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1. INTRODUCTION 

In this work, we study the following problem. For k = 1,. . . , m, let 

& = (u&)$=~ be distinct n x n real symmetric (Hermitian) positive 
semidefinite matrices. Characterize the multivariate real-valued functions 
f : IFP 4 IR (complex-valued functions f: Cm -+ C) such that the matrix 

(f(Al> . . .,A,))ij :=f(c&..,a;), 1 I i,j I n, 

is also always positive semidefinite (Hermitian positive semidefinite). In 
the real case for m = 1, a solution to this problem was first given by 
Schoenberg [14], by totally different methods. Similar questions in the real 
case for m = 1 were studied in Christensen and Ressel [l], FitzGerald and 
Horn [4], and Rudin [ll]. The complex case for m = 1 was considered 
by Hertz [5]. Variations of this problem will also be studied here. The 
motivation for the study of the problem came from certain problems in 
multivariate interpolation; see Micchelli [8] and Powell [9]. 

2. THE REAL CASE 

We denote by Pg the class of all real n x n positive semidefinite matrices, 
and by Fg the class of all real-valued functions f : IR” -+ W such that 
for all n, f(Al, . . . ,A,) E Pi whenever AI,. . . ,A, E Pi. A function 
f : IF? 4 R is said to be real entire if it is real on Bm and is the restriction 
to Wm of an entire function on C”. We also use ZT and llX7 for all vectors 
in Zm, Iw”, respectively, with nonnegative coordinates. Finally, for x E I[$” 
and cy E ZI;, we use the standard notation xa = xy’ . . . xkm. 

The main result of this section is the following. 

THEOREM 2.1. Let f: R” 4 IR. Then f E F,” if and only if f is real 
entire of the form 

f(x) = 1 CCY, XEP, (2.1) 

c&T 

where c, 2 0 for all (Y E ZT. 

We remark that for f E Fi the positive semidefinite kernel K(z, y) = 
f ((x, y)), where x, y are elements in some Hilbert space H, arises as the 
reproducing kernel of a generalized weighted Fock space which is useful for 
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certain estimation and prediction problems of nonlinear system and signal 
analysis (de Figueiredo [2]). This paper gives an explicit description of the 
associated Hilbert space for which K is a reproducing kernel. The case 
where H = L’[O, l] and f(z) = e”, z E R, is especially important. 

It is convenient to divide the proof of the above theorem (especially the 
necessity) into a series of facts. Firstly, we prove the sufficiency of (2.1), 
which is elementary. It is based on the following simple lemma. 

LEMMA 2.2. Assume that f, g E Fg, h E Fi:, and a, b 2 0. Then 

(i) af + bg E F$; 
(ii) fg E Fg; 

(iii) h o f E F$, where (ho f)(x) := h(f(x)), x E R”; 
(iv) all afine functions nonnegative on Rl; arc in Fg; 
(v) F, m is closed under pointwise convergence. 

Proof. (i) is a consequence of the cone property of Pi, while (v) is 
a consequence of its closure. (ii) follows from the Schur-product theorem. 
Namely, if A,B E P& A = (azj), B = (bij), then the Schur product of A 
and B given by (a,j bij) is in P$ (see e.g. Horn and Johnson [6, p. 4581). 
Both (iii) and (iv) hold essentially by definition. ??

As an immediate consequence, we have: 

PROPOSITION 2.3. If f : R” 4 IR is real entire of the form (2.1), with 
c, >_ 0 for all Q E ZT, then f E Fg. 

To prove the necessity portion of Theorem 2.1, we start with 

PROPOSITION 2.4. Assum.e that f E FE\(O). Then: 

(i) f(x) 2 0 for x > 0, and f(x) > 0 for x > 0. 
(ii) f is nondecreasing (elementwise) on Rl;. 

(iii) Every 7j = (71,. . ,qm), Q E {-l,l}, k = 1,. . . ,m, determines a 
linear map: q(x): = 77x := (nixi,. , qmz,), x E iP. For all such 
qwehavef&foq~F$. 

(iv) For all c >_ 0 set (E,f)(x): = f(x + c),x E IRm. Then EJ E F$. 
(v) f E C(Rrn). 

