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ABSTRACT 

Representation theorems for Tchebychcff polynomials with homogeneous 
boundary conditions are proved, and a number of extremal problems are 
solved. 

Representation theorems for non-negative polynomials were considered by 

Lukhcs in the early decades of  this century. Luk~ics proved (see Szegti [13, p. 4-]) tit that every non-trivial polynomial pn(t)= E~=0 ak, non-negative on a finite 

interval [a, b], admits a representation which is essentially a sum of squares of  

polynomials. In 1953, Karlin and Shapley 1-8, p. 35-] established for p,(t) as above, 

the existence of  a unique representation of the form 

f m-1 ~-I(t-t2j-1) 2+fl( t -a)(b- t )  H (t-t2j) 2, for n = 2m 
(1) p n ( t )  = -  .I = t j = 1 

- f i  
~(t - a) 1-I (t - t2j) 2 +/~(b - t) (t - t2j- t) 2, for n = 2m + 1 

J= t  l = t  

with ct, l / >  0, and a _~ tl ~ "" < t,_ t <- b, where uniqueness is in terms of  poly- 

nomials with a full set of  real zeros. Moreover, for p,(t) strictly positive on I-a, b], 

the strict inequalities a < tt < t2 < ... < t,_ t < b hold. 

In 1963 and 1966, Karlin further extended these results to polynomials generated 

by Tchebycheff systems [2], and indicated a host of applications [3]. 

? This work is part of the author's doctoral thesis under the supervision of Professor S. 
Karlin. 
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In this paper, we generalize the results of Karlin [2], [3], to obtain corresponding 

representation theorems for Tchebychetiian polynomials satisfying certain general 

homogeneous boundary conditions. The results are new even in the situation of 

ordinary polynomials. 

Although this paper considers the problem in the setting of ECT-systems (see 

Section I), the basic prototype for such systems is {tk}~. A reader not totally at 

ease with the general formulation should interpret all the discussion for the case 

of the powers. 

The organization of the paper is as follows. Section 1 sets forth the basic 

underlying concepts and terminology. In Section 2, we strive to provide some 

insight into the nature of the boundary conditions which are fundamental in all 

that follows. Section 3 highlights the main theorems and records some corollaries, 

and the final Section 4 exposes a number of applications of the representation 

theorem in solving certain related extremal problems. 

Before entering into the detailed discussion which is technical in nature, it may 

be useful to indicate a concrete example of one of the main theorems and one of 

its applications. 

Let f ( t )  be a continuous positive function on [0, 1]. Consider the class of 

polynomials of degree n satisfying the boundary conditions 

p(]')(O) = O, l = 1, . . . ,  k 
(2) 

p(h')(1) = 0, l = 1,..., m 

where 0 < J l  < "'" < Jk < n, 0 < h t < ... < hm ~ n, and the sets {Jz}, l = 1,..., k, 

{ht}, l = 1,..., m, satisfy certain meshing conditions to be stipulated later. Assume 

n - k - r n  = 2 r ~ 0 .  

Then, there exists a unique polynomial p*(t) which satisfies (2) and: 

(i) f ( t )  ~_ p*(t) >= 0 for t ~ [0, 1]. 

(ii) p*(t) has r distinct zeros, each of multiplicity 2, in (0, 1). 

(iii) f ( t )  - p*(t) vanishes at least once between the adjacent zeros of  p*(t) in 

(0, 1), and at least once between the smallest zero therein and 0, and between the 

largest zero therein and 1. 

The p*(t) constructed above satisfies many extremal properties. As an example, 

consider the class of non-negative polynomials which are less than or equal to 

f ( t )  on [0, 1], and which satisfy (2). Assume p(1) = 0 is one of the boundary 

conditions. 
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Then, any expression of the form E~'=o a~(- 1)"pt~ where the a t are non- 

negative, and the e~ count the number of h t < i, l = 1, -.., k, is uniquely maximized 

among all polynomials in the above class by p*(t),  under certain minor restrictions. 

1. Formulation and introduction 

Tchebycheff systems are familiar objects of importance in many domains, (for 

example, they feature prominently in the theory of inequalities, convexity, as 

successive eigenfunctions in certain differential and integral equations, and in 

approximation theory) and have been extensively studied. (Consult the treatise of 

Karlin and Studden [9], for a detailed treatment of the subject.) We record, for 

ready reference, certain basic facts, to be found in [9]. 

I. The following notation is convenient. For t o < .-. < tp, let 

= ( O, 1,. .- ,p 

\to, t l , ' " ,  tp \to, tl, "", tp (3) 
Uo(to) "" Uo(tp) I 

.I 
u,(to) ... u , ( t , )  i 

while if t~-t < ti = t~+l . . . . .  t~+q < tl+q+l, then 

\ to, t l , . . . ,  tp 

is the determinant (3), with the (i + 1 + j)th column, 0 < j < q, replaced by the 
vector 

{u,( t )} , i  = O, . . . ,n ,  is defined to be an ECT-system (extended complete 

Tchebycheff system) on [a, b] if ui(t ) ~ Cn[a, hi ,  i = O, 1, . . . ,  n, and 

U*[  O, 1, . . . ,p ) > 0  
\to, tl, "", tp 

for all a < to _-< "-" < tp < b, and p -- O, 1, ..., n. 

II. An equivalent definition, up to the sign of one of the functions, of an ECT- 

system is the following. 
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Let Zt,.bj(f(t)) denote the number of zeros o f f ( t )  in [a, b], counting multipli- 

cities. Then {ui(t)), i =  0, ..., n, is an ECT-system on [a, b] if ul(t)~ Cn[a, b], 

i = 0, 1, ..-,n, and Zro.bl(~,i~=oa~U,(t)) < p, provided •f=o at 2> O, p = O, 1, . . . ,n.  

III. P61ya pointed out the following characterization of  ECT-systems (see 

Karlin and Studden [9, p. 379]). 

THEOREM A. (P61ya.) Let ui(t)~ Cn[a, b] obey the init ial  conditions 

(4) u~P~(a) = 0 p = O, 1,. . . ,  k - 1 ; k = 1,. . . ,  n. 

Then  the fo l lowing statements are equivalent: 

(i) {u,}, i = 0, . . . ,  n, is an ECT-system on [a, b], 

(ii) ul(t) = Wo(t) w1(~1)"" Ja wi(~l) d~ l ' "  dr i = O, 1 , . . . ,n  

where Wo(t), ..., wa(t) are n + 1 strictly positive funct ions  on [a, b] such that Wk(t) 

is o f  continui ty  class Cn-k[a, b]. 

REMARK. If the conditions (4) are not satisfied by an ECT-system {u~}, 

i = 0,. . . ,  n, then effecting a non-singular linear transformation, we can determine 

a new ECT-system {t~i}, i=0 ,  .-., n, which does satisfy (4), and assume henceforth 

that this is done. (Note that if a = 0 and w~(t) = 1 / ( i  + 1), i = 0, 1,---,n, then 

ui(t) = t~ i = O, 1 , . . .  n.) 

