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ON SMOOTHEST INTERPOLANTS*

A. PINKUS?

Abstract. This paper is concerned with the problem of characterizing those functions of minimum
LP-norm on their nth derivative, <=p=<, that sequentially take on the given values (ei). For p= the
unique minimizing function is characterized. For p < fairly explicit necessary conditions are given.
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1. Introduction. Let n->2 be fixed. For pc (1, ], W<pn) will denote the usual
Sobolev space of real-valued functions on [0, 1] with n-1 absolutely continuous
derivatives and nth derivative existing almost everywhere as a function in LP[0, 1].
Equivalently,

W(")= :f(x)-- aiXi-+-p
i=o

1 fo n-lh (y) dy, h Lp, a, R,
(n-l)!

(x-y)+

i=0,1,...,n-l}.
(Here ai =f(i)(o)/i!, --0, 1,. ., n 1, and h --f(n).) For p 1, rather than considering
the analogous W]"), we introduce V"). To define V"), let M denote the space of real
Baire measures on [0, 1 ]. For/x e M, II/x will denote the total variation of the measure

/x. Then

n-1V(’ f:f(x) 2 ax’+ (x-y)+ d(y) IIll <
i=0 (n-1)

We will shortly explain our reasons for considering V<") rather than W">.
Let e,..., eu be given real fixed data, e # e+, i= 1,. ., N-1. Set

=u ={t: t= (t,. ., tu),0 t<. < tu 1}.

For each t u, set

w(n)W">(t’e)={f:f6 p f( ti) ei, l, N}

for p (1, ], and

V<")(t; e)= {f:f6 V<">,f(ti) e, i= 1,... N}.

The following problems are considered in [2] and [6]"
(n)(1) inf{l[f<">ll,’f w, (t, e)}

for p (1, ], and

(2) inf{llll’f v<">(t; e)}.

(It is understood that f and in (2) are related as in the definition of V<").) Later we
will describe the solutions to problems (1) and (2). An understanding of their exact
form is crucial to a solution of the problems we consider. We do note, however, that
there existf W">(t; e) andf V<">(t; e) for which the above infima are in fact attained.
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1432 A. PINKUS

If we replace the extremum problem (2) by the analogous problem where Wn)

takes the place of Vn), then this is not necessarily the case, i.e., the infimum need not
be attained by some f W]"). However, the value of the infimum in (2), or in (2) with

Wn) replacing Vn), is the same. This is one reason for considering Vn) rather than
W]n). A more detailed discussion of this matter can be found in de Boor [2], and in
Fisher and Jerome [5], [6].

In this work, we are interested in solutions to the problems

(3) inf inf{]lf")]]p f Wp (t; e)}
t7

for p (1, oo], and

(4) inf
t

and in functions for which the infima are attained. Thus, for each fixed n
and data (ei)N, we wish to characterize those functions f that take on the values (ei)N
sequentially, and minimize the LP-norm of their nth derivative. (Here we are abusing
notation in the case where p 1.)

Before continuing, we note three simple facts.
(I) It suffices to assume that (e- e-l)(e+l- ei) < 0, i= 2, , N- 1. This follows

from continuity considerations. If, for example, e-l< ei < e+l for some
{2,..., n-1}, then we may delete the condition f(t)= e since f will always attain
the value ei at some point in (ti_l, ti+).

(II) We may assume that N > n. If N_-< n, then for any choice of ..u, there
exists a polynomial q of degree_-< n-1 for which q(t)= ei, i= 1,..., N. Moreover
qn)_= 0 and our problem is trivially solved.

(III) We always have t 0 and tN 1. Assume, for example, that tN < for some

f which solves (3) or (4). Set g(x)=f(xtu) for x [0, 1]. Then g is "admissible" in
(3) or (4), and since g(n)(X)--tNf")(XtN), it easily follows that ]lg(n)l-lp < ]]f")l]p for
p (1, Do], with the analogous strict inequality in (4).