Proof. (i): If A E P$, then a,i > 0, a = 1,. , n. From this fact we 
immediately obtain that f(x) > 0 for x 2 0 (i.e., xk 2 0, /C = 1,. . ,m). 
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For the second claim of (i) we assume to the contrary that x > 0 and 
f(x) = 0. Since f # 0, there exists a y E W” for which f(y) # 0. Set 

kc= (zl yGxk), k=l,..., m. 

Since Al, E Pi, k = 1,. . . , m, we have that 

( f(x) f(Y) E p2 

f(Y) f(Y2/X) ) w. 
Therefore, it follows that 0 = f(x)f(y2/x) > f2(y) > 0, which is a contra- 
diction. 

(ii): Let x 2 y 2 0 (i.e., Xk 2 & 2 0, k = 1,. . . ,m). Since 

for each k, we have 

f(x) f(Y) E p2 

f(Y) f(x) > Iw 

and therefore f(x) 2 f(y). 
(iii): For r& E (-1, l}, k = 1,. . . ,m, we have that 

Let Al,..., A, E Pi. Then 

for each k = 1, . . , m, and consequently we conclude that 

C= f(Al,...,&J f(mA1,...,wAn) 

f(mAlr.. ., w%J f(A,, . . . , An) 

Set 
&* = 1 O E gpx2n, 

( > *I I 
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where I is the n x n identity matrix, and observe that 
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D* = Q$CQ, E Pp. 

The principal submatrix of Dh determined by its first n rows and n columns 
is a matrix in Pg. This submatrix is given by 

W(A1,. . . ,A,) ~f(vlA~,. . > GA,JI. 

Thus, we have shown that whenever Al,. . . , A, E PG, then 

which simply means that f * f o n E Fg. 
(iv): Let J denote the n x n matrix all of whose entries are one. Then 

J E PE, and for anyAr,...,A, E Pi andcLO,Ak+CkJE P$ foreach 
k=l,..., m. Therefore 

f(Al + cl J, . . , A, + c, J) E Pg. 

Thus EC f E Fg for any c > 0. 
(v): Let x,y 2 0. Set 

( 

@z-K 
Ak = & xk > ’ 

k = l,...,m. 

Each Ak E Pi, and therefore, setting xy = (xryr, . . . ,xCmym), we obtain 

( 

f(x) 
f ((XYP) 

f((xyF2) E p2 
f(x) ) 

LR, 

which implies that 

f(X)f(Y) L f2((XY)1’2) 

for all x,y > 0. Since f(w) > 0 for w > 0 [by (i)], we can define 

(2.2) 

g(x) = lnf (0, 

where ex = (e”‘, . . . , e”vo ) for all x = (51,. ,x,) E Wm. From (2.2), we 
obtain 

g(x) + g(y) 
2 (2.3) 
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for all x, y E Rm. That is, g is midconvez on lP. From (ii), f is non- 
decreasing on Rl;t. Thus g is nondecreasing (elementwise) and midconvex 
on W”. Any such function (see e.g. Roberts and Varberg [lo]) is necessarily 
convex and hence continuous on the interior of its domain of definition. 
Thus g E C(llP), which implies that f E C(int Ry). In summary, we have 
observed that if f E F;Wm, then f E C(int Rl;l). Applying (iii) and (iv), it 
now follows that f E C(IkP). ??

We will first prove the result under the further assumption that f is in 
fact in C”(Wm). 

For CY = (~1,. . . , cx,) E ZI;, we use the notation 

PROPOSITION 2.5. Assume f E F$’ n Cm(IRm). Then 

(D”f)(x) 2 0 

for all cr E Zy and x 2 0. 

Proof Let Icy] = cri +...+cL~ = r. For x = (z~,...,z~) 2 0 and 
for any set of real numbers {~ik : i = 1, . . . , n, k = 1, . . . , m}, the matrices 
Am = (aFj(E)), i,j = 1,. . . ,n, k = 1,. . . ,m, defined by 

(+(&) = xk + EYikYjk 

are in Pi for all E 2 0. Thus f(Al(~), . . , Am(e)) E P{, and for every 
w E EP. 

