
Linear Algebra and its Applications 437 (2012) 2179–2199

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

On best rank n matrix approximations

Allan Pinkus

Department of Mathematics, Technion, Haifa, Israel

A R T I C L E I N F O A B S T R A C T

Article history:

Received 31 October 2011

Accepted 15 May 2012

Available online 28 June 2012

Submitted by Volker Mehrmann

AMS classification:

15A60

15B48

15A03

Keywords:

Totally positive matrices

Rank n approximation

Row and column interpolation
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rank n in the | · |p,q norm. Among other results, we prove that if A

is a totally positive matrix, and |A|1,1 is the norm given by the sum

of the absolute values of the entries of the matrix, then a best rank

n approximation to A in this norm is given by a matrix that agrees

with A on n rows and n columns.
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1. Introduction

Let A = (aij)
N
i=1

M
j=1 be an N × M matrix. Consider the mixed norms | · |p,q on A defined by

|A|p,q :=
⎛⎜⎝ N∑

i=1

⎛⎝ M∑
j=1

|aij|q
⎞⎠p/q

⎞⎟⎠
1/p

,

where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. If p = ∞ and/or q = ∞, then the usual definitions apply. A problem

of interest is that of approximating A by rank nmatrices in the above norms. That is, consider

Enp,q(A) := min
B

|A − B|p,q,
where B runs over the set of real N × M matrices of rank at most n.

Except in the casewhere p = q = 2, called the Frobenius normorHilbert-Schmidt norm, very little

seems to be known concerning this problem of best rank n approximation. (Note that the Frobenius
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norm is also the square root of the trace of AA∗.) The method of approximation in this p = q = 2 case,

or in the associated operator norm (considering A as an operator from �M2 to �N2 ), is via singular value

decomposition (SVD). Truncated SVD provides a best rank n approximation in both the Frobenius and

operator norms. These results go back to E. Schmidt [11] (often incorrectly attributed to Eckart and

Young). See Stewart [14] for a detailed history of SVD. While the computation of this decomposition

is highly nontrivial, almost no other rank n approximations have been considered, probably because

they cannot be easily characterized or calculated. The problem is difficult, and is made more so by the

fact that the approximating set is not convex.

A similar question can be asked with regards to best rank n approximation to a kernel K(x, y)
defined on X × Y . In Micchelli and Pinkus [4] this problem was considered for a continuous totally

positive kernel defined on [a, b] × [c, d]. Define, analogously to the above,

|K|p,q =
⎛⎝∫ b

a

(∫ d

c
|K(x, y)|q dy

)p/q

dx

⎞⎠1/p

.

We say that an operator with kernel L is of rank n if

L(x, y) =
n∑

i=1

ui(x)vi(y).

(We also demand that the ui ∈ Lp[a, b] and the vi ∈ Lq[c, d].) Set
Enp,q(K) = inf

L
|K − L|p,q,

where the infimum ranges over the set of kernels L of rank at most n.

The kernel K is said to be totally positive on [a, b] × [c, d] if for all a ≤ x1 < · · · < xk ≤ b and

c ≤ y1 < · · · < yk ≤ d, and for all k, we have

K

(
x1, . . . , xk

y1, . . . , yk

)
:= det

(
K(xi, yj)

)k
i,j=1

≥ 0.

The result proven inMicchelli and Pinkus [4], without going into extraneous details, is that for a totally

positive continuous kernel K , defined on [a, b] × [c, d], and for arbitrary p ∈ [1, ∞] and q = 1, we

have

Enp,1(K) = |E|p,1,
where

E(x, y) = K
(
x,τ1,...,τn
y,ξ1,...,ξn

)
K

(
τ1,...,τn
ξ1,...,ξn

)
for some a ≤ τ1 < · · · < τn ≤ b and c ≤ ξ1 < · · · < ξn ≤ d. This means that an optimal rank n

approximating kernel L, in the above norm, is given by

L(x, y) = K(x, y) − K
(
x,τ1,...,τn
y,ξ1,...,ξn

)
K

(
τ1,...,τn
ξ1,...,ξn

) =
n∑
i,j

cijK(x, ξj)K(τi, y).

In other words, this L is given by interpolation to K(x, y) at (x, ξj), j = 1, . . . , n, all x ∈ [a, b], and
(τi, y), i = 1, . . . , n, all y ∈ [c, d], using the slices K(x, ξj) and K(τi, y). A generalization of this result

may be found in Dyn [1]. The fact that the best rank n approximation is determined by slices of the

kernel that interpolate it along those slices is aesthetically pleasing. This type of approximation is

sometimes called cross approximation, see Schneider [12].

A matrix A = (aij)
N
i=1

M
j=1 is said to be totally positive (TP) if all its minors are nonnegative. It is said

to be strictly totally positive (STP) if all itsminors are (strictly) positive. Amain result of this paper is the
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matrix analogue of the above result for kernels. Unfortunately, for matrices the full analogous result

holds only for one particular norm, namely the norm

|A|1,1 =
N∑

i=1

M∑
j=1

|aij|.

We consider the best rank n approximation in this norm in some detail.

We start, in Section 2, with a general result bounding Enp,q(A) frombelow by the associated operator

norm, as a map from �M
q′ to �Np , where 1/q + 1/q′ = 1. We show, in certain cases, and in particular

when n = rank A − 1, that this lower bound gives the exact error. We then consider the special cases

q = 1, p ∈ [1, ∞], and then p = q = 1, where we obtainmore explicit results. For example, Theorem

2.5 states that if A is any N × N non-singular matrix, then the best rank N − 1 approximation to A in

the | · |1,1 norm, and in the operator norm from �N∞ to �N1 , is given by a matrix B which agrees with A

on N − 1 rows and N − 1 columns. In other words, B differs from A in only one entry. In fact,

E
N−1
1,1 (A) = min

k,�=1,...,N

1

|a−1
�k | ,

where A−1 = (a−1
ij )Ni,j,=1.

In Section 3 we consider STP and TP matrices. For q = 1, p ∈ (1, ∞] there exists a best rank n

approximation to A in the | · |p,1 normwhich is given by a matrix Bwhich agrees with A on n columns.

When p = 1 then, as stated earlier, there exists a best rank n approximation to A given by a matrix B

which agrees with A on n columns and n rows.

In what follows we use the following notation. For x = (x1, . . . , xN) ∈ R
N we set

‖x‖r :=
⎧⎨⎩

(∑N
i=1 |xi|r

)1/r
, 1 ≤ r < ∞,

maxi=1,...,N |xi|, r = ∞.