Thus in what follows we will always assume that
(a) (e- e_)(e+l- e) <0, i=2,. ., N- 1;
(b) N> n;
(c) tl=0, tu=l.
There always exist functionsf Wpn) which solve (3) (orf VCn) which solve (4)).

The proof of this fact is not difficult and we omit it. It follows from the existence
already alluded to in (1) and (2), and from the fact that there exists a t* ..u (and
not in EN\"N) for which the left-most infima in (3) or (4) are attained.

We will prove that solutions to (3) and (4) must be of a particular form, given by
solutions to (1) and (2), respectively, and must also "oscillate" strictly between the
values (ei)N. TO explain what we mean by this latter term, we introduce the following
definition.

DEFINITION. Let (e- ei-1)(ei+l- el) < 0, 2, , N- 1, and 0= tl <" < tu
1. Let f C[0, 1] satisfy f(t) e, i= 1,. ., N. We say that f oscillates between the
(ei) on (t)N iff is monotone on [ti, t+l] for each i=1,..., N-1. We say that f
oscillates strictly between the (e)l on (t) if f is strictly monotone on [ti, t+l] for
each i=l,...,N-1.

Because of the nature of the problem, we divide our analysis into three parts,
namely, 1 < p < oo, p oo, and p 1. Both p 1 (Vn)) and p c may be considered as
limiting cases, but they are much more special and will be considered separately.
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In 2 we quite easily prove that solutions to (3) for pc(l, oe) must be of a

particular form and oscillate strictly between the (ei), on some (h)N. However, we
are unable to prove either the uniqueness of the solution or the fact that functions of
this particular form are necessarily solutions to (3). In other words, we prove necessary
but not sufficient conditions for a solution to (3). We do conjecture, however, that
these conditions are sufficient and that (3) has a unique solution.

In 3 we consider the case p oo. We somewhat surprisingly are able to explicitly
characterize the solution and we show that it is unique. The uniqueness is especially
surprising since for fixed t .. N and p co, the solution to (1) is not necessarily unique.
(While for p (1, oo) the solution to (1) is unique.)

In 4 we consider the case p 1. We prove that the solution to (2) is unique and
is of a particularly simple form (splines of degree n- 1 with N-n knots). We again
prove a necessary condition for the solution to (4). Here again both the full characteriz-
ation and uniqueness is lacking, except in the case n 2 where it is easily seen that
every solution to (2) necessarily oscillates strictly between the (e)l. For n_->3, we
conjecture that the characterization leads to a unique solution.

Let us review the history of and motivation behind this problem. The above
problem in a multidimensional setting (x still runs over [0, 1], but we are dealing with
a d-dimensional vector of single-valued functions and d-dimensional data vectors e,
i= 1,..., N) was discussed by Marin [9] and T6pfer [12]. Physical motivation for
this problem comes from problems of geometric curve fitting and design of a trajectory
for a robot manipulator (see Marin [9] and T6pfer [12]). Marin explicitly proved
existence and uniqueness for the one-dimensional problem in the case p 2 and n 2.
Here we are dealing with natural cubic splines (solutions of (1)) and we can explicitly
calculate the solution. More recently Scherer and Smith [11] dealt with the problem
of existence in the multidimensional setting for the case p 2. It is our hope that the
one-dimensional problem considered herein will not only be of interest in and of itself
but will also provide insight into the multidimensional problem.

Finally it should be noted that generalizations of the results of this paper exist
since many of these results are consequences of the underlying total positivity structure
of the problem. However, this is not true of all of the results and generally only weaker
versions hold. Thus, for example, we might consider an nth order disconjugate differen-
tial equation L on [0, 1], and the problem

inr inf (11 Lfll " f W(p’(t; e)}
t

for p e (1, co], with an analogue of (4) for p 1. The main result of 2, Theorem 2.2,
will hold in an analogous form except that it is not necessary that tl 0, tN 1, or
that every optimal f* oscillate strictly between the (e)N on some (t*)lN, but only that
f* on [t*, t*+l] take on only values between e and ei+l, i- 1,..., N-1. For p 1,
and especially p oe, the results are substantially weaker than those obtained herein.

