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1. INTRODUCTION

Recent years has witnessed a considerable literature con-
cerned with various aspects of best Chebyshev approximation
to functions under a variety of auxiliary conditions, such as
restricted range approximation (Tayloxr [15] and references
therein), simultaneous approximation (Dunham [2]), approxi-
mation with interpolation (Loeb, Morsund, Schumaker and
Taylor (7D, approximation of discontinuous functions (Dunham
[2], Rosman and Rosenbaum [11]), anda approximation with
bounded coefficients (Roulier and Taylor [12]). There also
have appeared works attempting to unify the theory for Cheby-
shev systems and unisolvent families of functions (e.g.,
Chalmers, [1]1, Lewis [6]).

In this paper, we apply the representation theory developed
in Karlin [3], (see also Karlin and Studden [4]), in order to
extend, unify, and simplify many of the results characterizing
the best Chebyshev approximation for the above class of
approximation involving constraints. We attain the best

approximation, characterized by alternations, as a limit of

*
This work is part of the author's doctoral thesis under the
supervision of Professor S. Karlin.
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two unique "polynomials" with one less alternation and oppo-

site orientation. To illustrate, consider the following two

theorems. v
Theorem 1. (Representation Theorem), (Karlin [3], karlin and
studden [4].) -

Let {ui(t)}n be a Chebyshev (T) system, and f£(t) and
0
g(t) two continuous functions on [a,b] such that there

n
exists a polynomial v(t) = z aiui(t) for which
i=0

£(t) > v(t) > g(t) for all t € [a,b] . Then,

a) there exists a unique polynomial u(t) with the

following properties

(i) £(£) 3> ult) > gt) , t € [a,b]
(ii) there exist n+l points a ¢ xl < .. < X 1 <b
such that
f(xi) R i even
(1.1) ulx,) =
g(xi) ’ i odd .

b) Let condition (ii) be replaced by (ii') obtained by

interchanging the functions £ and g in (1.1). Then there

exists a unique polynomial u(t) satisfying (i) and (ii').

Let f(c;t) and g(c;t) Dbe a family of continuous func-
tions of t € [a,b] and c¢ € (-»,») . Suppose f(c;t) is
non-decreasing in ¢ and g(c;t) is non-increasing in c .

Assume the existence of a ¢y and a polynomial wv(t) satis-

fying f(cl;t) > v(t) > g(cl;t) , t€l[a,bl] and a c, for

which f(c,it) < glc,;t) for some ¢t € [a,b] . Then,

Theorem 2. Under the above assumptions, let c0 =

inf{c : there exists a polynomial u(t) such that f£f(c;t) >

u(t) > glc;t) for all t € [a,bl}
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If cq is such that f(co;t) > g(co;t) for all

t € [a,b] , then there exists a unique polynomial u*(t)

such that f(co;t) > ur(t) = g(co;t) , and u*(t) alternates

at least n+l times between f(co;t) and g(co;t) .

The polynomial u*(t) 1is obtained as a limit of the
ul(c;t) and u(c;t) associated with f£(c;t) and glc;t) .

A simple application of the above general theorem provides
the existence, uniqueness and characterization of best
approximations (with or without weight functions) to continuous
functions. Examples which more fully utilize Theorem 2 are
illustrated. We shall assume ‘lf[‘ =  max If(t)| , unless

. t€ b
otherwise stated. La,

i) Consider the problem of simultaneous approximation
(Dunham [2]). The problem is to find and characterize the
polynomial wu(t) which minimizes

max(|[£-u|] , [[g=u]]) .

Let £(t) and g{(t) be two continuous functions (without
loss of generality we may assume that £(t) < g(t) ,
t € [a,b]).

Let f(c;t) = £(t)+c and gl(c;t) = g(t)-c , ¢ > 0 . From
Theorem 2, it follows that unless there exists a polynomial
u(t) such that Ilf—ull = !Ig—ull = %1lf—gl’ (saddle point
in the terminology of Dunham [2]), there then exists a unique
polynomial u*(t) satisfying the above minimization and it is
uniquely characterized by the property that it alternates at
least n+l times between f(t)+cO and g(t)—c0 . for some

co > 0, where f(t)+cy > glt)-c, , t € [a,p] .

ii) An additional application of Theorem 2 is the earlier
case of restricted range approximation considered by Taylor

[14]. We wish to approximate a continuous function f£(t) by
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polynomials satisfying a(t) < u(t) £ b(t) where a(t) , b(t)
are two continuous functions for which a(t) < b(t) . We

assume the existence of a polynomial v(t) such that

>

a(t) < v(t) < b(t) for all t € [a,b] . Letting £(c;t) =
min {£(t)+c , b(t)} , glc;t) = max {f{t)-c , a(t)} , and
applying Theorem 2, we secure the desired result.

Attributable to this key relationship between represen-
tation theorems and problems of best approximation, we refine
and extend the technique of Theorem 1 and via the methods of
Theorem 2 obtain a host of applications. This approach is
basically new. Karlin and Studden [4, p.253] were aware of
this connection. However, their approach used properties of
the unique best approximation to continuous functions to
explicitly obtain results for the u(c;t) and u(c;it)
featured in Theorem 1 (i.e., they approached the problem in
the reverse direction).