The space �Nr is R
N endowed with this norm. For a matrix A = (aij)

N
i=1

M
j=1 we set

A

(
i1, . . . , ik

j1, . . . , jk

)
:= det (air js)

k
r,s=1,

while

A

(
i1, . . . , îu, . . . , ik

j1, . . . , ĵv, . . . , jk

)
will denote theminor, as in the previous line, but with row indexed iu and column indexed jv removed.

2. Best approximations from matrices of rank (A) − 1

For r, s ∈ [1, ∞] and an N × M matrix Awe set

As = {Ax : ‖x‖s ≤ 1}.
The error of the best rank n approximation, in the operator norm, as a map from �Ms to �Nr is given by

δn(As; �Nr ) = min
B

max‖x‖s≤1
‖(A − B)x‖r,

where theminimum extends over all N ×M matrices of rank at most n. This quantity is also called the

linear n-width of the set As in �Nr .
We recall that for p, q ∈ [1, ∞]

Enp,q(A) = min
B

|A − B|p,q,
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where, again, B runs over the set of N × M matrices of rank at most n. Here

|A|p,q =
⎛⎜⎝ N∑

i=1

⎛⎝ M∑
j=1

|aij|q
⎞⎠p/q

⎞⎟⎠
1/p

.

There is a simple relationship between δn(As; �Nr ) and Enp,q(A), and it is given by:

Proposition 2.1. For any N × M matrix A we have

δn(Aq′ ; �Np ) ≤ Enp,q(A),

where 1/q + 1/q′ = 1.

Proof. For any N × M matrix C it is easily shown, as a consequence of Hölder’s inequality, that

max‖x‖q′≤1
‖Cx‖p ≤ |C|p,q

implying

δn(Aq′ ; �Np ) ≤ Enp,q(A). �

In general we do not have equality in the above inequality. A classic example is when p = q = 2,

where

δn(A2; �N2 ) = μn+1

with μ1 ≥ · · · ≥ μM ≥ 0 the s-numbers of A, while

En2,2(A) =
⎛⎝ M∑

k=n+1

μ2
k

⎞⎠1/2

.

Note that for n ≥ rank (A) − 1 we do have equality of these two quantities, which begs the question

of whether we have equality in Proposition 2.1 for all p, q ∈ [1, ∞] if n = rank (A) − 1. In fact,

the answer is yes. This was proven, in a more general setting, in Micchelli and Pinkus [5]. Part of the

analysis also appears in Pinkus [8, p. 188–195].

The main result, as is relevant here, is the following, see Pinkus [8, p. 200].

Theorem 2.2. For any N × M matrix A of rank n + 1 we have

δn(Aq′ ; �Np ) = Enp,q(A) = min
Ax∈∂Aq′

‖Ax‖p,

where ∂C represents the boundary of the set C.

The proof of Theorem 2.2 is non-trivial and, in the general case, does not provide us with either

a reasonable alternative way of expressing the above minimum or an insight into how to construct

the best rank n approximating matrix B. Assuming that A is an N × M matrix of rank M, this can be

rewritten in a more convenient form as:

Corollary 2.3. For any N × M matrix A of rank M we have

δM−1(Aq′ ; �Np ) = EM−1
p,q (A) = min

x 	=0

‖Ax‖p

‖x‖q′
.
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We can give an explicit expression for the above, when D is an N ×N non-singular diagonal matrix,

with D = diag {D1, . . . ,DN}. Then

min
x 	=0

‖Dx‖p

‖x‖q′
=

⎧⎨⎩
(∑N

i=1 |Di|r
)1/r

, 1 ≤ q′ < p ≤ ∞,

mini=1,...,N |Di|, 1 ≤ p ≤ q′ ≤ ∞,

where 1/r = 1/p − 1/q′(< 0). This result appears in Micchelli and Pinkus [5] and also in Pinkus [8,

p. 200].

We can also say something further when q = 1.

Proposition 2.4. Let A be an N × M matrix of rank M. Then a best rank M − 1 approximation to A in the

| · |p,1 norm, for any p ∈ [1, ∞], is given by a matrix B which agrees with A on M − 1 columns.

Proof. Consider

min
x 	=0

‖Ax‖p

‖x‖∞
.

Let aj denote the jth column vector of A, and for each k ∈ {1, . . . ,M}, set
Ck = span{a1, . . . , ak−1, ak+1, . . . , aM}.

Define

ek = min
c∈Ck

‖ak − c‖p.

We first claim that

min
x 	=0

‖Ax‖p

‖x‖∞
= min

k=1,...,M
ek.

To see this, consider any x with ‖x‖∞ = 1. Let |xr | = ‖x‖∞ = 1. Then

‖Ax‖p ≥ er ≥ min
k=1,...,M

ek.

Now, assume

e� = min
k=1,...,M

ek.

Thus, for some αj , j 	= �,

e� = ‖a� − ∑
j 	=�

αja
j‖p.

Since, for αj 	= 0,

e� ≤ ej ≤ 1

|αj| e�

we have that |αj| ≤ 1 for all j. Thus there exists an x with x� = ‖x‖∞ = 1 such that

‖Ax‖p = e� = min
k=1,...,M

ek.

This proves the claim.
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We construct the desired N ×M matrix B as follows. We define its jth column as aj for j 	= �, while

its �th column is given by

b� = ∑
j 	=�

αja
j.

Thus B is of rank ≤ M − 1. Now

E
M−1
p,1 (A) ≤ |A − B|p,1 =

⎡⎣ N∑
i=1

⎛⎝ M∑
j=1

|aij − bij|
⎞⎠p⎤⎦1/p

=
⎡⎣ N∑
i=1

|ai� − bi�|p
⎤⎦1/p

= e� = min
x 	=0

‖Ax‖p

‖x‖∞
.

Thus, the best rank M − 1 approximation to A in the | · |p,1 norm is given by a matrix B which agrees

with A onM − 1 columns. �

There is no reason for this matrix B to agree with A onM − 1 rows. However, there is one that does

so in the case p = 1.

Theorem 2.5. Assume A is an N×M matrix of rankM. Then there exists a best rankM−1 approximation

to A in the | · |1,1 which agrees with A on M − 1 rows and M − 1 columns. Furthermore, if N = M, i.e., A

is non-singular, then

E
M−1
1,1 (A) = min

k,�=1,...,M

1

|a−1
�k |

where A−1 = (a−1
ij ).

Proof. From continuity considerations, it follows from Proposition 2.4 that there exists a matrix B

which is a best rankM−1 approximation to A in the | · |1,1 norm, and agreeswith A onM−1 columns.

