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A new method of approximation is proposed which maintains many of the 
essentials of the classical theory of best uniform approximation, while also using an 
Lq-type measure of approximation. 

1. INTRODUCTION 

The classical Chebyshev theory of best uniform approximation to 
continuous functions by polynomials of degree <n was initiated by 
Chebyshev in [2]. This theory has a distinct advantage over the 
corresponding ones for L4-norms, 1 < q < co, in that the unique best approx- 
imant is characterized by a remarkable geometric property. Let f be a real- 
valued function, continuous on [0, 11, and, for n = 0, 1, 2,..., let 7c, denote the 
set of all real algebraic polynomials of degree at most II. Then p* E 7c, is the 
unique best uniform approximant to f from 72, if and only if there exist n + 2 
pointsO<x,<... <x,+,<l,andatixedo=fl,for which 

+ljk (f -P*)@k) = ,T$ if&> --P*bh k = l,..., n + 2. 

On the other hand, for q E (1, co), p* E rc,, is the best Lq[O, I] approximant 
to f from rr,, if and only if 

j 
l I(f--p*)(x)l”-’ sgn(f -p*)(x) xk dx = 0, k = 0, 1 ,..., n, 
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a condition which is difficult to check, and which lacks the simple geometric 
appeal of Chebyshev’s characterization. For q = 1, the situation is even 
slightly more complicated, but is essentially the same as for q E (1, 03). 

In this paper, we propose a new method of approximation which 
maintains the geometric flavour of Chebyshev’s characterization of the best 
uniform approximation, while also using an Lq-type (1 < q < co) measure of 
approximation. We have, however, to pay a price, and the foremost cost is 
that our “distance” function is not derived from a norm. However, this 
drawback is not all that costly. We, perhaps surprisingly, do maintain the 
uniqueness of a best approximant, and we are able to give a fairly simple 
characterization thereof. 

Let C[O, l] denote the class of real-valued functions continuous on [O, 11. 
For fE CjO, 1], and q E [ 1, co), set 

IllfIll, = sup (f If(xI” dxj l/q9 a (A) 

where the supremum is taken over all a, b, 0 < a < b < 1, for which f(x) > 0 
on (a, b), or f(x) < 0 on (a, 6). Let us also define 

IllfIll,* = sup ir” I.m>l” dx) “qT 09 0 

where the supremum is taken over all a, b, 0 < a < b < 1, for which f(x) > 0 
on (a, b), or f(x) < 0 thereon. Thus, if f = 0, then ]]]f]]], = ]]]f]]],* = 0. The 
analogous definitions for q = co and SE C[O, l] are simply ]]]f]]], = 
IIIslllm* = Ilfllm = max{lf(x)l: x E [O, 1 I I. 

With minor modifications, the results of this paper hold for all q E [ I, co) 
(except for Theorem 4.1). However, for the sake of simplicity, we shall only 
deal with the case q = 1, and for ease of notation we set, for every 
J-E C[O, 11, 

lllflll = lllfllll 3 
IllfIll* = Illfllll* * 

Before describing our results, let us note 

(1.1) 
(1.2) 

LEMMA 1.1. The supremu in (A) and (B) are attained. 

The proof is left to the reader. 
We shall be concerned with the following two quantities: 

inf IV-PIIL 
PEZ. 

(1.3) 
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(1.4) 

We show (Theorem 2.5) that the infimum in (1.4) need not be attained, while 
that in (1.3) always is. Furthermore, a p* E 7~, which attains the minimum 
(infimum) in (1.3) is unique, and is characterized by the fact that there exist 
n + 2 consecutive disjoint open subintervals I,, Z2,..., I,,,, of [0, 11, and 
u = f 1, such that 

(-l)& a(f-p*)(x) > 0 throughout I,, 

and 

for k = 1 ,..., n + 2 (Theorem 3.1). 
If the infimum in (1.4) is attained, then it is attained only by the p* 

pertaining to (1.3). It is attained if and only if there exist n + 2 consecutive 
disjoint open subintervals I,, I, ,..., I,, z of [0, 11, and u = f 1, such that 

(-l)k o(f-p*)(x) >, 0 throughout I,, 

and 

w)“q (f-P*)w~x=Illf-P*111*9 
‘k 

for k = 1, 2,..., n + 2 (Theorem 3.2). 
Aside from considering the basic questions of existence, uniqueness and 

characterization, we also provide analogues of de La Vallle-Poussin’s bound 
(Theorems 4.3 and 4.4) and of Bernstein’s comparison theorem 
(Theorem 4.5), and determine the minimal “norm” manic polynomial of 
degree n + 1 for ]I(. I]] and ]]] . ]I]* (Theorem 4.1). 