Theorem 1 may be generalized in various directions. 1In "
Section 2 it is shown that Theorem 1 may be extended to
include a compact subset of the real line rather than a
connected interval, and that the continuous functions f£(t)
and g(t) may be.replaced by lower semi-continuous and upper
semi~continuous functions, respectively. It would be useful
to extend Theorem 1 to the class of unisolvent families of
functions. While this may well be true, we were able to prove
this fact only for a subset of the above class.

In Section 3, we indicate a representation theorem which
allows contact between f£(t) and g(t), and then apply the s
result to the general case of restricted range approximation.
Section 4 presents a new representation theorem constructed R
to deal with the problems of best approximation with inter-
polatory data. It is then applied to obtain the result of

Loeb, Morsund, Schumaker and Taylor [7].
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In Pinkus [10] representation theorems with quite general
boundary conditions were developed. These are presented in
Section 5. In Section 6 we apply the contents of Section 5
to obtain results on best approximation subject to restricted
boundary conditions. The results of Section 6 are mainly new.

The definitions of a Chebyshev (T), Extended Chebyshev (ET),

and Extended Complete Chebyshev (ECT) system {ui(t)}n may
i=0
be found in [4].

2. PROOF OF THEOREM 2 AND EXTENSIONS OF THEOREM 1

Proof of Theorem 2, The uniqueness of u*(t) satisfying the
above properties is a result of the standard zero counting
argﬁment, while existence of a u(t) for which f(co;t) >
u(t) > glcyit) for all t € [a,b] , is easily proven. The
following is a proof of the characterization of u*(t) .

For each c¢ > ey v there exists a v{(t) for which
f(c;t) > v(t) > g(c;t) , by the definition of ¢, . Thus,

by Theorem 1, we have the existence of unique polgnomials
alc;t) and u(c;t) , each alternating n times between
f(c;t) and gl(c;t) , with opposite orientation.

Let ¢ ¥ o and choose convergent subsequences. Since
u(c;t) and wu(c;t) are continuous functions of ¢ and since
f(co;t) > g(co;t) for a}l t € [a,b] , the resulting func-
tions u(t) and u(t) must alternate n times between

f(co;t) and g(co;t) with opposite orientation.

If u(t) Z u(t) , there then exists a polynomial wu(t)
for which f(co;t) > u(t) > g(co;t) , contradicting the
definition of cy (see Lemma 3.1). Thus u(t) = u(t) , and
it follows that u*(t) = u(t) = u(t) must alternate at least

n+l times between f(c.:;t) and gl(c,;t) .
0 0 0.E.D
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Remark 2.1 . It is possible, since we do not demand that
f(c;t) strictly increases in ¢ , for all t € [a,p] , and
similarly for g(c;t) , that f(c;t) 2 u*(t) 2 g(c;t) for
some c < cy - The theorem implies that for any c¢ < Cq
the only polynomial that may lie between f(c;t) and glc;t)
is u*(t) and it satisfies the alternation property if

flc;t) > glc;t) for all t € [a,bl

Remark 2.2 . If c, is such that there exists a t € [a,b]

for which f(cO;E) = g(co;E) , then uniqueness is, in general,

lacking. Examples are easily constructed.

Proposition 2.1 . Let £(t) , g(t) Dbe two continuous func-

tions on K < [a,b] , K compact containing at least n+2

points. Let {ui(t)}n be a T-system on [a,b] . Assume
i=0

that there exists a polynomial wv(t) such that f£(t) > v(t) >

g(t) for all t € K . Then the results of Theorem 1 extend

with K in place of [a,b] .

Proposition 2.2 . Let f£f*(t) , g*(t) be bounded lower semi-

continuous and upper semi-continuous functions, respectively.

Assume f*(t) > g*(t) for all t € [a,b] , and that there

exists a polynomial v(t) such that £*(t) > v(t) > g*(t)

for all t € [a,b] . Then, the results of Theorem 1 hold for
f*(t) and g*(t) .

Both Propositions 2.1 and 2.2 may be obtained by the
analysis used in the proof of Theorem 1, or can be deduced
from an application of a limiting process on the results of
Theorem 1.

Theorem 1 does not extend to the case of unisolvent fami-
lies of functions due to the fact that zeros may not be
counted with full multiplicity (this is necessary in the proof

of Theorem 1). As such, we restrict ourselves to the
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following class.

Definition 2.1 . Let P be a parameter space. A family of
functions F(A,x) , x € [a,b] , A € P, is called Extended

Unisolvent of degree n+l if F(A,x) € Cn+l[a,b] for all

A € P, and there exists a unique function which interpolates

any given n+l Hermite data.
For the above family of functions it is not difficult to

show that Theorem 1 remains valid.

3. APPLICATIONS OF THEOREM 2

Example 3.1 . The first immediate result of Theorem 2 is the
classical characterization and uniqueness of the best approxi-

mation, and best one-sided approximation, by polynomials

n
n .
u(t) = ) a, u, (t) , where {u, (t)} is a T-system on the
. i i i R
i=0 1=0
smallest connected component containing K , to a continuous
function defined on a compact set K of IR . 1In what

follows, the best adpproximation is defined with respect to

the Chebyshev (L ) norm, ||f|| = max lf(t)l . However,
tEK
this is done simply for ease of notation since we may also

define the best approximation with respect to the generalized
weight function introduced by Morsund [9], defined as follows:
The error of approximation is measured in terms of the
function W(t;y) defined on K x IR, where
(i) sgn W(t;y) = sgn y
(ii) W 1is continuous

(iii) for each t € K, W 1is a strictly monotone

increasing function of y , with 1lim |W(t;y)l==ww
)2 lnaind

The polynomial u*(t) 1is said to be a best approximation
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of f(t) with respect to W if

sup |W(t;E(t)-u*(t))| < sup |W(t;£(t)-u(t)) |

tEK tEK
n
for all polynomials u(t) = 2 a; ui(t) , n fixed,
i=0

In place of setting £f£(c;t) = £(t)+c, and g(c;t) = £(t)-c
as in the case of the best approximation to £(t) , and
applying Theorem 2, we define £(c¢c;t) = £(t)+c(t) , and
g(c;t) = £(t)+b(t) , where W(t;c(t)) =c, t € K, and
W(t,b(t)) = =-c, t€K, c >0 . Note that on a connected

interval, c¢(t) and b(t) are continuous functions of t .