= 2 w.f(z1 + EYilYjlr . . . ,xrn + ~YimYj&Jj. 
i,j=l 

Since f E C~(IIP), we have from Taylor’s theorem 

f(x1 + EYilYjl, . . . ,%x + EYimYjm) 

=_f(x1,...,5,)+.. .+: c 
IPI=r 0 ; (YilYjlP . . . (YlimYjmP 

xDyf(x,, . ,x,) + o(&‘+l). 
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For n sufficiently large, we can choose the {yik : i = 1, . . , n, k = 
l,... ,m}and{vli:i=l,...,n}sothat 

a=1 

for all 7 = (71,. . . , rm) E Zy satisfying IyI < T, except that for 7 = (Y we 
require 

(See Remark 2.1 below for a construction of such {yik} and {wi}.) Thus, 

n 

0 L c ‘WJ(51 + EYilYjl, ‘. . (2772 + EYimYj??Jq 
z,j=l 

=- 
T. 0 

2 
ET r 

’ a 
D”f(Xl) . . . ,Xm) kWi7Jz “.7J.$ ( ) + o(E’+y. 

2=1 

Letting E J, 0, it then follows that D”f(x) 2 0. ??

REMARK 2.1. There are numerous methods of constructing the {yin : 
i = 1,. , n, k = 1,. . . , m} and {wi : i = 1,. . n} as above. Here is one 
such way for n sufficiently large. Let al,. . . , a, be any n distinct positive 
numbers. Choose any m positive numbers cl, . . , c, such that the values 

(A c) = C”= P Ic r kck are distinct for all p E ZT satisfying IflI <_ r. Now, set 

y& = ai’, i= l,...,n, k= l,...,m. 

Recall that for every positive integer s the functions ~~3, j = 1,. . . , s, 
constitute a T-system on (0, oo) for any distinct err, . . . , us. That is, the 
functions x”J, j = 1, . . , s, are linearly independent on every s distinct 
points in (0, co). Thus it follows that the vectors 

{(y~~...yl;‘;;l,...,y,P11...y~~): I/31 IT-} = {(a\“c’,...,a~s’c)): I/3] ST-} 

are linearly independent in 8%“. For 

n> 
r+m ( 1 m 

this linear independence allows us to construct the requisite {wi : i = 
l,...,n}. 
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A function f E COO[a, b) IS said to be absolutely monotone if fck)(z) 2 0 
for all 2 E [a, b) and each Ic E Z+. This class of functions was introduced 
by Bernstein (see Widder [15, Chapter IV] for an excellent exposition). If 
f is absolutely monotone on [a, b), then it is known that f is real analytic 
thereon. That is, 

for all z E [a, b), and thus f is the restriction to [a, b) of a function analytic 
in {z : )z - al < b - u}. 

This result has been extended to domains in W2 (and the case Iw” follows 
analogously) by Schoenberg [13]. This leads us to 

PROPOSITION 2.6. If f E Fg n Ca(IRm), then f is real entire and 

f(x) = c Cd”, (2.4) 
aEZ;n 

where c, = (D”f)(O)/a! L 0 for each a E ZI;. 

Proof. From Schoenberg [13, Theorem 5.21 and Proposition 2.5, we see 
that f has the form (2.4) for x 2 0. To extend this result to all x E Rm, 
we apply (iii) and (iv) of Proposition 2.4. ??

We gather the remaining steps in the proof of Theorem 2.1 under one 
heading. 

Proof of Theorem 2.1. We assume that f E F$, and wish to prove 
that it is of the form (2.4). From (v) of Proposition 2.4 we have that 
f E C(Rm). Let 4 E Cr(Im), w h ere I = (-1,O). That is, 4 is a C”(RWm) 
function whose support lies in Im. Assume that 4 is a density function so 
that 4(x) > 0 for all x E Rm, and 

s Iip~,, 444 dx = 1. 

For E > 0, set 

f&) = $ s,-, f (x + YM-yle)dy. 