IV. Associated with an ECT-system {ui} , i = O, ..., n, is a natural sequence of 

first order differential operators 

d f ( t )  
D j f  = dt wj(t) '  j = O, 1,. . . ,  n 

where the {wl(t)}, i = 0, ..-, n, are those exhibited in Theorem A. Define 

DJ = D j _ I . . . D o ,  j = l , . . . , n + l ,  and D~ = I. 

Accordingly, 

DJuj(t) = wl(0,  j = 0 ,1 , . . . ,  n, 

Dkuj(t) = O, for k > j, 

and by virtue of  the initial condition (4), we have 

Dkuj(a) = 6kiWg(a), j = 0, 1,..., n. 

(Note that for the powers {f}, k = O,. . . ,n ,  D J = ( l / j ! ) (dJ /d t J ) . )  
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We are now prepared to introduce the boundary conditions to be considered. 

We shall be interested in polynomials (that is, expressions of the type u(t) 

= ~ = 0  aiui(t)) satisfying homogeneous boundary conditions of the form: 

�9 ~k: ~ AijDJu(a) = 0 i = 1 , . . . , k ,  
J=O 

(5) 

&m: ~ Bi.iDiu(b) = 0 i = 1, "", m, 
J=O 

where the matrices . ' T =  II A , j ( -  1)ill, i - -  1, . ,k; j = 0, .,n, and n -- II n,Jll, 
i = 1, . . . , m ; j  = O, ... n, obey Postulate I below. The collection of all such non- 

trivial polynomials will be denoted by q / (d  k n ~m). 

POSTULATEI. (i) O < k, m < n, and k + m < n. 

(ii) There exists {ix, ..., in}, {Jr, "'"Jk} such that 

B ( 1 , . . . , m )  X ( l ' " " k  i # 0  and 
\ i t ,  "", in, \Jr, "",Jd (6) 

i,<=j'v+l+n-(m+k), V = 1 , . . . ,m  

where {j'}, v = 1 , . . . , n -  k + 1, is the complementary set of indices to {Jr}, 

v = 1 , . . . , k ,  in {l}, l =  O,...,n. 

(iii) For all {ix, .", ira}, {Jt,"',Jk} satisfying (ii), 

( 1 , . . . , m ]  = era(B), and sgn A ( l , . . . , k )  = ek(.~) ' sgn 
B\ i t ,  "", im z kjx, "",jk 

that is, the m x m and k x k subdeterminants f rom (ii) have constant signs, 

repectively. 

The possibility that boundary conditions apply only to one endpoint is not 

excluded. No ambiguity in the terminology should arise. 

Two examples of boundary conditions which satisfy Postulate I are as follows. 

Example  I. 

Dl'u(a) = 0 s = 1 , . . . , k  

D~'u(b) = 0 s = 1,. . . ,  m 

provided i, -~J'Y+l+~-~m+k), ~' = 1, ..., m. 

Example  lI. Boundary constraints appearing at one endpoint only, say b, 

where B has rank m, and all m x m non-zero subdeterminants are of one sign. 
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In the later analysis, it will be necessary to work with the concept of  degree of  a 

zero at an endpoint in the presence of  boundary conditions. This somewhat 

encumbers the analysis and leads to the following definition and construction. 

DEr:INmON 1.1. If  u(t) in the class ~'("~k n:~, , )  entails u(b) =Du(b) . . . .  

= DB-lu(b) = 0, while there exists a u(t)eq~(~t k n&,~) for which DBu(b)~ O, 

then we say that the class of polynomials ak'(.~r k n 8,,)  has a zero ofdeoree fl at b, 

denoted by fl --- Na(~k,&,,). Similarly, we define N,(dk ,  gSm). 

We emphasize that Nb('~k, ~,,), or No(~  k, ~m), depends on both sets of  boun- 

dary conditions ~r and .~,,. The following simple example illustrates this essential 

fact. 

Let B = [ I ,0 ,0 ,0 ,  1], ,4 = [0,0,0,0,  1], ~ = [1, 0, 0, 0, 0]. Both B and X, and 

B and d satisfy Postulate I. However, Nb(.~r = 1, while Nb(~ l , .~ l )  = 0. 

We now outline the procedure used for the addition of  a zero at an endpoint. 

Assume Na(.~Ck,.~,,) = fl, and m + k < n. Let B' = 11 B,% [I, i -- 1 , ,  m + 1 ; 

j = 0, ..., n, where 
SBj i = i; j = O, 1, . . . ,n 

B~j = ~Bl-~.J i = 2 , . . . , m + l ;  j = 0 , 1 , . . . , n  

and let & ' + l :  ~7=o B~jDJu(b) = 0, i = l , . . . ,m  + I. We call this construction 

the addition of a zero at b. A similar construction may be done at a to obtain 

It shall be shown that subject to the stipulations of  Postulate I, the extended 

boundary conditions represented by B' and .~, and B and ,,T', a/so satisfy Pos- 

tulate I. 

Postulate I has wide scope in that it is fulfilled for the usual type of  boundary 

conditions occuring in the study of vibrating systems of  coupled mechanical 

systems (see Neumark [,I 1], Gantmacher and Krein [-I], and Karlin [-4, Chap. 10]). 

Postulate I may be interpreted as a generalization of the P61ya conditions used in 

Hermite-Birkhoff interpolation (see [,6], [,12]). A slightly more restrictive form 

of Postulate I is usually stated where (iii) prevails when the respective determinants 

are non-zero, whether (i l , . . . ,  ira}, {Jl,'",Jk} satisfy (ii) or not (see [,5], [7]). Due 

to the requirement that Postulate I be invariant under the addition of  a zero at an 

endpoint, we find it necessary to introduce the more general definition. 

Our principal aim is to generalize the representation theorems of Karlin [2], 

and their corollaries, to the situation of  polynomials satisfying boundary conditions 

of the above form. The basic representation theorem to be proved is the following. 
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THEOREM 3.2 (a). Let {u~), i=0 ,  ..., n, be an ECT-system on [a, b']. Let .4and B 

be given k x n + 1 and m x n + 1 matrices, respectively, satisfying Postulate I, 

and assume Nb(.ff k, ~m) = fl and No(,ff k, 8, ,)  = ~. I f  f (t) is a continuous function 

on [a, hi, positive on (a, b), with zeros of degree 7 and ~ at a and b respectively, 

where 7 <= r ~ ~_ fl, then, for  n - m - k = 2r _~ 0, there exists a polynomial 

u*(t) for  which 

(i) f ( t )  >= u*(t) ~_ O, for  all t E [a, hi, 

(ii) u* ~ ~ ( ~ k  r3 ~,,), 

(iii) Zto.bl(u*(t)) = 2r, with r distinct zeros, 

(iv) f ( t )  - u*(t) vanishes at least once between each pair of adjacent interior 

zeros of u*(t), and at least once between the largest zero and the endpoint b, and 

between the smallest zero and the endpoint a. 

The uniqueness of  u*(t) is not guaranteed, as in Karlin [2], without further 

stipulations. This is due to the non-independence of  the addition of  a zero at a, 

and the addition of  a zero at b. To deal with this problem we define Property J. 

Property J. We say that ~(,ffk ~ ~,,) satisfies Property J if m + k < n, and 

the following hold: 

(i) No( . f fk ,~)  = N o ( d k , ~ ' + l )  and 

(ii) Nb(.ffh, ~ = Nb(.ff'k + 1, ~m). 