Let aj and bj denote the columns of A and B, respectively. Assume B does not agree with A on column

�. Thus b� may be any best approximation to a� from

C� = span{a1, . . . , a�−1, a�+1, . . . , aM}.
While there need not be a unique best approximation in the �N1 norm, it is well-known that to each

vector in R
N there is a best �N1 -approximation from any given M − 1 dimensional subspace which

interpolates to the approximated vector on at leastM − 1 indices. (Any extreme point of the bounded,

convex set of best approximations has this property, see e.g. Pinkus [9, p. 136].) Thus there exists a

best rankM − 1 approximation to A in the | · |1,1 normwhich agrees with A onM − 1 rows andM − 1

columns.

If N = M, then this implies that A − B has exactly one nonzero entry. That is, if A = (aij) and

B = (bij), then there exist indices k, � ∈ {1, . . . ,M} such that

bij = aij, (i, j) 	= (k, �).

Furthermore, as B has rankM − 1, it easily follows that we must have

A

(
1, . . . , k̂, . . . ,M

1, . . . , �̂, . . . ,M

)
	= 0

and

bk� = ak� − (−1)k+�
A

(
1,...,M
1,...,M

)
A

(
1,...,̂k,...,M

1,...,�̂,...,M

) ,
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implying that

|A − B|1,1 = |ak� − bk�| =
∣∣∣A (

1,...,M
1,...,M

)∣∣∣∣∣∣∣A(
1,...,̂k,...,M

1,...,�̂,...,M

)∣∣∣∣ = 1

|a−1
�k | .

Obviously an optimal choice of k, � ∈ {1, . . . ,M} is one that minimizes the above quantity.

Alternatively, we can also approach this problem directly, as follows. From Corollary 2.3 we have

δM−1(A∞; �M1 ) = E
M−1
1,1 (A) = min

x 	=0

‖Ax‖1

‖x‖∞
.

Set y = Ax. As A is non-singular, x = A−1y and

min
x 	=0

‖Ax‖1

‖x‖∞
= min

y 	=0

‖y‖1

‖A−1y‖∞
= 1

maxy 	=0
‖A−1y‖∞‖y‖1

.

The extreme points of the unit ball in �M1 are the unit vectors {ek}Mk=1. Letting A
−1 = (a−1

ij ) it therefore

follows that

max
y 	=0

‖A−1y‖∞
‖y‖1

= max
k=1,...,M

‖A−1ek‖∞ = max
k,�=1,...,M

|a−1
�k |.

Thus

min
k,�=1,...,M

1

|a−1
�k | = E

M−1
1,1 (A) = min

B
|(A − B)|1,1,

where the right-hand minimum extends over all B of rank at mostM − 1. �

Remark. By interchanging rows and columns we see that the appropriate analogue of Theorem 2.5

also holds if A is of rank N, when approximating by matrices of rank N − 1.

Remark. It can be proven directly, as in Theorem 2.5, or by considering the necessary and sufficient

conditions for best approximation in �Mp , that if A is anM × M matrix of rank M, then

E
M−1
p,1 (A) = min

�=1,...,M

∣∣∣A (
1,...,M
1,...,M

)∣∣∣(∑M
k=1

∣∣∣∣A(
1,...,̂k,...,M

1,...,�̂,...,M

)∣∣∣∣p′)1/p′ ,

where 1/p + 1/p′ = 1.

Remark. One strategy for approximating an M × M matrix A, in the | · |1,1 norm, by matrices of rank

n might be to first approximate A by a matrix B of rank M − 1, then approximate B by a matrix C of

rankM − 2, etc. i.e., at each of theM − n steps approximate a matrix by matrices of rank one less than

the approximated matrix, and in this way find a “good”, but not “best”, approximation to the original

matrix. Theorem 2.5 gives us a simple formula for the first step of this process. Unfortunately, and

despite the result of Theorem 2.2, we do not know how to approximate anM × M matrix A of rank K ,

in the | · |1,1, norm by matrices of rank K − 1, for any 1 < K < M.

Remark. As we have shown, the error in Theorem 2.5 is the reciprocal of the largest entry (in absolute

value) of the inverse matrix. For a symmetric matrix this need not be a diagonal entry. Thus, even

though the matrix is symmetric, the best rank M − 1 approximation to A in the | · |1,1 norm is not

necessarily symmetric. However, if A is positive semi-definite then so is A−1, and thus its largest entry

(in absolute value) lies on the diagonal. That is, for a positive semi-definite matrix of rank M, its best
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rank M − 1 approximation to A in the | · |1,1 norm is symmetric. In fact this approximating matrix B

is also positive semi-definite. This follows from Hadamard’s inequality.

For a symmetric matrix A, and α = {i1, . . . , ik}, let
A(α) = A

(
i1, . . . , ik

i1, . . . , ik

)
,

i.e., this is the principal minor of A with rows and columns {i1, . . . , ik}. Hadamard’s inequality for

positive semi-definite matrices is given by:

A(α)A(β) ≥ A(α ∪ β)A(α ∩ β)

for all α and β . Assume A is positive semi-definite, and B is a best rank M − 1 approximation to A in

the | · |1,1 norm such that

bij = aij, (i, j) 	= (k, k)

and

bkk = akk − A
(
1,...,M
1,...,M

)
A

(
1,...,̂k,...,M
1,...,̂k,...,M

) .

Thus B is symmetric, and for j < k we have

B

(
1, . . . , j

1, . . . , j

)
= A

(
1, . . . , j

1, . . . , j

)
≥ 0,

while for k ≤ j we have

B

(
1, . . . , j

1, . . . , j

)
= A

(
1, . . . , j

1, . . . , j

)
− A

(
1,...,M
1,...,M

)
A

(
1,...,̂k,...,M
1,...,̂k,...,M

)A

(
1, . . . , k̂, . . . , j

1, . . . , k̂, . . . , j

)
.

A simple application of the above Hadamard inequality implies that this principal minor is also non-

negative. Thus B is positive semi-definite. Of course, A − B is also trivially positive semi-definite since

bkk ≥ 0, also by Hadamard’s inequality.

3. Totally positive matrices

The two main theorems we prove in this section are the following.

Theorem 3.1. Let A be an N × M strictly totally positive matrix and 1 ≤ n < min{N,M}. Then for all

p ∈ (1, ∞] we have

δn(A∞; �Np ) = Enp,1(A).

Furthermore, a best rank n approximation to A in the | · |p,1 norm is given by a matrix B which agrees with

A on n columns.

Theorem 3.2. Let A be an N × M strictly totally positive matrix and 1 ≤ n < min{N,M}. Then a best

rank n approximation to A in the | · |1,1 norm is given by a matrix B which agrees with A on n columns and

n rows.