Example 3.2 . 1In Section 1 we indicated how Theorem 2 may be
applied to the problem of simultaneous approximation of two
continuous functions. From Proposition 2.2, this result may
be extended to the case where g(t) = f(t) and g(t) is a
bounded upper semi-continuous function, while £(t) is a
bounded lower semi-continuous function. This fact may be used
in the consideration of best approximating bounded measurable

functions (see Dunham [2], Rosman and Rosenbaum [11]).

Example 3.3 . Restricted Range Approximation

In order to extend the discussion on restricted range
approximation in Section 1 to the case where a(t) < b(t)
for all t € [a,b] , we make use of a generalization of
Theorem 1. The result we state without proof, but include
the proof of the following lemma. The proof of the theorem
is identical with that found in Karlin and Studden [4,p.74l].

Lemma 3.1 . TLet {ui(t)}n be an ET-system on [a,b] , and
i=0
let f£(t) , g(t) be continuous functions on [a,b] such

that
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1) f£(t) > g(t) for all t € [a,b] .

2) For each t such that f£(£) = g(E) , f(r) ,

g(t) € c*[t-¢,t+e] , some € > 0 , (where at a and at b ,

only the one-sided derivative is assumed).

3) Z[a,b](f_g) =m<gn, where Z[a,b](f) counts the
number of zeros of £(t) in [a,p] , including multipli-

cities.

Assume that there exist two distinct polynomials vl(t)
and vz(t) such that £(t) 2 Vi(t) > g(t) , t€ [abl ,
i=1,2 . Then, there exists a polynomial wv(t) such that

£(t) 2 v(t) 2 g(t) for all t € [a,b]l, and Z[a b](f—v) =

Z[a,b](v_g) =m .

Proof. Let {ti}# 1 be the distinct points at which £(t) =

Eroos. i=

g(t) , and let {ui}F 1 be the respective multiplicities of
1=

the zeros of f(ti)—g(ti) , i=1,...,k . Note that ui is
k
even if t, € (a,b) , z U, =m .
i jop 1

The set of polynomials lying between £(t) and g(t) is
a closed convex set, and if the multiplicity of the zero of
(f—vl)(ti) is Gi and the multiplicity of the zero of
(f-Vz)(ti) is Ai , where £(t) > vi(t) 2 glt) , i=1,2
v,+v

1
2

vl(t) Z v2(t) , then (f - 2)(ti) has a zero of multi-

plicity min {5i,xi} at t; . In this way we may easily
define polynomials Gl(t) and Gz(t) which have the least
amount of contact with £(t) and g(t) , respectively. Let

v, (£)+v. (£)
u*(t) = __1__2_2_ .

We show that if wu*(t) does not satisfy the statement of
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the lemma, then a contradiction ensues.

Assume (f-u*) (t) has a zero of multiplicity Si at ti
and (u*-g) (t) has a zero of multiplicity Ai at ti ’
i=1,...,k . Then min {Gi,ki} = Uy i=1,...,k, and

define max {quxi} =V i=1,...,k .

Assume u*(t) alternates £ times between f£f(t) and
g(t) where we disregard the points {ti}k . Let
2+1 i=1
{si} be 2+1 points of alternation.
i=1

k
Now, if z vi+2 2 n+l , then a contradiction ensues
i=1
since by assumption there exists a polynomial wu(t) ,

f(t) 2 u(t) 2 g(t) , and u(t) Z u*(t) . But, by definition
of u*(t) , u(t) - u*(t) have zeros of multiplicity vi at

ti , i=1,...,k and must have at least £ other zeros in

[a,b] , since vy is even, t, € (a,b) . Thus u*(t) = u(t).

k
Since z vi+2 <n , it is easily shown that 2 = 0 by

i=1

perturbing u*(t) by a polynomial with & 2exos in (a,b?\

{ti}$ N which interlace the #+1 points of alternation

1=
2+1 s
{si} . By the minimum property of u*{(t) , % =0 .
i=1 )

The same idea is used to show that vi = ui , 1i=1,...,k,

and the lemma is proven.
Q.E.D.
The theorem now follows.

Theorem 3.1 . Let the assumption of Lemma 3.1 hold. Then,

a) there exists a unique polynomial u(t) satisfying
(1) £(£) > u(t) > g(v) , t € [a,b]

(ii) There exist n-m+l points, asgs, <...<s b

<
1 n-m+l

such that
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f(s.) i odd
- i S50 3
u(s,) =

i .
g(si) i even

where we remove the points ti with multiplicity ui ’

i=1,...,k . That is to say that if si = tj , some i, j

and if, for example, i is odd, the zero (f-ﬁ)(tj) has

multiBlicitx > “j ; etc. veen

b) Let condition (ii) be replaced by (ii') by inter-

changing the functions £(t) and g(t) . Then there exists

a unique polynomial u(t) satisfying (i) and (ii').