Another generalization that can be dealt with using the techniques of this paper
is the following. Consider the problem

inf inf h I1 K t,, y h (y dy e,, 1,..., N
t?N 0

(and the analogous problem for p 1) where K is a strictly totally positive kernel.
Here again weaker results of the above form are obtained, but only in the case where
eiei+ O, 1,’’’, N- 1.
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2. p(l,o). To understand the solution to (3) we must first consider the
problem (1).

Recall that forf w(n)

(5) f(x)-- E aix’d-Jo (x-Y)"-lh(y)+ dy,
i=o (n-l)!

where ai f(i)(O)/i!, =0, 1,. ., n 1, and h =-f" Lp.
Let tu be fixed, t =0, tu 1, N n+l. f[t,..., t+,] will denote the nth

divided difference off at the points t, , li+n, 1, , N- n. Forf W"(t; e), set

Ei=f[ti, ti+,’’’, ti+n] i=l,’’’, N-n.

When we assume (e-e_)(e+-e) <0, i= 2,..., N-1, it easily follows that
EiEi+ < 0, 1, , N- n (since n 1). Applying the nth divided difference at
the points t,. ., t+, to f W"(t; e) as in (5), we obtain

Io’= ,(h( , i= ,..., N-n,
where Mi., is a positive multiple (easily computed) of the B-spline of degree n-1
with knots li,’’" li+n, i-- 1,"" ", N-/I. Problem (1) is equivalent to

Io(6) inf [Ihll" M,,(y)h(y) dy Ei, i= 1,..., N- n

Problem (6) (see de Boor [2], and Fisher and Jerome [6]) (and thus (1)) has a unique
solution of the form

(7) he(Y)-- 2 biMi.n(y) sgn 2 bMi.n(y)
i=1 i=1

where 1/p + 1 / q 1, and

Io(8) E M,,(y)hp(y) dy, i= 1,..., N-n.

Equation (8) uniquely determines the coefficients (b) in (7). To obtain the unique
solution f to (1), we write

f(x) a,x+ (x-y)+ hp(y) ay
i=o (n-l)! Jo

and uniquely determine the (ai))- so that fp(t) e, 1,. , n. From (8) it follows
that fp Wp (t; e).

The following notation will prove useful. For f C[a, hi, let S(f) denote the
number of sign changes of f on [a, hi, i.e.,

S(f) sup {k: a <- xa <. < xk+l <-- b, f(x,)f(x+l) <0, i= 1,. ., k}.

Of course, if f is either nonnegative or nonpositive on [a, b], then we set S(f) =0.
Similarly, for a vector x R"\{0}, S-(x) will denote the number of sign changes of
the vector x, i.e.,

S-(x) max {k: _-< i <. < ik+ m, xix!,+ < O, j 1,. , k},

unless x is nonnegative or nonpositive in which case S-(x)= 0.
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N-,
biMi,(x) where the (bi)N-, are as determined by (8).Let Q(x)= i=1

PROPOSITION 2.1. Q has exactly N-n-1 sign changes on (0,1), and
crQ(n-(x)(-1)i>O for x(ti, ti+), i= 1,’", N-l, where cr {-1, 1},fixed.

