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Let g be a fixed polynomial on Rd. We consider the problem of characterizing
the span of {/(/i(·))} for all / g C(M) as h varies over all shifts and/or dilations
of g-

§1. Introduction

The direct contributions of Kolmogorov to approximation theory are few in terms
of the number of papers: they can probably be counted on the fingers. However,
these contributions have been both profound and influential. In the survey arti-
cle [9], Tikhomirov reviews six papers of Kolmogorov related to problems in approx-
imation theory. These include a paper on the error bounds in approximating func-
tions in the Sobolev space Wao of periodic functions on [—π, π] by their partial
Fourier sums; the seminal paper on n-widths; a famous paper on exact inequalities
for intermediate derivatives on the full real line (in the uniform norm), called today
the Landau-Kolmogorov inequality; an article which in retrospect is related to an
η-width problem on octahedra; a paper characterizing best uniform approxima-
tions from finite-dimensional subspaces in the space of continuous complex-valued
functions on a compact set, today called the Kolmogorov criterion; and the paper
where the concept of ε-entropy was introduced.

Conspicuous by its absence is the series of articles related to Hilbert's 13th
problem on superposition of functions. Some people are of the opinion that this
result does not constitute a part of approximation theory. And they are technically
correct. It is the antithesis of the essence of approximation theory. This theorem
is concerned with the exact representation of functions, rather than with their
approximation. However, this does not imply that it is unimportant to the theory.
Sometimes, as in this case, it is just the opposite.

Hilbert's 13th problem is entitled Impossibility of the solution of the general
equation of the 7th degree by means of functions of only two variables. It seems to
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have been motivated by problems connected with nomography, a subject which, for
various justifiable reasons, is of little or no interest today (the reader may consult
Evesham [2] for a discussion and history of nomography). Hubert conjectured, in
his 13th problem, that the equation of the seventh degree

f7 + xf3+yf+zf+ 1 = 0

cannot be solved with the help of any continuous functions of only two variables.
This particular problem was soon generalized in different ways. As Vitushkin aptly
put it ([10] p. 256), "Various mathematicians have understood the 13th problem dif-
ferently and have attributed to it results of a different character". For a history and
development of this problem we refer the reader to Lorentz [6] and Vitushkin [10].

In a series of papers in the late 50s, Kolmogorov proved the following
startling result, which is considered to be the resolution, in the negative, of Hubert's
13th problem.

Theorem 1.1. There exist continuous functions of one variable /iy (i = 1,.. . ,
. . . , 2d + 1, j = 1,... , d) such that every continuous function f of d variables on
[0, l]d can be represented in the form

2d+l

f(xi,...,Xd)= Σ
t = l

where the gi are continuous functions of one variable which depend on f.

Since then there have been numerous generalizations of this theorem in various
directions. Attempts to understand the nature of this theorem have also led to
interesting concepts related to the complexity of functions. Nonetheless the theorem
itself has had few, if any, direct applications. This seems rather surprising, since
it does state that we can, in some sense, consider multivariate functions as just
compositions of univariate functions.

Perhaps one reason for the paucity of applications is related to the following
result, which is due to Vitushkin and Henkin (separately and together). See [11]
for a survey of their results. It says that one cannot demand that the hij be C 1

functions. Since the answer is in the negative, we only formulate it for functions of
two variables in [0,1]2.

Theorem 1.2. Let hi,i = 1,... ,m, be a set of fixed continuously differentiable
functions defined on [0,1]2. Then the set of functions

1 = 1

2is nowhere dense in the space of all functions continuous in [0,1]2 with the topology
of uniform convergence.

If the representation (1.1), or something similar, had turned out to exist with
smooth, calculable /i^, then multivariate approximation theory might well look
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different today. We could then calculate the h(j once and for all, and thus reduce
many multivariate problems to univariate problems. This is idle speculation. The
hij are neither smooth nor calculable. Our search of the literature found only
one paper, namely Prisch et al [3], which attempted to use the Kolmogorov result
directly to approximate multivariate functions.