All the approximation results which follow are stated for rr, . However, the 
analysis is such that these same results hold, mutatis mutandis, if we replace 
n, by any Chebyshev system of order n + 1. 

2. PRELIMINARIES AND EXISTENCE RESULTS 

On the basis of Lemma 1.1, we can restate the definitions of /(I. ](( and 
Ill * Ill*: 
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DEFINITION 2.1. For fE C[O, 11, 

lllf Ill = max 1 l~~~(x)drl:OdaS~6l,~(x)>Oon(a,b), 

or f(x) < 0 on (a, b) , 
I 

(2.1) 

IllfIll* = max 1 Ijhf(x)dxl:0g06b< l,f(x)>Oon(u,b), 

orf(x) < 0 on (a, b) 
I 
. (2.2) 

Observe that the sets in (2.1) and (2.2) are nonempty, as a is allowed to 
equal b. From the definitions it follows that, for fE C[O, 11, 

lllflll Q Illflll* G llflll Q Ilfllco~ (2.3) 

where ]]f]]r = JA If(x)] dx, and, as before, ]]f]], = max{]f(x)]: x E [0, l]}. On 
the basis of Definition 2.1, the following result is evident. 

LEMMA 2.2. For every fE C[O, 11, 

(a) lljflll= 0 if and only iff(x) = 0 for all x E [0, 11, and similarly 
for lllf Ill* - 

(b) IffE C[O, 11, and c is a real number, then 

lllcflll = ICI * IllfIll 
Illcflll* = I4 * Illflll* * 

Neither I]] . ]I] nor ]I]. I]]* are norms. 

PROPOSITION 2.3. Neither ~~~~~~~ nor )/I. II)* satisfies the triangle inequality. 

Proof Let f(x) E ]x - (l/2)1 - (l/8), and g(x) E (l/2) - Ix - (l/2)]. 
Then lllflll = IllfIll* = 9/l% III glll = Ill gIlI* = l/4, and Illf+ glll = 
Illf+ gIlI* = 3/g > lllflll + Ill glll = IllfIll* + Ill gIlI*. On the other hand, it is 
very easy to construct particular f, g E C[O, l] for which the triangle 
inequality does hold. 

We were unable to find a standard terminology for functionals satisfying 
Lemma 2.2, but not necessarily satisfying the triangle inequality. Cwikel and 
Peetre [3] call similar functionals “gauges,” and we also shall use this term. 
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Let f, f, E C[O, I], m = 1,2 ,..., and let f, converge to f, uniformly on 
[0, 11. From (2.3) it easily follows that 

&mm Mm -fill = ;l”, Illfm -.a* = 0. (2.4) 

However, it does not follow that lim,,, ]]]f,]]] = ]]]f]]], or lim,,, ]]]f,]]]* = 
]]]f]]]*. An important property of ]]]a I]/ which will be used to prove the 
existence of a ]]]. Ill-best polynomial approximation is concerned with such 
limit questions. 

THEOREM 2.4. Assume that f, f, E CIO, 11, m = 1,2 ,..., and f, tends to 
f, uniformly on [0, 11. Then 

- 
Nf 111 G m@* Illf*lll < )ym Illf,lll* < 111 f l/l*. (2.5) 

The middle inequality is an immediate consequence of (2.3). To show that 
equality need not hold in the other two inequalities, consider the following 
two examples. 

Let f(x) = ]x - (l/2)]. Thus lllflll= l/8, and [l/f I(]* = l/4. Set f,(x) z 
]x - (l/2)] - (l/m). Then Illf, ]]I* < l/8 for all m > 3, which implies that 

;yrn Illfmlll* = V3 < lllf Ill*. 

On the other hand, set r,(x) = (x - (l/2)] + (l/m), m = 1,2,... . Then 
]]]Tm]]] > l/4 for all m > 1, so that 

lim Ill.cIII = l/4 > lllf Ill* m+m 

Proof of Theorem 2.4. We shall first prove the more important 
inequality, namely, 

lllf Ill G mpim Illfmlll* 

If f = 0, then equality holds, by (2.4). Thus we assume f & 0. Let u = f 1, 
and 0 < a < b < 1 be such that 

lllf Ill = Q jbf(x) Qk 
a 

where uf(x) > 0 for all x E (a, b). Let E > 0, and choose S > 0 
(6 < (b - a)/2) so that 

u f(x) dx > lllf Ill - W). 
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Since uf is bounded away from zero on [a + 6, b - 61, and f,,, tends 
uniformly to f on [0, 11, there exists an M such that, for all m > M, 
of,(x) > 0 on (a t 6, b -S), and 

c7 f,(x) dx 2 lllflll- E* 

Thus I]]& I]] > ]]]f]]] - E, and therefore 

lllflll G &a Illfmlll* 

To prove the remaining inequality, we again assume that f f 0. Suppose, 
to the contrary, that 