Proof. It is well known (see, e.g., de Boor [3]) that

S b,M,,n <= S-((b,,..., b_,)).
i=1

Since S-((b, , bN-n)) N- n 1, it follows that Q has at most N- n 1 sign
changes on (0, 1). Assume Q has k sign changes on (0, 1). Then

hp(y) [O(y)l q-’ sgn (Q(y))

has k sign changes on (0, 1). Let 0= o < 1 <" < k+l 1 be such that 6hp(y)(-1) 0
for all y [_1, ], j 1, , k + 1, where 6 {-1, 1}, fixed. Set

From properties of B-splines (see, e.g., de Boor [3]) it follows that A= (a) -’+=,= is
a totally positive (TP) matrix. Fuhermore,

k+l

a0(-1)=i, i=l,...,N-n.
j=l

From the above, N- n k + 1. As a consequence of the variation diminishing propey
of TP matrices (see Karlin [7]), we have

S-((E, ,-.., _)) N min {rank (A) 1, S-(-, ,..., (-1)+)}.

Since N+I < 0, 1, , N- n 1, it follows that the left-hand side equals N- n 1
and that N- n N k Therefore k N- n 1 and Q has exactly N- n 1 sign changes
on (0, ).

Since k=N-n-1, we have that S-((b,...,b_))=N-n-1, and thus
b(-1)>0, i= 1,..., N-n, for some e{-1, 1}, fixed. It is well known that the
(n-1)st derivative of M.(x) strictly alternates in sign as we go from (t, t+) to

(t+, t+), j 1, , + n 2. In particular,

. >0, xe(t,t+), j=i,...,i+n-1.

Thus for x e (t,
N-n N-n

Q(-(x) 2 bM(- ) h, (x (- 2 I---, (xl.
i=1 i=1

M(-(x)0 on (t, t+) for some i, it follows thatSince b0 for all i, and .._,
(-1)Q(-(x) > 0 on (t, t+), j 1,..., N-1. This proves the proposition.

With the above proposition we easily prove the following theorem.
ToM 2.2. Letp(1, ), and letf*e W be a solution of (3). ere exists a

t* (t,. ., t), 0 t <. < t 1 such that f* e W ( e). Furthermore,

N--n q-1 (n(a) f*((y)= 2 bM.(y) sgn bM,(y)
i=1 i=1

where 1/p+ 1/q= 1, M. is a positive multiple of the B-spline of degree n- with knots
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t’i,’’’, t’i+,, i= 1,’’’, N-n, and the (b*i )-" satisfy

n(Y)f*(n)(Y) dy=f[t*,..., t*+n], i= 1,..., N- n.
0

(b) f* oscillates strictly between the (el)
Proof Let f* solve (3). Existence implies that there exists a t* as above for which

f* W(pn)(t*; e). Since f* must also solve (1) for t*, it follows that f* necessarily
satisfies (a). It remains to prove that (b) holds.

Since (ei-e_l)(e+l-ei)<O, i=2,...,N-1, f* has at least N-2 interior
extrema, i.e., f*’ has at least N-2 distinct zeros. From Proposition 2.1, f*(") does not
vanish on any subinterval of[0, 1] and has exactly N- n- sign changes. From Rolle’s
theorem applied to f*’, it follows that f*’ has exactly N-2 (simple) zeros in (0, 1).
Let 0<sz<. .<su_ <l(s --0, SN 1) denote the unique extrema of f*. Thus f*
oscillates strictly between the (f*(s))N on (s)N. It remains to prove that si= t*,
i=2,. ., N- 1. Note that tf_l<S < tf+l for j=2,. ., N-1.

Assume si t* for some i{2,..., N-I}. Consider problem (1) at the points
l=f*(s), i= 1,... N. There is a unique solution to this new(s) N with the values e

problem which we denote by g*. It follows from Proposition 2.1 that g* f*. Further-
more f* is "admissible" for this problem. Thus Ilg")llp < IIf*")llp. From continuity
considerations, there exist points 0<_-w<...<wv<_-I such that g*(wi)=ei, i=

1,..., N. Thus g* is "admissible" in (3). However, this contradicts the minimality
property of f*. Thus s t*, i= 2,..., N-1, and f* oscillates strictly between the
(e,)l on (t*).

On the basis of the above result, it is natural to ask whether the solution to (3)
is unique, and in particular, whether there is a unique function satisfying (a) and (b)
of Theorem 2.2. Marin [9] showed by construction that there is a unique function
satisfying (a) and (b) in the particular case n =p 2.

