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ON n-WIDTHS IN L~
Il. SOME RELATED EXTREMAL PROBLEMS

Ch. A. Micchelli, A. Pinkus

Summary. In this paper we solve extremal problems of the type

max ‘_; f(x)h(x)dx
heK(e) 0

K(@={h:heL®[01), || #]l=1, K|S0}

1
{KR) (x)=df K (x, Y)i( y)dy.

A motivation for the study of this question comes from Landau inequalities for derivati-
ves of functions on finite intervals. Our methods use results developed by the authors in
connection with n-width probléms in L.

1. Introduction. In this paper we further develop certain methods and
“results obtained in our paper [11]. Our purpose here is to use some of the
main results of [11] to solve certain extremal problems related to #-widths.
These problems arise in the recent work of S. Karlin [5] on inequalities for
consecutive derivatives of functions; see also Y. Domar [1]. L. Horman-
der (2], H. Kallioniemi [3], A. Kolmogorov [6], F.Landau [7], C.
Micchelli[l10], A. Pinkus [15], A. Sharma, J. Tzimbaliario [16],
[.Schoenberg, A. Cavaretta [17], and V. Tichomirov [18] for
background material and results on these problems.
Our results both complement and extend the material contained in [5).
In particular, the methods we use in this paper, being based on matrix in-
equalities, offer an alternative point of view for inequalities for function -clas-
ses developed by other authors.
Section 2 contains some preliminary background material. Section 3
treats certain matrix extremal problems, while Section 4 is devoted to in-

equalities for function classes which are derived from the results of Sec-
tion 3.

2. Preliminaries. The notation of this paper follows that of [11]. For
convenience, and in order that this paper may be to a degreé¢ self-con-
tained we redefine and restate certain results of [11], necessary in the sub-
sequent analysis.
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|a1,|\lN =1 shall denote an NXM real matrix. Given any inte-

gers, 1§11< <zk£N and 1<j,< - <Jolz M, we

a,-lji...a,- 7
A(i.l"..,i.k)z *
]1,...,]k

the standard notation for the minors of A.

aikjl' .. alkjk

Definition 2.1. The matrix A is said to be strictly totally posi-
tive of order n (STP,) if forall 1<i <. -<[,<N, 1=j,< - <Jns<M,

m=n.

A(il,...,i,,,>>0
jl?"')j”l ’

If instead all the minors of A of order <n are only nonnegative, zf/zen A

is called totally positive of order n (TP,).

Definition 2.2. Let x=(xy,..., Xm) be a real vector of m com-

ponents

(i) S—(x) counts the number of actual sign changes in the sequence

Xiy o o oy X, WILh zero terms discarded.

(ify S*(x) counts the maximum number of sign changes in the sequence
Xiyeouy Xm Where zero terms are assigned wvalues 1 or -1, arbi-
trarily.

The following theorem is of central importance in the study of STP,

matrices.

Theorem 2.1. If Ais an NXM matrix which is STP,, and if x
is a nontrivial M-dimensional vector satisfying S—(x)<n -1, then

(i) SHAX)=S~(x)

@) if SHAx)=5— (x), then the first (and last) component of Ax (if
zero, then the sign given in determining S+(AX)), agrees in sign
with the first (and last) nonzero component of X.

Remark 2.1. If A is only 7TP,, then upon replacing S+(Ax) by

S—(Ax) Theorem 2.1 remains valid, see [4, p 223].

Definition 2.3. Given 0=j;<j,< - <js<_]s+1—M—f—1 and a vec:
tor xeRM we shall say that x alternates between Jis e
exists a sign o, 0>=1, such that x,=(—1)"* o, ji_y<k<j;, i=1,..., s£1.
(Note that if x alternates between Jise-s js, nO constraints are placed
on these components.) We shall also say that x alternates s times if there
exists 1=j,<---<Js<M such that x alternates between j;,..., js. The
terminology x alternates with positive orientation means that o=1 in the
above, that is, x, =(—1)"*Y ji <k<j, i=1,..., s+1.