It is easy to see that fE E Cw(IRm) and lim,,e+ fE = f, where the conver- 
gence is uniform on compact subsets of lRY‘. 
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By definition, $(-y/s) > 0 only if 0 < yk < E, k = 1,. . . , m. From 
(iv) of Proposition 2.4, E,f E F,” for each such y. Thus, if A,, = (a,“) E 
Pi, k = 1,. . . , m, then for each w E R”, 

2 WifE(Ujj,. . . ) ay& 
i,j=l 

1 
XX- 

&m 
2 wJif(a;j+yl,... > a; + ym)‘wj 4(-y/&) dy L 0, 

t,j=l 

implying that _fE E Fg. Since fE E Fg n CW(lRm), we have from Proposi- 
tion 2.6 that fE real entire and 

where ci > 0 for all CY E Zy. Call the right-hand side of the above equation 
h,(x). Then h, is an entire function on Cm. 

Since fc converges uniformly on compact subsets of 1w” and for every 
z E @” we have ]h,(zi,. . . ,zm)( 5 fc(jzll,. . , Izml), the set {h, : E > 0) 
forms a normal family on any bounded subset of C”; see e.g. Rudin [12, 
p. 2721. Consequently, some subsequence converges, on compact subsets 
of @“, to an entire function h. But f and h agree on IWm, since fc and h, 
agree on Iw”. Therefore f is of the desired form (2.1). w 

In the last part of this section, we present variations of Theorem 2.1 for 
conditionally positive semidefinite matrices. By Qs we denote the set of 
all n x n matrices A = (aij)tj=l which are real symmetric and satisfy 
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c Wia,jWj > 0 
i,j=l 

provided that Cy=“=, wi = 0. Such matrices are said to be conditionally 
positive semidefinite. Let GE denote the class of functions f : IF” + iR for 
which f (Al,. . . , A,) E 9% if Al,. . , A, G PG, for any n. 

THEOREM 2.7. A function f : IP + R is in GE if and only if f is 
real entire of the form 

f(x) = c Gz, x E Iv”, (2.6) 
c&q 
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where c, L 0 for all cy E ZT\{O}. 

Proof. Assume f E G,“. For each Al, . . . , A, E Pi set 

BI, := > k=l,...,m. 

Thus B1,. . . , B, E Pin+‘, which implies that f (Bl, . . . , B,) E Qi+‘. It 
follows that 

f (Al,. . . , Am) - f (0,. . ., O)J E Pw”, 

and so we have established that f - f (0) E Fg. Applying Theorem 2.1 to 
the function f - f (0) we obtain (2.6). 

Conversely, any f of the form (2.6) can be written as f(x) = f (O)+g(x) 
where g E Fg, so that f (Al,. . . , A,) = f (0)J + g(A1,. . . , A,). Theo- 
rem 2.1 implies g(Al, . . . , A,) E Pi and consequently f (A,, . . . , A,) E 
Q;. This proves the theorem. W 

For our next result we let H,” be the class of functions f : R” + R for 
which f (Al,. . . , Am) E P$ if AI,. . . , A, E Qi, for any n. 

THEOREM 2.8. A function f : IRim + Ii% is in HE if and only if f is 
real entire and (Da f)(x) 2 0 for all (Y E Z;2 and eweq x E R”. 

REMARK 2.2. As we already pointed out, Schoenberg [13] showed that 
any f E Cm(Rm) with (D”f)(x) > 0 for all cy E ZI;” and x E W” is real 
entire. Another equivalent integral representation will be described in the 
proof of the theorem. 

Proof Suppose first that f E Hg. Since Pz C Qk, it follows that 
f E Fw”. Thus from Theorem 2.1, f is real entire and (D”f)(x) 2 0 for 
all (Y E Zy and x E al;. To extend these inequalities we observe that 
whenever A E Qi it follows that A + cJ E Qi for any c E IR. Thus it 
follows that E, f E Hz and so E, f E F,“. Consequently, (P f)(x) > 0 
for all x E KY” and (Y E ZT. 