Remark. For the case n 1, it is easily seen that every solution to (1) a spline of
degree one with simple knots at t,..., tN_ 1. Thus it oscillatesstrictly between the
(e) on (t) for any choice of t... However, a bit of calculation shows that the
solution to (3) is in fact unique. The optimal choice oft* is given by tl* =0, t* 1, and

i-1 /NIt* [ej+i ej[ ]ej+l- ej[, i= 2,..., N- 1.
j-----I Ij=l

Note that this unique choice is independent of p (1, c).
3. p=oo. For fixed 0=t<...<tu=l, N>n>=2, and (e-e_)(e+-e)<0,

i=2,..., N-l, the problem (1) for p =o, i.e.,

(9) inf{]]f(")]]:f W)(t; e)},
may have many solutions. There is always at least one. solution of particular interest.
It is a perfect spline of degree n with exactly N- n -1 knots, i.e., a function P of the
form

P(x)= aixi+-, x +2 2 (-1)i(x-,i)
i=0 i=1

where o 0 < : <. < u-,-1 < ,-, 1 (see, e.g., Karlin [8]). Note that [P(")(x)] [c[
for all x

The main idea used in the proof of Theorem 2.2 does not carry over to the case
p since the g* constructed therein is generally identically equal to the f*. However,
much research has been done on perfect splines and we will use some of those results
to prove not only an analogue of Theorem 2.2, but also the uniqueness of our solution.
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We first state two deep results due to Bojanov. Recall that we always assume that
N> n->2 and (ei-ei_l)(ei+l-ei)<O, i=2,’’ ", N-1.

THEOREM 3.1 (Bojanov [1]). There exists a unique perfect spline P* of degree n
with N- n 1 knots, and a unique set ofpoints 0- t*l t* 1 for which

(i) P*(t* )- ei, i- 1,..., N;
(ii) P*’( t/*) 0, i-2,...,S-1.
THEOREM 3.2 (Bojanov 1]). Let P*(.; e) denote the unique perfect spline as given

in Theorem 3.1, where we indicate the dependence on e- (el, , err). In a neighborhood
of every e satisfying (ei-ei_l)(-1)io, i-2,..., N, we have that ]]P*((.; is a
strictly increasing function of each (- 1) ei, 1,. , N.

On the basis of Theorems 3.1 and 3.2, we immediately obtain the following result.
THEOREM 3.3. There exists a unique perfect spline P* of degree n with N-n- 1

knots which satisfies (3)forp -do. P* is uniquely characterized by thefact that it oscillates
strictly between the (ei) on some (t’i) .

Proof. The only fact that is not an immediate consequence of Theorems 3.1 and
3.2 is the fact that P* is strictly monotone on [t/*, t*/] for each i--1,..., N-1.
However, a simple Rolle’s theorem argument shows that P*’ has exactly N-2 zeros.
Thus P* is strictly monotone on [t*, t/*+l], i- 1,..., N-1.

In the above theorem, uniqueness is proved only for the class of perfect splines.
There is more that is true, namely, Theorem 3.4.

THEOREM 3.4. The perfect spline of Theorem 3.3 is the unique solution to (3) for
p-odd

Proof. Let P* be as in Theorem 3.3 with P*(t/*) ei, i- 1,- , N, 0- tl*
t*N 1. Assumef W(t; e) for some t EN. There exists a perfect spline P of degree
n with N-n-1 knots for which P(ti)=f(ti) ei, i= 1,. , N, and
If t t*, then from Theorem 3.3, [[P*(]] IIP(ll. Thus iff W,f is "admissible"
in (3), and Ilf()ll- IlP*("ll, then it necessarily follows that f W)(t*; e).