It will be proved that (i) implies (ii) and conversely. Examples underscoring the 

need for Property J are given in Section 2. Note that Examples I and II given 

earlier satisfy Property J. 

With this definition, we may now state Theorem 3.2 (b). 

TnEOX~M 3.2 (b). The u*(t) in Theorem 3.2 (a) is unique if one of the following 

holds. 

(i) (~ + fl) > (~ + ,s), 

(ii) 0t + fl = 7 + t~, but ft~ ~ u*t~ or ftP)(b) ~ u*CP)(b), 

(iii) Property J holds for  ~ ( ~ k  n gl~.  

As consequences of  the representation theorem, we establish representations 

for u(t )e  ~( '~k n ~ m ) ,  u(t)>= 0 for all t e [a, b], in the spirit of  (1). Since the 

problem divides into various sections, it is not stated here, but is the content of  

Corollaries 3.2 and 3.3. 

The following is an example of  one of  the applications of interest stemming 

from the representation theorems. 

Consider the collection (Cj),  j = O, ..., n, of real numbers and the class of  
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polynomials u( t ) e  ql(M~ n ~m) which lie between 0 and f ( t ) ,  for all t e [a, hi. 

We wish to determine the function u(t) in the above class which maximizes or 

minimizes ~ = o  CjDiu(b) . In many cases the polynomial u*(t) featured in 

Theorem 3.2 is an extremal polynomial. This is the content of Theorems 4.1 and 4.2. 

There is a natural relationship between representation theorems, quadrature 

formulae, and approximation theory, which is not set forth in this work. By 

further pursuing the methods of this paper, many of the results of Micchelli-Rivlin 

[10] on quadrature formulae, which partly provided the motivation for this work, 

are extendable to situations involving more general boundary conditions of the 

type (5) satisfying Postulate I. 

The important application of representation theorems to problems of best 

approximation is considered in a forthcoming paper. 

2. Preliminaries 

The fundamental underlying result of this paper is a variation of Karlin [5, 

Th. 2]. The theorem decisively rests on the fact that {u,}, i = 0, ..., n, is an ECT- 

system and on Postulate I. 

THEOREM 2.1. Let {ti}, i =  1 , . . . , n - ( m + k ) +  l,  be any  n - ( m + k ) +  l 

points in (a,b) ,  a < t 1 < ... < tn_(m+k)+ 1 < b and let {ci}, i = 1, . . . ,n - (m + k) 

+ 1, be given real numbers.  Then  there exists a unique u ead(.~k ndSm) such 

that u(t~) = c,, i = 1 , . . . , n -  (m + k) + 1. 

PROOF. The proof may be found, with minor alterations, in Karlin [5]. Recall 

that Postulate I as stipulated in this paper is slightly more general. 

REMARK 2.1. It is not necessary that the t I be distinct. Coincidences are allowed, 

where if t~-I < ti . . . . .  tl+ q < tl+q+ 1 then we ask that u(t) satisfy u(t~) = c~, 

u'(t~) = ci+l, . . . ,utq~(t~)= c~+~. However, it is essential that the inequalities 

a < t t ,  t,_c,n+k)+ 1 < b be maintained. 

REMARK 2.2. Given u e q/(~Ck n ~m) such that 

(7) u(t,) = O, i = 1, . . . ,  n - (m + k), 

where a < t t ~_ ... <~ tn-(m+k ) < b, (subject to the concept of multiplicities of zeros 

in the case of equalities of the t~, as outlined in Remark 2.1), then by Theorem 2.1, 

there exists a non-trivial u e q/(~Ck n gin) satisfying Theorem 2.1, which is unique 

up to a multiplicative constant. Thus, we may regard q"(~Ck (~ ~m) as having a 

basis of n - (m + k) functions which are a Tchebycheff-system on (a,b). 
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We now present, without proof,  a sequence o f  useful proposit ions and lemmas. 

Our  first aim is to show that Postulate I holds after an addit ion of  a zero at an 

endpoint.  

LEMMA 2.1. Let X and B satisfy Postulate I, and let Na(.~Ck,,~m) ---- ~ and 

Nb(~k,~m) = ft. Then for all selections {il, ..., ira}, {Jl, "",Jk} satisfying 

B ( l , . . . , m ]  ~ ( l , . . . , k ]  ~ O, and 

\i I, "", i,,," \Jr, "" ",Jl,: 
(8) 

�9 ,t 

1, <J,+t+n-(m+k),  v = 1 , - . . ,m  

(that is, obeying condition (ii) of Postulate I), we have 

(9) il = 0, ..., i# = fl - 1 and 

(10) Jl  = 0, . . . , j ,  = 0 t -  1. 

REMARK 2.3. It is readily checked t ha t  iv~j'v+l+n_(m+k), V = 1 , . . . ,m,  and 
. t  

J~-~ ~,+t+,-(m+k), /~ = l , . . . , k ,  are equivalent statements. 

LEMMA 2.2. Let q l (~  k C~&m) have zeros of degree ~t and fl at a and b 

respectively. Then 

(i) there exists 

p = 1 , . . . ,m ;  

(ii) there exists 

p = 1 , . - . ,k .  

{i,,...,i,,}, {Jl,'",Jk} satisfying ( 8 ) f o r  which ip# f l ,  

{ix,"',im}, {j~,'",jk} satisfying (8) for which jp ~ r 

REMARK 2.4. It is not  necessarily true that (i) and (ii) o f  Lemma 2.2 can be 

simultaneously satisfied. Indeed consider 

 [lOOOO lo] [,oooolo] 
B ~ 

0 0 0 0 1  0 0 ' 0 0 0 0 1  0 0 

Then ~r and &2 satisfy Postulate I while No(~r = N b ( d 2 , ~ 2 )  = 0. If  

(i) and (ii) were to hold simultaneously, then it would be necessary that  {4,5}, 

{4, 5} satisfy condition (ii) o f  Postulate I. However,  the inequality i, <j'+ ~ +,-(,,+kj, 

(n = 6 ,  m = 2 ,  k = 2 )  does not hold for v = 1. 

PROPOSITION 2.1. Let .~ and B satisfy Postulate 1, and m + k < n. Let B' 

and ~ ' + t  be obtained from B and ggm by the addition of a zero at b. Then ,~ 

and B' satisfy Postulate I. (Similarly for A' and B.) 
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COROLLARY 2.1. Assume that ~ = Nb(adk, ~,,). Then for all u ~ ql(ad k n ~ )  

with n - (m + k) zeros in (a, b), DPu(b) ~ O. 

In the consideration of Property J, the following proposition is basic. 

PROPOSmON 2.2. In the definition of Property J, statements (i) and (ii) are 

equivalent, (that is, for m + k < n, 

N,(~Ck, ~m) = No(Jdk, ~m+' t) r  Nb('-~tk, ~rn) = Nb(~dk+' I, ~ ) ) .  

REMARK 2.5. Two observations result from Proposition 2.2. 

(i) Property J does not hold if and only if 

qe(~', c ~ ' + i  ) = q~(~r c ~ , ) .  