The extension of Propositions 2.1 and 2.2 to the above
case is more technical in nature and is omitted.

To return to the problem of restricted range approximation,
we assume that a(t) , b(t) are upper semi-continuous and
lower semi-continuous functions, respectively, (not necessarily
bounded) , that a(t) € b(t) and a(t) , b(t) satisfy
conditions 2) and 3) of Lemma 3.1. We also assume that

{ui(t)}n is an ET-system on [a,b] .
i=0

Let £(t) € c[a,b] , and a(t) g £(t) < b(t) for all
t € [a,b] . Applying the analysis of Theorems 2 and 3.1 to-
gether with Example 3.2 and the discussion of restricted
range approximation in Section 1, and assuming that f£(t) is
not a polynomial u(t) , we obtain the uniqueness and charac-
terization of the polynomial of best approximation to f£(t)
from polynomials u(t) for which a(t) g u(t) € b(t) , where
we assume the existence of at least two distinct polynomials
lying between a(t) and b(t) .

This polynomial of best approximation is characterized by
the fact that it alternates at least n-m+l times between

£(cyit) = min{£(t) + co,b(t)} and g(co;t) = max{f(t)-co,a(t)},
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in the sense of Theorem 3.1 (and Proposition 2.2), where

Z[a,b](b(t)-a(t)) =m .

We may also assume £f(t) is not a continuous function (see
Example 3.2). Note the e-Interpolatory approximation (see
Taylor [15]) is a specific example of the above. (See also
Laurent [5], where we assume that the approximating subspace

is a T-system.)

4. REPRESENTATION THEOREMS WITH INTERPOLATION,
AND INTERPOLATORY APPROXIMATION
The results of this section are known except for the
representation theorem itself. In this section the above
methods are applied to the work of Loeb, Morsund, Schumaker
and Taylor [71].
n
Theorem 4.1 . Let {ui(t)} . be an ET-system on [a,b] ,

i=0
and let £(t) , g(t) be two continuous functions on [a,b] .

. k -
We are given {xi}. poas xR <L <X g b , positive

i=1

k
integers {mi}k ’ Z mi =m < n , and real numbers
i=1 i=1

{aij}k M=l | Assume that there exists a polynomial v(t)
i=1 §=0

such that £(t) > v(t) > g(t) for all t € [a,b] , and
v(j)(xi) = aij , J = O,l,...,mi-l ; i=1,...,k . Then,

a) there exists a unique polynomial u(t) such that

(i) £(t) 2 u(t) 2 g(t) , t € [a,bl

(ii) G(J)(xi) =a;s + 3=01,.ml;di=1,.0k,
P . . n-m+l
(iii) there exist n-m+l points {yi}i=1 r

asy; <. <y < b such that u(t) satis-

n-m+1
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fies the following generalized oscillation property.

If
— i1 & ) -
(-1 I (xn—y.) >0, then uly.) = £(v.)
1 ——— 1 1
=1
. k m
-1 -
(-1)l I (xz-y.) . 0 , then wul(y.) =gly.) .,
Q=1 1 _— 1 1

i=1,...,n-m+l .

b) There exists a unique polynomial u(t) satisfying (i),

(ii) and (iii') where (iii') is obtained from (iii) by

interchanging the roles of the functions f£(t) and g{(t) .

Proof. Let £(t) = £(t)-v(t) and g(t) = v(t)-g(t) . Then
the statement of the theorem is reduced to the case where

aij =0, j= 0,1,...,mi—1 ; i=1,...,k . The method of
proving existence of wu(t) and wu(t) is a simple variation
on the proofs of existence for the other representation
theorems (cf. [3], [4], [10]).

Uniqueness is proven as follows. Consider part a) of the
theorem and assume ul(t) , u2(t) are two distine¢t solutions.

n-m+l }n—m+l

Let {y.} , and {z, be their associated points
=1 =1

in (iii), respectively.

-m+
By a consideration of the points {yi}n m+l and by pro-
i=1
perty (iii), it is readily seen that ul(t)—uz(t) has a zero,

aside from those given in (ii), in éach of [yi,yi+1] '

i=1,...,n-m , where if ul(t)-uz(t) has a double zero at

yi , 1i=1,...,n-m+l , we allot one zero to the interval

[Yi—l’yi] and one zero to [yi,y J . 1f ul(t)—uz(t) has

i+l
a single zero at Y, (note that £(t) , g(t) are continuous,
but not necessarily differentiable),, then ul(t)—uz(t) has a

zero in [yi_l,yi) or (yi’yi+l] , and we allot the zero at
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Y; to the adjacent interval lacking a zero. The analogous

-m+
result holds for the points {zi}n m+l :
i=1
If ul(t)-uz(t) has n-m+l =zeros in [a,b] , aside from .
the m 2zeros given in (ii), then ul(t) = u2(t) . We show

the existence of an extra zero in addition to the n-m given

above.
Assume, without loss of generality, that z, < Yy - 1f
zl < yl , then considering ul(t) and u2(t) at 2y and

yl , we obtain an additional zero of ul(t)—uz(t) in
[zl,yl] , with the same convention as above with respect to
zeros at Z11Yq s and thus ul(t) = u2(t) . If z; =¥,
and ul(zl) = uz(zl) = f(zl) , while ul(t) > u2(t) ’

t € (zl,zl+s) , some € >0, then ul(t)-uz(t) has a zero

at z; =y, and an additional zero in (y,s¥,] - Uniqueness :
follows. 1

; Q.E.D.
Remark 4.1 . Every representationgtheorem of the above form

solves a series of extremal problems. The interested reader

may consult [4] or [10] for analogous cases.