However, as we have mentioned, there is a fundamental difference between the
representation and the approximation of functions. In practice we should give up
the expectation of exact representation. It is our hope that it might be possible,
using smooth, calculable functions and the idea of superposition (composition), to
develop good methods of approximating multivariate functions. This is the theme
which we wish to initiate in this paper.

In other words, we will consider specific classes Φ of functions φ : Ed -> R and
study the linear space

span{g(tp(-)) : φ G *,g G C(l) }.

If Φ is composed of finitely many smooth (C1) functions, then this set is, by
Theorem 1.2, nowhere dense in the space of all functions continuous on any com-
pact set in M.d (with non-empty interior) with the topology of uniform convergence.
However, if Φ is composed of an infinite set of functions, then this is no longer nec-
essarily true. In this paper we will look at this density problem and some related
algebraic problems for three sets of Φ each constructed simply by shifts and/or
dilations of a fixed polynomial.

§2. Statements of the problems

Let g be any real-valued polynomial of d variables. Consider all shifts or all
dilations, or both, of this fixed polynomial. That is, let

d =apan{g(--b1,...,--bd) : b = (bu ... ,bd) G Rd },

G 2 = span {g(ai · , . . . , ad-) : a = ( α ϊ , . . . ,ad) G Rd }

and

G3 = s p a n { f l ( a i • ~bu... ,ad--bd) : a , b G K d } .

Now, for i = 1,2,3, let

Si=spa,n{f(h(-)):heGi, / €

The question we will consider is that of the density of each of the Si in the space
of continuous real-valued functions defined on E.d, endowed with the topology of
uniform convergence on compact sets. (We could have fixed a compact subset of Ed

(with non-empty interior), and only considered uniform convergence thereon. In the
case of Si and S3, the two settings are essentially equivalent. They are equivalent
for S2 if the compact set contains the origin in its interior.) One simple feature of
this topology is that if we put

5Ί = span { {g(- - bu . . . , · - bd))k : b G Rd, k G Z+ },

3>2 = span { ( 5 ( α ι ·,..., ad-))k : a G Rd, k&Z+)
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and

0>3 = span{( f f (a 1 · -bu ... ,ad • -bd))k r a . b e R ' ' , k Ε Ζ+ },

then from Weierstrass' theorem it follows that CPj = S i ( i = 1, 2, 3. Another aspect
of this topology is that polynomials are dense thereon. Each J"; is a linear subspace
of all polynomials on Rd. Thus if Ο3» = Π (where Π denotes the set of all polynomials
on Rd), then we certainly have CPj = C(Rd) in our topology. However, it may not
be necessary that 3>; = Π in order to obtain density.

In the last section of this paper we discuss CP2 and Τ3. The analysis in both these
cases is elementary. We show that J^ = Π if and only if

p-φθ, j = l,...,d.
OXj

The necessity of this condition is rather obvious, and thus both the question of
reproducing all polynomials and that of density are one and the same. For the
space 3>2 we prove that y2 = Π if and only if

That is, the necessary and sufficient condition for "P2

 = Π is that g contains linear
terms in each of the variables Xj,j = 1,... ,d. That this is not equivalent to the
density of <P2 in C(Rd) can be easily seen even in the case where d = 1. Conditions
for density are not known when d ^ 2.

The main object of this paper is the study of 3Ί, which is much more interesting
than either CP2 or CP3. The space 3Ί was studied in our paper [7]. A simple necessary
condition for 3Ί to contain all of Π or to be dense in C(Rd) is that G\ must separate
points. Since g is a polynomial, this may be shown to be equivalent to the linear
independence of the first partial derivatives of g. That is, G\ separates points if and

only if the polynomials < —— > are linearly independent. This easily verified
I OX J

— >
Xj J j = 1

j

condition is in fact equivalent to 5Ί = Π if d = 2. This was the main result of [7].
Moreover the equivalence is not valid for d ^ 4. In the next section we prove that
this equivalence does hold for d = 3. We will outline two proofs of this fact. One
proof uses differential geometry and algebra. The other method of proof, using
algebraic geometry, is a consequence of the main results in a paper of Gordan and
Noether [4], which 'corrected' an earlier paper of Hesse [5]. Thinking over these
results provides us with a better understanding of the case d = 4, although we still
do not have a complete characterization of all the polynomials g for which ΊΊ = Π
in M4. Nor do we know, in general, if it is necessary for the density of 3Ί in C(Rd)
that it equal Π. (For d = 2 and d = 3 they are one and the same.)