Definition 2.4. A vector yeRY equzosczllates ON Qyye s oy by 126

- <in=N, if there exists a sign o, o*=1, satisfying y, = o(—1)*, |V {loes

k—l . 1, where ||y ||lo=max {| yn|: 1=m=N}. We shall also say y equios-

cillates n times if there exist integers 1=<i,<-

equioscillates on i,,...,i,. y equioscillates wzth positive orientation if

o=1.
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In [11], the following results were proved.

Theorem 2.2. Let A be an NXM STP, ., matrix, where 0=k<min
{N, M}, Then there exists a uniqgue M-vector X° satisfying

a) X° alternates k times with positive orientation;

b) 11X [l =1,

c) Ax° equioscillates k+1 times.

Theorem 2.3. Assume A is an NXM matrix which is TP,., (rank
Az k1), 0=k<min {N, M}, and such that any s columns of A, s<k, are
linearly independent. Then there exists an M-vector x° (not necessarily
unique) satisfying -a), b), ¢} of Theorem 2.2. Furthermore, if X° and y° both
satisfy a), b) and c) of Theorem 2.2., then || AX°.|w=|A¥"]c .

Theorem 2.3.is used in [11] to compute the n-width of the set £#={Ax
i X||=1}, considered as a subset of RV. To elaborate on this fact further
recall that the n-width of £ in RV is defined as

du(#; RV )=inf sup inf |x—y|.,
Xy Xefl yeX,
where X, is any n-dimensional subspace of RY. Any subspace which achie-
ves the infimum above is called an optimal subspace.

Although the following theorem will not be used here, it nevertheless
serves to explain the relationship of Theorem 2.3, as well as our subsequent
results to the n-width of #. '

Theorem 2.4. Let A satisfy the hypotheses of Theorem 2.3. Then
di(#; R¥)=|| AX°||e and XO={X¢ C:a0: (Crye--y CiYeR® is an optimal

FESS|

subspace, where jO, ..., j% are the columns on which X° alternates and

a o is the corresponding column wvector of A.
Ji

. Remark 2.2 The orientation of Ax® necessarily agrees with that of
x° by Theorem 2.1., part (ii).

The following easily proven results may also be found in [11], as ap-
plications of Theorem 2.1.

Proposition 2.1. Assume A and x° are as in Theorem. 2.2. Then
any M-vector X which alternates k times satisfies || AXYlw<| AX||o -

Proposition 2.2. Assume A and X° are as in Theorem 2.2. Let
X be any M-vector for which ||X|~<1, and (Ax);, (—1Y"6=0, m=1,...,
k+1 where o*=1, for some k+1 components 1<i, < ---<i, , <N. Then

min {|(Ax); [: l=m=k+1}=[ AXO [,

Finally, we conclude this section by stating some properties relating the
concepts of Definitions 2.2, 2.3 and 2.4.

Lemma 2.1. Let x and y be M-vectors which alternate s and m
times, respectively, and assume || x|w=|y|le=1. Then
a) S (x—ay)=s, if |a|=1
by S—(x—y)smin (s, m), if ||X|o=|Y ||,
) ST(x—y)ss—1 if s=m and x and y have the same
orientation.

Lemma 2.2. Let x and y be N-vectors which equioscillate n and s
times, respectively. Then

| 405



a) Stx—y)=n—1, if [ Xz 1Y [l

b) S+(x—y)z>:max (”i S-)_19 if H X “°°=H YHOO ’

¢) STHx—y)=n, if | X]|o=|Y e, s=n<N and X, y equi-

oscillate with the same orieniation.

3. Matrix Extremal Problems. Part I. Construction of Extre-
mal Vectors. For each integer £, Osk<min {M, N}=r+1, we let x?
be the unique vector which satisfies the conditions of Theorem 2.2.

Let om=|| AX|l, m=0,1,..., k. Then we have

Lemma 3.1. Let A be an NXM STP,y, matrix, where 0<k=min
{/V, M}=r+1 Then or<<ok— - ‘

Proof. Assume that g, =g, . that is || A} |lo=[AX]_ ['w. Since Ax)
eguioscillates k+1 times, ST(A(X)—x)_ )=k However, x_, alternates & —1
times, and thus S—(x¢—x)_ )= k—1, by Lemma 2.1, b). From Theorem 2.1,
and since x3—x9_ =0, STHAX)—xI_)N=S"(x}—x}_,). The contradiction
is immediate and the lemma is proved.