lim Illfm Ill* > lllf II/* * *‘aI 

Thus f, contains a subsequence, which we again denote by f,, for which 

p& Illfm Ill* = lllf Ill* + G 

c > 0 being a constant. Hence, for every m 2 some M’, there exists an 
interval [a,,,, b,], and a urn = fl, such that urn f,(x) > 0 throughout 
[a,, b,], and 

urn I ;~fm(x, dx > lllf Ill* + (c/2)* 

By passing to a subsequence, if necessary, we may assume that all 
urn = u = + 1 or -1, fixed. Take a convergent subsequence of a,,,, and one of 
b, (again denoted a,, b,), say, a,,, + a, b, -+ b. Thus, uf(x) > 0 throughout 
la, b], and 

But 

a contradiction. 
We are concerned with the problem of approximating f from z,,, using the 

gauges Ill . Ill and Ill - Ill*. Th e next result is an almost immediate consequence 
of (2.5). However, for completeness, we include the proof. 
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THEOREM 2.5. Let fE C[O, 11, and n > 0. 

(a) There exists a p* E x, for which 

2: IV- Pill = Illf- P* Ill. ” 

(b) infpEn, Illf- p l/l* may be unattained. 

Proof. We first prove (b). Let fE CIO, l] be defined to be linear in each 
of the intervals (i/4, (i + 1)/4), i = 0, 1,2,3, and to satisfy f(0) = 4, 
j-(1/4) =f(3/4) = 0, N2) = 2, and f( 1) = -6. Its graph is shown in Fig. 1. 

Thus Jii4 f(x) dx = l/2, I$f(x) dx = l/2, and &4f(~) dx = -3/4, so 
that IllfIll*= 1. C onsider ]]]f- cl]]* f or a given real c. If c < 0, then 
l&-;/l* 2 1. If c > 0, then IV- cIII* > 3/4, and, clearly, Illf- UlnIll* -, 

inf Illf- PIII* = 5: Illf- cIII* = 3/4 
PE% 

which is not attained. 
Part (a) is a consequence of the lower semicontinuity of ](I. ))I. Set 

inf IV- PIII = C. 
Pen” 

We may assume that 0 < C < ]]]f]]]. For m = 1,2,..., let p,(x) E 
CtEO uimm)xk f 0 satisfy 

1’^“, Illf- Pm Ill = c 

FIGURE 1 
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and let y ,=max(la~m’l:O~k,<n}>O.Wefirstprovethat~u,isabounded 
sequence. If this is not the case, then there exists a subsequence, again 
denoted by ,u,,,, which tends to co. By choosing suitable subsequences, we 
may assume that, for m = 1,2 ,..., p,,, = ]a::)], with a fixed k,, and that, for 
k = 0, l,..., n, aim’/p,,, converges, say, to uk, ]ak] < 1. Set p(x) = CzzO akxk, 
and 

GM = P, w4 -P,(X)>, m = 1, 2,... . 

Then g,,,(x) tends uniformly to -p(x) on [O, 11. Since p(x) f: 0, lllplll > 0. By 
(2.5), 

However, 

lim III&III 2 IllPIll > 0. m-+w 

;\t Ill &Illl = ,“-“, P,’ Illf- Pmlll = 0. 

This contradiction proves that ,u,,, is bounded. 
Hence there are integers 1 < m, < m2 < . . . . and reals a,, a, ,,.., u,, for 

which limj_,, uirnj) = uk, k = 0, l,..., n. Thus 

lim p,(x) =p*(x) = 2 akxk, 
j-cc k=O 

uniformly in [0, 11. By (2.5), 

c = ,!;i$ IV- Pm,lll 2 Illf- P* Ill. 

The definition of C implies that 

;;L Illf- P III = Ills-P” III* ” 

3. CHARACTERIZATION AND UNIQUENESS 

If Z and J are subintervals of [0, 11, then by Z < J we mean that x < y for 
all x E Z, and y E J. We shall also use the notation Z < x <J, with the 
obvious meaning. With this understanding, we now state our first main 
result. 

THEOREM 3.1. Let fE C[O, 11, and n > 0. Then there is a unique 
p* E 72, satisfying 

j$ IV- PIII = Illf- P* III. (3.1) 
n 
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This p * is characterized by the following property: 
There exist n + 2 disjoint (nonempty) open intervals 

and IT = + 1 or -1, fixed, such that, for k = l,..., n + 2, 

(a) (-Ilk W-P*) > 0 on I,, 

(b) (-Uk 0 i,, (f-~*)(x) dx > Illf- P* IN 

Proof. Assume that p* E 7~,, satisfies (a) and (b). Let p E z,,, p fp*. We 
shall prove that Illf-PIII > W-P* Ill. Suppose Illf-PIII < IV-P” Ill. We 
claim that there exist xk E Zkr k = l,..., n + 2, for which 