(ii) If Property J holds, then q/(~r n-~,+1) = a//(sd,'+1 t~&~,+1) for 

m + k < n 2, where q/(~tk'+ i . .-~m+ i) denotes the addition of a zero at a, 

followed by the addition of a zero at b, and analogously for q/(~Ck'+ i n ~ , +  i). 

As a consequence of Property J, the following property holds. 

PROPOSITION 2.3. Assume ~ ( ~  n &m) does not satisfy Property J. Then for 

all u(t) = ~,~=o a~ui(t)~ql(ad'k+l N~m) = all(~k ~ , ~ + 1 ) ,  a, = O. 

Proposition 2.3 invites questions pertaining to relaxations of Property J. To 

dispell any such inclinations, the following examples are given. 

In each of the examples, X and B satisfy Postulate I. 

Example I. X and B satisfy Property J and a, = 0. 

[,o0oo lo] 
A =  0 0 0 0 0 - 1  B =  0 0 0 0 1 0 0 

0 0 0 0 1 0 0 

Example II. X and B satisfy Property J and as #- 0. 

A ' = [ 1  0 0 O] B = [ I  0 0 O] 

Example III. X and B do not satisfy Property J and as = O. 

= B = [ I  0 0 0 I 0] 
0 0 0 0 0 

Example IV. X and B do not satisfy Property J and a, :/: 0. 

X =  [ 1 0 0 0 0 - 1  0 ]  B =  [~  0 0 0 0 - 1  0 ] 

0 0 0 0 1 0 0 0 0 0 1 0 0 
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3. Representation theorems 

Section 2 has laid the groundwork for the representation theorems which 

Follow. In order to prove the main Theorem 3.2, we need the following, which 

is also of  independent interest. 

THEOREM 3.1. Let f ( t )  be a continuous and strictly positive function on [c, d]. 

Let {ui}, i = 0, . . . ,  n, be an ECT-system on [a, b], where a < c < d < b. Let X 

and B be given k x n + 1 and m x n + 1 matrices respectively, satisfying 

Postulate I. Then if  p and q are non-negative integers for which n - m - k - p - q  

= 2r ~_ O, there exists a unique polynomial u*,q(t) satisfying the following 

statements. 

(i) f ( t )  ~ u(t) ~ O, for all t ~ [c, d]. 

(ii) u e q"(~k n ~,,). 

(iii) Ztc,d)(u(t)) = 2r, with r distinct zeros. 

(iv) u(xl) . . . . .  u(xp) = O, where a < xl < "" < xp< c, and u(yl) . . . .  

= u(yq)= O, where d < Yl < "'" ~-Yo < b, with the usual definition of mul- 
tiplicities in the case of equal xi and/or  yj. 

(v) f ( t )  - u(t) vanishes at least once between each pair of adjacent zeros of 

u(t) in (c, cO, and at least once between the largest zero and the endpoint d, and 

at least once between the smallest zero and the endpoint c. 

PROOF. Assume without loss of  generality, that xp < c < d < Yl. Since 

q/(~k C3&m) has a basis of  n - k - m - p - q  + 1 functions which constitute a 

Tchebycheff-system on I'c,d], the theorem basically follows by the methods of  

Karlin [2]. Q.E.D. 

THEOREM 3.2 (a). Let {ui}, i= 0, . . . ,  n, be an ECT-system on [a, b]. Let X and 

B be given k x n + 1 and m x n + 1 matrices respectively, satisfying Postulate 1, 

and assume Nb(affk, ~m) = fl and N , ( ~  k, ~m) = ~" l f  f (O is a continuous function 

in [a, b'] positive on (a, b), with zeros of degree y and t5 at a and b respectively, 

where y ~_ ct and t5 < fl, then for  n - m - k  = 2r > O, there exists a polynomial 

u*(t) satisfying the conditions 

(i) f ( t )  > u(t) >= O, for all t ~ [a, b], 

(ii) u eq,'(~Ck r3 ~m), 

(iii) Zt,,b)(u(t)) = 2r, with r distinct zeros. 

(iv) f ( t )  - u(t) vanishes at least once between each pair of adjacent interior 

zeros of u(t) and at least once between the largest zero and the endpoint b, and 
between the smallest zero and the endpoint a. 
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REMARK 3.1. The theorem has been stated for n - m - k  = 2r >= O. I f n - m - k  
= 2 r  + 1 => 1, then the same theorem holds, by Proposition 2.1, on replacing Xand  

B by X' and B, or by X and B'. 

PROOF OF TheOREM 3.2 (a). For r = 0, the proof is simple. Assume r > 0. By 

Theorem 3.1, for each el,8 2 > 0 and sufficiently small, that is, a + e I < b -e2 ,  

there exists a unique polynomial u(el, e2; t) satisfying the conditions of Theorem 

3.1, where p = q = 0, and [c,d] is replaced by [a + el, b - e2]. 

Let {ti(el, e2)}, i = 1, ..., r, be the distinct zeros of u(e,, e2; t) in (a + et, b-e2),  
where 

a + e I < tt(et,e2) < ... < tr(sD e2) < b - e2, 

and let {%(el,e2)}, i =  1 , - . . , r +  I, be distinct zeros of f ( t ) - u ( e l , e 2 ; t )  in 

[a + e,, b - e2], where 

a + el =< s,(el,e2) < tl(el,e2) < "" < t,(et, ~2) < s,+l(~,,e2) =< b - e 2. 

Let u(et,e2; t) = E~'= 0 al(et,e2) u,(t), and 

t ~ . i , e2 ;  t) = ai(eD.2)u,(t ) [ a , ( e , , . 2 ) ]  2 
t = 0  l 

where for ease of notation, we denote 

By counting zeros, it follows that for fixed e2, tt(el,e2)~, and sj(el,~2)~, as 

eta,, i = 1,.. . ,r; j = 1 , . . . , r+  I. By the uniqueness of v(~,,e2; t), and since 

v(el, e2; t) is uniformly bounded, ~el,  ~2; t) is a continuous function of ~l (for ~2 

fixed) and analogously, a continuous function of ~2 (for ~1 fixed). 

In what follows, fix e2, and suppress it in the notation. Accordingly, 

v(et ; t) = s bl(e,) ut(t), where s [b,@x)] 2 = 1. 
/ = 0  l=O 

Thus, as e,~, 0, there exists a subsequcnce {Sk}, k = 1,..., oo, such that eke, 0, and 

b,(e~)--,b~, as k--,oo, i = O , . . . , n ,  while t,(e~) ~,t~ as k ~ o o ,  i = l , . . . , r ,  

sj(8~)~,sy as k ~ o o ,  j = 1 , . . . , r +  1. Hence, v(ek; t)'-*k..~V(t ) ---- ~ffiO biu~(t) 
k 

uniformly on [a,b] ,  and ~ ' = ,  b~ = I. Since f ( t )~6~*v(e,; t ) ,  for all 

t ~ [a + e~, b - e2], and v(e~, t) -'k-.| v(t) ~ 0, it follows that oo > C ~ 6'k,~ 0, 

k=1 ,2 ,  . . . ,a  =< s, ~ t, _~..- ~ t, ~ %+, < b - e2 , a n d  6'~ ~_.oo 6, where0 _~6<o0. 
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We show that  t~ > a, and c5 > 0. Assume t~ = a. Thus  st = a as well. f ( t )  has 

a zero o f  degree y =< ct at a, and u(r[ ;  t) has a zero of  degree ~ at a, for all k. 