Our principal goal in this part of the paper is to construct two unique
one-parameter families of M-vectors x}(o) and x2(e), for ,<e <o), | =k,
such that xi(¢), s=1,2, alternates k times with positive orientation, whil¢
Axs(o) equioscillates £ times with orientation (1)1, s=1,2. (Sometimes we
will write x%(0) for x3(e).) Specifically, we will prove

Theorem 3.1. Let o be prescribed, o,<o<op—y. Assume A is an
NXM STP,4+, matrix and 0<k<r. Then there exist unigque xl(o) and
x%(o) satisfying

(i) x5(e) alternates k times with positive orientation, s=1,2;

(i) [x3e) [lo=1 and || AX}(0) || =0, s=1,2;

(ili) Axs(e) equioscillates k times with orientation
(—1)yF, s=12, i e, there exist 1=8(0)<:- <BlO)=N,s=1.2

for which
(AXi(Q)),S (g):(“ﬂ‘l)m-}s@’ m= 1’ cred k.
Proof. Let
_ 0~
A
B(o)= )
0
0. .. 0 o _
Thus B(e) is the (N1)X(M-+1) matrix B(o)=| bile) | ﬁﬁ}’jfl«fl

where
ay, i=1,..., N, j=1,..., M .
bs@={ e i=N+1  j=M+1
' 0, otherwise,
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For ¢>>0, B(g) is TP, and any r columns,r=£k are linearly independent
Thus, from Theorem 2.3, there exists for each >0, an M- 1-vector x%p)

=(((x%@)ys - - -» (x%e) a(x%(@)) m+1) satistying _

a) x%g) alternates % times with positive orientation,

b) |x%0) fle=1; .

c) B(o)x%p) equioscillates k-1 times.
(x%p) is, in fact, unique. However this result is unnecessary in the .analysis
of the theorem.)

Let us denote the components of alternation of x%p) by j%e)=(%e),..

Je)), and the components of equioscillation of B(e)-x%(e) by i%e)=(8(e),--
l‘)+1(0))
The proof of the theorem is divided into a series of lemimas.

Lemma 3.2, If 0, <<0<0p—1 then HB(Q)XO(Q)” =Q.
Proof. Define z=((x3),..., (x)),, (—1)%). Since x?, from Theorem 2.2,

alternates £ times with positive orientation so does z. From Proposition 2.1,
| Be)x%e) |« < I| B(@)Z []e. Now [(B(0)z);| = [(AXYi|=owi=1,..., N and
I(B(Q)Z)N—H =p. But ¢>¢, and thus we conclude half of the lemma,

(3.1) | Be)x*(e) [|»=e
Now, let Z:((xg_l)l, ovs (X2_)),p (—1)%). From Theorem 2.3, (c), there exists
1<, < -« <ip=N satisfying

(Blo) z), =(Ax)_ i, = —yntlg, 4, m=1,..., R

By our construction (B(Q)z)NH:(_—l)kg. Thus using Proposition 2.2. and
o<<ox—1, we obtain
(3.2) e<|| B(e)x%@) |~
“which, combined with (3.1), proves the lemma.

For completeness, we note the following easily proven lemmas.

Lemma 3.3. For o=<g, |B(@)x%)|le =0, and x°%) = (xY;,...,
&Ra, (—1)%).

Lemma 3.4. For g=gr—,, | Bo)x%(0)||ec =04~y and XO(Q) (X0 _Dise-
( k_l)Mv (_l)kek—i/g)

Returning to the proof of Theorem 3.1, we have

Lemma 3.5 Lefo,<o0<op—, and supposelfz‘l’(@)< i) (=N,
1=/%)<- - -<jUo)=M+1 are the components of equioscillation of B(e)x%(e)
and alternation of x%(e), respectively. Then i) (e)=N+1 and jie)=M.

Proof Let w°p) be the restriction of XO(Q) to its first M components.
Thus (Ble)x%0))=(Aw%0)); i=1,..., N If j%o)=M--1 then wO°(o) alterna-
tes £—1 times. Thus {from Proposmon 2.1, gp—1=1 AXY_| le = || AWO(0) | 00y
contradicting the fact that ||Aw%(0)||~<o. Thus j%e)=M and w°(e) alter-
nates k% times.