We next prove thatf’( t/*) =0, i=2,... N- for anyf as above Assumef’(t.*) 0
forsomej{2,...,S-1}.Replacetbysj(t_,t+)sothatifgW),-g(t*i =ei,

i=1,..., N, i#j, and g(sj)=f(s), then g attains the value e at least twice in
(t-l, t+l), and g is "admissible" in (3). Let P be a perfect spline of degree n with
N- n- 1 knots such that P(t*) eg, i= 1,. ., N, j, and P(s) =f(s). Then P P*.
Thus IIP(ll_<-IIf(ll and from Theorem 3.3, IIP*()ll IIP(l[. This contradicts
the minimality property of Thus f’(t) 0, 2, , N- 1.

Assumef P*. Thenf P* on (t, t.+l) for somej{1,..., N-l}. Since (P*-
f)(t)=0, i=j, j+l, (P*-f)’(x) must change sign on (t, t+l). Thus for >0,
suciently small, (P*-(1-)f)’(x) has a sign change in (t, t+). Furthermore
(P*-(1-g)f)’(t)=O, i=2,..., S-1. Thus (P*-(1-)f)’(x) has at least S-1
distinct zeros in [0, 1 ]. Since [P*(’)(x)[ ]f(’(x)[ > (1 )[f(’(x)[ almost everywhere
on [0, 1], it follows from Rolle’s theorem that (P*-(1-)f)(")(x) has at least N-n
sign changes on [0, 1]. But P*(")(x), and thus (P* (1 g)f)(")(x), has exactly N n 1
sign changes thereon. This contradiction proves the theorem.

Remark. For N n + 1, P* is the unique polynomial of degree n that satisfies
P*(t) ei, 1, , n + 1, and P*’(t) 0, 2, , n. Such polynomials have been
considered previously (see, e.g., Davis [4] and Mycielski and Paszkowski [10]). It
seems that it was not previously noted that such polynomials satisfy an extremal
property with respect to their nth derivative.

Remark. In the case n both Theorems 3.3 and 3.4 are valid. However, the
proofs are somewhat different. The unique solution is identical for all p e (1, ] (see
the remark at the end of 2), and is a perfect spline with knots (t)-1.
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4. p 1. We first considerin some detail solutions to (2) forfixed0 tl < t_<. <
tN 1 with N> n =>2 and (ei-ei_l)(ei+l-ei) <0, i=2, , N- 1. We recall that
f v(n)(t; e)if

n-1

(10) f(x)= E aixi+
i=0 Io +n--1(n- 1)!

(x y) dlx(y),

where II ll < and f(t)= e,, i= 1,..., N. We are concerned with the problem

(11) min (1111" fe V(n)(t; e)t

where is associated with f as in (10).
As in 2, set

Ei f[ ti, t+l,. ", ti+n ], 1,. ., N n.

Thus (11) is equivalent to

Io(12) min I1 Mi, (y) dtx (y) Ei, 1,

Since n => 1, we have EiEi+ < O, 1, , N- n 1.
It is well known that (Mi,n)N-, is a weak Chebyshev (WT-) system on [0, 1 ]. Thus

there exists a nontrivial

Nnn

h(y)= E c,Mi,,(y)
i=1

and points 0 < :1 <" < N--n < 1 such that

i--1,...,N-n.

Without loss of generality, we normalize h so that h I1 1. Before showing how we
use h to construct a solution to (12), let us consider h and the points of equi-oscillation
(soi) -n in more detail.

PROPOSITION 4.1. Let h be as above. Then we have the following"
h is unique.

(ii) c(-1)i>0, i=l,...,N-n.
(iii) The i - are uniquely defined.
(iv) If n >- 3, then ti+l < i < ti+n--1, 1,. , N- n.

Proof For n 2, h is continuous and piecewise linear with knots t2,"" ", tu-1,
and satisfies h(0)= h(1)= 0. h is easily seen to exist and satisfy (i), (ii), and (iii) with

i-- ti+l, i-- 1,’’’, N-2.
Assume n =>3. By construction h has at least N-n-1 sign changes. From

Proposition 2.1 and the proof thereof, it follows that h has exactly N-n-1 sign
changes, h ("-1) strictly changes sign at each t, i=2,...,N-I, and c(-1)>0,
i= 1,. , N-n.