We also wish to point out that while we will be considering all shifts and/or
dilations, this is not necessary. We can consider in any of the above problems a
significantly restricted set of shifts and dilations (for example, on any lattice in
and get exactly the same results. This follows from the next two propositions.
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Proposition 2.1. For every polynomial g, the set

s p a n { g{- - bu . . . , · - bd) : b € R d } = s p a n { <?(· - bu . . . , · - o d ) : b e Β }

is noi contained in any algebraic variety if Έ C ]Rd (ί/ιαί is, no non-trivial poly-
nomial vanishes on Έ).

Proposition 2.2. For every polynomial g, the set

span {# (αϊ · , . . . , ad-) : a € Rd } = span { g(<n · , . . . , ad·) : a £ Λ }

is not contained in any algebraic variety if A C M.d.

The proof of Proposition 2.1 may be found in [7], while Proposition 2.2 is proved
similarly.

Before embarking on the analysis of the various cases, we recall some standard
multivariate notation. For χ = ( i i , . . . ,xd) € Ed and j = ( j i , . . . ,jd) ε Ζ^, we
put

Ul = h + - j j ! j ! j !

a n d

If 9 is a polynomial, q(x) —
operator

D r.

3 x f ... 8xJ

d

d

·", then by q{D) we mean the differential

We end this section by noting a relationship between shifts and differentiation, and
between dilation and the monomials for polynomials. These two lemmas are both
useful and important. They are easily proved.

Theorem 2.3. Let g be any polynomial. Then

span { g(- - bu . . . , - - bd) : b e K d } = span { D^g : Vj € 1d
+ } .

Lemma 2.4. Let g be any polynomial of the form

g{x) = 52CJX J .
j

Then

span { g{a\-,..., α^·) : a € Ed } = span { x-· : Cj φ 0 }.
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§3. The space 0Ί and d = 3

For ease of exposition we first introduce some additional notation. For each

polynomial / we denote —— by /;. We also put

9(f) = span { (/(• - bu . . . , · - 6,,))* : b € Rd, k e Z+ }.

(That is, we have changed the notation somewhat in that we have dropped the sub-
script 1 and shown the dependence on the polynomial.) For ρ = (pi, · . . ,Pd) ε Ν6'
(each pi is a positive integer) and j s Z+ we put ρ · j = 5Z i = 1 Vui- If

/(χ) =

PJ=n

then the p-degree of f is max{p • j : Cj φ 0}. A polynomial / is said to be
p-homogeneous of p-degree η if

/(x) = Σ cjXJ.

pj=n

We start with the statement of two simple facts which we will repeatedly use.

Lemma 3.1. Assume that
9 = h + f,

where h is a p-homogeneous polynomial of p-degree n, and f is a polynomial of
p-degree < n. IfP(h) = U, then "Pig) = Π.

Lemma 3.1 follows from a simple induction argument.

Lemma 3.2. Assume that g is a polynomial. The properties of 7(g) = Π and

y(g) — C(Kd) are unaffected by a linear (non-singular) change of variables.

We will use Lemma 3.2 together with the following more fundamental result.

Proposition 3.3. Assume that g is a polynomial, and that the polynomials {#i}f=1

are linearly independent. Then after a linear (non-singular) change of variables we
can decompose g in the form

9 = h + f,

where h is a p-homogeneous polynomial of p-degree n, f is a polynomial of
p-degree < n, and the {/ij}f=1 are linearly independent.

Proof. We prove the result by a construction using an inductive argument. We
assume that

9 = h + f,

where

Μ χ ) = Σ cJ x J' -fW = Σ cJx J'
pj=n pj<n

and

(1) the {hi}^L1 are linearly independent,
(2) hi = 0, i — m + 1,... ,d,
(3) pi = ρ ̂  pj for all j — 1,. . . , m and i = m + 1,. . . , d.
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To start with we simply let ρ = ( 1 , . . . ,1) and take h to be the highest order
homogeneous terms of g. By a linear change of variables we can easily obtain (1)
and (2).