(-ljk a(p -P*)txk> > O, k = l,..., n + 2. (3.2) 

But from (3.2) it is not difficult to infer that p -p* f 0 has at least n + 1 
zeros, counting multiplicities, which is false. If, for some k E {l,..., n + 2}, 
(-l)k a( p -p*)(x) < 0, for all x E Zk9 then, by (a), 

wk W-p)(x) > (-uk o(f-P*)(x) > 0 

for all x E Zk, and hence, 

W)‘o/ (f-p*)(x)dx<(-l)‘o! U-~>(4d~~lllf-~lll~lllf-~*lll~ 
‘k ‘k 

contradicting (b). 
Assume now that p* E 7c, satisfies (3.1). We shall prove the existence of 

z,,....zn+* as in the theorem. We may assume f-p* f 0. 
A maximal-definite interval is an Z= (a, p), 0 < a < /3 < 1, which, for 

some u = f 1 (the Signum of I), satisfies: 

(1) u(f-p*) > 0 on I; 

(2) 0 J”, (f-p*>@) dx > Illf-P* Ill; 
(3) if J is an open subinterval of (0, l), Z c J, and u(f-p*) > 0 on J, 

then f-p* =0 on J\I; 

(4) there is no open, nonempty subinterval of Z having a or /I as an 
endpoint, throughout which f-p* = 0. 

By straightforward arguments, there exists a maximal-definite interval, the 
set of such intervals is finite, and they are all mutually disjoint. Let them be 

J, < .a. <J,. 
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have the same signum u1 , 

have the same Signum -u,, and so on, until we reach 

having the same Signum. We wish to prove that s > n + 2. Suppose not. We 
may assume 

(-l)k+l (f-p*)(x) > 0 throughout J,, 

whenever mk-, + 1 < I< mk, k = l,..., s, where m, = 0 (for otherwise, we 
consider -f). For j = l,..., s - 1 (in case s > 1), choose an xi satisfying 
Jmj(Xj< Jmj+l, and (f--p*)(xj) = 0. Such an xj exists since 

and 

(-l)‘+’ (f-p*) > 0 on J,,., , 

Set 

(-l)j+r (f-p*) < 0 on Jmj+ I. 

s-1 
PCx> E ,pl Cxj - x> (~1 ifs= 1), 

andletx,=O,x,=l.Sinces<n+2,pEn,. 
We shall prove that there exists an E* > 0 such that, for all s E (0, s*), 

Illf-P* - VIII < Illf-P* Ill1 

contradicting the definition of p*. 
Since (f--p* - sp)(xj) = 0 whenever 1 ,< j< s - 1, for all real E, it 

follows from (2.1) that 

where, on the right-hand side, the underlying interval for the gauge is 
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[xi-i, x,] rather than (0, I]. It therefore suffices to prove that, for j = l,..., s, 
there exists an .&‘) > 0 such that, for all E E (0, s(j)), 

Illf-P* - ‘PIIl[Xj-l,Xj] ’ Illf-P* III’ 
Let j E { l,..., s}, and suppose no such s(j) exists. Then there exist E, , .s2 ,..., 

all > 0, E, + 0, such that, for n = 1,2 ,..., 

Illf-P* - w411,xj-,,xj, 2 Illf-P*III~ 

Therefore there exists, for n = 1,2 ,..., an open subinterval I,, of [xi-, ‘xi], 
and u, = f 1, for which 

o,(f-P* - 6” PI 2 0 on I,, 

0” I ;” (f-P* - &” P)(X) dx a Illf-P* Ill. 

On (xi-, , x,), (-l)/+ ‘E)(X) > 0, and throughout each Jk C_ [xi-, , xi], 
(-l)i+’ (f-p*)(x)>O. If u,, = (-ly’+’ for some n, then, on I,,, 
0 < (-1)1+’ (f-p* - E, p) < (-ly’+’ (f-p*), and, hence, 

< (-l)‘+’ !;” (f-P*)(x) dx 

G Ill-f-P* Ill* 

Thus u,, = (-1)’ for all n. 
For n = 1, 2,..., let I,, = (a,, b,), so that xj-, <a, < 6, < xj. There exist 

integers 1 & IZ, < n, < ..e such that ank+ a, and b,k-+ 6. It follows that 

C-l? (f-P*) 20 on (a, b), 

and 

w’Jb (f-P*)(x) dx a Iv-P* Ill. a 

Hence (a, b) G (xi- 1, xi) must intersect some maximal-definite subinterval Jk 
of [Xj-, , x~] at a point where f-p* # 0. A contradiction now ensues, since, 
at such a point, the above discussion implies that sgn(f -p*) is both (-1)’ 
and (- l)j+ ‘. This completes the proof of the theorem. 
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We shall now consider an analogue of Theorem 3.1 for the gauge ]]I. ]I]*. 
We prove that, for a fixed n, inf(]]]f-p]]]* : p E n,}, if attained, is uniquely 
attained by the p* of Theorem 3.1. 