Now, if & (9)=N, then Aw°(g) equioscillates £+ 1 times. Proposition
2.2 implies that

| AW%0) [low =] AX |leo =04 »
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contradicting 1lAWD(Q‘)va=Q and g>gs Thus . (@=N+1 and the lemma

is proven.
Since || w%(g)|jl-=1 and w%g) has positive orientation (Aw" (Q))o(g)

=(B(Q)X°(Q)),gn(g) (=)o, m=1,..., k, it follows that w%p)=xe) satis-

fies the requirements of Theorem 3.1.
The construction of x?(g) is achieved in a totally analogous manner by
considering the matrix '

T 0. . .07
0
Flo=| - A
0 ;
We omit the straightforward details.

To complete the proof of Theorem 3.1 it remains to prove the unique-
ness of x(g) and x%(g).

Lemma 3.6. The wectors x' o) and x%o) constructed above are
unique.

. Proof. Assume the existence of two distinct M-vectors w and z sa-
tistying (i), (ii), (iii) of Theorem 3.1 with s=1. From Lemma 2.1, c), S—~(w—2)
<k—1, while Lemma 22 c), implies SHAW—z))=k. This contradicts
Theorem 2.1 and completes the proof of the lemma as well as Theorem 3.1.

Let 15(0)=(&(), - . ., £(0)) and j*(@)=(ji(a), ..., ji(o)) denote the com-
ponents of equioscillation of Ax%(¢) and alternation of x%(p), s=1,2, respec-
tively.

Remark 3.1. It should be noted that the uniqueness of X%(g), s=1,2
does not necessarily imply the uniqueness of i%(o) or j*(o).

We now describe certain interlacing properties which hold for the com-
ponents i5(¢) and j%g), s=1,2 when g,=p<o,_;. Recall that x'(g,)=x%(cs)
=x9, k=0,1,..., r, and thus we shall dispense with the superscript nota-
tion which distingulshes these vectors for g=o0s.

Proposition 3.1. Let A be as in Theorem 3.1. Then

(1) .jm(Qk)gjm(gk—'l‘)éjnﬁl@k)a m=1,..., k—1.

(“) irn(ek)éim@k—i)éim+1(@l¢): m=ly..., k.

Proof. Since xJ_, alternates k—1 times ST(x)_ +x})=<k—1. 4Ax] ,
equioscillates on some % components and g, ;>es Thus S+(A(X)_,+x}))
>k—1. From Theorem 2.1 it follows that

ST(x)_, XY =SH(AX)_ = x))=k—
It is readily seen that in order that S—(x9_,+x})= , (1) must be valid.

Now consider the vectors Zk—Xg—f—er_l, r= @k/Qk_p and Az, Since

r<l1, S—(z,)=k. However, S*(Az,)=k, by Lemma 2.2. A). Therefore S—(z)
_—S+(Azk) =k. To insure that ST(A(x+rx)_,))=*k, (ii) must hold. The pro-

position is proven.
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Proposition 3.2. For gs_>0'=e>0, and
(1) jR@=Je) m=1,..., k,
@) iL)= i) m=1,..., k.

Proof. Again Lemma 2.1 implies S~ (x%(o’)—x(¢))=<k—1, while since
o' >0 and Ax!(p) equioscillates & times, S+(A(x'(¢")—x!(¢)))<k— 1. Thus Theo-
rem 2.1, (i), implies SH(AXY o' )—x'(0)))=S—(x'(¢")—%xYe))=k—1. Moreover,
the vector A(x(p")—x%p)) is necessarily positively orientated, and utilizing
Theorem 2.1, (ii) applied to the vector x!(¢’)—x'(¢), the statement (1) then
follows.

To prove (2), we consider the vectors (¢/o')x'(¢") and x'(o). Since o' >0,
S™(xYo)— (/o )x!(¢"))= k. However, by Lemma 2.2, c) S*+(A(x1(2)—(¢/2)x}(¢")))
=k. Thus equality holds above, and again applymg Theorem 2.1, (ii), to
A(x*(e)—(e/e')x¥(¢")), the result of (2) holds since the vector x*(o)— o/@’)xl(o')
is necessarily positively oriented. Proposition 3.2 is proven.