We shall assume that m < d, for otherwise there is nothing to prove, and
construct a new h satisfying (1), (2) and (3) with a strictly larger m.

Let v/u be the irreducible fraction such that

r _ y , m • d Λ

— = min < 3 — — — — : c\ φ 0, >^ piji > 0 >. (3.1)
U V d τι,ι\ . ^ ,

1 i=m+l )

Note that 5Z i = 1 Piji ^ η for all j with Cj φ 0, and if equality holds, then pi — 0,
i = m + 1,.. . , d. From this it follows that υ > u.

Let
9j, 1 = 1 , . . . ,771,

Pi =

and
n' = wi.

Thus pj — vp > p'j for all j — 1,... , m and ι = m + 1,... , d, and (3.1) holds with
this new p\ and any ml ^ m. Furthermore

rf

p' •j = Yp'lji ^ri,

for all j with Cj φ 0.
Let J* = {j : C j ^ 0, p'-j = n'}. Then J* = JU J ' , where J = {j : c-} φ 0, p-j = n}

and j ' = {j : j attains the minimum in (3.1)}. We put

Λ·(χ)=
p'j=n'

and

r(x)= f f(x)-/i*(x)= ^ ] Cjx
j.

p'j<n'

Note that h* = h + ti, where

and

Not all the {/i*}j'_m+1 are identically zero. By a linear change of variables involv-
ing only the variables xm+i,... ,x,i, we may assume that there exists an ml,
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m +1 ^ m' ^ d, such that (after again denoting the new variables by xm+i ,·•·, x<i)
the {/i*}£Lm+i are linearly independent and h\ = 0, i = m' + 1,... , d (if m' < d).

Since the linear change of variables involves only variables with equal 'weights'
p\ = vp, it follows that by introducing these new variables we have not altered
the fact that h* is a p'-homogeneous polynomial of p'-degree n' or that /* is a
polynomial of p'-degree < n'.

It remains to prove that the {/i*}^ are linearly independent. Assume that

(3.2)

Each h* is a p'-homogeneous polynomial of p'-degree n' — p\. But if p'j < p\ for all
j = 1,.. . , m and i = m + 1,... , m', it follows from (3.2) that

and thus

i=m+l

Since the {/i*}^Lm+i were constructed to be linearly independent, we have
am+1 = ••• = am> = 0 . F o r i = 1 , . . . , m ,

where h* is a polynomial of p-degree η — pi with leading p-homogeneous term hi.
Since the {/ΐί}^ are linearly independent, it follows that the {h*}'^L1 are also
linearly independent. Thus <2i = • · • = am = 0. This proves the proposition. D

In [7] we proved the following result.

Proposition 3.4. Let h be a p-homogeneous polynomial. Then Τ"(/ι) Φ Π if and
only if there exists a non-trivial p-homogeneous polynomial q satisfying

q(D)(h)k=0, A = 0,1,2, . . . .

We obtain as a consequence the following result.

Corollary 3.5. // h is a p-homogeneous polynomial, then 'P(h) φ Π implies that

In other words, the property of density is in this case equivalent to that of CP(/i)
containing all polynomials.

Proof. If h is a p-homogeneous polynomial and 7(h) φ Π, it follows from
Proposition 3.4 that

q(D)(h)k=0, fc = 0,1,2,...,
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for some non-trivial polynomial q. Note that q(D)Di(h)k = Diq(D)(h)k = 0 for all
j £ Zd

+ and k G Z+. Thus q(D) annihilates

7(h) = s p a n { D^hf : j e Z%, keZ+}

(see Lemma 2.3). Now q{D) is a partial differential operator with constant coeffi-
cients. Let q*{D) denote its adjoint. Choose any polynomial g such that q(D)g — 1.
Such a polynomial exists. Let φ € C£° be a function with support in a compact
set Κ such that fK φ Φ 0. If Τ(Η) is dense in C(K), there then exists a sequence
of polynomials pn € O /̂i) which uniformly approximates g on K. Thus

lim /" (q'{D)ip)pn = [ {q*{D)<p)g.