Remark 4.2 . The results of Theorem 4.1 extend, as in Section
2, to closed subsets XK of [a,b] , and to functions £(t) ,
g(t) as in Proposition 2.2, Note that while we may deal with
a compact subset K of [a,b] , we still demand that

{ui(t)}n is an ET-system on [a,b] , and as such, the
i=0

points {xi}k need not be in K .
i=1 :

As in the previous sections, the above representation
theorem easily leads to a characterization, in terms of H

alternations, of a problem of best approximation.
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Theorem 4.2 . ([7]). Let £(t) be a continuous function on
[a,b] , and let {ui(t)}? o be an ET-system in [a,b] . Let
l=

k s .
€ %X, < .. < XX
{Xi}i=1 ;oasx x < b, positive integers
X k
{m,} , ) m =ms<n, and real nuwbers {a,.} .,
1 i=1 . 1 1]
i=1

j = 0,...,mi-l ; i=1,...,k , be given such that f(xi) ="
a0 i=1,..., . Then the polynomial of best Chebyshev
approximation to f(t) from the class of polynomials u(t)
satisfying u') (x,) = By 3= 0m-li i=1.k,

is unique and is characterized by the property that it alter-

nates n-m+l times between £(t)+c and f(t)~-c for some

0 0

gy >0 . (Assume f(t) is not a polynomial of the above

form.) That is to say that there exist n-m+2 points

—m+2 ) .
{y. 170 < b , satisfying part

<t
. roa sy, ) < Yh-mt2
i=1

(iii) or (iii') of Theorem 4.1.
Remark 4.3 . If m, = i, i=1,...,, we may assume that
{u, (t) }" is a T-system.

1 i=0

Remark 4.4 . The condition f(xi) = a5 s i=1,...,x, may

be weakened and the results of the theorem still obtain if

min |lf-u|| =c, >  max |f(xi) - ay '
u i=l,...,k
where the above minimum is taken over the class of all poly-
nomials.
Remark 4.5 . Theorem 4.2 may be generalized to considering

the generalized weight function introduced by Morsund [8],
(see Example 3.1), to considering a closed subset K of
[a,b] (see Remark 4.2), and to the class of functions f£(t)
considered in Proposition 2.2, (see Remark 4.2 and Example

3.2).
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Remark 4.6 . The problem of approximating a function f£(t)

by polynomials satisfying v(j)(xi) = aij ' j==0,l,...,mi-2 ;
(mi-l) -

i=1,...,k , and gi's v (xi) < bi ;, 1=1,...,k,

where V(Xi) = f(xi) may also be dealt with by the use of

Theorem 4.1 and the analysis of Theorem 6.2.

Remark 4,7 . Both Theorems 4.1 and 4.2 may be generalized to
include non-Hermite given data if the corresponding inter-
polation problem remains poised with any n-m+l additional
Hermite data. Thus, for instance, we may assume we are given

Hermite and even block data.

5. REPRESENTATION THEOREMS WITH BOUNDARY CONSTRAINTS

The results of this section may be found in [10]. To
understand the statement of the representation theorem, cer-
tain facts are needed. These are outlined below.

P6lya (see Karlin and Studden [4, p.379]) pointed out the

following characterization of ECT-systems.

Theorem 5.1 . Let u, (t) € c™a,b] obey the initial

conditions

(5.1) uip)(a)==0 , p=0,1,...,i-1; i=1,...,n .

Then {ui(t)}n is an ECT-system on [a,b] if and only if
i=0

&1 i1
u, (€) =w°(t)£ "’1(51)£ w2(52)...af wo(£,)dE, ... .48,

i=0,1,...,n, where wo(t) R wl(t), cee wn(t) are n+l

strictly positive functions on [a,b] such that wk(t) is

of continuity class Cn_k[a,b] .

Remark 5.1 . If the conditions at the endpoint t = a are
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not satisfied by an ECT-system {ui(t)}n , then effecting
i=0

a non-singular linear transformation, we can determine a new

ECT-system {ui(t)}n which satisfies (5.1). Thus, we
i=0

assume without loss of generality that the ECT-system

{ui(t)}? satisfies the initial conditions. Note that if
1=
1 , i
a=0, and wi(t) =331 ¢ i=20,1,...,n, then ui(t) = t-,
i=0,1,...,n .
Associated with an ECT-system {ui(t)}n is a natural
i=0
. . . d £(t)
system of first order differential operators D,f = — ’
3 dt wj(t)
j=0,1,...,n , where the {w.(t)}? are those exhibited
l=

i
in Theorem 5.1. Define D7 = D. .,+..+sD  , ]
0 j-1 0

D = I . Accordingly,

= 1l,...,n+1 ,

Dj uj(t) = wj(t) , j=0,1,...,n
D~ u(6) =0 ,  for k > i
and by virtue of the initial conditions (5.1), Dk u.(a) =
ij wj(a) , j=0,1,...,n . For the powers {tk}z=o ,
ot L
Je dtj

The next representation theorem is concerned with poly-

nomials satisfying homogeneous boundary conditions of the

form: n
o, : ) A.D u@=0 , i=1,...,k ,
k , ij
j=0
rz‘ 3
B : B,. D u(b) =0 ’ i=1,...,m ,
m 520 ij
where the matrices A = l|Ai. (-l)Jll k n , and
J i=1 §=0
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B = HBi |lm obey Postulate I below. The collection

-

', .
i=1l j=0
of all such polynomials will be denoted by Ad( Olk n Bm)

@

Postulate I.