The vector X'(p), is by construction a uniquely determined continuous
function of p for g, <0<, ; and Xx(o) — x¥ as o+, while x'(o) — x9

h—1
as otog—1
We summarize these facts together with Propositions 3.1 and 3.2 in
Proposition 3.3. As o increases from o to op_, 4

(1) JjL(e) increases from j,(o,) to julor—i) m=1,..., k—1, while jio)
increases from Jjlor) and disappears for o——Qk 10
(2) (o) increases from i,(op) to T,{0p—), m=1,..., k.
In a totally analogous fashion (note that x%(p) — x0 as olor and x*(o)
— X{_, as pto,-,) we have
PrOposition 3.4. As g increases from o, to o,
(1) .]zn((.)) decreases from j,(ox) 0 ju—1(0p—1)y m=2,..., k, while ]f(@)
décreases from ji(o,) and disappears for o=op—.
(2) (o) decreases from i,i4(0z) 20 ip(0p—1), m=1,..., k.
Part II: The Extremal Problem; An Application of
Theorem 3.1. Throughout this section, we shall assume the conditions

of Theorem 3.1 to hold. In addition, let a=(a, ..., a;) be any M-vector
such that the N-+1X M matrix

c=[% ] =tenll 1o 111,

where |
{a,-, i=0, j=1,..., M
Ay i=1,..., N, j=1,..., M
is also STP.
We have associated with A the sequence o>p0;> -+ >0,>0,41=0,
where r+41=min {/V, M} and now we shall cousider the problem
(3.3 max {(a, X): xz &(0)},

where #{o)={X:[|X||w=1, || AX|ls=o} and (a, x) represents the usual inner
product of a and x.
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First let us observe that max {(a,x):||x|<1}=(a, x), where xJ
=(1,1,..., 1), since g;>0, j=1,..., M, and this vector is unique. Now, if
0= 0, then for [|x {l=<1 we have || AX (| =|l AX}[lc=0,<0 and thus xJe st(o).
Consequently, (3.3) has the unique trivial solution x§ for o=g,.

Now, let us extend x)(0) and x}(o), for p,=op<p—y =00, by defining
Xy(0) =x%(0)=x3. Then we have

Theorem 3.2. For a, A as above and op,<0<04—y, k=0,...,7
max {(a, X):Xe&(0)}=(a, xi(o)) and the maximum is uriquely achieved.

Proof. By our previous remarks the theorem is proved when £=0.
For k=1, we argue by contradiction and assume the existence of an M-vec-
tor y satisfying a-y=a-xi(e), where yesA(0). Now since or—,>0=0r we have
ST(xY(e)—y)=k. From the additional properties possessed by xi(o) and the
fact that a.y=a-xj(e), we have S+(C(x}{o)—-y))=k. Thus from Theorem

2.2 (i),

S=(x () —y)=S*(C(x()—y)) =k
(f o=o, then S+(C(xl(o)—y))=k+1 and a contradiction is immediate.)
However, since S—(x}(0)—Yy)=~k, the vector x[(o)—y is positively oriented,
while C(xl(o)—y) is negatively oriented (with respect to S$+), and thus we

contradict Theorem 2.1, (ii). The theorem is proven.
A corresponding result holds for xX) and any M-vector b for which

the matrix C= [}ﬂ is STP. In this case, the maximum in (3.3) is uniquely
achieved by the vector (—1)%x2(o).

To complete the analysis of the extremum problem (3.3) we need to
study what happens for 0=p,1=0<o,, We consider this case in the next
two lemmas.

Lemma 3.7. Suppose O=¢,=0<o; and M=N, then (3.3) is uni-
quely solved by X!, (0)=(o/arX}.