Therefore  f ( t )  - u(e[; t) has a zero of  degree o at a,  where cr > ~,. Since Sl(e~)$ a, 

f(s~(e~)) - u(e~;s(e~)) = 0, there exists x (e [ )~ [a , s~ (e [ ) ]  for which 

( f - u ( t [ ) )  ~ (x(e~)) = 0, i = 0,... ,~r. Because t~(e[)~ a and u(e,~; tlC,)) 
= u'(e~; t~(e[))= 0 there exists y(e~)e [a, t~(e~)] for which u"~(e[; y ( e ~ ) ) =  0, 

i = 0 , . . . , ~  + 1. 
k 

u ( ~  ; t)  = ~,~(~ ; t)  --, ,~v(t) = u ( t )  
k ' *  oo 

uniformly and cont inuously  on [a,  b], and 0 __< u(t) < ~, for  all t ~ [a,  b]. Thus,  

u(t) has a zero of  degree at  least ce + 2 at a, (note that  it may be that  u - 0), and 

( f -  u) (t) has a zero o f  degree at least o + 1 at a. Since o + 1, ce + 2 _>_ ~, + 1, f(t) 
has a zero o f  degree at Ieast Y + 1 at a,  contradict ing the definition o f  ~,. Thus,  

t l  ~> s 

Now,  b - e 2 > s2(e~) ~, s z > t I > a. Thus,  
k 

0 < m =  rain f ( t ) < ~ ,  max 
t e[s2,s2 + ~] t e[s~,s~ + n] 

max v(t~;t) = 
t ~[s2,s2 +~] 

v(r t), for  k > K, ,  and 

max ~ [bi(e ~) lu:O 
t e[s2,sz+r/] t = 0  

n 

max Y'. u,(t) = 1~. 
t c-[s2,s2+~l] l=O 

Therefore  ~,  >= m / M  > 0, 0 < ~ < 0% and u(t) = ~v(t) ~ O. 

Since u(O =0 ,  i = I, ..., r, u(si)=f(si), i = 1, ..., r + 1, and tl > a, it follows 

that  

a__<st < t~ < ... < t, < s , + l  < b - e 2 .  

Reintroduce the suppressed index e2, that  is, u(t) = u(e2; t). We have shown 

that  u(e2; t) is a polynomial  satisfying the condit ions o f  Theorem 3.1, with p = q = 0 

and [a,  b - e2] in place o f  [c, d]. 

Let ul(t), u2(t) satisfy the above.  Then u~(t)-u2(t)e ~(~r t'3g,,) and u ~ - u 2  

has at least 2r  zeros in (a ,b-e2] .  I f  ul - u2 has more  than 2r zeros in (a,b) 

ui ---- uz by Theorem 2.1. If, on the other hand,  (ul - u z )  (t) has exactly 2r  zeros in 

(a ,b-e2] ,  then u ~ ( a ) =  u~)(a), and u t - u z e q / ( . d ~ +  z r i g , , ) .  Thus,  u I - u 2 ,  

and  u(e~; t) is unique for  ~2 > 0. 
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Analogous to the situation considered, we let ~2~,0, and obtain u*(t) which 

satisfies conditions (i)--(iv) of the theorem. Q.E.D. 

Theorem 3.2 (b) examines conditions for uniqueness. 

THEOREM 3.2 (b). The u*(t) in Theorem 3.2 (a) is unique if one of the following 

holds: 

(i) (~t + fl) > (V + t~). 
(ii) ~t + fl =7 + ~, but f(~(a) # u*t')(a) or f(#)(b) # u*(#)(b). 

(iii) Property J holds for ql(~g k N ~m). 

REMARK 3.2. The u*(t) mentioned in Remark 3.1 are unique by part (i) 

of  Theorem 3.2(b). For n - m - k  = 2r+  1 ~ 1, as in Remark 3.1, denote by 

u(t) the unique polynomial satisfying (i), (iii), (iv) and 

(ii') u e q/(~r ~ n ~ ) ;  

denote by if(t) the unique polynomial satisfying (i), (iii), (iv), and 

(ii") ueq/(~Ck c ~ ' + l ) .  

If  Property J does not hold, then/i(t) = u(t). 

PROOF OF THEOREM 3.2(b). If  u~(t), u2(t) both satisfy (i)-(iv), then 

ul -uz~ql(~clk n & , ) ,  and (Ul - u z )  (t) has at least 2 r -  1 zeros in (a,b). It 

has exactly 2r - 1 zeros in (a, b) if and only if 

= ct and u~)(a) = ut2~)(a) = f(~)(a) (II)  

and 

(12) = fl and utl#)(b) = u(,P)(b) = y(#)(b). 

If  it has 2r zeros in (a, b), then either (11) or (12) must hold. Since (ul - u2) ( t )~0  

can have at most 2r zeros in (a, b) by Theorem 2.1, we need only consider the 

above two cases. 

Assume (u~ - u2)(t ) has 2r zeros in (a, b) and assume, without loss of  generality, 

that (i) holds. Thus, u I - u2 e q/(M~+l n.~m). But 2r + k + 1 + m = n + 1 and 

hence u I - u2. By (11) and (12), if(i) or (ii) holds for u I or u2, then (u I - u2)(t) 

cannot have 2r - 1 zeros in (a, b) and we are finished. 

Assume ( u l -  u2) (t) has 2 r - 1  zeros in (a,b) and Property J holds for 

~(~r n ~ .  Then (u I -u2 ) (~ ) (a )=  ( u t -  u2)(#~(b)= 0, and we may add a 

zero at a and a zero at b to obtain ah'(~r 1 n . ~ + l )  which contains ul - u z .  

Again we have ( 2 r -  1) + (m + 1) + (k + 1) = n + 1 conditions, and u I - u 2. 

Hence the theorem is proved. Q.E.D. 
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REMARK 3.3. If  No(~k, ~m)=Nb(~C,~m) = 0, and Property J holds, then 

~ ( d k  n ~m) has a basis which is a Tchebycheff-system on [a, b]. 

Let us return to a consideration of  the situation in Theorem 3.1, and for sake of  

convenience alone, consider the case where xp < c < d < Yl. 

COROLLARY 3.1. Let f ( t )  in Theorem3.1 be a polynomial u ( t ) ~ ( ~ k  n ~ m )  

satisfying condition (iv). Let n = m + k + p + q + 2r, where r > O. Let u*,q(t) 

be as in Theorem 3.1, and let ** up.~(t) be the unique polynomial satisfying the 

conditions (i), (ii), (v), (iii) with 2r replaced by 2(r - 1), and 

(iv') conditions (iv) and u(c) = u(d) = O. 

Then, 

f ( t )  u(t) ** ** = = up q(t)+ u*q(t) where the zeros of up,q(t) strictly interlace the 

zeros of u*.q(t) in (c, d). 