THEOREM 3.2. Let fE C(0, 11, and n > 0. Then 

;g IV-PIII* (3.3) ” 

is attained if and only if there exist n + 2 disjoint (nonempty) open intervals 
I, < -** < zn+z, and o = + 1 or - 1, fixed, such that, for k = l,..., n + 2, 

ta> tmlJk &f-P*) > o On Ik, 

@I Wk d,, (f-~*)(x)dx= IV-~*lIl+v 

where p* is the unique minimal polynomial given in Theorem 3.1. If the 
infimum in (3.3) is attained, then it is attained by p* only. 

Proof. It follows from Theorem 3.1 that only p* of that theorem can 
satisfy conditions (a) and (b) of Theorem 3.2. Namely, if p’ E n, satisfies, for 
k = l,..., n + 2, 

car) (-ilk @f-i? > o On I,9 

(‘0 Wk Q J-1, (f-@I(x) b = Ill./‘- All* 7 

where I, < ... < IR+2 are disjoint (nonempty) open intervals of [0, 11, and 
o = fl, then, since ]]]f-j]]]* > ]]]f-j]]], it follows by Theorem 3.1 that 
p’= p*. Assume that p* does satisfy these conditions. The fact that p* is the 
unique minimum approximant with respect to the gauge I]]. ]I]* is proven in 
exactly the same way as was the analogous result of Theorem 3.1. It thus 
remains to prove that if the infimum (3.3) is attained by some FE II,,, then fi 
satisfies conditions (a’) and (b’). 

We may assume f-p’ f 0. Analogously to the definition given in the 
proof of Theorem 3.1, we define a definite interval to be an I = (a, /.I), 
0 < CY < /3 < 1, which, for some u = f 1 (the Signum of Z), satisfies 

(1) 4f-fl>O on I; 
(2) TV 1, U-p3W dx = Illf-P’llle ; 
(3) no open proper subinterval of I satisfies (1) and (2). 

Again, the set of definite intervals is finite but nonempty, and they are 
mutually disjoint. Let them be 

J, < ... (J,. 
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As in the proof of Theorem 3.1, assume that 

have the same Signum u,, 

have the same Signum -0,) and so on, until we reach 

having the same Signum. We shall prove that s > n + 2. 
Suppose s < n + 2, and assume that 

WY+’ (f--p3(x) 2 0 on J,, 

whenever m k-, + 1 < E < mk, k = l,..., s, where m, = 0 (otherwise consider 
-f). We proceed as in the proof of Theorem 3.1. As therein, there exists, for 
j = I,..., s - 1 (in case s > l), a point xj satisfying Jmj < xj < Jmj+, , and 
(f-$)(xj) = 0. Set, again, 

S-l 

(~1 ifs= 1). 

Thus pEx,. Entirely analogously to the reasoning of the proof of 
Theorem 3.1, we can show that, for j= l,..., s, there exists an s(j) > 0 such 
that, for all E E (0, dj)), Illf-p’- ~PIII~,~~~-,,~.~ < Illf-FIII*, where x0 = 0, 
and x, = 1, with an obvious meaning for the lef’t-hand side of the inequality. 

However, our problem is that it is not, in general, true that 

max W-P’- ~PIII*,~~~-~,~~~ = Illf-F- EPIII*. 1 <i<s 

To explain, if y is some fixed point in (0, l), and if g E C[O, I] takes on both 
positive and negative values in every neighborhood of y, then we do have 

Ill gIlI* = maxIIll glll*,ro,yI~ Ill glll*,,y,lII. (3.4) 

However, (3.4) may fail to hold if we merely know that g(y) = 0. It is this 
problem which we must deal with in considering I]]f-d - .zpIII*. 

Let us first dispose of those cases wherein I]]. (\I* can be “decomposed” as 
in (3.4). Suppose 1 <j < s - 1. Our only requirements on the point xj were 
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Jm.<xj<Jm.+1, and (f--p?)(xj) = 0. Assume now that j,,,, < j,,,j+,. We 
claim that wk can choose xj so that 

Illf-P” - VIII* = maxNlf-fi- ~~Ill~,lo,xjI~ Illf-P’- vllI*,,,.llL 
for all E > 0. 