Weneed some ancillary results before proving these theorems.We first present a short explanation

of the variation diminishing properties of STP matrices. We use two counts for the number of sign

changes of a vector y = (y1, . . . , ym) ∈ R
m. These are: S−(y) — the number of sign changes in the

sequence y1, . . . , ym, with zero termsdiscarded, and S+(y)—themaximumnumber of sign changes in
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the sequence y1, . . . , ym, where zero terms are arbitrarily assigned values+1 or−1. For convenience,

we set S+(0) = m. Thus, for example,

S−(1, 0, 2, −3, 0, 1) = 2, and S+(1, 0, 2, −3, 0, 1) = 4 .

The connection between STPmatrices and the variation diminishing property is the content of this

next theorem.

Theorem 3.3. Let A be an N × M STP matrix. Then

(a) for each vector x ∈ R
M, x 	= 0,

S+(Ax) ≤ S−(x),

(b) if S+(Ax) = S−(x) and Ax 	= 0, then the sign of the first (and last) component of Ax (if zero, the sign

given in determining S+(Ax)) agrees with the sign of the first (and last) nonzero component of x.

Conversely, if (a) and (b) hold for some N × M matrix A and every x ∈ R
M, x 	= 0, then A is STP.

For an explanation and history of this and similar results, see Pinkus [10, Chapter 3]. In addition,

we have this next result which follows from Theorem 3.3 (a).

Proposition 3.4. If A is an r × s STP matrix, r > s,w 	= 0 andwA = 0, then S−(w) ≥ s.

In what follows we will always assume that A is an N ×M STP matrix, unless otherwise stated. We

also fix n, 1 ≤ n < min{N,M}.
Let

J = {j : j = (j1, . . . , jn), 1 ≤ j1 < · · · < jn ≤ M}.
Definition 3.1. We will say that x ∈ R

M alternates between j ∈ J, j = (j1, . . . , jn), if there exists an

ε ∈ {−1, 1} for which

xk = (−1)i+1ε, ji−1 < k < ji,

for i = 1, . . . , n + 1, where j0 = 0 and jn+1 = M + 1. We say that x alternates positively between

j ∈ J if ε = (−1)n+1.
Ifx alternates between j ∈ J, then S−(x) ≤ n. Note that in the abovedefinition there is no restriction

placed on the values xj1 , . . . , xjn .
For each p ∈ [1, ∞], we will consider the problem

min ‖Ax‖p (3.1)

where the minimum is taken over all x that alternate positively between some j ∈ J. We will prove

the following result.

Proposition 3.5. Assume, as above, that A is an N × M STP matrix, and p ∈ (1, ∞]. Then there exists an

x∗ which attains the minimum in (3.1), satisfies ‖x∗‖∞ = 1, and S+(Ax∗) = S−(Ax∗) = S−(x∗) = n.

When p = ∞ this result may be found in Micchelli and Pinkus [3] and Pinkus [8], Chapter VI,

Section 3. The proof as presented here for p ∈ (1, ∞) is a variation thereof.

Proof. Let

Xj := {x : x alternates positively on j}.
For each j ∈ J, let xj ∈ Xj satisfy

min
x∈Xj

‖Ax‖p = ‖Axj‖p.
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Let ak denote the kth column of A, k = 1, . . . ,M. For each j ∈ J, set

(yj)k =
⎧⎨⎩ (−1)i+n, ji−1 < k < ji, i = 1, . . . , n + 1,

0, k ∈ {j1, . . . , jn}.
Then

‖Axj‖p = min
x∈Xj

‖Ax‖p = min
α1,...,αn

‖Ayj +
n∑

r=1

αra
jr‖p. (3.2)

Since p ∈ (1, ∞) the above minimum (3.2) has a unique solution at some (α∗
1 , . . . , α

∗
n ). This unique

solution is characterized by

N∑
i=1

∣∣∣∣∣(Ayj +
n∑

r=1

α∗
r a

jr )i

∣∣∣∣∣
p−1

sgn(Ayj +
n∑

r=1

α∗
r a

jr )i aijk = 0, k = 1, . . . , n.

Note that xj is the vector in R
M which alternates positively on j and such that xjk = α∗

jk
, k = 1, . . . , n.

From Theorem 3.3 we have, since xj alternates on j, that

S−(Axj) ≤ S+(Axj) ≤ S−(xj) ≤ n.

From Proposition 3.4 it follows that since the vector c = (c1, . . . , cN) with

ci =
∣∣∣∣∣∣
(
Ayj +

n∑
r=1

α∗
r a

jr

)
i

∣∣∣∣∣∣
p−1

sgn

(
Ayj +

n∑
r=1

α∗
r a

jr

)
i

, i = 1, . . . ,N,

satisfies

(c, ajk) = 0, k = 1, . . . , n,

then S−(c) ≥ n. Now

sgn ci = sgn

(
Ayj +

n∑
r=1

α∗
r a

jr

)
i

= sgn(Axj)i, i = 1, . . . ,N.

Thus S−(Axj) ≥ n. We have proven, for the above xj thatminimizes (3.2), for any j ∈ J, that S+(Axj) =
S−(Axj) = S−(xj) = n.

By a compactness argument, the minimum in (3.1) is attained by a x∗ which alternates positively

on some j∗ = (j∗1, . . . , j∗n) ∈ J. It remains to prove that ‖x∗‖∞ = 1.

From the above we have

S+(Ax∗) = S−(Ax∗) = n.

These equalities imply that (Ax∗)1 (Ax∗)N 	= 0. Furthermore, if (Ax∗)i = 0, then (Ax∗)i−1(Ax
∗)i+1 <

0. Thus at the �th sign change of Ax∗ we have one of two possibilities. Either

(a) (Ax∗)i� = 0 and (Ax∗)i�−1 (Ax∗)i�+1 < 0, or

(b) (Ax∗)i� (Ax∗)i�+1 < 0,

where 1 ≤ i1 < · · · < in < N.

We define vectors g� ∈ R
N , � = 1, . . . , n, as follows. If (a) holds, then set

g� = ei� ,

where ei� is the unit vector with a 1 in the i� entry. If (b) holds, then set

g� = 1

|(Ax∗)i� |
ei� + 1

|(Ax∗)i�+1|e
i�+1.
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Note that, by construction,

(g�, Ax∗) = 0, � = 1, . . . , n.

To prove that ‖x∗‖∞ = 1, we first note that if j∗k = k for some k, then since x∗ alternates positively

on j∗ and S−(x∗) = n, then it follows that j∗s = s and

sgn(x∗
j∗s ) = (−1)n+s+1,

for s = 1, . . . , k. Similarly, if j∗k = M − (n − k), then j∗s = M − (n − s) and

sgn(x∗
j∗s ) = (−1)n−s,

for s = k, . . . , n.
Assume that j∗k > k, and let r be any integer less than j∗k not contained in the set {j∗1, . . . , j∗k−1}.

