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ABSTRACT
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1. INTRODUCTION

In this work, we study the following problem. For & = 1,...,m, let
A = (af)7;=, be distinct n x n real symmetric (Hermitian) positive
semidefinite matrices. Characterize the multivariate real-valued functions
f:R™ — R (complex-valued functions f:C™ — C) such that the matrix

(f(AlavAm))lj ::f(a%j’--'aa;?)’ ]-Siujsna

is also always positive semidefinite (Hermitian positive semidefinite). In
the real case for m = 1, a solution to this problem was first given by
Schoenberg [14], by totally different methods. Similar questions in the real
case for m = 1 were studied in Christensen and Ressel [1], FitzGerald and
Horn [4], and Rudin [11]. The complex case for m = 1 was considered
by Hertz [5]. Variations of this problem will also be studied here. The
motivation for the study of the problem came from certain problems in
multivariate interpolation; see Micchelli [8] and Powell [9)].

2. THE REAL CASE

We denote by Py the class of all real nxn positive semidefinite matrices,
and by Fg' the class of all real-valued functions f : R™ — R such that
for all n, f(A1,...,An) € Pg whenever Ai,..., A, € B. A function
f:R™ — R is said to be real entire if it is real on R™ and is the restriction
to R™ of an entire function on C™. We also use Z' and RT* for all vectors
in Z™, R™, respectively, with nonnegative coordinates. Finally, for x € R™
and o € Z7', we use the standard notation x® = 2" .- - 25,
The main result of this section is the following.

THEOREM 2.1.  Let f:R™ — R. Then f € Fg* if and only if f is real
entire of the form

f(x)= Z caXx%, x € R™, (2.1)

a€Zy
where cq > 0 for all a € VAlg
We remark that for f € F the positive semidefinite kernel K(z,y) =

f((z,y)), where z,y are elements in some Hilbert space H, arises as the
reproducing kernel of a generalized weighted Fock space which is useful for



FAMILIES OF POSITIVE SEMIDEFINITE MATRICES 85

certain estimation and prediction problems of nonlinear system and signal
analysis (de Figueiredo [2]). This paper gives an explicit description of the
associated Hilbert space for which K is a reproducing kernel. The case
where H = L?[0,1] and f(z) = e®,z € R, is especially important.

It is convenient to divide the proof of the above theorem (especially the
necessity) into a series of facts. Firstly, we prove the sufficiency of (2.1),
which is elementary. It is based on the following simple lemma.

LEMMA 2.2.  Assume that f,g € FR*, h € F}y, and a,b > 0. Then

Proof. (i) is a consequence of the cone property of P%, while (v) is
a consequence of its closure. (i) follows from the Schur-product theorem.
Namely, if A,B € Pg, A = (a), B = (bi;), then the Schur product of A
and B given by (a;;by;) is in Pg (see e.g. Horn and Johnson [6, p. 458]).
Both (iii} and (iv) hold essentially by definition. [ ]

As an immediate consequence, we have:

PROPOSITION 2.3.  If f : R™ — R is real entire of the form (2.1), with
ca 20 for all a € ZT', then f € Fg".

To prove the necessity portion of Theorem 2.1, we start with
PROPOSITION 2.4.  Assume that f € Fg'\{0}. Then:

(1) f(x) >0 forx >0, and f(x) >0 forx > 0.
(ii) f is nondecreasing (elementwise) on RT.
(iil) Bvery m = (M1,--,Mm), 7 € {~1,1}, k = 1,...,m, determines a
linear map: n(x): = 9x := (MT1,...,MmTm), X € R™. For all such
n we have f £ fon e Fg'.
(iv) For allc >0 set (Ecf)(x): = f(x +c),x € R™. Then E.f € Fg".
(v) f € CR™).

