro.u 
imant ,f * E i. If‘ g & .Y then f”(x) = 2: , a$x’h. bclhere N is a 
nonnegative (finite) integer, a,: > 0. k = l,..., N, and 0 6 i, < ‘. < i, < m. 
J*(x) is uniquely characterized bj* the following conditions: Set 

bi=-1 i & {i, ,..., iv) 

-0 iE (i ,,..., isI. 

Then (g - J‘*)(x) exhibits at least S ’ (b,,. b, . . . . ) + 1 points of equioscillation, 
and if the number of equioscillations is exactly S ’ (b,,, b, ,...) + 1 then the 



BEST APPROXIMATIONS HY SMOOTH FUNCTIONS 177 

sign pattern of the l’ector b = (b,,. b, ,...) (that giren in determining 
5’ I (b,, . b, . . . . )) and the sigrl pattern qf the equioscillations agree. 

Remark. Having begun this paper with a discussion of the result of 
Sattes on the Sobolev space I+‘(:), we feel it necessary to discuss, at least 
superficially, the situation wherein K(x, ~1) is totally positive rather than 
strictly totally positive and. also the case of B ‘:‘. The difference between the 
results obtained in the last three sections and the results in the case of the 
same minimum problem where the kernel K(s, y) is only totally positive is 
simply that we lose the uniqueness of the best approximant. The fact that 
there exists a best approximant which satisfies the conditions given in 
Theorems 3. I. 4.1, 4.2. 4.3, 5.1, and 5.2 is a result of a standard smoothing 
technique (see Karlin 161) and the fact that for totally positive kernels 
Theorem 2.1 remains valid if S - @) is replaced by S 01). 

The set B’F’ is not quite of this form. However. every f’E By’ may be 
written as 

f(.y) = ;.’ a yi + 
- I- 
I 0 

(r] 1 ), ,/‘I (x -- .I,,‘; p.‘(y) n’r. 
. 0 

The kernel K(s. ~9) = (.u - j,)“, ‘is totally positive. The difference here is due 
to the existence of the functions 1. x,.... X’ ‘. These functions alter our result 
(aside from the uniqueness already lost) only in that there will now be an 
additional r points of equioscillation (see. e.g., 191 where a similar situation 
occurs 1. 
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