Proof. Since r=min(M, N)—1=M—1, then for any M-vector with
[[x|le=1, x alternates r times. Hence according to Proposition 2.1 [|AX |
=[| AX)||c=0o, Thus we have proved that o-[x||={[Ax|w and g,=min
{Il Ax['w:]| X|lo=1}. Now the vector x! (o) defined above alternates r--1
times (trivially so since | x!, (0)]'»=0/0,<1) and Ax!, (o) has r+1 equios-
cillations. Thus the previous argument used in Theorem 3.2 proves this
lemma. ‘ :

Lemma 38. Suppose 0=¢, 1 =0<p, and M>N, then there exist
two unique vectors x5 (o), s=1,2, which have the properties described in
Theorem 3.1 and x! (o) is the unique solution to (3.3).

Proof. In this case we claim that the proof of Theorem 3.1 impligs
the existence of x!_(¢). Since clearly x)(o) exists even when k=r+4+1<min
{M+1, N+-1}=r+2, Now Lemma 3.2 and Lemma 3.5 remain valid even in
this case. These facis insure that x}_H (o) has all the essential properties
except perhaps |[x!, (0)[l.=1 (note that when M=AN this is not satisfied as
indicated by Lemma 3.7 above). However, in this case k=r+1=min
{M, N}=N is strictly less than the dimension of x! (). Thus there is at
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BN =T ——

least one component of x!, (o) distinct from ji(o), ..., jrsa(e) Consequently
X}, (o) has max-norm equal to one.

The construction of x?_ (o) follows similarly by using the matrix F(o)
defined earlier. The proof of the extremal property of X; (o) (and X2, ()
as well) proceeds as before.

Remark 3.2. When o=0 and M>N then according fo Lemma 3.8
the solution of (3.3) is a vector, x!_,(0), with the property that Ax] ,(0)=0
and x} ,(0) alternates r--1 times. Of course, when o=0 and M<N, then
#{p) consists only of the zero vector and this is consistent with the state-
ment of Lemima 3.7 as o — O+.

This concludes our discussion of matrix inequalities. We now turn to
an extension of these results to integral operators.

4. Integral Operators. In this section, we will consider real-valued con-
tinuous kernels K(x, y) defined on the unit square [0,1]X[0,1] with the pro-
perty that K(x, y) is strictly totally positive (STP), that is

K(xhyl) ¢t [(()C], ym)

Xy o X . .
K 1» . m> — .. 0’
<yl’ AR ym . >
K(xm) yl) . K(xm’ ym)
for all 0=x,< - - <x,=1, 0=y, < - <y, =1, m=1.

We will make use of the following lemma. A stronger version is proved
in [11].

Lemma 4.1. For any constants ay, ... ay 0=y,<y;< -+ < Yp<Vntq
=1, the function

n i+ ) n
g®)=3 (=Y [ K )dy+ % aK(x, y)
J=0 Yy J=1

has at most n distinct zeros in [0,1].
Proof. Suppose to the contrary that g(x;)=0, i=1,...,n+1, 0=<x,
Koo < Xy =1, It

. Xip oo oy Xy
then 0=2"%+18,0(x;)= folu(x)\a!x and a contradlctlon follows, since u(x)==0-

Theorem 4.1. Let K be as above. Then for any k=0 there is a
unique function

i TS
Px)= 3 (=1 [ K(x y)dy
- =7
0:-8,<T& < CEplpr =1 Which equioscillates k+-1 times on [0,1], Pi(n))
==Y Py lleoy j=1, .. k+1, where 0=n,< - <y =1, and || Prlw
=max {|Py(x)]: 0<x/1} Moreover, if o,= ||P,|| then o0o>0,> - >0,

> lime o Qk=0.

Proof. This theorem is essentially proved in [11]. We duplicate the
simple details here as they will be used again in our next result.
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The proof makes use of the following estimates

J /N
1 m k+‘1 g T+t
(4.1) |—NkEO(~—1)k ,_‘3 K(x ) ; 0(—1)’* f’zv K(x, y)dy|
= =/, h=0 A

where O=j,<j, <...<Jugy1=N
smax {{K (¢ y)—K(& )i | yn—9,1<1Ni=o(K ()5 1/N)

and
m—1 (+1)m )

(42 L3 (=1 T K 9y |27 alK (6 m )+t K
J= Jim

[ K Jo=max {| K(x, ¥): (x, 9)e[0,1]X[0,1]}.
The second inequality follows from the identity
. m—l (J+)im J+1m
2 20T K y)dy = -1)f i Ko )—K(x, y+1/m)dy