To prove this, set Jmj = (aj, pi), Jmj+ 1 = (yj, dj). Since j,,,, < jmj+ i, pj < yj. If 
there exist a, b, /Ij < u < b < yj, for which f--F = 0 on [a, b], then choose xj 
to be any point of (a, b), and our claim is easily verified. Assume now that 
this is not the case. By assumption, 

(-l)j+’ (f-3 > 0 on Jmi, 

(-mf+9>0 , on Jm.+,, 

and J,,,,, J,,+, are definite intervals. Thus there exist points zi, z2 for which 
pj < ~1 < ~2 < yj, and 

F-1)’ (f-ml) > 03 

(-l)‘+’ (f-jqz,) > 0. 

Set 

Clearly 

xj = sup{x: x < z2, (-1)’ (f--p’)(x) > 0). 

(9 (S-bl(xj) = 0; 
(ii) for every 6 > 0, there exists a y, E (xj - 6, xj), and a 

y, E (xj, xj + 6) for which 

WY (f-p”>(Yl) > 03 

(-ly’+’ (f-a(h) > 0. 

Then 

(-q’+‘p(x) > 0 on (xj - 6, xj), 

and 

(-l>jP(X> > 0 on (Xj’Xj + 6). 

Thus, for all E > 0, f-j- cp assumes both positive and negative values in 
each neighborhood of xi. 

We have therefore reduced our problem to the following situation: Jmi= 

640/35/2-S 
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(aj, p,), J,,.,, = (Jj, S,) (and thus xj= /I,), and there exist positive 
E,, E* ,..., E, + 0, such that, for n = 1,2 ,..., there is an open interval I, 3 x,~, 
and a cn = f 1 satisfying 

0) df-d - 5 P> > 0 on I,, 

(4 0, II, (f-3 - w)(x) dx 2 Illf-P’III*. 

If we can prove that such a situation cannot occur, then we will have proven 
our theorem. 

For n = 1, 2,..., set I, = (a,, b,), and assume, without loss of generality, 
that u, = (- l)j+ I. We shall first prove that b, --) /lj (=xj). 

For every 6 > 0, there exists a zg E cO,,pj + S) for which 
(- 1)j (f- A(zs) > 0, since J, and J, + I are definite intervals. Thus, for n 
sufficiently large, (-1)’ (f--p’- s,pj(zJ > 0, and, hence, pj ( b, < zg < 
pi + 6. Thus b, --) /Ii. I n a similar manner, it can be proven that, if a, < aj for 
an infinite number of n (which is only possible if x,-, = aj), then a, + aj. 

Before evaluating (-ly’+’ I,. (f--J - E, p)(x) dx, let us estimate from 
above (-lY”‘I~~(f-P’-~,~)(x)dx. We have (-ly”(f-j--s,p)>O 
on I,,, and (-ly’p>O and (-ly’(f-$)>O on @j,b,)CJ,+,. Therefore, 
on ~j,b,),If-~-E~PI~&n/PI,andthus 

I 
(- 1 )j+ ’ fbn (f- p” - E, P)(X) dx < E, i,“:’ 1 p(x)1 dx 

. bj J 

G&n ll~llm (bn-pj) 
= 0(&J. 

Similarly, if a, < aj for an infinite number of II, then 

(-1)” ’ Jaj (f- fi - E, p)(x) dx = o(E,), 
“n 

and, hence, 

(-l>j+’ j (f-F- e, p)(x) dx 
IIt 

= WY+ l/, “[=/ ojI u--F - E, P)(X) dx + 44. 

n . 

It is easily seen that a* = ii&,, 
(-ly”’ (f-Z?) and (-l)‘+‘p 

U, E [CZj,/?j). Since (-ly+’ (f-F- s,p), 
are all nonnegative on [ aj, pi], we obtain 

(--l)‘+‘I) 
(f- j.7 - E, p)(x) dx < (-l)‘+ I [‘I (f-j)(x) dx - E, C 

n n(a, 4.1 I’ J . aj 

= Illf-@III* - %C? 
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FIGURE 2 

where C = J2 1 p(x)1 dx, a fixed positive constant. Thus 

(-Vi+’ 1’ (f-P- E,, P)(X) dx < Illf-All* - q,C + o(E,), 
‘I” 

and therefore, for n sufftciently large, 

(-l)‘+‘j. (~-P’-E,P)(x)~~< Illf-P’III*. 
IIt 

Theorem 3.2 is now completely established. 

Remark. Theorem 3.2 states that the infimum (3.3) is attained if and 
only if it is attained by the p* of Theorem 3.1. This does not imply that if 
(3.3) is attained, then jllf-p*JJJ = Illf--p*\I\*. To see this, consider f of 
Fig. 2, where each of the four isosceles triangles has base l/4, and area 1. 
Here inf{lllf-pill: p E 7z0} = lllflll = 1, while inf{lllf--pllj* :p E q,} = 
lllf III* = 2. 