Define

j = {j∗1, . . . , j∗k−1, j
∗
k+1, . . . , j

∗
n, r}

where the indices are to be rearranged in increasing order. Let z ∈ Xj, i.e., z alternates positively on j,

satisfy

(g�, Az) = 0, � = 1, . . . , n. (3.3)

These are n linear conditions, and we have the n unknowns zj1 , . . . , zjn . It is readily verified that this

problem has a unique solution. Since z alternates on j we have S+(Az) ≤ S−(z) ≤ n. Moreover, from

(3.3) we see that n = S+(Az) and due to the form of these sign changes (induced by (3.3)) it easily

follows that

n = S−(Az) = S+(Az) = S−(z).

As z alternates positively on j, and j∗k /∈ j, we have

zj∗k = (−1)n+k

and

(z − x∗)� = 0, � /∈ {j∗1, . . . , j∗n, r}.
If z = x∗, then |xj∗k | = 1. Assume not. Then, since z − x∗ has at most n + 1 nonzero components, we

have

S−(z − x∗) ≤ n.

Thus

S+(A(z − x∗)) ≤ n.

By our construction we also have

(g�, A(z − x∗)) = 0, � = 1, . . . , n,

and therefore

S+(A(z − x∗)) = S−(z − x∗) = n.

Since

(g�, Az) = (g�, Ax∗) = (g�, A(z − x∗)) = 0, � = 1, . . . , n,

and each of Az, Ax∗ and A(z − x∗) have exactly n sign changes determined by these g�, we see that

they all have the same sign patterns, up to multiplication by ±1. Both z and x∗ alternate positively

and thus from (b) of Theorem 3.3 we have that
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(Az)N, (Ax∗)N > 0.

Now, if

(Az − Ax∗)N < 0,

then

0 < (Az)N < (Ax∗)N
and it then follows that

|(Az)s| ≤ |(Ax∗)|s
for all s = 1, . . . ,N, with equality only if both terms vanish. But then

‖Az‖p < ‖Ax∗‖p,

a contradiction, since by definition

‖Az‖p ≥ ‖Axj‖p ≥ ‖Ax∗‖p.

Thus

(Az − Ax∗)N > 0,

(and, in fact, |(Az)s| ≥ |(Ax∗)|s for all s = 1, . . . ,N, with equality only if both terms vanish). Since

S+(A(z − x∗)) = S−(z − x∗) = n

this implies, by (b) of Theorem 3.3, that the n + 1 nonzero components of z − x∗ strictly alternate in

sign with the last nonzero component being strictly positive. Thus

sgn((z − x∗)j∗k ) = (−1)k+n.

Since

zj∗k = (−1)k+n,

this implies that

(−1)k+nx∗
j∗k < 1.

A totally analogous argument can be applied in the case j∗k < M − (n− k). Here r is taken to be an

integer greater than j∗k not contained in the set {j∗k+1, . . . , j
∗
n}. The result then obtained is that

(−1)k+n+1x∗
j∗k ≤ 1.

So we see that if k < j∗k < M − (n − k), then |x∗
jk
| ≤ 1. If j∗k = k then, as was shown,

sgn(x∗
j∗k ) = (−1)n+k+1.

But we also have j∗k < M − (n − k), and so

0 < (−1)n+k+1x∗
j∗k ≤ 1.

Similarly, if j∗k = M − (n − k), then j∗k > k and

0 < (−1)n+kx∗
j∗k ≤ 1.

Thus

‖x∗‖∞ = 1.

This proves Proposition 3.5. �

Based on Proposition 3.5, we now prove Theorem 3.1.
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Proof of Theorem 3.1. The proof of Theorem 3.1 will divide into two parts. From Proposition 2.1 we

have

δn(A∞; �Np ) ≤ Enp,1(A).

In the first part of our proof we will prove that for the x∗ as in Proposition 3.5:

‖Ax∗‖p ≤ δn(A∞; �Np ).

The second part of the proof will be a construction of a rank nmatrix Bwith the desired properties for

which

|A − B|p,1 ≤ ‖Ax∗‖p.

We start with the lower bound

‖Ax∗‖p ≤ δn(A∞; �Np ).

We use a variation on the method of proof in Micchelli and Pinkus [4], and Pinkus [8, p. 145]. Set


n+1 :=
⎧⎨⎩y : y = (y1, . . . , yn+1),

n+1∑
j=1

|yj| = M

⎫⎬⎭ .

For each y ∈ 
n+1, define

t0(y) := 0, ti(y) :=
i∑

j=1

|yj|, i = 1, . . . , n + 1.

Thus

0 = t0(y) ≤ t1(y) ≤ · · · ≤ tn+1(y) = M.

In addition, set

hy(s) := sgn yj, s ∈ [tj−1(y), tj(y)), j = 1, . . . , n + 1,

and

xi(y) :=
∫ i

i−1
hy(s) ds, i = 1, . . . ,M.

Finally, let x(y) := (x1(y), . . . , xM(y)). From these definitions it follows that x(y) is an odd and

continuous function of y on 
n+1, and ‖x(y)‖∞ = 1. It also easily follows that for each y ∈ 
n+1 the

vector x(y) alternates between some j ∈ J, since hy has at most n sign changes.

Let B be any N × M rank nmatrix. Then we can express Bx in the form

Bx =
n∑

i=1

(ui, x) vi

for some u1, . . . , un ∈ R
M and v1, . . . , vn ∈ R

N . Consider the map

�(y) :=
(
(u1, x(y)), . . . , (un, x(y))

)
.

Since x(y) is an odd and continuous function on
n+1, it follows that� is an odd, continuousmap from


n+1 toR
n. Thus, by the Borsuk Antipodality Theorem, there exists a y∗ ∈ 
n+1 forwhich�(y∗) = 0,

and hence

Bx(y∗) = 0.
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We therefore have

max‖x‖∞≤1
‖(A − B)x‖p ≥ ‖Ax(y∗)‖p.

And, since x(y∗) alternates between some j ∈ J, we also have from Proposition 3.5 that

‖Ax(y∗)‖p ≥ ‖Ax∗‖p.

This proves the lower bound.

Wenowprove theupper bound. As in theproof of Proposition 3.5,we recall that x∗ ∈ R
M alternates

positively between j∗ = (j∗1, . . . , j∗n) ∈ J and S+(Ax∗) = S−(Ax∗) = n. These latter equalities imply

that (Ax∗)1 (Ax∗)N 	= 0, and if (Ax∗)i = 0, then (Ax∗)i−1(Ax
∗)i+1 < 0. Thus at the kth sign change

of Ax∗ we have one of two possibilities. Either

(a) (Ax∗)ik = 0 and (Ax∗)ik−1 (Ax∗)ik+1 < 0, or

(b) (Ax∗)ik (Ax∗)ik+1 < 0,

where 1 ≤ i1 < · · · < in < N.