Proof. (i): If A € Pg, then a;; > 0,1 = 1,...,n. From this fact we
immediately obtain that f(x) > 0 for x > 0 (ie., zx >0, k= 1,...,m).
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For the second claim of (i) we assume to the contrary that x > 0 and
f(x) = 0. Since f # 0, there exists a y € R™ for which f(y) # 0. Set

Tk
A = 2yk , k=1,...,m.
Uk Yr/Tk

Since Ay € P]ﬁ, k=1,...,m, we have that

( 9 ) -
fly) Fy*/x)
Therefore, it follows that 0 = f(x)f(y2/x) > f%(y) > 0, which is a contra-

diction.
(ii): Let x >y >0 (i.e., zx > yx >0, k=1,...,m). Since

(-’L'k yk)epﬁ
Ye Tk

for each k, we have

and therefore f(x) > f(y).
(iii): For nx € {-1,1}, k=1,...,m, we have that

1 7]k> 2
€ P5.
<77k 1 R
Let Ay,...,Am € Pg. Then

Ar  mpAg ) on
€ Pg".
( mAr  Ag R

for each k =1,...,m, and consequently we conclude that

_ f(Al, N ,Am) f(nlAh . »nmAm) ) Pzn
C_(f(ﬂ1A1,~-,77mAm) f(Ala---»Am) © '

Set
. I 0 2nx2n
Q:i: = ( +7 I) €R ’
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where I is the n X n identity matrix, and observe that
Dy =QicQ. € PE.

The principal submatrix of Dy determined by its first n rows and n columns
is a matrix in Pg. This submatrix is given by

2[f(A1, e ,Am) + f(’l]lAl, e ,T]mAm)].

Thus, we have shown that whenever A;,..., A, € Py, then
f(Al, e ,Am) + f(’(}lAl, A, ,nmAm) (S P]ﬁ,
which simply means that f + fon € Fg'.
(iv): Let J denote the n x n matrix all of whose entries are one. Then

J € Pg, and for any Aj,...,Am € Pg and ¢ > 0, Ay +cxJ € Py for each
k=1,...,m. Therefore

flAL+ad,... Ap +cnd) € PR,

Thus E.f € Fg* for any ¢ > 0.
(v): Let x,y > 0. Set

= B VI h—im
vVZkYk Lk

Each A € P2, and therefore, setting Xy = (z1y1,...,ZmYm), We obtain

) YR
(f((xy)‘“) () )EPR’

which implies that
F®)(y) = £ ((xy)"/?) (22)
for all x,y > 0. Since f(w) > 0 for w > 0 [by (i)], we can define
9(x) = In f(e¥),

where e* = (e*1,...,e*") for all x = (z1,...,2,) € R™. From (2.2), we

obtain
g9(x) ;rg(y) Zg(x;y> (2.3)
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for all x,y € R™. That is, g is midconvez on R™. From (ii), f is non-
decreasing on R7*. Thus g is nondecreasing (elementwise) and midconvex
on R™. Any such function (see e.g. Roberts and Varberg [10]) is necessarily
convex and hence continuous on the interior of its domain of definition.
Thus g € C(R™), which implies that f € C(int R7). In summary, we have
observed that if f € Fg', then f € C(int RT). Applying (iii) and (iv), it
now follows that f € C(R™). [ |

We will first prove the result under the further assumption that f is in
fact in C*°(R™).
For a = (v, . ..,am) € ZT7, we use the notation

. Hart-tan
(D*f)(x) = mf(ﬂh,---,mm)-

PROPOSITION 2.5.  Assume f € Fg* 0 C®(R™). Then

(Df)(x) 2 0

foralla € ZT} and x > 0.