For eachj{1 N} (Mi,n)u-"=l,j is a WT-system on [0, 1]. Since h equi-
N

oscillates at N- n points, it follows that -cj 1Y=l,e ciMi, is a best approximant to
NM, on [0, 1] in the uniform norm from span {Mn}i’=S i. Furthermore, the error in

the best approximation is exactly Icl -. If h== dgM,n satisfies Ilhll-1, and
/(r/i)=(-1) , i=1,..., N-n for some 0<r/l<’"<r/n_,<l, then it follows as
above that Thus d -cj for each j proving.the
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uniqueness of h. (A different proof of the uniqueness of h follows from the analysis
in the proof of Theorem 4.2.)

Since

N--n_, c,Mi,,()= (-1) j, j= 1,’’’, N- n,
i=1

and (Mi,()) N-"i,j= is TP, it follows that this matrix is nonsingular and thus i e (ti, t/,),
i=l,..., N-n. However, we wish to prove more, namely, ie(t+, t/,_), i=
1,..., N-n. To this end we use Rolle’s theorem and the fact that h’()=0, i=
1,..., N-n. Since n3, h’ is continuous and vanishes on (0,] at the points,. ., . Fuhermore hJ(o) =0,j =0, 1,. ., n-2. When we apply Rolle’s theorem,
it follows that h"-2 has at least i+ 1 distinct zeros in [0, ], and h"- has at least
sign changes in (0, ) (since h"- does not vanish identically on any subinteal).
But h"- changes sign exactly at t2,..., tN-. Thus t+ < . Similarly we prove that
i < ti+n-l"

It remains to prove (iii) for n 3. Propey (iii) follows if we can show that h’
has no zeros in (0, 1) other than ()-". This fact may be proven by a simple Rolle’s
theorem argument. Alternatively, we can argue as follows:

N--n+l

h’(y)= dM,_l(y)
i=1

where suppM,_l=(ti, t+,_), i=l,...,N-n+l. If h’()=0 for some
(0,1){,...,_,}, then by setting {l,’’’,s-+l} ={l,’’’,s-,} where
0 < <. <_+< 1, it follows from (iv) that t < < ti+n_l, 1, , N n + 1.
But this implies that h’ 0, which is a contradiction.

We can now construct a unique solution to (11).
THEOREM 4.2. Let h and (i)- be as given above. Set

N--n

t bj
j=l

where the b) are chosen so that

bjM,,()= E, i= 1,..., N-n.

e ]]t]] j ]bj] d t i the unique solution to (11).
Proo Let t be as given above. Such a t exists and is unique since (M

is nonsingular. Since E(-1)>O, i=1,...,N-n for some {-1, 1}, fixed, it
follows from the total positivity of (M,,())-",j=, that b(-1)> O, j= 1,-.., N-n.
Fuhermore since c(-1)> O, i= 1,..., N-n, it is easily seen that

N--n n N-n

IDol c,E, c,E,I.
j=l i=1 i=1

For any , ]l <, satisfying

for M,,(y) d(y)= E,, i= 1,..., N-n,

we have

ciEi
i=1

h(y) dtz(y) h II.
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Since h II 1,
N-rl

IIz ll r. Ib l=
j=l

n ciEi
i=1

which implies that/zt is a solution to (11). Assume [[/-*t[] [[/zl[. Then necessarily

h(y) dp(y)

By Proposition 4.1(iii), h attains its norm only at the values ()1-". Thus /z has
support only on the ()-". Since i,j=l is nonsingular, it follows that

We now turn our attention to the problem as stated in (4), namely,

(13) min min {[[/x[["f V(")(t; e)}.