(i) Osk,mSn., and k+m < n .

(ii) There exists {il,...,im} ' {jl,...,jk} such that

L,...,m N ETEEY R
B A # 0 , and
il""’im jl""’jk
. Lt . eqn=k+1
< = ..
i, € steneminy ¢ Y 1,...,m , where {jv} vel
the complementary ordered set of indices to {j\)}t-l in

n
Y, -

(iii) For all {il,...,im} ’ {jl,...,jk} satisfying (ii),

l1,..., m [ seear k .
sgn B = em(B) , and sgn A = € (a),
il,...,i

-

m jl,...,:lk

i.e., the m X m and k X k subdeterminants from (ii) have

constant signs, respectively.

The possibility that boundary conditions apply at one end-~

point only is not excluded.

pefinition 5.1 . If u(t) in the class U(GK 0 B)

entails u(b) = Du(b) = ... = D" Yu(b) = 0 , while there |
exists a u(t) € u(ij n @m) for which DB u(b) # 0 , then
we _say that the class of polynomials Y (01k n @m) has a
zero of degree B at b , denoted by B = Nb(mk,@m) .
Similarly, we define Na(O‘Ik, Bm) .

Y

We now outline the procedure used for the addition of a
zero at an endpoint.

Assume Nb(&k,Bm) =8 , and mtk < n . Let
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m+1 n
B' = IIBi.|| , where
3 i=1 §=0
Bl _ 68] i=1 H ] = 0,1,-..,1‘1
ij = , .
Bi-l,j i=2,...m+1 ; j =0,1,...,n

n .
1
and let B : Y B,.Dlu) =0, i=1,...,ml.
m+l . ij
J=0
We call this construction the addition of a zero at b . A
similar construction may be executed at a to obtain A'
and Cﬁ£+l . It is shown in [10] that subject to the con-
dition that B and A satisfy Postulate I, and m+k < n ,
then B' and A and B and A' also satisfy Postulate I.

With this we may now define

Definition 5.2 . We say that ’Ii(Cﬂk n GBm) satisfies

Property J if mtk <n , and
|
n N o, B =x o, 8 )

or 2 N(o1,.B) =0, B -

1) and 2) are, in fact, equivalent statements as is shown in
[101.

With the above definitions we present the following
representation theorem.

Theorem 5.2 . Let £ and g be two continuous functions on

[a,b] such that there exists a polynomial wv(t) lying

strictly between £(t) and g(t) , i.e., £(t)>v(t)>g(t),

t € [a,b] , where v(t) satisfies

n .
2 A,. D’ u(a) =a, , i=.1,...,k

il
™
=

n .
¥ 13.3.13j u(b) =1,...,m , and
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the homogeneous equations of the above form satisfy Postulate

I. Then,

a) there exists a polynomial u(t) such that

(1) £(t) > u(t) 2 g(t) , t € [a,b]
(ii) u(t) satisfies (5.2).
(iii) There are n-{(mt+k)+1 points s, <...<

1 Sn- (m+k) +1
in [a,b] such that

f(s.) i odd
- l ——
u(si) =
g(s)) i even.

ﬁ(t) is unique if any one of the following hold.

w w0, B) +n (e ,B8) >0
@ n (o, B) +n o, B) =0, amd u@ #:t@ ,

or u(b) # £(b) , n-(m+k)+l odd
u(b) # g(b) , n-(mtk)+l even .

(3) Property J holds for QL(Chk n é%ng .

b) Let condition (iii) and (2) be replaced by (iii') and

(2') where f£(t) and g(t) are interchanged. Then

there exists a polynomial wu(t) satisfying (i), (ii) and

(iii'), and it is unique if (1), (2') or (3) hold.

Proof. {10, Theorem 3.3].

Remark 5.2 . The results of Theorem 5.2 extend, as in Section
2, to a closed subset K of [a,b] , and to functions f(t),

g(t) as in Proposition 2.2.

Remark 5.3 . Theorems 1 and 2, together with Thecrem 5.1,
have an additional application in the theofy of best poly-

nomial approximation. Let {ui(t)}? be an ECT-system on
1=
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(a,b] , satisfying the initial conditions (5.1). For
n

c>c., let ulc;t) = z a,{(c)u,(t) and u(c;t) =

0 \ i i -

i=0

n

Z bi(c)ui(t) be as defined in Theorem 1. ZLet u(t) =

i=0

n
Z diui(t) be any polynomial such that £(c;t) > u(t) =
i=0

g(c;t) for all t € [a,b]l . Then, (—l)l ai(c) > (—1)1 di P

(—l)l bi(c) , i=0,1,...,n . Obviously (—l)l ai(c) ¥

. . L.
-0 a¥, and (-7 b.(e) 4 -V & ,i=0,1,...,n ,
i i i
t *
where u*(t) = 2 a; ui(t) is as in Theorem 2.
i=0

6. APPLICATIONS OF REPRESENTATION THEOREMS
WITH BOUNDARY CONDITIONS
I. Let the conditions of Section 5 hold.r1 We wish to

approximate f(t) by polynomials u(t) = ) aiui(t) which
i=0
satisfy (5.2), where Postulate I obtains.