Proof Let|a]=o;+ - +an =7 Forx=(z1,...,2m) > 0 and
for any set of real numbers {y;x : i =1,...,n, k=1,...,m}, the matrices

Ar(e) = (afj(e)), i,j=1,...,n, k=1,...,m, defined by

afi(e) = Tk + eYiryjk
are in Pg for all € > 0. Thus f(4i(e),...,Am(€)) € Fg, and for every
w e R™,

n
0 < Z w,—f(a}j(e), .. ,a;?(e))w]-
i1
n
> wif(T1+ €Yaaysn, - - Tm + EYimYjm) Wi
ig=1

Il

Since f € C*°(R™), we have from Taylor’s theorem

flz1 + eyaryin, - - Tm + 5yimyjm)
= f(ml, e ax'm ' Z ( ) yzlyjl : (yimyjm)gm

|B|=r

xDBf(zy,...,xm)+ O(™t).
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For n sufficiently large, we can choose the {yix : 7 = 1,...,n, k =
1,...,m}and {w; : i =1,...,n} so that

n

T Ve __
E WY1 Yim =0
i=1

for all ¥ = (71,...,vm) € Z7 satisfying |v| < 7, except that for v = o we
require

> wadt -y #0.
1=1

(See Remark 2.1 below for a construction of such {y;c} and {w;}.) Thus,

n

0 < Z wi f(T1 + EYirYjt, - - Tm + EYimYjm)W;
1,5=1
erfr = ’
R <a>D"f(w1, e ,xm)<_§;wiy§’i‘ y"m) +O0(emH).
=
Letting € | 0, it then follows that D® f(x) > 0. ]
REMARK 2.1.  There are numerous methods of constructing the {y; :
i=1,...,n, k=1,...,m} and {w; : 4 = 1,...n} as above. Here is one
such way for n sufficiently large. Let aq,...,a, be any n distinct positive
numbers. Choose any m positive numbers ¢y, ..., ¢y, such that the values

(B,¢) =>4, Brex are distinct for all 8 € Z7 satisfying |8] < r. Now, set
Yik = a;*, i1=1,...,n, k=1,...,m.

Recall that for every positive integer s the functions z%, j = 1,...,s,
constitute a T-system on (0,00) for any distinct oy,...,05. That is, the
functions z%, § = 1,...,s, are linearly independent on every s distinct
points in (0, 00). Thus it follows that the vectors

{0 P n) 1Bl < r) = (@9, a$9) 118 < 7}

are linearly independent in R”. For

n> ( r+m )
m
this linear independence allows us to construct the requisite {w; : i =
1,...,n}.
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A function f € C*[a, b) is said to be absolutely monotone if f*)(z) > 0
for all z € [a,b) and each k € Z.. This class of functions was introduced
by Bernstein (see Widder [15, Chapter IV] for an excellent exposition). If
f is absolutely monotone on |[a, b), then it is known that f is real analytic
thereon. That is,

X flk)
f@)=% f k'(a) (z = a)F
k=0 )

for all z € [a,b), and thus f is the restriction to [a, b) of a function analytic
in {z:]z—a|l<b-a}.

This result has been extended to domains in R? (and the case R™ follows
analogously) by Schoenberg [13]. This leads us to

PROPOSITION 2.6. If f € Fgt N C°(R™), then f is real entire and

fx) =" cax?, (2.4)

agZy
where cq = (D*f)(0)/a! > 0 for each a € ZT].

Proof.  From Schoenberg [13, Theorem 5.2] and Proposition 2.5, we see
that f has the form (2.4) for x > 0. To extend this result to all x € R™,
we apply (iii) and (iv) of Proposition 2.4. | ]

We gather the remaining steps in the proof of Theorem 2.1 under one
heading.

Proof of Theorem 2.1. We assume that f € Fg*, and wish to prove
that it is of the form (2.4). From (v) of Proposition 2.4 we have that
f € C(R™). Let ¢ € C§°(I™), where I = (—1,0). That is, ¢ is a C®°(R™)
function whose support lies in ™. Assume that ¢ is a density function so
that ¢(x) > 0 for all x € R™, and

P(x)dx = 1.
Rm

For € > 0, set

£ = o [ fle+y)ot-y/edy. (25)