From Theorem 4.2 we know that any solution must be of the specific form
given therein. We will prove that any solution must also oscillate strictly between
the (ei)s on some (6). For n- 2, this result is simple, and yet disappointing. For
any t..N, tl=O<t2<...<t=l, construct t and the associated f(x)=
ao+ alx + Yf=-2 bj(x- )+. As noted earlier tj+,j 1,.. N-2. Since (ei- e_)
(e+l- e) < 0, 2, , N- 1, it is easily seen that for any choice oft ’’N,f oscillates
strictly between the (e) on (6). Thus our result clearly holds, but obviously this
condition is not sufficient in (13). However, it is possible, by calculation, to verify that
the solution to (13) is unique.

We now turn our attention to the case n ->_ 3. Here it is unclear as to whether the
following necessary conditions are also sufficient for a solution to (13), and also as to
whether uniqueness holds.

THEOREM 4.3. Let n >--3 and let f* be any solution to (13). There exists a t*=
(t*, ’’, t), O= t* <" < t* 1 such that f* V(")(t*; e). Furthermore,

--1 N

(a) f*(x)= E aixi + Y bj(x-)-I
i=0 j=l

where the (bj) -" and ()-" are as in Theorem 4.2 with respect to (t* .
(b) f* oscillates strictly between the (ei) on (t*i )..
Proof Let f* be a solution to (13). There then exists a t* as above for which

f* V(")(t*; e). Since f* must also solve (11) for t*, it follows that f* necessarily
satisfies (a). It remains to prove (b).

We first prove that f*’(t*)=0, i-2,..., N-1. Assume to the contrary that
f*’(tk*) 0 for some k {2, , N- 1}. Without loss of generality we will assume that
(ek-ek-1) >0. Thus there exists an Sk as near as we wish to tk* for which f(Sk)> ek.
Recall from Proposition 4.1 that t*+ < s < t*i+n-1, 1, , N- n. Taking Sk close to
tk*, this implies the existence of a unique

n--1 N-n
n--1g(x) E cix’ + _, 4(x-6)+

i=0 j=l

that satisfies g(t*)= ei, i= 1,..., N, i# k, and g(Sk)= ek. Furthermore sgn dj sgn bj
(-1)Jtr, j= 1,’.., N-n, where try{-1, 1}, fixed, g is "admissible" in (13) with
n/xll 2j-" ]dj]. We will prove that ,j= z.,j=, Ibj], contradicting the minimality
of f*. To this end, note that

n--1 N-n

(f*-g)(x)= (ai--Ci)Xid E (bj-dj)(x-)--1
i=0 j=l
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satisfies (f*-g)(t*)=O, i= 1,..., N, iS k, and (f*--g)(Sk)>O. The conditions
t*+l<:i<t*+n_l, i=l,...,N-n, easily imply that f*-g vanishes only at
(t*)=l.,j. Thus, in particular, (f*--g)(t*k)>O.

Set (f*-g)[t*,..., t*+n] F, i= 1,’.., N-n. Then

N--n

F,= E (bj-d)M,.(), i= l, N-n
j=l

and F(-1)tr=>0, i= 1,.’’ ,N-n. Furthermore the (Fi)-" are not all zero. From
the total positivity of ,.=litfollowsthat(b-d)(-1)Jtr>=O,j=l,’",N-n,
and not all the (b- d)N-" are zero (in fact all are nonzero). Thus

N--n N-n N-n N-n

Z Ibl-- Z b(-1)tr> E dj(-1)’= E Idol.
j=l j=l j=l j=l

Therefore f*’(t*) 0, 2,. ., N- 1.
It remains to prove that f* is strictly monotone on Its*, t*+l] for each i=

1, , N- 1. Using the fact that t*/ < : < t*+n_, 1, , N- n, it follows that
f*’(x) has no zeros in [0, other than t*,. , t*_l. Thus f* oscillates strictly between
the (e,)v on (t/*). I-i
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