PROOF. (u -- up*q) (t) satisfies (i), (ii) and (iv). Moreover, (u - up,q)* (t) can have 

at most 2r zeros in [c, d] and since u*q(t) satisfies (v), we have 

( u  = ( u  * - - u p . q )  (e l )  = O,  

and (u * -up.q) (t) has r -  1 distinct zeros each of  multiplicity two in (c,d), 

interlacing the zeros of u*q(t). By the uniqueness ofup,q(t),u(t)-** up,q(t)** = up,q(t). 

Q.E.D. 

In general, associated with each u(t) or u*(t) (as in Remark 3.2 to Theorem 3.2, 

or as in Theorem 3.1), there is a function ~(t) or u**(t). However in Theorem 3.2, 

with n = m  + k + 2r, we have not defined a u**(t), although it obviously can be 

defined by adding appropriate boundary conditions at the endpoints a and/or  b, 

while maintaining Postulate I. This is due to the non-uniqueness of  u*(t) in the 

theorem. Nonetheless we shall have use for such a function in Section 4, and 

introduce it below in the following corollary. 

COROLLARY 3.2. In Theorem 3.2, let f ( t )  be a polynomial u(t), and let 

f =  U ~ ~ (  Off k ("~ l~m). 

Assume 

O) n = m + k + 2r + 1 and q/(~lk (3 ~r~) satisfies Property J. 

Then, there exists a unique representation f ( t )  = u(t) = fi(t) + u(t) (see Remark 

3.2, where the zeros of ~(t) and u_(t) in (a, b) strictly interlace). 

(ii) n = m + k + 2r, r > O, and v~(Offk (3 ~m) satisfies Property J. 
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Then there exists a unique representation f ( t  ~= u(t) = u*(t) + u**(t), where 

u**(t) is the unique polynomial in ql(s/~+ 1 ~&m+l)  = q/(~tk'+l N & ' + I )  with 

respect to f ( t )  (as in Theorem 4). The zeros of u**(t) strictly interlace the zeros 

of  u*(t) in (a, b). 

(iii) n = m + k + 2r, r > 0, and ql(~/k ~ , ~ )  does not satisfy Property J. 

Then there exist representations f ( t )  = u(t) = u*(t) + u**(t), where u*(t) is as 

above, and u**(t) ~ ~(z~,+ 1 ~ ~m) ----- ~(Z~Ck ~ ~m+ 1), f ( t )  >= U**(t) > 0, for  

t e [a, b],Z(a.b)(u**(t))= 2 ( r -  1) and the zeros of u**(t) strictly interlace the 

zeros of  u*(t). 

PROOF. Similar to the proof of Corollary 3.1. Note that u(t) ~ ~(s/~+ 1 O&m), 

q/(~Ck N ~ ' + I )  by the conditions of Theorem 3.2. Q.E.D. 

There yet remains the case where n = m + k + 2r + 1, and q/(~Ck n &m) does 

not satisfy Property J. We prove the following interesting proposition which shows 

this class to be empty. 

PROPOSITION 3.1. I f  n = m + k + 2r + 1, q/(s/k N~,~) satisfies Postulate I, 

and Property J does not hold, then there does not exist a u e q/(~/k ~ &m) for 

which u ~ q/(,~/~+ l N ~ m )  and u(t) > O, for  all t e(a ,b) .  

PROOF. Assume the converse. Then, by Theorem 3.2, there exists a 

U*E~(d~k+ 1 n~m) = a//(~r k n ~ ' + l )  

satisfying the conditions of Theorem 3.2. Thus (u - u*) (t) ~ g '(~k n ~m) and since 

u*(t) has an additional zero at both a and b, Z(o,b)(U -- U*) (t) = 2(r + 1). 

But k + m + 2(r + 1) = n + 1, and hence u(t) - u*(t). This is obviously 

impossible by the definition of u(t) and u*(t). Accordingly, such a u(t) as described 

above does not exist. Q.E.D. 

Theorem 3.2 and the analysis therein allows us to present the following 

theorems. 

THEOREM 3.3. Let f and g be two continuous functions on [a,b] such that 

there exists a polynomial v(t)e q/(~/k ~ m )  being strictly between f and g, 

that is, f ( t )  > v(t) > g(t) for  all t ~ [a, b]. Then 

(i) there exists a polynomial u(t) such that 

(a) f ( t )  > u(t) >__ g(t), t e [a, b], and 

(b) _u ~ ~('-q/k n ~[~m); 
(c) there are n - m - k  + 1 points a < s I < ... < sn_m_g+ 1 < b for  which 
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If(Sn_m_k+ l_i), i even 

u_(sn-m-k+ 1-1) = ~g(S.-m-k+ 1-i), i odd. 

u_(t) is unique if any one of the following holds: 

(1) ~+/~>0, 
(2) I f  ~t + fl = O, and u_(b) # f ( b )  

or u_(a) # f (a) ,  n - m - k + l odd 

u_(a) ~ g(a), n - m - k + 1 even, 
(3) I f  ~ + fl = O, and Property J holds for ql(.~ k n ~m). 

(ii) Let condition (c) and (2) be replaced by (c') and (2') where f and 0 are 

interchanged. Then there exists a polynomial ~(t) satisfying (a), (b), (c') and it 

is unique i f(I) ,  (2') or (3) holds. 

PROOF. The proof uses the method of Theorem 3.2, and Karlin [2]. Q.E.D. 

The restrictionf(t) > v(t) > g(t) for all t e [a, b] may be considerably weakened, 

both at the endpoints a and b, and in (a, b). 

Another generalization of Theorem 3.2 is the following. 

THEOREM 3.4. Let f ( t )  e C"[a, b] be a non-negative function defined on [a, b] 

with the property that Zto.b)(f)= 2S < 2r, and let f ( t )  otherwise satisfy the 

conditions in Theorem 3.2. Then the results of Theorem 3.2 hold with (iv) 

replaced by: 

(iv') I f  tit, ..., h,_, are the r - s  zeros of u(t) of multiplicity two which remain 

after removing the zeros o f f ( t )  in (a, b), then f ( t )  - u(t) vanishes at least once 

more in each of the open intervals between adjacent pairs of distinct tik, and at 

least once more in each of the intervals [a, til) and (ti . . . .  b]. 

PROOF. Use the methods of Theorem 3.2, and Karlin [2]. 

COROLLARY 3.3. In Theorem 3.4, let f ( t )  be a polynomial u(t)(thus f ~ C"[a, b]) 

and let f =u ~ ql(~r k ~ ~,,). Then the results of Corollary 3.2, and Proposition 3.1 

generalize in the obvious manner. 

4. Applications of representation theorems to some extremal problems 

We are now prepared to formulate certain extremal properties generalizing the 

Markoff-Bernstein inequalities. To do this, the following result is necessary. 