It is easy to see that f, € C°(R™) and lim, o+ f. = f, where the conver-
gence is uniform on compact subsets of R™.
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By definition, ¢(—y/e) > O only if 0 < yx <&, k = 1,...,m. From
(iv) of Proposition 2.4, Ey, f € Fg* for each such y. Thus, if Ay = (a¥)) €
Pg, k=1,...,m, then for each w € R",

n
Z wife(al;, .-, e )w;
ij=1
1 m

E™ Jmrm
R A\ =1

implying that f. € Fg'. Since f. € Fg* N C*°(R™), we have from Proposi-
tion 2.6 that f. real entire and

flx) = Y cEx,

a€l

where ¢, > 0 for all « € ZT?. Call the right-hand side of the above equation
he(x). Then h, is an entire function on C™.

Since f. converges uniformly on compact subsets of R™ and for every
z € C™ we have [h.(21,...,2m)] € fe(|z1],- -, |Zm]), the set {h. : € > 0}
forms a normal family on any bounded subset of C™; see e.g. Rudin [12,
p. 272]). Consequently, some subsequence converges, on compact subsets
of C™, to an entire function h. But f and h agree on R™, since f. and h.
agree on R™. Therefore f is of the desired form (2.1). |

In the last part of this section, we present variations of Theorem 2.1 for
conditionally positive semidefinite matrices. By Q we denote the set of
all n x n matrices A = (ay;);};=; which are real symmetric and satisfy

n
E WAy Wy > 0
i,j=1

provided that > .-, w; = 0. Such matrices are said to be conditionally
positive semidefinite. Let Gy denote the class of functions f : R™ — R for
which f(Ay,...,An) € Qg if A1,..., Ay € PR, for any n.

THEOREM 2.7. A function f : R™ — R is in G}’ if and only if f is
real entire of the form

flx) = Z Cax?, x € R™, (2.6)

a€Zy
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where cq > 0 for all a € Z7\{0}.

Proof. Assume f € GR. For each A,..., A, € Pg set

00 -+ 0

Thus By,..., By € Pg*', which implies that f(By,...,Bn) € QEtL. It
follows that
f(Ar,-.. Am) = f(0,...,0)J € PR,

and so we have established that f — f(0) € Fg*. Applying Theorem 2.1 to
the function f — f(0) we obtain (2.6).

Conversely, any f of the form (2.6) can be written as f(x) = f(0)+g(x)
where g € Fg*, so that f(A1,...,An) = f(0)J + g(A1,...,An). Theo-
rem 2.1 implies g(A1,...,An) € Pg and consequently f(Ay,...,An) €
QR This proves the theorem. |

For our next result we let Hg' be the class of functions f : R™ — R for
which f(Ai1,...,An) € PR if A,..., Ay € QF, for any n.

THEOREM 2.8. A function f : R™ — R is in HY if and only if f is
real entire and (D®f)(x) > 0 for all o € ZT and every x € R™.

REMARK 2.2. As we already pointed out, Schoenberg [13] showed that
any f € C°(R™) with (D*f)(x) > 0 for all @ € ZT and x € R™ is real
entire. Another equivalent integral representation will be described in the
proof of the theorem.

Proof. Suppose first that f € Hg. Since P C QF, it follows that
f € Fg'. Thus from Theorem 2.1, f is real entire and (D®f)(x) > 0 for
all @ € Z7 and x € RT. To extend these inequalities we observe that
whenever A € Qp it follows that A +cJ € QR for any ¢ € R. Thus it
follows that Ecf € HR and so E.f € Fg'. Consequently, (D*f)(x) > 0
for all x € R™ and a € ZT.

Conversely, from Schoenberg [13, Theorem 5.1] (by replacing z with
—z) it follows that

f(x) = /R 1 et do(t), (2.7)

n
+
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where the integral is an improper Stieltjes integral which is absolutely con-
vergent in R™, and do is a nonnegative measure on R7". Schoenberg ac-
tually proved this only for m = 2, but the proof extends to any m. For
m = 1, this is a famous result of Bernstein; cf. Widder [15].