1_0

+ ROty T K sy

1—

Now, for each large mteger N we '1pply Theorem 2.2 to the matrix
ay= N*1K(L/N JIN), i, j=0,1,..., N. Thus there is an N-vector xYN)

which alternates & times, at 0<j¥< ... < j¥<N, [[XYAN)[-=1 and AxYN)
equioscillates at 0__<_i{V< <L2VHSN There is a subsequence such that

_];vl/N — &gt §= 1, ey k, Offl,,, . é'ﬁ'-ké] and liv'/N, — Nsy 0(5771 <
=g+ =1. Moreover, from (4.1) we have that for
"j+1

P= 5 (—1) I K,
Py(n;)=(—=1)/+1|| P, Ioo '=1,..., k+1.
Lemma 4.1 insures that | Px|lw>0 and thus 0§71L< e = 1. 'We cor-
clude that P, has at least % distinct zeros. Consequéntly, again by Lemma

4.1, 0 < - <L
According to Proposition 2.1 || AXY(NV)||e=[lAZ(N) ||, Where z(N) is

any N-vector which alternates % times. Letting NV — co and using (4.2) we
obtain
oxsy max o(K(x); L) 2 I Kl

and thus limz ;e 0x=0.

The function P, constructed above is unique. To see this let P be any
other function with the same properties as P,. Thus P has k-1 points of
equioscillation 0<te,<C --+ <erp1==1 and k£ alternations. By Theorem 2.1 and
an appropriate limiting argument (N — oo HP[|°<,2||P,¢H°°. Hence S+(E(ey),

s E(ery1))zk, where E=P—P,. But E(x fK(x WA y)dy, where
S—(h)=sup {S_(}Z(x])s e h(xm))/xl< <xm}——k

This fact contradicts Theorem 2.1 (agam with the obvious 11m1t1ng argumeit
as N — o), Thus P, is unique and it remains only to prove that o,< oz
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The fact that o,=<os—, follows by the same limiting argument (N— o0) em-
ployed above and Lemma 3.1. Now if g¢,=g,—, then for E,=P—P,_,
ST(En\), - - ., Ex(nes1)) =k but, asbefore S—(E,)<k-—1. This coniradiction
implies that Qk<0k_1 and completes the proof of the theorem.

Remark 4.1. Iu addition to the fact that P, is uniquely determined
by the conditions of Theorem 4.1, it is the unique solution of the minimum
problem,

min max | Z (—1y { K(x y)ay|.
0<y1<...<,vk<l 0=x=<1 j=0
The proof of this fact is the same as the umqueness proof given in Theo-
rem 4.1, Since if

P(x)= ‘*‘(—~I)f f K(x Ndy and | Plle=<|lPi| then for E=P,—P we

have S+(E)—sup {S+(E(x1) o E(X)) 1%, <« - <xs}=k, while as before
from Lemma 2.1, S—(£)<k—

Thus we see from the proof of Theorem 4.1 that using the results of
Section 3 and Lemma 4.1 it becomes an easy matter to extend our previous
results on matrices to integral operators.

In particular we have

Theorem 4.2. Let K be strictly totally positive kernel. Then for
every k=1 and o, op<o<ou—, there exist two unique functions

k ) 5s+1(9)
Pi(x; @)Z,%(—l)’ I K(x,»dy, s=12
/= )

0=gl(0) &)< -+ - <o)< & ,I+,(n)—1 which equioscillate k times about o
with opposite orientation, i.e., Pini(e); e)=(—1)+s[| Pi(-;0)lle=(=1)*5 (o)

i=1,..., k O=ni(e)<ml)<- - <me)=l, s=12.

Proof. The proof follows from a limiting argument on Theorem 3.1.
In the limit a full set of oscillations must exist since ¢>0 and a full set
of alternations because of the condition p<g,—, and Lemma 4.1.