4. ADDITIONAL RESULTS 

We have thus far proven (or disproven) existence, uniqueness and charac- 
terization results for best polynomial approximation with respect to 11). 111 and 

Ill * Ill* 9 analogous to well-known theorems for II . Ila,. In this section we prove 
analowes, for 111~11) and lll~lll~, of other known results concerning best 
approximation in L m. 

Our first theorem identifies the manic polynomial of degree n + 1 with 
minimal gauge. For rz = 0, 1,2 ,..., let F,, and o,, denote the manic Chebyshev 
polynomials of the first and second kind, respectively, of degree n, on (0, I]. 
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THEOREM 4.1. Let n > 0. Then 

min ]]]x’+’ Pen, -PIII = 2; IIIx”+’ -~lll* = III~n+llll ” 

=---&ll~+2ilm =s. 

Proof. It is known that ]]Ffl+,]], = 2P2n-3. The polynomial ?-n+,(x) is 
manic, has n + 3 points of equioscillation 0 = x, < x, < . . . < x, +* = 1, and 
is strictly monotone on (xj-, , xj), j = l,..., n + 2. Therefore o,,+ i(x) E 
~~+2Wl(n + 21 is manic, and has the Signum (-l)j+” on (x,~-, , x,~), for 
j = l,..., n + 2. Thus 

.xj 

(-l)j+njX,-, 0,+,(x)dx= (,tf’i” j;-, F;+,(x)dx 
I 

= ‘, yin [Frl+2(xj>- Fn+2(x,j-I)] 

for j = l,..., n + 2. The result now follows from Theorems 3.1 and 3.2. 

Remarks. (a) I?,,+ i(x) is also the unique manic polynomial of degree 
n + 1 of minimum norm in L’[O, 11. However, it is not this which implies 
Theorem 4.1. The latter follows, as its proof shows, from the fact that 
8,+ i(x) is the derivative of the L* [0, 1 ] minimal manic polynomial of 
degree n + 2. 

(b) From Theorem 4.1 we easily obtain the following extremal 
property of FJx). Let n > 1, and set, for every p E x,, ((p)) = 
max{]p(b)-p(a)]: O<a<b< 1,p is monotone on [a,b]}. Then min(((p)): 
p E rr,, p manic} = ((F,,)), and ~Jx) uniquely attains this minimum. 

Let n > 0 be fixed. For each fE C[O, 11, let p(J x) E rr,, denote the unique 
polynomial which attains the minimum in (3.1). Since the gauge ](I. (I/ is not a 
continuous mapping of C[O, 1 ] into the reals (see the sentence following 
(2.4)), it is natural to ask whether p(y,x) can be viewed as a continuous 
mapping of C[O, 1 ] into itself. 

THEOREM 4.2. Let f, f, E C[O, 11, m = 1,2 ,..., and assume that f, 
converges uniformly to f on [0, 11. Then p(f,,,;x) converges uniformly to 
PWX) on [O, 11. 
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ProojI Since ]]f,]], is bounded, so is ]] p( f, ; a)]], . Set 

p(f,; x) = t Q)Xk, m = 1, 2,... . 
k=O 

Then uLm,“’ is bounded, for k = 0, 1 ,..., n. Since p(f, ; x) is uniformly bounded 
and (as is easily seen) equicontinuous on [0, I], it has a subsequence 
t)(f,,; x) which converges uniformly to some p’(x) E rr,, on [0, 11. We shall 
prove that j(x) =p(f; x). S ince this will be true for every uniformly 
convergent subsequence, the result follows. 

We may assume that p(f,; x) itself converges uniformly on (0, 1 ] to 
p”(x) f f(x). By Theorem 3.1, for m = 1,2 ,..., there exist disjoint (nonempty) 
open intervals of [0, 11: Z$“” < e.. < Zp+)z, and a urn = f 1, for which 

(- 1)” ~,(fm(X> - P(fm ; xl> > 0 on Zim’, 

and 

(-ilk. j (f-p')(x>dx> m!m Illf,-p(f,; *)lll. Ik 
BY (2.51, lim,,, IIK -AC,; 3ll> IIIS-P”III. The polynomial FC4 
therefore, satisfies the property of Theorem 3.1. Thus J?(X) E p(fi x), and 
Theorem 4.2 is proved. 

We now present analogues of a fundamental result of de La Vallee- 
Poussin [ 51. 

THEOREM 4.3. Let fE C[O, 11, n > 0, and p E q,. Suppose a = *l, 
J, < .a. < J,,+2 are disjoint (nonempty) open intervals of [0, 11, and 

(-Uk a--P> > 0 On Jk, k = l,..., n + 2. 

Zf p & p * of Theorem 3.1, then 

Illf-P*lll> ,,y&+* (-Uk ~7 j (f-p>(x) dx. 
Jk 
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Remark. It is interesting to note that the last inequality may be false 
when p E p*, even if we replace > by >. The function f of Fig. 2 (end of 
Section 3), with 12 = 0, CJ = - 1, J, = (0, l/2), J, = (l/2, l), p z p* z 0, is an 
example. 