To make use of this representation we recall that A € Qf if and only
if et4 ¢ Pg for all t > 0; cf. Donoghue [3]. If Ay,..., Ay € QF then

Z;n:l t;A; € Qp for all t = (¢1,...,t,) € RT. Hence, ezi‘=1t"A” € Pz,
which by (2.7) implies that f(A,...,An) € Pg. This proves the theorem.

Finally, we let I denote the class of functions f:R™ — R for which
f(AL, .. An) €EQRIf Ay, ..., Ay € QF, for any n.

THEOREM 2.9. A function f:R™ — R is in Ig® if and only if f is real
entire and (D*f)(x) > 0 for all x € R™ and o € Z7\{0}.

Proof.  As in the proof of the previous result, it is easily verified that
whenever f € Ig' then E.f € Ig' for every ¢ € R™. Since Fg C Qf, it
follows that if f € Ig' then f € GE. Thus E.f € G for every c € R™.
From Theorem 2.7 we see that f is real entire and (D f)(x) > 0 for all
x € R™ and a € Z7\{0}.

Conversely, assume f is real entire and D f(x) > 0 for all & € Z7*\{0}
and x € R™. Since f(x) is nondecreasing in each variable, the function

fe(x) = f(x) = f(c)

is also nonnegative on {x:x > c¢}. Thus from Schoenberg [13, Theorem 5.1]
fe admits the representation

felx) = | e=aote)

where do is a nonnegative measure on R} and the integral converges ab-
solutely in {x:x > ¢}. As before in Theorem 2.8, we see that

fe(Ar, ..., An) € Py if Ai,...,An € QR,

where c is chosen to be any vector so that af] >, 1<1,j<n,1<k<m.
But clearly,

flAL, ... Am) = f(e)J + fe(Ar, ... . Am) € QR,

and so f € I3, which proves the theorem. a
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3. THE COMPLEX CASE

In this section we investigate the analog of some of the results of the
previous section for complex matrices. For this purpose, we let P denote
the class of complex nx7n Hermitian positive semidefinite matrices, and F**
the class of functions f: C™ — C for which f(Ai,..., An) € P¢ whenever
Ay,..., Am € P for all n.

The main result of this section is the following.

THEOREM 3.1.  Let f:C™ — C. Then f € FZ if and only if f has the
form
f(z) = Z ca,ﬁzaiﬂ, zeC™, (3.1)
a,BeL

where cq3 > 0 for all a, B € ZT}, and the power series converges absolutely
for allz e C™.

We remark, for the case f € Fé, that the positive semidefinite kernel
k(z,¢) = f((2,¢)), 2z, € C, is the reproducing kernel of certain Hilbert
spaces of analytic functions on the unit ball in C". This identification is
useful for computing n-widths of certain classes of analytic functions; see
Micchelli [7].

In proving the sufficiency of (3.1), we utilize an analog of Lemma 2.2.

LEMMA 3.2. Assume that f,g € F* h € F}, and a,b > 0. Then:

(i) af +bg € FE.
(ii) fg € FE&.
(iii) ho f e F.
(iv) All affine functions of the form a(z1,...,2m) = ao + Z;nzl ajz; +
Z;nzlbj?j where a; > 0,7 = 0,1,...,m, and b; > 0,5 =1,...,m,
are in F.
(v) Fg is closed under pointwise convergence.

On the basis of Lemma 3.2, whose proof parallels the proof of Lemma
2.2, we have:

ProrosSITION 3.3. If f:C™ — C has the form (3.1) with cag > 0 for
all o, 3 € Z7 and the power series converging absolutely for all z € C™,

then f € F.

The more difficult part of Theorem 3.1 is the proof of the fact if f € F{*,
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then f satisfies (3.1). We start with:
LEMMA 3.4. Let f € F™, and
f(2) = u(z) + n(z),

where u(z) = Re f(z), and v(z) = Im f(z). Then for z € C™

1) f(2) = f(=z),
(ii) u(z) = u(z),
(iii) v(z) = ~v(z),
(iv) we F,
(v) flrm = ulrn € Fg".