Conversely, from Schoenberg [13, Theorem 5.11 (by replacing IC with 
-z) it follows that 

f(x) = k,a e(@)da(t), 
+ 

(2.7) 
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where the integral is an improper Stieltjes integral which is absolutely con- 
vergent in Wm, and do is a nonnegative measure on lRT. Schoenberg ac- 
tually proved this only for m = 2, but the proof extends to any m. For 
m = 1, this is a famous result of Bernstein; cf. Widder [15]. 

To make use of this representation we recall that A E Qk if and only 
if etA E P$ for all t 2 0; cf. Donoghue [3]. If Al,. . , A, E Q$, then 

Cy=“=, tjAj E Q; f or all t = (tl,. . ,tm) E IRT. Hence, e C:l&A, E pn 
IR’ 

which by (2.7) implies that f(Al, . , A,) E Pi. This proves the theorem. 
??

Finally, we let 1” denote the class of functions f: Rm ---f lR for which 
f(Ai, , A,) E Q$ if Al,. . , A, E Q$, for any n. 

THEOREM 2.9. A function f: IV’ 4 IR is in I; if and only if f is real 
entire and (D”f)(x) > 0 for all x E R” and Q: E Q\(O). 

Proof. As in the proof of the previous result, it is easily verified that 
whenever f E IF then E,f E I$ for every c E II%“. Since P$ 2 Q$, it 
follows that if f E I$ then f E GE. Thus E,f E GE for every c E R”. 
From Theorem 2.7 we see that f is real entire and (Da f)(x) > 0 for all 
x E Rm and (Y E Z;l\{O}. 

Conversely, assume f is real entire and P f (x) > 0 for all (Y E ZI;“\{O} 
and x E R”. Since f(x) is nondecreasing in each variable, the function 

fc(x) := f(x) - f(c) 

is also nonnegative on {x: x > c}. Thus from Schoenberg [13, Theorem 5.11 
fc admits the representation 

fc(x) = L,,, f+)d+), 
I 

where do is a nonnegative measure on ll%T and the integral converges ab- 
solutely in {x: x > c}. As before in Theorem 2.8, we see that 

fc(Al,...,A,) E P; if Al,.. .,A, E Q;, 

where c is chosen to be any vector so that afJ > ck, 1 5 i. j _< n, 1 5 k 2 m. 

But. clearly, 

f (Al,. . , Am) = f (c)J + fc(A1,. .> A,) E Q;, 

and so f E Ig, which proves the theorem. ??
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3. THE COMPLEX CASE 

In this section we investigate the analog of some of the results of the 
previous section for complex matrices. For this purpose, we let PC denote 
the class of complex n x n Hermitian positive semidefinite matrices, and FF 
the class of functions f: Cm + @ for which f(A,, . . . , Am) E P@” whenever 

Al,..., A, E PC for all n. 
The main result of this section is the following. 

THEOREM 3.1. Let f: @” -+ Cc. Then f E Fc if and only 2f f has the 
form 

f(z) = c ca,ljzU~~, ZEP, (3.1) 
a,PeZ;I’ 

where ca,o 2 0 for all CY, p E 227, and the power series converges absolutely 
for all z E Cm. 

We remark, for the case f E F&, that the positive semidefinite kernel 

qz, C) = f ((z, C)), 876 E cn, is the reproducing kernel of certain Hilbert 
spaces of analytic functions on the unit ball in C.“. This identification is 
useful for computing n-widths of certain classes of analytic functions; see 
Micchelli [7]. 

In proving the sufficiency of (3.1), we utilize an analog of Lemma 2.2. 

LEMMA 3.2. Assume that f,g E Fc, h E Fk, and a, b 2 0. Then: 

(i) af + bg E F@“. 
(ii) fg E Fz. 

(iii) ho f E F@“. 
(iv) All afine functions of the form a(zl, . , zm) = a0 + Cj”=, ajzj + 

C,“=,bjZj where aj 2 0,j = O,l,..., m, and bj _> 0,j = l,..., m, 
are in F@“. 

(v) FC m is closed under pointwise convergence. 