Let v(t) be any polynomial satisfying (5.2). Then the
above problem is equivalent to approximating f£(t)-v(t) by
polynomials u(t) € W(OL N B ) . Let f(t)-v(t) = E(¢)
and assume f(t) is not a polynomial in ’u(mk n @m) .

The analysis follows that given in the earlier sections.
As such, we state the results, without proof.
Existence is readily shown, and let
min ||f-u||=c0>0 ..

vEU (leﬂ Bm)

Case 1: Na(o'k’Bm) >0 and [f(a)l <c and

0 ’

Nb(mk,Bm) >0 and |f(®)] < S
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Then there exists a unique polynomial of best approxi-
mation u*(t) from 'L{(O’Ik n Bm) to f(t) and it is
characterized by the property that u*(t) alternates

o

0 and £(t) - co .

Case 2: Na(Olk,Bm) >0 and |f(a)] = Gy + OF

n-m~-k+1 times between E(t) + c

N (0L, 8) >0 ana [Em)] = .

Uniqueness does not necessarily follow. Counterexamples

are easily constructed. _
case 3: N_(on B ) =n (o ,B) =0, aa w@n nB )
satisfies Property J.

Uniqueness of the best approximation and its character-

ization in terms of n-m-k+l1 alternations follow.

Case 4: Na(OTk,Bm) = Nb(Olk, @m) =0, and Propertﬁ/ J is
not satisfied.

In this case uniqueness need not hold. Counterexamples
may be constructed. However, if there exists a polynomial
which alternates n-m-k+2 times between %(t)+cO and
f(t)-cO , or if a polynomial alternates n-m-k+l times
between f(t)+cO and f(t)—c0 , but a or b is not a

point of alternation, then uniqueness follows.

Remark 6.1 . Case 3 is equivalent to saying that
1L(an n ﬁ;m) has a basis of dimension n-m-k+1 which is a

T-system on [a,b] . This fact may be proven directly.

Remark 6.2 . The results of Sections 3 and 4 apply here with

obvious restrictions.

IT. The following is a generalization of a problem con-
sidered by Roulier and Taylor [12].
As above, {ui(t)}n is an ECT-system on [a,b] , and
i=0
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let E> be the set of polynomials wu(t) for which

n .
o, € ) A.DJu(a)sBi , i=1,...,k ,

n .
§, < ) B,,D u® sy, , i=1,...m ,
520 ij i

where the homogenous boundary conditions

]
(@]
K

n .
Z A p? u(a) =i ...

0 P

J

n .
) B, D) u(b)
j=o *

1]
o
-
[

= jl,...,jq

satisfy Postulate I and Property J for all p = 0,1,...,k ,

{i,...,ip}g{l,...,k} , and g =20,1,...,m ,

1

{jl,...,jq} < {1,...,m} . For the special case ui(t) = ¢t

i=0,1,...,n, a=0, and conditions of the form

(i.)
aj £p I 0y < Bj , j=1,...,k , the problem was con-
sidered by Roulier and Taylor [12].

For ease of notation, let

n .

'zo Aij pJ u(a) = a; i=1,...,k
(6.2) 7

n .

z Bij p? u) = bi ' i=1,...,m .

j=0

Theorem 6.1 . If N_ (O, ,8) =N (0,8 ) =0, then for

any £(t) € cla,b] , there exists a unique best approxi-

mation to f£(t) from P .

Proof. Assume £(t) € ‘) . By Case 3 above, for each fixed
k
{a,} , {6, , there exists a unique polynomial of
1 =1 1i=1

best approximation to £(t) satisfying (6.2), which is
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characterized by the property that it alternates n-m-k+l
times between £(t)+c and £(t)-c , for some c > 0 .

Denote this polynomial by u(t;{ai} ' {bi}) .

Assume min ||f-u|| = cg >0, and u(t;{a,},{b,}) and
u€ i i
u(t;{ci} ,{di}) are two best approximations to f£(t) from
‘>. (Existence of the best approximation is easily proven.)
It then follows that
k

m
2 2
izl (a;-c;)” + i§l (b;-a)” >0, and ults{ra +(1-Ne}

{)\bi + (1-A)di}) =ult;A) , 0< X <1, are also best

approximations to f£(t) from ‘D .

We argue by induction on m+k . For m+k = 0 , the
theorem follows. Assume m+k > O . Since
X 2, ¢ 2
Y (a,~c,)“ + ) (b,-d,)° > 0, there exists an i
. i 1 . i i o]
i=1 i=1
such that a; # c; or bi # di . Assume a; #c, .
0 0 0 0 o ‘o
Thus, o, < Aa, + (1-1) ¢, < B, , 0 < X <1.
i i i
0 0 0 0

Consider the above problem where we drop the condition

n .
a, € ] A, . D ua) sB, .

0 3=0 *o 0

By the induction hypothesis and the conditions of the theorem,
there exists a unique polynomial of best approximation to
£(t) , u*(t) , and ||f-u*|| = c* s c, . Due to the

0
uniqueness property of u*(t) , c¢* < ¢c. . Consider A

0
fixed, 0 < A <1, and u(t;e) = eur(t) + (1-g) ult;r) .
For ¢ sufficiently small, e > 0 , ult;e) EI" . But
[y -actse) || s e ||E()-ur ()| |+(1-e) ||£(®)=u(t;0) || < ¢

This contradicts our assumptions and uniqueness follows.
0.E.D.