Proof. (i): If A = (a;) € PE,thena; = a;. Thus, if Ay = (afl) € PZ,
k=1,...,m, we must have

f(a}j,...,a{;?) = f(a;l,...,a?ll) = f(ajl.l,...,a{’j’).
Thus f(z) = f(z) for all z € C™.
Statements (ii) and (iii) are immediate consequences of (i). As for (iv),

we use (iii) and (iv) of Lemma 3.2 to conclude that f(-) € FZ'. Conse-
quently (i) of Lemma 3.2 implies that

10270 ¢ g

Thus w € Fg'. Finally, to prove (v) we note that from (iii), whenever
x € R™ it follows that v(x) = 0. Thus flgm = u|gm:R™ — R. Since
Pg C Fg, we easily conclude that ulg.. € F*. [ ]

We will initially consider u(z) = Re f(z). Note that u &€ F while
ulg. € Fg', and for each z € C™, u(z) € R. For d = (dy,...,dn) € C™,
we use the notation |d| = (|dy],...,|dm]), ||d|lec = max{|d;]:1 < j < m},
and also ||dllz = (372, |d;[*)Y/2.

ProprosiTION 3.5. Let ¢ > |d|, c,0 € R™, and d € C™. Then the
function g defined by

g(z) = 2u(z + ¢) + [u(e®z + ) + u(e®z + d)], (3.2)

where €0z = (e®121,...,e0"2,) forz = (z1,...,2m), is in .
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This result and its proof are complex analogs of (iii) and (iv) of Propo-
sition 2.4.

Proof. Let A, e P2, k=1,...,m. For 8 € R,
1 6i0k
(e—iok 1 ) € Pé,
ek d 2
(Ek o ) € P2,

A +cpJ etfr 4 diJ c p2r
e~ O AL + diJ A + cxJ ’

and for ¢ > |dk|,

Thus

where, as earlier, J is the n x n matrix all of whose entries are one. Thus
the matrix

w(Ay +c1dse ooy Am + cm J) uw(€®1A] +d1J,...,e0M A + dmJ)
u(

e 014, +d1d,. . em M AL LT ) (A1 +e1dy- ., Am + emd)

which we will denote as C is in PZ".

Set
_ I 0 2nx2n
@z = (ﬂ I) € RTH,

where I is the n x n identity matrix. Then
D, =QLCQ. € PE.

The principal submatrix of D determined by its first n rows and n columns
is in P¢. It is given by

2u(Ay +crd,..., Am +cnd) £ [u(e® Ay +diJ,...,e0m A, +dnJ)
+u(e™® A +diJ,...,e ¥ Ay, + dp )]

This proves that the function g defined by (3.2) is in FZ". [ |

Let us draw some conclusions from Proposition 3.5. Using (ii) of Lemma
3.4, it follows that for x € R™

u(e™¥x +d) = u( e®x +d) = u(e®x + d).
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Thus for x € R™ the function g defined by (3.2) simplifies to g(x) = 2[u(x
+c) + u(e®x + d)]. Furthermore, by Lemma 3.4 (v) we have glgm € FZ* if
c > |d| and 8 € R™. We write this statement as

u(- +c) £ u(e”® - + d) € F. (3.3)

Next we introduce the function U(x,y) = u(x + iy), x,y € R™. Also,
by Uapg(z), 2 = x + iy, we mean explicitly for a = (a1,...,0m), 8 =
(Bi,. .., Bm) € ZT the derivative

Bit+Bm  gorttam

U Z)= U x’ .
6 ) By?‘ Byf,{ 83;‘111 R x,y)
The exact order of differentiation among the z;,...,z,, and y1,...,ym

is, as will be shown, not important. However, in what follows we always
assume that the partial derivatives are first with respect to x and then
with respect to y. We also use the notation ue(z) := Uyo(x%,y), where
zZ=x+1y.