Given the gk as in the proof of Proposition 3.5, we define vectors ck ∈ R
M , k = 1, . . . , n, by

ck = ATgk, k = 1, . . . , n.

Let ri denote the ith row of A. Thus, if (a) holds, then

ck = rik ,

while if (b) holds, then

ck = 1

|(Ax∗)ik |
rik + 1

|(Ax∗)ik+1| r
ik+1.

Note that, by construction,

(ck, x∗) = 0, k = 1, . . . , n. (3.4)

We construct the matrix B = (bij)
N
i=1

M
j=1 as follows. Let ck = (ck1, . . . , ckM), k = 1, . . . , n, and

−bij =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 aij∗1 · · · aij∗n
c1j c1j∗1 · · · c1j∗n
...

...
. . .

...

cnj cnj∗1 · · · cnj∗n

∣∣∣∣∣∣∣∣∣∣∣∣∣
C

(
1,...,n
j1,...,jn

) .

The denominator is strictly positive, as it is a positive linear combination of minors of A. Furthermore,

B is an N × M matrix of rank at most n. This follows from the fact that

bij =
n∑

k,�=1

aij∗� ckjmk� (3.5)

where mk� are constants, independent of i and j, and therefore each of the n factors

aij∗�

n∑
k=1

ckjmk�

defines a matrix of rank 1. Furthermore, from (3.4) and (3.5), we see that

Bx∗ = 0. (3.6)
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Now

aij − bij =

∣∣∣∣∣∣∣∣∣∣∣

aij aij∗1 · · · aij∗n
c1j c1j∗1 · · · c1j∗n
...

...
. . .

...

cnj cnj∗1 · · · cnj∗n

∣∣∣∣∣∣∣∣∣∣∣
C

(
1,...,n
j1,...,jn

) . (3.7)

What is the sign of each aij − bij? From the above, it is evident that

aij − bij = 0, j = j∗1, . . . , j∗n .

From the construction of ck, as either a row of A or a positive combination of two consecutive rows of

A, it follows that for ik−1 + 1 ≤ i ≤ ik , k = 1, . . . , n+ 1, and j∗�−1 < j < j∗� , � = 1, . . . , n+ 1, where

i0 = 0, in+1 = N + 1, j∗0 = 0, j∗n+1 = M + 1, we have that either aij − bij vanishes, or

sgn (aij − bij) = (−1)k+�.

This implies, using (3.6), (3.7) and the fact that x∗ alternates positively between j∗, that
M∑
j=1

|aij − bij| =
∣∣∣∣∣∣
M∑
j=1

(aij − bij)x
∗
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
M∑
j=1

aijx
∗
j

∣∣∣∣∣∣ .
Thus,

|A − B|p,1 =
⎛⎝ N∑

i=1

⎛⎝ M∑
j=1

|aij − bij|
⎞⎠p⎞⎠1/p

=
⎛⎝ N∑

i=1

∣∣∣∣∣∣
M∑
j=1

aijx
∗
j

∣∣∣∣∣∣
p⎞⎠1/p

= ‖Ax∗‖p.

We have proven that

Enp,1(A) ≤ ‖Ax∗‖p

and this upper bound is attainedby a ranknmatrixB that agreeswithAon then columns j1, . . . , jn. �

Proof of Theorem 3.2. There are various methods of proving Theorem 3.2. We will present a proof

that utilizes the results of Theorem 3.1 and Proposition 3.5. These results, however, are valid only for

p > 1. What do they, nonetheless, tell us about the case p = 1?

From continuity considerations it easily follows from Theorem 3.1 and Proposition 3.5 that

δn(A∞; �N1 ) = En1,1(A) = min ‖Ax‖1,

where the minimum is taken over all x that alternate positively between some j ∈ J. Furthermore, a

best rank n approximation to A in the | · |1,1 norm is given by a matrix B which agrees with A on n

columns.

What does not hold is that the x∗ attaining the minimum in (3.1) for p = 1 necessarily satisfies

S−(Ax∗) = S+(Ax∗) = S−(x∗) = n. Rather we obtain, from continuity considerations and the

variation diminishing property, that S−(Ax∗) ≤ S+(Ax∗) = S−(x∗) = n. However we will not make

use of these facts in what follows. What we will effectively show is that we can choose the x∗ so that

Ax∗ has n zeros. Thus the B, as constructed in the proof of Theorem 3.2, agrees with A on n rows and n

columns. We will not directly prove anything about the x∗, but will work with the matrix B.

From the above, we have a matrix B which is a best rank n approximation to A, and agrees with A

on n columns. Let bj and aj denote the columns of B and A, respectively. Thus

bjk = ajk , k = 1, . . . , n,
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for some 1 ≤ j1 < · · · < jn ≤ M. As B is of rank n, and the {ajk}nk=1 are linearly indepen-

dent, Aj = span{aj1 , . . . , ajn} is the range of B. Thus, each bj is, essentially by definition, a best

�N1 -approximation to aj from Aj. It is well-known that there always exists a best �N1 -approximation

from any n-dimensional subspace that interpolates any approximated vector at n indices. What we

will prove, but is not immediately evident, is that for A STP these n indices of interpolation can be

chosen independent of the columns aj , j /∈ {j1, . . . , jn}, i.e., they are fixed, depending only upon the

choice of j = (j1, . . . , jn).
Let

I = {i : i = (i1, . . . , in), 1 ≤ i1 < · · · < in ≤ N}.
As previously, given c ∈ R

N , we will say that c alternates between i ∈ I, i = (i1, . . . , in), if there
exists an ε ∈ {−1, 1} for which

ci = (−1)�+1ε, i�−1 < i < i�,

for � = 1, . . . , n + 1, where i0 = 0 and in+1 = N + 1. We claim that given any n vectors c1, . . . , cn

in R
N , 1 ≤ n < N, there exists a c that alternates between some i ∈ I, with ‖c‖∞ = 1 and satisfies

(c, ck) = 0, k = 1, . . . , n.

This is a well-known result for continuous functions and is called the Hobby-Rice Theorem. A short

proof, in both the continuous and this vector case, can be found in Pinkus [7]. The technique of proof

as found therein was used by us here in the proof of the lower bound of Theorem 3.1.

Thus, given aj1 , . . . , ajn , there exists a c ∈ R
N that alternates between some i ∈ I, with ‖c‖∞ = 1

and satisfies

(c, ajk) = 0, k = 1, . . . , n.