The uniqueness is proved as in the matrix case. If P(x):“’.‘ o (—1)

'Vj“K(x ¥)dy has k equioscillations with positive orientation then S+(P—P}
;0)=zk while as before S—(P—PJ(-;0)=k—1. Hence P(x)=P(x;0)
for all x¢e[0,1].
Just as in the matrix case P)(x;ox)=~Pix;0s), and Hor)=¢Xos), i=1
., £ (see Remark 4.1) and thus we can drop the superscript notation for
¢ QkTheorem 4.3
niler) <ni(or—1)<mipileeh i=1,..., &
5[(9k)<5i(@k_1)<5i+1(Qk)) i=1,...,k—1
Moreover, for gr<o<or-1, i=1,..., k, &(0), ni(e), are strictly increasing func-
tions of g traversing the intervals (&,(g,), &ler—1)), (miler), nilor—)), (Elor—1)=1),
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respectively. Similarly ni(e), &Xo) are strictly decreasing functions of o tra-
versing the intervals (nee—1), mi+1(en)), (Simy(or—1), Ei0r))s (So(0r—1)=0).

The proof is similar to the matrix case and thus we omit the argument.
Instead we turn to the extremal problems solved by the functionsconstruct-
ed in Theorems 4.1, 4.2.

For thi& purpose, we consider the probem

(4.3) max { Ofl F(n(x)dx: ke R(e)},

where R (o)={/%: keL”[0,1], || hll=1, || Kk ||w=g}, (KR)(x)= [} K (x, y)h( y)dy
and, in addition, the dual minimum problem

(4.4) min, (|| f=K” uli+e | ul)-

Here (K7 u) (x)=[1K(y, x)du(y), du(y) a signed measure with total varia
ftion ||w|| and |}-||;, the usual L!'-norm on [0,1]. See [9], [14] for the inter
pretation of this duality relation in the theory of optimal estimation.
Clearly,

(45) [ FOMx= [ (FO~ (KT ] (KB (i)
and thus
(4.6) [ FOMR)Ax< |If ~KT e ltel ul

or heQ (o).

Now, we assume f has the property that it is in the (strict) convexity
cone of the functions K(xy,-), ..., K(x,, ) for all m=1 and 0<=x,<- .-
<Xm<l. Thus we require that

f o J) - [(Yme)
K(-’%)’J) K(X1,J’2)- L [((xhmerl)

>0,

K(xm)yl) K(xm:yz) L ]((xm’ym+])
for all 0=y, <- << Ymy =1
For ¢, <o<{g,—; we define the function
k

S(y)= z aK (n}e), ¥)= (KT 1) (y)

by requiring that f(&(e))=S (§}(e)), i=1,..., k. Hence

() VAGTPY) R A (5() -
K(m (0 y) K(mfe) ) - - - K(mle), £i(2)) [ ; <<n{(@),---,n,i(e)) }

F(y) S)= £X@), w&L(0)

K} 0)3) K@), 51 @)-. K1} ), (o)
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and it follows that (—1Y(f(y)—S(y¥)>0, if &e)<y<&, (o), i=01..., &,

where &)(0)=0, &} (0)=1, and o;(—1)+ >0, i=1,..., k. Thus, according to
(4.5), for h{x;0)=(—1)}, &) <x<&},,(e),

[ 0hx; Q= [ (f ()~ S (Dhs; o)+ [ Pis o)

= [~ ) | dxtel e |

From this equation and (4.6) we see that Z(x; o) solves (4.3) while du,(x)
solves (4.4).

The uniqueness of #(x; g), is argued as follows: If A(x) is another so-
lution of (4.3) then

f(f(X) KT udxNh(x)dx = || f—KT p,];

and hence Z(x)=sgn (f(x)—K7 u(x))=h(x; o). If du(x) is another solution
of (4.4) then

[0 (=K w)x; odx=f~K '
and [ Pu(xs o)dutx) =] ul.

Hence, if Px(x;0) has extrema only on #yJe), ..., ne), o, <<e<g,—; then
du(x) is also unique.

Finally, we remark that the extremal problem of the type (4 3) may be
extended to the class of functions

fdo) = {h:g = z aki+Khy || gllws0, heL®[01), || 7 =1, (ag, - . ., @R,

‘where Ry(x), . v o (x), K(x, y) (jointly) satisfy a strict total positivity as-
sumption. The details in this case are lengthier.

The exact n-widths for theclass Qo) are studied in [8], [11]. [12], [13].
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