Our goal is to prove

PROPOSITION 3.6. Let f € F{. Then the function U defined above
has the form
Uxy)= Y eapx?y? (3.4)
a,BeZ

and the power series converges absolutely for all (x,y) € R®*™. In other
words, U : R™ x R™ — R is real analytic.

We begin the proof with

LEMMA 3.7. Let f € F&',u = Ref, and U(x, y) = u(x +iy), X,y
€ R™. Then:

(i) U(-,) is in C(R®™).
(ii) For any x € R™,U{(x,") is real analytic.
(iii) For anyy € R™, U(,y) is real analytic.
(iv) For any a € Z7\{0},uq € FE.
(v) For anyz € R™, o0, B € Z7,Uqy (%, -) 15 Teal analytic.

Proof. For our first claim we let (a,b) € R?™ and choose ¢ € R™ such
that ¢ > Ja + ib|. Then from (3.3) the function

Ux+¢,0) £ U(a+ (cos8)x,b + (sin 8)x)



98 C. H. FITZGERALD ET AL.

is in Fg'. In particular, from Proposition 2.4(ii) it is nondecreasing (ele-
mentwise) on RT. Hence it follows that

[U(a + (cos 0)x,b + (sin@)x) — U(a,b)| < U(x +¢,0) — Ulc, 0)

for x > 0. Since U(x,0) is a continuous function of x [see Proposition 2.4
(v)], the continuity of U at (a, b) easily follows.

To prove (ii), let x be any vector in R™. In (3.3) choose d = x, 6, =
w/2, 7=1,...,m, and ¢ > |x|. It then follows that

u(- +c¢) u(i-+ x) € Fg'.

By (v) of Lemma 3.4, u(- + ¢) = Fcu|gm is in F*, and thus is real ana-
lytic. Thus for x € R™,U(x,-) = u(i-+ x) is real analytic. Next, we choose
0 =0,d =y, and ¢ > |y| in (3.3) to get

u(- +c¢) £ u(- +iy) € Fg',

and so, as before, U(-,y) = u(- + iy) is real analytic for any fixed y € R™,
which proves (iii). For the next claim, we first note from (iii) that uq(z)
exists for all z € C™. To prove uq is actually in F"* for any a € ZT7 it
suffices to demonstrate this for &« = e = (0,...,0,1,...,0), where e}, is
the kth unit vector, 1 < k < m. The general case follows from this case by
induction on |a|.

Let h be a positive number, and choose d = 8 = 0 and ¢ = hey in (3.2).
Then, since A is positive, Proposition 3.5 implies that A~ [E.u(-) —u()] €
F. Letting h — 0% and using the fact that F@® is closed [see Lemma 3.2
(v)], we have ue, € F(*.

There remains (v). However, from (ii) we conclude that since the real-
valued function u, is in F{*, we have that for any x € R"™, U, o(x, -) is real
analytic and hence so too is Uy g(x, -). [ |

We now have the needed information to prove Proposition 3.6.

Proof of Proposition 3.6. From Lemma 3.7(iii) we have

U(x,y): Z Ua,O(O’y)xa

a!l
acZy

valid for all x,y € R™. Now, from (v) of Lemma 3.7 U, (0, ) is real
analytic.
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Thus,

vxy)= > | Y Myg x_

acZy BEZY

is also valid for all x,y € R™.
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The remainder of the proof consists in showing that the double sum
converges uniformly and absolutely for x,y in any bounded subset of C™.
To this end, we apply (3.3) to the real-valued function u, which lies in Fi*
for the choiced = ¢ =0and 8 = (7/2,...,7/2). We conclude again, using

Theorem 2.1 and Lemma 3.7, that the function.
Ua+ﬂ,0('7 0) + Uaﬁ(ov )
is in F. Hence it follows that

[Ua,3(0,0)| < Uayp,0(0,0).