We will use these equalities in the form∑
i/∈{i1,...,in}

ciaijk = −
n∑

�=1

ci�ai�jk , k = 1, . . . , n. (3.8)

Let us show that to each aj the bj ∈ Aj that interpolates to aj at the indices of i is a best �N1 -

approximation to aj from Aj. To this end, note that if we have interpolation at the indices i1, . . . , in,
then

ai�j =
n∑

k=1

αjkai�jk , l = 1, . . . , n. (3.9)

This implies that

aij −
n∑

k=1

αjkaijk = A
(
i,i1,...,in
j,j1,...,jn

)
A

(
i1,...,in
j1,...,jn

) .

From this formula we see that, for each fixed j, the sign of this vector, as a function of i, is exactly εci
for i /∈ {i1, . . . , in} and some fixed ε ∈ {−1, 1}.

Now for any (γk)
n
k=1

‖aj −
n∑

k=1

αjka
jk‖1 =

N∑
i=1

∣∣∣∣∣∣aij −
n∑

k=1

αjkaijk

∣∣∣∣∣∣=ε
∑

i/∈{i1,...,in}
ci

⎛⎝aij −
n∑

k=1

αjkaijk

⎞⎠
= ε

∑
i/∈{i1,...,in}

ci

⎛⎝aij−
n∑

k=1

γkaijk

⎞⎠+ε
∑

i/∈{i1,...,in}
ci

⎛⎝ n∑
k=1

γkaijk −
n∑

k=1

αjkaijk

⎞⎠ .
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From (3.8) this equals

= ε
∑

i/∈{i1,...,in}
ci

⎛⎝aij −
n∑

k=1

γkaijk

⎞⎠ − ε
n∑

�=1

ci�

⎛⎝ n∑
k=1

γkai�jk −
n∑

k=1

αjkai�jk

⎞⎠ .

From (3.9) we obtain

= ε
∑

i/∈{i1,...,in}
ci

⎛⎝aij −
n∑

k=1

γkaijk

⎞⎠ − ε
n∑

�=1

ci�

⎛⎝ n∑
k=1

γkai�jk − ai�jk

⎞⎠ .

Applying the triangle inequality and since ‖c‖∞ = 1 we have

≤ ∑
i/∈{i1,...,in}

∣∣∣∣∣∣aij −
n∑

k=1

γkaijk

∣∣∣∣∣∣ +
n∑

�=1

∣∣∣∣∣∣
n∑

k=1

γkai�jk − ai�j

∣∣∣∣∣∣ = ‖aj −
n∑

k=1

γka
jk‖1.

Thus for any (γk)
n
k=1

‖aj −
n∑

k=1

αjka
jk‖1 ≤ ‖aj −

n∑
k=1

γka
jk‖1,

implying that the bj ∈ Aj that interpolates to aj at the indices of i is a best �N1 -approximation to aj

from Aj. (This is actually a convexity cone property, as found in Pinkus [9, Theorem 5, p. 210].) We

have proved that there exists a best rank n approximation to Awhich agrees with A on n columns and

n rows. �

Remark. If B interpolates to A on the rows i1, . . . , in and columns j1, . . . , jn, where

A

(
i1, . . . , in

j1, . . . , jn

)
	= 0,

then

|A − B|1,1 =
N∑

i=1

M∑
j=1

∣∣∣A (
i,i1,...,in
j,j1,...,jn

)∣∣∣∣∣∣A (
i1,...,in
j1,...,jn

)∣∣∣ .

Thus, for A STP we have

En1,1(A) = min
i1,...,in
j1,...,jn

N∑
i=1

M∑
j=1

∣∣∣A (
i,i1,...,in
j,j1,...,jn

)∣∣∣
A

(
i1,...,in
j1,...,jn

) .

Remark. By interchanging rows and columns we are led to the norm

|A|r,1 =
⎛⎝ M∑

j=1

⎛⎝ N∑
i=1

|aij|
⎞⎠r⎞⎠1/r

,

where the same results hold, except that rows replace columns.

Theorems 3.1 and 3.2 have been proven for STPmatrices. As is well-known, see e.g., Karlin [2, p. 88]

or Pinkus [10, p. 42], STP matrices are dense in the set of TP matrices. As such we have

Corollary 3.6. Let A be an N × M totally positive matrix, and 1 < n < rank A. Then for all p ∈ [1, ∞]
we have

δn(A∞; �Np ) = Enp,1(A).
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Furthermore, a best rank n approximation to A in the | · |p,1 norm is given by a matrix B which agrees with

A on n columns, and when p = 1, a best rank n approximation to A is given by a matrix B which agrees

with A on n columns and n rows.

In fact, the above results can be easily seen to hold for a class of matrices larger than totally positive

matrices. We can consider matrices obtained from A by D1AD2, where D1 is an N × N matrix with a

single 1 or−1 in each row and column, and D2 is anM ×M matrix of the same form. As is easily seen,

if B is a best rank n approximation to A in the | · |1,1 norm, then D1BD2 is a best rank n approximation

to D1AD2 in the | · |1,1 norm. Note that if B interpolates to A on n rows and columns, then D1BD2

interpolates to D1AD2 on n rows and columns.

Assume A is an N × M TP matrix and B is a matrix which agrees with A on n columns and n rows.

Thus

aij − bij = A
(
i,i1,...,in
j,j1,...,jn

)
A

(
i1,...,in
j1,...,jn

) ,

for some 1 ≤ i1 < · · · < in ≤ N and 1 ≤ j1 < · · · < jn ≤ M. (We can assume the denominator

is non-zero.) This matrix A − B is, in general, not totally positive. However it is of the form described

in the previous paragraph. That is, there exist D1 and D2, as above, such that D1(A − B)D2 is totally

positive. In fact, both D1 and D2 are diagonal matrices and may be constructed as follows. Set

(D1)ii = (−1)�, i�−1 < i < i�, � = 1, . . . , n + 1,

where i0 = 0 and in+1 = N + 1. (The entries (D1)i�i� , � = 1, . . . , n, are immaterial.) D2 is similarly

constructed with respect to the j1, . . . , jn. Furthermore, the best rankm approximation to the matrix

A− B in the | · |1,1 norm is, by Sylvester’s Determinant Identity, of the same form. That is, it will agree

with A on n+m rows and columns, including the n rows and columns previously obtained. That is, if B

is any matrix which agrees with A on the n columns j1, . . . , jn and rows i1, . . . , in, and C is any matrix

which agrees with A − B on them other columns s1, . . . , sm andm other rows r1, . . . , rm, then

aij − cij = A
(
i,i1,...,in,r1,...,rm
j,j1,...,jn,s1,...,sm

)
A

(
i1,...,in,r1,...,rm
j1,...,jn,s1,...,sm

) ,

assuming the denominator is non-zero. In other words, the interpolant to the interpolant is also an

interpolant.