On the basis of Lemma 3.2, whose proof parallels the proof of Lemma 
2.2, we have: 

PROPOSITION 3.3. If f: Cc” + Cc has the form (3.1) with ca3a 2 0 for 
all a,/3 E ;ZT and the power seraes converging absolutely for all z E Cm, 

then f E Fr. 

The more difficult part of Theorem 3.1 is the proof of the fact if f E FF, 
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then f satisfies (3.1). We start with: 

LEMMA 3.4. Let f E FF, and 

f(z) = u(z) + iv(z), 

where u(z) = Re f(z), and u(z) = Im j(z). Then for z E Cm 

(i) f(z) = So, 
(ii) 21(Z) = U(z), 

(iii) v(Z) = -v(z), 
(iv) u E Fc, 

(v) f IE??” = I&+, E Fg. 

Proof. (i): If A = (ajl) E PE, then ujl = ELM. Thus, if Ak = (ail) E P@“, 
k = 1,. . . , m, we must have 

Thus f(Z) = f(z) for all z E C”. 
Statements (ii) and (iii) are immediate consequences of (i). As for (iv), 

we use (iii) and (iv) of Lemma 3.2 to conclude that f(.) E FF. Conse- 
quently (i) of Lemma 3.2 implies that 

f(.) + f(‘) E F”. 

2 @ 

Thus u E F@“. Finally, to prove (v) we note that from (iii), whenever 
x E IWm it follows that U(X) = 0. Thus fi~,,~ = ~[w~,,:l.l%” -+ Iw. Since 
P$ C_ Pz, we easily conclude that U/R.,, E Fg. ??

We will initially consider U(Z) = Ref(z). Note that u G F@” while 
u(~,,< E F$, and for each z E C”, U(Z) E Iw. For d = (dl,. . . ,d,) E Cc”, 
we use the notation IdJ = (IdI\, . . , jdm\), lldlloo = max{ldjj : 1 5 j L: m}, 
and also I/dllz = (Cj”=, ldj12)l12. 

PROPOSITION 3.5. Let c > IdI, c,8 E EP, and d E P. Then the 
function g defined by 

g(z) = 24~ + c) & [u(eiez + d) + u(eiez + a)], 

where eiez = (eiO1zl, . . . , eisV- zrn) for z = (~1,. , z~), is in F@“. 

(3.2) 
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This result and its proof are complex analogs of (iii) and (iv) of Propo- 
sition 2.4. 

Proof. Let Ah E P@“, k = 1,. . , m. For ok E R, 

and for ck 2 I&(, 

E P& 

Thus 
Ak + CkJ eiek f dkJ 

e -i*kAk +&J Al, + CkJ > 
E PP, 

where, as earlier, J is the n x n matrix all of whose entries are one. Thus 
the matrix 

“(A1 + cl J, , Am + cm J) u(e@l A1 + dl J 3 , 

-ielAl+;ilJ,...,e -iemA 
77% +EmJ) u(A1+qJ,...,A,+c,J) 

which we will denote as C is in Pp. 
Set 

where I is the n x n identity matrix. Then 

Dk = Q$CQ, E Pp. 

The principal submatrix of D* determined by its first n rows and n columns 
is in P@“. It is given by 

22~(Ai + ci J, . . . , A, + c, J) f [u(eielAl + dl J, . . . , eiemA, + d, J) 
+ u(ewielA1 + ;il J, . . . , e-ie7nA, + d, J)]. 

This proves that the function g defined by (3.2) is in F@“. ??

Let us draw some conclusions from Proposition 3.5. Using (ii) of Lemma 
3.4, it follows that for x E lRm 

u(eViex + d) = u( eiex + d) = u(eiex + d). 
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Thus for x E If??’ the function g defined by (3.2) simplifies to g(x) = 2[u(x 
+c) f u(eiex + d)]. Furthermore, by Lemma 3.4 (v) we have gJw.,, E F< if 
c 2 (dl and 0 E !IP. We write this statement as 

u(. + c) * u(eiO . + d) E FE. (3.3) 

Next we introduce the function V(x, y) = u(x + iy), x,y E IIP. Also, 
by Ua,a(z), z = x + iy, we mean explicitly for cy = (or,. . . ,am), p = 
(PI,. . , ,&) E Zy the derivative 

u a , p ( z )  =  apl+~..+p~n pl+~-+a,,, 

ayp . ayk axy . . . i3x$ U(X> Y). 