0
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Theorem 6.2 . Assume that the conditions of Theorem 6.1 hold

and that £ is the number of conditions in (6.1) for which

the unique polynomial of best approximation u*(t) , from ED

to £(t) satisfies
n .
a; < z A, . p? u(a) < Bi
j=0
(6.3) n ;
< .
and 6i < jzo Bij D’ u(b) Y5

Then u*(t) alternates at least n-m-k+2+1 times between

£(t) + o, and £(t) - c

where |‘f—u*|| =cy > 0.

0 14
Proof. The method of proof is the same as that used in
Theorem 6.1. Let {il,...,ir} c {1,...,k} , {kl,...,ks} c
{1,...,m} be those indices for which (6.3) does not hold.

Consider the above problem with the conditions

n .
o, < Z A, . p’ u(a) < Bi , & =1,...,r

(6.4)

n .
8 SZBjDJu(b)su , 2=1,...,8 .

j=0 2 k2

By Case 3, the polynomial of best approximation must alter-
nate at least n-r-g+l = n-m-k+2+1 times. The unique poly-

nomial of best approximation under the conditions (6.4) must

be u*(t) . Otherwise a contradiction follows as in Theorem
6.1. 0.E.D.
Remark 6.3 . Theorem 6.2 provides necessary conditions for

the unigque polynomial of best approximation from E) to
£f(t) . These conditions are by no means sufficient as is

easily seen.

Remark 6.4 . It is natural to ask in what way the conditions

(6.1) may be generalized. For instance, in place of the
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rectangle of values considered, can we require that

n . k n . m
{] a,. 0 u@} u{y Bys D7 u(b)} be in some closed
3=0 '

1] i=1 3=0 i=1

. k+m . . .
convex set in IR ? This question remains open.

In Theorems 6.1 and 6.2, we demanded that Na(cnk, E%n) =
Nb(Chk, &%n) = 0 , To drop these restrictions, we must add

certain conditions.

Theorem 6.3 . Let the conditions of Theorem 6.1 hold except

that if Na(Chk,éin) >0, then u(a) is one of the con-

ditions in (6.1) and f(a) lies within the bounds given for

u(a) , and if Nb(cnk,ﬁbm) > 0 , then the similar conditions
hold at b . Then, there exists a unique best approximation

to f(t) from P .

Proof. The proof is identical with the proof of Theorem 6.1
except that it is necessary to use Cases 1, 2 and 3 from

part I. Q.E.D.

Theorem 6.4 . Let the assumptions of Theorem 6.3 hold. Then

the results of Theorem 6.2 persist, and if Na(cnk}é%m) >0,

and u*(a) = f(a)+c, =B, , or u*(a) = £(a)-c, = o, , then

there exists an additional point of alternation of f£(t)-u*(t).

The same conclusion holds with respect to the endpoint b .

Proof. The proof paraphrases that used for Theorem 6.2.
Assume, for sake of convenience, that Na(C"k, é%n) > 0 , while

= %*
Nb(an,dam) 0. If o <wu*(a) < B, , then we may drop

this condition as in the proof of Theorem 6.2. If, without

loss of generality, u*(a) =8 and Bl < f(a)+c then

1’ o'
we maintain this assumption and apply Case 1 of part I, while

if B, = f(a) + ¢, , we may again drop this condition.
1 0 0.E.D
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ITI. Consider the following problem, which is not strictly

within the terms of reference of this paper:

Let f£f(t) € Cn[a,b] , and define

[el], =max {] § a,ot2@Dy il s odem el
£ =max 4 { A,.Df(a)|} it B,.D"f(b)|} £ w}
M j=0 13 i=1 =0 1J i=1

where we assume the conditions of the prior problem to hold.
We wish to find a polynomial wu*(t) such that ||f-u||M <

inf[]f—u[|M over the class of all polynomials u(t) .
u

Assume f(t) is not a polynomial. The existence of a
u*(t) is easily shown. We prove uniqueness and give some

necessary conditions which wu*(t) must satisfy.

n .
Let Z Ai.DJf(a) = fi , 1i=1,...,k
3 j=o0 *J
n
' 2
\ P BijDJf(b) =f£ , i=1l,...m ,

J=0
and consider the problem, from II, of best approximating

f(t) by polynomials satisfying

1 o "3 1
£, -cs ) A..DMu(a) £ +c , i=1,...,k
i . ij i
j=0
n .
f? - c g z B..Dju(b) < f? +¢ , i=1,...,m ,
i j=0 ij i

¢ 2 0 . Denote the unique polynomial of best approximation

by u{t;c) and let ||f(t)—u(t;c)||w

co(c) . Obviously,

co(c) is a decreasing function of ¢ , cO(O) >0 , and

-

C ’ (o]

W

co(c) = ¢' = min Hf—uH°° for all ¢ some posi-

u
tive number. From the uniqueness of u(t;c) , it follows

that co(c) is a continuous function of ¢ and hence, there
exists a unique point c¢* such that co(c*) = c* . u(t;c*)

is the unique best approximation and must satisfy the con-
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ditions given in Theorems 6.2 and 6.4.

In closing, I wish to acknowledge my indebtedness and
express my appreciation to Professor S. Karlin, without whose

guidance this work would not have been possible.
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