Remark. If A is totally positive, and B is constructed as above, i.e., for some 1 ≤ i1 < · · · < in ≤ N

and 1 ≤ j1 < · · · < jn ≤ M we have

bij = aij −
A

(
i,i1,...,in
j,j1,...,jn

)
A

(
i1,...,in
j1,...,jn

) ,

then B need not be totally positive. Here is a simple example. Let

A =

⎛⎜⎜⎜⎝
2 1 0

4 8 1

0 4 2

⎞⎟⎟⎟⎠ .

This is a totally positive matrix. Let n = 2, i1 = 2, i2 = 3, j1 = 1 and j2 = 2. Now bij = aij except for

(i, j) = (1, 3) while

b13 = −1.

(This choice makes B singular, i.e., of rank 2). This B is obviously not totally positive. The matrix B is

the best rank 2 approximation to A in the | · |1,1 norm.
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Remark. Let ri, i = 1, . . . ,N, and cj , j = 1, . . . ,M, denote the row and column vectors of A, respec-

tively. A best rank n approximation to the totally positive A is given by a matrix B which agrees with

A on n columns j1, . . . , jn and n rows i1, . . . , in. These rows and columns have the property that the

best �M1 approximation from R = span{ri1 , . . . , rin} to ri is given by interpolating from R to ri at

the indices j1, . . . , jn. And the best �N1 approximation from C = span{cj1 , . . . , cjn} to cj is given by

interpolating from C to cj at the indices i1, . . . , in. A natural question to ask is whether the above prop-

erty implies the converse. That is, if one has found rows i1, . . . , in and columns j1, . . . , jn satisfying

the above properties, then are they necessarily optimal rows and columns in this minimum rank n

approximation problem. The answer, unfortunately, is in the negative. Consider the 3 × 3 matrix

A =

⎛⎜⎜⎜⎝
4 2 1

1 1 1

1 4 8

⎞⎟⎟⎟⎠ .

This matrix is strictly totally positive. For n = 1 the (i, j)th entry of the matrix

E =

⎛⎜⎜⎜⎝
12.5 14.5 47

15 10 15

55 8.25 6.75

⎞⎟⎟⎟⎠
is the value of the error in the | · |1,1 normwhen approximating A using the rank 1matrix based on the

ith row and jth column of A. As is evident, the 3rd row and 3rd column are optimal in this example, and

uniquely so among the choices of rows and columns. However consider the 1st row and 1st column.

The fact that the value 12.5 is strictly smaller than the other values in the first row and column of

E means that the best �31 approximation from R = span{r1} to ri is given by interpolating from R
to ri at the first index. And similarly the best �31 approximation from C = span{c1} to cj is given by

interpolating from C to cj at the first index. This is an example of a “stationary” point that is not optimal.

Remark. There is an additional class of N ×N matrices A for which we know how to calculate the best

rank n approximation to A in the | · |p,1 norm, p ∈ [1, ∞]. And that is when A is a diagonal matrix

(equivalently, a matrix with at most one non-zero element in each row and column). Assume that

A = D = diag {D1, . . . ,DN}, where |D1| ≥ |D2| ≥ · · · ≥ |DN |. Then for each nwe have

δn(D∞; �Np ) = Enp,1(D) =
⎛⎝ N∑

k=n+1

|Dk|p
⎞⎠1/p

,

where D∞ = {Dx : ‖x‖∞ ≤ 1}, and a best rank n approximation to D in the | · |p,1 norm is given by

B = diag {D1, . . . ,Dn, 0, . . . , 0}.
This result was proved, independently, by Pietsch [6] and Stessin [13] in greater generality, see also

Pinkus [8, p. 203].

Remark. In Theorems 3.1 and 3.2 we determined the values of the linear n-widths δn(A∞; �Np ). There

are, in the literature, also n-widths in the sense of Kolmogorov (denoted dn) and n-widths in the sense

of Gel’fand (denoted dn). The interested reader can consult Pinkus [8]. All three n-widths δn, dn and dn

are, in fact, equal in the cases considered above.

The above begs the question of whether it might be true that a best rank n approximation to any

N × M matrix in the | · |1,1 norm is always given by a matrix which agrees with A on n columns and n

rows. After all, it is true if N = M and n = N − 1. Not surprisingly, it is not true in general.

The following is a 3×3matrix Awhose best rank 1 approximation in the | · |1,1 norm is NOT gotten

by using one row and one column of A. Consider the matrix
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A =

⎛⎜⎜⎜⎝
1 2 1

1 1 1

−1 2.9 2

⎞⎟⎟⎟⎠ .

On approximating using one row and one column, the minimal error is obtained when using the 3rd

row and 2nd column. The resulting rank 1 approximating matrix is

B =

⎛⎜⎜⎜⎝
−2
2.9

2 4
2.9

−1
2.9

1 2
2.9

−1 2.9 2

⎞⎟⎟⎟⎠ ,

and

A − B =

⎛⎜⎜⎜⎝
4.9
2.9

0 −1.1
2.9

3.9
2.9

0 .9
2.9

0 0 0

⎞⎟⎟⎟⎠ .

The | · |1,1 error is thus 10.8/2.9. However we can do better. Take the second column of B, namely

(2, 1, 2.9)T and use its span to approximate in �31 the columns of A. That is, we will construct a 3 × 3

rank 1 matrix

C = (αiβj)

where α1 = 2, α2 = 1 and α3 = 2.9. The optimal choice of the βj are β1 = 1/2, β2 = 1 and

β3 = 2/2.9. That is,

C =

⎛⎜⎜⎜⎝
1 2 4

2.9
1
2

1 2
2.9

2.9
2

2.9 2

⎞⎟⎟⎟⎠ ,

and thus

A − C =

⎛⎜⎜⎜⎝
0 0 −1.1

2.9
−1
2

0 .9
2.9

−4.9
2

0 0

⎞⎟⎟⎟⎠ .

The resulting | · |1,1 error is thus 2/2.9+ 5.9/2 < 10.8/2.9. This C is better than B, but is also not the

best rank 1 approximation to A.

What is true, in general, is that we can always find a best rank n approximation B to A in the | · |1,1
norm such that A − B has at least n zeros in each row and in each column. Again, this is true because

in �K1 when approximating any vector from an n-dimensional subspace, there always exists a best

approximation that interpolates the approximated vector on at least n indices.

It would be of interest to determine other classes of matrices, if such exist, for which the result of

Theorem 3.2 is valid. For example, what can one say in the case of positive semi-definite matrices?
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