Also, for any R > 0, by the Cauchy integral formula there is an Mg €

(0, 00) such that
MRa!
Rlel

0 < Ua,O(O,O) S

Therefore, if ||X||oo, |¥]loo < cR for some constant ¢ € (0, ;), then

Ua»ﬂ(()’ 0) x© ﬁ‘ <
ol =

U(] b
ey
(a+B)!

alB!

IA

Mg

Since

a _ ad Sf2m+r—1
T (208 = 3 (20) < ) )

a,BeZy r=0
o0
< 22771 Y (4e)” < oo,
=0

we conclude that

a,BEZ;ﬁ

< Mg(2c)lel+181,
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is absolutely and uniformly convergent for x,y in any bounded subset
of C™. |

Thus far we have proven that if f € FZ' and u = Re f, then for z =
x+iy, x e R™ y e R™

we have
uw(z) =U(x,y) = Z ea,sXyP,
a,BeZy

where the power series converges absolutely for all (x,y) € R*™. We now
prove this same result for v = Im f.

PROPOSITION 3.8. Let f € F{* and v = Im f. Set v(z) = V(x,y),
where z = x +1y. Then

Z de pX%yP, (3.5)

a,BELT
and the power series converges absolutely for all (x,y) € R?™.

Proof. Let gi(z) = 2 and gg(z) = % for k = 1,...,m. From (iv) of
Lemma 3.2, g, gx € F{, while from (ii) we obtain gx f, gk f € F*. Let z =
Rezk,yx = Imz, for k = 1,...,m. Then Relgk(2)f(2)] = zxU(x,y) -
yV(x,y) and Re [Gk(2z)f(2)] = zxU(x,y) + yxV(x,y). Therefore from
Proposition 3.6 we obtain that

wV(xy) = Y dfsxy?,
,ﬂEZm

where the power series converges absolutely for all (x,y) € R®*™ and each
k=1,...,m. Setting yx = 0 in the above gives d’;,ﬁ =0forall a,3 € Z7,
with Bx = 0. Hence we conclude that

dk xyB
V(X,y) = Z = LA
agezy Uk
B >0
L (3.6)
= D dapxy’
,EEZ"'
which proves Proposition 3.8. |

We gather together the remaining steps in the proof of Theorem 3.1.
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Proof of Theorem 3.1. We assume f € F{. Then

f(z) =U(x,y) +iV(x,y),

and from Propositions 3.6 and 3.8, we have

f@) = > bapx?y? (3.7)

a,B€LT

where the power series is absolutely convergent for all (x,y) € R?™. Sub-
stitute xx = (2x + Zx)/2 and yx = (2x — Zx)/26,k = 1,...,m, in (3.7). It
is easily checked that from (3.7) we obtain

fZ)= > capz°?, (3.8)

a,BELT

and this power series is absolutely convergent for all z € C™. It remains to
prove that cq g > 0 for all a, 3 € ZT. This is done as in the proof of Propo-
sition 2.5. For any choice of ¢ > 0 and numbers {y;x:j = 1,...,n, k =
1,...,m} C C, the matrices

Ak:(Eyjkylk)a j’l:]""'7n? kzl:---amv

are in Pg. Thus

n

Z wjf(Eyjlyllv v 76yjmylm)wl Z 0
sil=1

for all w € C™. Substituting in (3.8), we obtain

Z Ca ﬂslal+|f3l

a,BEL}

n 2
a1=01 O ==Bm

Z WY Y51 Yim Iim| =0

i=1

This inequality must hold for all e > 0, w € C*, {y;x : j = 1,...,n,
k=1,...,m}, and n € N. It is possible, given p,q € Z7*, to choose n,w,
and {y;k:7=1,...,n, k=1,...,m} such that

n
01701 =B
E , W5Ys1 Yj1 im Yjm =0
i=1

for all o, 3 € ZT satisfying |a| + |8| < |p| + |q| except in the case where
a =p and B = q. We then obtain ¢, q > 0 by lettinge [ 0in (3.9). =
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