PROPOSITION 4.l. Let p(t) be a continuous function on [a, b], q(t) = ]~=oa~u~(t) 

and p(t) > q(t), for  all t ~ [a, b]. 
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Then, there exists a unique polynomial u*(t) which satisfies the following: 

(i) i f n = m + k + 2 r + l , r ~ O ,  

(a) p(t) _~ u(t) _-_ q(t), t ~ fa,  b],  

(b) u - q r  rS~m+l), 

(c) Z<,.b) (u - q) = 2r, r distinct points, 

(d) p ( t ) -  u(t) vanishes at least once between adjacent zeros of u(t) - q(t) and 

at least once between the largest zero and the endpoint b, and between the 

smallest zero and the endpoint a; 

(ii) i f  n = m + k + 2r + 2, r ~ O, (a), (c) and (d) hold as above and condition 

(b) is replaced by 

(b') u - qeq/(M~'+x na'+1). 

PROOF. Apply the previous results to p(t)- q(t). Q.E.D. 

Let the conditions of Proposition 4. I hold, and consider thc class of polynomials 

= {u: tg t )~_u( t )~q( t ) ,  for all t e [a ,b] ,  and u - qeq/(za/k { 3 . ~ ' + , ) } .  

Let B =-l[ niJ I[, i = 1, '-. ,  m + 2; j = 0, . . . ,  n, where 

i=1;j--0,...,n 

- t j  i = 2 , . . . , m + 2 ; j = O ,  1, . . . ,n 

and B' = H B;j([, i = 1 , . . . ,m  + 1; j = O,. . . ,n ,  as in Section 1, where both B' 

and X, and B and AT satisfy Postulate I, (if r = O, drop (i) of  Postulate I) with 

*.+2(#) = ,.+ 1(W). 

THEOREM 4.1. Under the above conditions, 

max ~. BjDJu(b) 
u~ J=O 

is uniquely achieved by u* from Proposition 4.1 

PROOF. Case I. n = m + k + 2r + l, r >- O. 

Let w e ~  and w ~ u * .  Then u * -  w has at  least 2 r -  1 zeros in (a,b) and 

exactly that number only if w(a) = u*(a) = p(a) > q(a). However, in this case 

N,(z~Ck, ~ 'm)=  0, and therefore u * -  w~q/(~Ck"+x n ~ " + l ) .  Since u * - w  can 

have at most  2r zeros in (a, b), and 2r - 1 zeros if u* - w e q/(z~r t n ~ ' +  t), we 

have u*(t) - w(t) > 0, for t e (b - e, b), some e > 0. 
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Let u * ( 0 -  w(t) = ]E,"=oCiu,(t), and let cj # 0. F r o m  Theo rem 2.1, we may  

obtain  

sgn Cy = sgn [ u * ( t ) -  w(t)] ( -  1) k+2r+J, for  t e ( b -  e,b)  = ( -  1) k+J. 

Considering ]Ej= 0 BjOJ(u*(b) - w(b)) in place of  u*(t) - w(t) and applying the 

above analysis,  

n 

Hence, 
n 

B.~D u*(b) > ~, BjDJw(b). 
J=O j=o 

I f  w(a) = u*(a) = p(a) > q(a), we have used the fact that  i f /~  and ,4 satisfy 

Postulate  I with em+2(~  ) = ern + I ( B ' ) ,  then/~  and A '  do the same, as was essentially 

shown in Section 2. 

Case II. n = m + k + 2r + 2, r ~_O. 

Let w e ~ and w ~ u*. Then u* - w has at least 2r zeros in (a, b), and has 

exactly 2r  zeros only if u* - w e ~(~r 1 t3 ~ ' +  t). Otherwise u* - w has exactly 

2r  + 1 zeros in (a,b) and u* - w e q / ( . ~  k ( " t , ~ +  1). We now apply  the analysis o f  

Case I, and the theorem is proved.  Q .E .D.  

By reasoning similar to the above,  it is easily shown that  

BjDJu*(b) > ~ BjDJq(b). 
j = o  1 = o  

Theo rem 4.1 also holds where we do not  demand  a zero at b, if  

q(b) < u*(b) < p(b). 

We now prove a theorem corresponding to Theorem 4.1 for  the min imum case. 

Fo r  ease o f  notat ion,  let B * =  B'.  Let u**(t) be constructed as was u*(t) above  such 

that  

(i) u** - q e ~( .zf  k t3 ~ * ' + 2 )  for  n = m + k + 2r + 2, r _>__ 0, 

and 
(ii) u** - q e qI(~k'+ t t3 ~ * ' + 2 )  for  n = m + k + 2r + 3, r >= 0. 

Let B = [[ B,j [[, i = 0 , . . . ,  m + 3; j = 0, ..., n, where 

Bj i = 1 ; j  -- 0 , 1 , . . . , n  

B U =  B~*_Ij i = 2 , . . . , m + 3 ; j = O , . . . , n  

andB'*=lle;Fll, i = L . . . ,m+ 2 ; j  = O, . . .n .  
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Tm~OREM 4.2. Let {Bj}, j = O, ..., n, be as defined for  Theorem 4.1. Then 

min~ ~u ~E~= o BjDJu(b) is achieved by u**(t). This minimum is unique i f  B and 

satisfy Postulate I (disregarding part (i)). 

PROOF. Case I. n = m + k + 2r + 2, r >_ O. 

By definition of  u**, u** - q e ql(.~ k r~ ~*m+2) and u** - q has r distinct zeros 

in (a, b). For  each w e : ,  u * * -  w has at least 2 r -  1 zeros in (a, b), and has 

exactly 2r - 1 zeros only if u**(a) = w(a) = p(a) > q(a). As has been shown, 

this is, in essence, another zero and we will regard it as such. Thus u** - w has 

at least 2r zeros in (a, b). I f  ( u * * -  w) (t) < 0 for t e (b - e, b), some 8 > 0, then 

u** - w must have at least 2r + 1 zeros in (a, b). Since u** - w e q/(.~k n ~*m+ 1), 

we can now apply the methods of  Theorem 4.1 to obtain 

BjDJu**(b) < ~ BjDIw(b). 
1=0 J=O 

If(u** - w) (t) > 0, t ~ (b - e, b), then u** - w ~ q / ( d  k f~ ~ * ' + 2 )  and (u** - w) (t) 

has exactly 2r zeros in (a, b). Assume that Nb(Mk, ~ , ,+ t )  = ft. I f  with ~ in place 

of  B,* the degree of  the zero at b is greater than fl, then B and X do not satisfy part 

(ii) of  Postulate I and ~ = 0  BjDYu**(b) = ~,~=oBjDYw(b), (that is, the addition 

of  a zero at b, and ~j"=o BjDJu(b) are basically identical). 

If, on the other hand, it is fl, then (/~)' and B are identical matrices except for 

the interchange of the first two rows, and X and B satisfy Postulate I. But in this 

case, tin+ a(/~) = - es + 3(J~'). Utilizing the fact that ( u * * -  w) (t) > 0, t ~ (b -E ,  b), 

and by the analysis of Theorem 4.1, we obtain 

n 

BjDJu**(b) < ~ BjDJw(b). 
j = O j ffi~ O 

CaseII .  n = m + k + 2 r + 3 ,  r>=O. 

This case is essentially the same as Case I except that we must consider 

( u * * -  w) (t) near a as well as near b. The proof  then follows. Q.E.D. 

Theorems analogous to Theorems 4.1 and 4.2 can be constructed at the endpoint 

a. The statements are left to the reader. 