Proof. Assume the theorem is false. Thus there exist p E z,,, p f p*, 
CJ = f 1, and J, ,..., J,, *, as above, for which 

III~-~*III G w u jJ, (f-p)(x) dx, k = l,..., n + 2. 

We shall prove that, for k = l,..., n + 2, there exists an xk E Jk for which 
(- l)k a( p* - p)(xk) > 0. As in the beginning of the proof of Theorem 3.1, 
this leads to a contradiction. 

Suppose that there exists a k E {l,..., n + 2) for which (-l)k a(p* -p) < 0 
on Jk. Then 

Wk W-P*)(x) > (-uk a--P)(x) >O 

for all x E Jk, and therefore 

III~-~*III G t-v o jJ, (f-p)(x~ dx < t-v u jJ, (f-p*)(X) dx 

G Illf- P* Ill* 

This contradiction proves the theorem. 

THEOREM 4.4. Assume the first two sentences of Theorem 4.3. Then 

inf Illf- 4 Ill* 2 
9sn, 

, <$f, 2 (- Ilk 0 j; (f- P)(X) dx. 
k 

Proof. If p fp* of Theorem 3.1, then, from Theorem 4.3 and (2.3), 

min 
I<k<nt2 

(-Vu j U-PNWX < Illf-~*I11 
Jk 

If inf9Enn Illf- 4 Ill* is attained, then, by Theorem 3.2, it equals I(lf-p*III* 
which is > each (-l)k u (,, (f-p*)(x) dx. 

It therefore remains to consider the case wherein p-p*, but 
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infqcn, Illf- 4lll* < W-P* Ill*. A ssume that the theorem does not hold in 
this case, and choose FE rr, so that 

lllf-All* < ,<yp,, (-Uk cj (f-~*)(x)dx< IV-chill*. (4.1) 
Jk 

As in the proof of Theorem 4.3, for k = l,..., n + 2, there exists an xk E Jk for 
which 

c-v 4F-P*m,) > 0. 
Thus p’ E p* (see the sentence following (3.2)), contradicting (4. l), and the 
theorem is proved. 

We now provide an analogue of Bernstein’s comparison theorem [ 1, p. 8 ] 

for Ill . Ill. 

THEOREM 4.5. Let f, g E C[O, 11, and n > 0. Assume that f(“+‘), g(“‘l’ 
exist, and f (*’ ” > 0, throughout (0,l). Assume also that 

lg (“+‘)(x)I <f’“+‘)(x) for all x E (0, 1). 

Then 

Ef Ill g -P III G z$ Illf- P III. ” ” 

ProoJ: Let p* E rt, satisfy 

$n” Illf- P III = IV-P” III* 
” 

(4.2) 

Since fcnt”>O on (O,l), there exist points O=X~(X,<...<X,+~=~ 
such that, for k = l,..., n + 2, 

(-ly+” (f-p*) > 0 on (xk-,,xk), 

and (- I)k+” J‘;:-, (f-p*)(x) dx = []]f- p * I]]. This follows from 
Theorem 3.1 and from the fact (an application of Rolle’s Theorem) that 
f-p* cannot have more than n + 1 distinct zeros on [0, 11. 

Let p’ E q, interpolate g at x1 ,..., x,+ , . Then 

lg-FlGlf-P*I on [O, 11. (4.3) 

Since (g --J?)(x~) = 0, k = l,..., n + 1, (4.3) implies that 

pmE$” Ill g -PIlI < Ill g -All = ,,y+, Ill g -~lll,xk-,.x,, . 
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< max ,(k$n+* ,:*_, I(s-a(x>l~x I 

< max ,<k(“+2 y lu--P*m)l dx , Xk-1 

= Illf-P* Ill = zz Illf-Pill. ” 

(4.3) has nothing whatsoever to do with the gauge ]]]. (I]. It is a known 
result, and may be found, for example, in Kimchi and Richter-Dyn [4]. 

Remark. It is natural to ask whether Theorem 4.5 remains valid if ]]]. ]]I is 
replaced by ]I( .]]]* (and min by inf). Since, under the hypotheses of 
Theorem 4.5 (see its proof), ]]]f--p*]]/ = ]]]f-p*]]]* = inf{]]]f-pi]]* :p E n,}, 
while min{]](g-p(]]:p E rccn} < inf{/]]g -pill*: p E rc,}, such a result may be 
strictly stronger than Theorem 4.5. As a matter of fact, that result is true. 
However, the above simple method of proof is insufficient to prove it. Our 
proof, which we omit, is longer, more involved, and similar to that of 
Theorem 3.2. 
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