The exact order of differentiation among the xl,. . . ,x, and yr, . . , ym 
is, as will be shown, not important. However, in what follows we always 
assume that the partial derivatives are first with respect to x and then 
with respect to y. We also use the notation u,(z) := Ua,c(x, y), where 
z =x+iy. 

Our goal is to prove 

PROPOSITION 3.6. Let f E FF. Then the function U defined above 
has the .form 

U(X,Y) = C eapayP, (3.4) 

and the power series converges absolutely for all (x, y) E iR2m. In other 
words, U : Rm x 8%” -+ R is real analytic. 

We begin the proof with 

LEMMA 3.7. Let f E FF,u = Ref, and U(x, y) = u(x + iy), x,y 
E II%“. Then: 

(i) U(., .) is in C(IR2m). 
(ii) For any x E JR”, U(x, .) is real analytic. 

(iii) For any y E R”, U(., y) is real analytic. 
(iv) For any (Y E Z~\{O},u, E FF. 
(v) For any x E Rm, (Y, /3 E ZT, Ua,a(x, .) is real analytic. 

Proof. For our first claim we let (a, b) E R2m and choose c E IKm such 
that c > la + ibJ. Then from (3.3) the function 

U(x + c, 0) 31 U(a + (cos 0)x, b f (sin 0)x) 
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is in Fg. In particular, from Proposition 2.4(ii) it is nondecreasing (ele- 
mentwise) on lRT. Hence it follows that 

]U(a + (cos f3)x, b + (sin 0)x) - U(a, b)l 5 U(x + c, 0) - U(c, 0) 

for x L 0. Since V(x, 0) is a continuous function of x [see Proposition 2.4 
(v)], the continuity of U at (a, b) easily follows. 

To prove (ii), let x be any vector in Rm. In (3.3) choose d = x,Bj = 
7r/2, j = 1,. . . , m, and c > 1x1. It then follows that 

u(. f c) f u(i . + x) E F,m. 

By (v) of Lemma 3.4, u(. + c) = E,u]w- is in F$, and thus is real ana- 
lytic. Thus for x E Rm, V(x, .) = u(is + x is real analytic. Next, we choose ) 
0 = 0,d = iy, and c L ]y] in (3.3) to get 

u(. + c) zt u(. + iy) E F,m, 

and so, as before, U(., y) = TJ(. + iy) is real analytic for any fixed y E Wm, 
which proves (iii). For the next claim, we first note from (iii) that u,(z) 
exists for all z E Cm. To prove Us is actually in FF for any (Y E ZT it 
suffices to demonstrate this for cy = ek = (0,. . . ,O, 1,. . . , 0), where ek is 
the kth unit vector, 1 5 k 5 m. The general case follows from this case by 
induction on IQ]. 

Let h be a positive number, and choose d = 8 = 0 and c = hek in (3.2). 
Then, since h is positive, Proposition 3.5 implies that h-‘[&u(.) - u(.)] E 
F@“. Letting h -+ O+ and using the fact that FF is closed [see Lemma 3.2 
(v)], we have u,, E FF. 

There remains (v). However, from (ii) we conclude that since the real- 
valued function u, is in FF, we have that for any x E Rm, U,,o(x, .) is real 
analytic and hence so too is U,,a(x, .). ??

We now have the needed information to prove Proposition 3.6. 

Proof of Proposition 3.6. From Lemma 3.7(iii) we have 

valid for all x, y E Wm. Now, from (v) of Lemma 3.7 U,,c(O, .) is real 
analytic. 
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Thus. 

is also valid for all x, y E W”. 
The remainder of the proof consists in showing that the double sum 

converges uniformly and absolutely for x, y in any bounded subset of cm. 
To this end, we apply (3.3) to the real-valued function ua which lies in F@” 
for the choice d = c = 0 and 0 = (7r/2, . . . ,7r/2). We conclude again, using 
Theorem 2.1 and Lemma 3.7, that the function. 

u a+p,o(., 0) zt KY,&4 .I 

is in FRm. Hence it follows that 

Also, for any R > 0, by the Cauchy integral formula there is an MR E 
(0, cm) such that 

Therefore, if ~~x~~~, Ilyllm 5 CR for some constant c E (0, i), then 

Since 

we conclude that 

c 
a,/3eZ;n 

~a+P,o(o~ 0) a 

a!P! x y p 

MR (a + P)! 
cY!P! 