Let ~ '  = (u: q(t)~_ u(t)<= p(t), for all t e(a,  b), q(t) and p(t) as above, and 

u - - q e q / ( ~ t k n ~ m ) ,  n = m + k + 2 r } .  Assume c t + f l > 0 .  Let u*(t) be the 

uniquely defined function satisfying: 

(i) u e ,~"  
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(ii) Zta,b)(u) = 2r, and there are r distinct zeros in (a, b) 

(iii) p - u vanishes between each pair o f  adjacent zeros o f  u - q, and at least 

once between the largest zero and b, and the smallest zero and a. 

Define 

A f t )  = 
p(t)  - q(t)  

( b  - -  t ) i ( t  - -  a )  j 
for a n y O <  i < fl, O < j  < ~ ,  

and assume f~j(t) is strictly decreasing on (a, to) and strictly increasing on (to, b), 

for some to ~ (a, b). 

The  simple cases o f  the next two theorems may be found in Karl in [3]. 

THEOREM 4.3. Le t  the above assumpt ions  prevai l .  T h e n ,  

u(t)  -- q(t)  
max max 
. �9 ~ " t  ~ta,bl ( b  - t ) i ( t  - a )  j 

is a t ta ined  by  u*(t), and  u n i q u e l y  so i f  fl, ~ > O. 

PROOF. Note  that  

u(t)  = u ' ( t )  . . . . .  uO)(t) = 0 ~ u(t)  = Du(t )  . . . . .  D1u(t) = O. 

Thus, lira u(t)  - q(t) and lira u(t)  - q(t) 
t~, (b - t)~(t - a) ~' ttb (b - t ) i ( t -  a) ~ 

are well defined for i ____ fl, j < ~, and the first term is zero for j < ~, and the latter 

zero for  i < ft. 

Assume fl, ~ > 0. Let  So and st be the first and last zeros, respectively, o f  

p ( t ) -  u*(t) in ( a,b ). w e ~ ' ,  u*( t) - w (  t) has 2r zeros in ( a,b ), u* - w  e q l ( .d  k t~ ~m),  

and (u* - w) (t) > 0 for  t ~ (a, So], Is1, b). Therefore  

u*(t) - q(t)  w(t)  - q(t)  u*(t)  - w(t)  
> 0  

(b - t)i(t - a) ~ (b - t)i(t - a) j = (b - t)i(t - a) j 

for  t e (a, So], [s,, b). By the above, for  i < fl, the above terms are zero at b, and 

similarly at a for  j < ~. 

For  i = fl, lim u*(t)  - w(t) = u*~P)(b) - w~P)(b) ( _  1)p. 
t~b ( b  - t ) t ( t  - a )  ~ fl!  ( b  - a )  j 

By Theorem 4.1, this value is positive. The p roo f  follows. 

If, say fl = 0, then 

p(t)  -- q(t)  
foq  = -  ( t - a ) /  
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and the above proof holds except that if u*(b) = p(b), uniqueness does not 

necessarily follow. Q.E.D. 

Let gj(t) = p(t) - q(t)/(t - a) j, 0 _-< j _< ~t, ~ > 0, and assume g~(t) is strictly 

decreasing on (a, b], N~ ~=) = ct. 

Let h~( t ) - - -p ( t ) -  q ( t ) / ( b -  t) l, 0 < i <  g, fl > 0, and assume h~(t) is strictly 

increasing on [a, b), Nb(~Ck, ~m) = 8. 

THEOREM 4.4. Let the above assumptions hold. Then 

u(t) - q(O 
(i) max max 

=~, '  t~t,,~] ( t - a )  J 

is uniquely attained by u*(t), where flj(t) satisfies the above. 

u(t) - q(t) 
(ii) max max 

=,~,' ,,t~ (b- t) i 

is uniquely attained by u*(t), where h~(t) satisfies the above. 

PROOF. Similar to the proof of Theorem 4.3. 

We state the following theorem whose proof, with little change, may be found 

in Karlin [3]. 

THEOREM 4.5. Let ~' be as above, and let :'(to) = {w: we~', to~[a,b], 

W(to) = u*(to) }. Then 

max w'(to)8=~ 
w e aD'(to) 

is uniquely attained by u* if ~u. ~ 0, where 

f 1 if u*'(to)>O 
~=, = -1  if u*'(to) < O 

0 if u*'(to) = O. 

Let Q denote the class of  all non-trivial, non-negative polynomials in 

ad(~r k n ~=). Then the following theorem holds. 

THEOREM 4.6. Assume that L is a linear functional defined on Q such that 

L(u) > 0 for  u e Q. 

(i) Let M be a sublinear functional defined on Q, that is, M(u 1 + u2) ~ M(ul )  

+ M(u2), up  u2EQ. Then, sup=~o M(u)/L(u)  is achieved for  polynomials 

possessing a maximum number of zeros. 



Vol. 17, 1 9 7 4  TCHEBYCHEFFIAN POLYNOMIALS 33 

(ii) Let M be a superlinear functional defined on Q, that is, M(u I + u2) 

M(ul) q- M(U2), Ul, u2 ~ Q. Then, inf, ~o M(u) /L(u) is achievedJbr polynomials 

possessing a maximum number of zeros. 

REMARK 4.1. Let t2 e q/(~gk n "~m) have zeros of degree g and fl at a and b, 

respectively, and Zta,b)(u" ) = s. Then t2 is said to have a maximum number of 

zeros if for any other u ~ ~ k o &,,) with zeros of  degree ~ and fl at a and b, 

respectively, for which Zco.b)(u ) = s, and with either additional zeros at a or b, or 

in (a, b), we then have u - 0. 

In other words, 12 has the maximum number of  zeros in (a, b) given the boundary 

conditions (including additional zeros) which it satisfies. 

PROOF OF THEOREM 4.6. First note that the extremaI values are finite and are 

actually attained. We consider only (i), since the proof  of  (ii) is totally 

analogous. 

Due to the homogeneity of  M and L, it is sufficient to consider those u e Q 

obeying the normalization L(u) = 1. Therefore, it is sufficient to establish for 

every polynomial v e Q satisfying L(v) = 1, the existence of a polynomial ~ e Q, 

with a maximum number of zeros, for which L(~) = 1, and M(~) > M(v). 

Assume that L(v) = 1, and v has less than a maximum number of  zeros. Then 

v e ql(d~ n ~,~) and Zc,,b~(v ) = s, n > ]c + fn + s, where u e q/(~r n ~,~) implies 

u e q/(~Ck n Nm), and v and q/(.~k o N~) have zeros of the same degree at a and at b. 

Case I. If  n=]c + rh + 2r + 1, then by Corollary 3.3 ( and Proposition 3.1), 

~(~r n ~,~) must satisfy Property J, and there exists unique _u(t) and ~(t), for 

which _u, ~ e Q, ~, _u have maximum number of zeros and v(t) = ~(t) + _u(t). Let 

= L (~) and a = L(_u). Then ),, tr > 0, and ? + tr = 1 since L(v)= 1. Thus v = 

r( ~/r) + a(u_/a), and M(v) < max {M(~)/),, M(_u)/a}. 

Case II. If  n = ~ + r~ + 2r, r > 0, then we apply Corollary 3.3 as above. 

Q.E.D. 
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