5 MR(2c)‘=‘+‘P’. 

00 
= 

C( )( 2c T 
2m+r-1 

r=o r > 

< 22n-1 &fc)’ < 00, _ 
r=o 

U,,p(O, WUYD 
a!4! 
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is absolutely and uniformly convergent for x,y in any bounded subset 
of C’“. ??

Thus far we have proven that if f E F@” and u = Re f, then for z = 
xtiy, xERm,yEIWm 

we have 

u(z) = ~(X,Y) = C ea,&yB, 

a,Be?q 

where the power series converges absolutely for all (x, y) E Rzm. We now 
prove this same result for w = Imf. 

PROPOSITION 3.8. Let f E Fc and v = Imf. Set U(Z) = V(x, y), 
where z = x + iy. Then 

V(X,Y) = c da,payP, (3.5) 

and the power series converges absolutely for all (x, y) E R2”. 

Proof Let gk (z) = Zk and &(z) = %?k for k = 1, . . . , m. Prom (iv) of 
Lemma 3.2, gk, jk E FF, while from (ii) we obtain gkf, gk f E FF. Let Xk = 
l&Zk,Yk = Imzk for k = I,... , m. Then Re [%(z)f(Z)l = Xku(%Y) - 
ykV(X, y) and Re [&(z)f(z)] = Xku(X, y) + ykv(X, y). Therefore from 
Proposition 3.6 we obtain that 

YkV(x, y) = c d:,&=y’, 
a ~EZ”~ 9 c 

where the power series converges absolutely for all (x, y) E W2” and each 
k=l,... , m. Setting yk = 0 in the above gives dk,a = 0 for all cx, p E ZT, 
with pk = 0. Hence we conclude that 

(3.6) 

which proves Proposition 3.8. ??

We gather together the remaining steps in the proof of Theorem 3.1. 
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Proof of Theorem 3.1. We assume f E F@“. Then 

f(z) = U(x, Y) + iV(x, Y), 

and from Propositions 3.6 and 3.8, we have 

(3.7) 

where the power series is absolutely convergent for all (x, y) E R2”. Sub- 
stitute xk = (Zk + &)/2 and yk = (zk - &)/2i, k = 1,. . . ) m, in (3.7). It 
is easily checked that from (3.7) we obtain 

f(z) = c ca,pz”C (3.8) 
CX,PEZ~ 

and this power series is absolutely convergent for all z E Cm. It remains to 
prove that c,,p > 0 for all (Y, p E ZI;L. This is done as in the proof of Propo- 
sition 2.5. For any choice of E > 0 and numbers {yjk : j = 1,. . . , n, k = 
1 1.1.1 m) c @, the matrices 

Ak = (&Yjk&k)r j,l =l,..., n, k=l,..., m, 

are in P;. Thus 

n 

c ‘Wjf(&Yjlh, .” ,~YjrrJ&JU11 L 0 
j, 1= 1 

for all w E Cn. Substituting in (3.8), we obtain 

c,,pEIQI+IPI -g 
2 

c 

W-P1 %,--AI wjYj/jl Yjl ".Yj,Yjm > 0. 
a,i3EZ;n j=l 

This inequality must hold for all E > 0, w E C”, {yjk : j = 1,. . , n, 
k = 1,. . , m}, and n E N. It is possible, given p, q E Zy, to choose n, w, 
and {yjk: j = 1,. . , n, k = 1,. . , m} such that 

for all g,/J E ZI;” satisfying ICYI + IpI I IpI + lql except in the case where 
(Y = p and ,B = q. We then obtain c,,, q 2 0 by letting E 10 in (3.9). ??
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