However,

(q*(D)<p)Pn = [ V{q{D)pn)=0,
JKIK

while

I {q*{D)<p)g= ί V>{q{D)g)= ί ψ φ Ο,
JK JK JK

a contradiction. D

The condition
q(D)(h)k=0, k = 0 , 1 , 2 , . . . ,

is difficult to verify or use. We will utilize one part of an equivalent form of this
condition. This equivalent form is to be found in [7]. The statement therein is
slightly more restrictive, but the proof suffices for the following.

Proposition 3.6. Let h be any polynomial and

We put τη = max{|j| : dj ^ 0 } . Then

q(D)(h)k=0, k = 0,1,2,...,

if and only if

X ] djVt(fyJ;·) = 0, i = l,...,m,

where y>i(/i;j;·) is a polynomial which depends on h, j and i (but is independent
of k and m),

and<pi{h;y,-) = 0 for i > | j | .

As a consequence we have the following result.
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Proposition 3.7. // h is a p-homogeneous polynomial and 7(h) φ Π, then there
exists a homogeneous and p-homogeneous polynomial q* for which

q*{hu---,hd) = 0 .

Proof. From Propositions 3.4 and 3.6 we have the existence of a polynomial

g(x) = Σ dJ x J

pj=i

such that
i ( h ; y , · ) = 0 , i = l,...,m, (3.3)

pj=i

where <p; and m are as defined in Proposition 3.6. For | j | < m we have
<Pm(/i;J;0 = 0, and for | j | - m we have <^m(/i;j;-) = (/ii)·71 •••(hd)

jd. P u t t i n g
i = m in (3.3), we obtain

pj=*

| j | = m

We define

q'(x) =
pj=t
|j|=m

Then q* is both p-homogeneous and homogeneous. D

We will use Proposition 3.7 and a particular consequence thereof. We recall the
following. Let χ = (χι,... , Xd) and

h(x) = J2 dj*3-
\JKn

For y = (j/i,... , yd+\) we define

to be the homogenization of the polynomial h.

Corollary 3.8. Assume that h is a p-homogeneous polynomial of p-degree η in M.d

(ρ φ ( 1 , . . . , 1)), CP(/i) separates points, and "P(h) φ Π. TTien h, the homogenization

of h, is such that J"( h) separates points, and there exists a homogeneous polynomial

q* for which

q*(h1,...,hd) = 0.
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Proof. As stated previously, 5)(/i) separates points if and only if the first partial
derivatives of h are linearly independent. We prove that the first partial derivatives
of h are linearly independent. Let

d+i

We must have α^+ι = 0. This follows from the fact that hd+i{xi, • • • ,Xd, 1) is a

p-homogeneous polynomial of p-degree n, while hi(xi,... , Xd, 1) = Κ(χχ,... , Xa)

is a p-homogeneous polynomial of p-degree η — pi < η for each ι = 1,... , d. Since

= 0, we see, putting Xd+ι = 1, that

Since the {hi}f=1 are linearly independent, we see that a\ = • • • — ad = 0.
Since h is a p-homogenous polynomial and J"(/i) φ Π, it follows from

Proposition 3.7 that there is a homogenoeus polynomial q* such that

q*(hi,...,hd) - 0.

Consider the polynomial q*( h\,... , hd). Since both q* and the hi,i = 1,... , d + 1,

are homogeneous polynomials, it follows that q*(hi,... , /id) is a homogeneous poly-

nomial in (χι,... ,Xd+i). If Xd+i = 1, then /ij = hi,i = 1,... ,d. Therefore,

q*(hi,... , /id) is a homogeneous polynomial which vanishes on the hyperplane

= 1. This implies that it vanishes identically. D

Theorem 3.9. If g is a polynomial in M3, then 'P(g) — Π if and only if
separates points.

Proof. The 'only if part of Theorem 3.9 is obvious. Therefore, it suffices to prove
that if CP(g) φ Π, then the partial derivatives gi,g2,93 are linearly dependent. By
Lemma 3.1 and Proposition 3.3 it suffices to prove Theorem 3.9 for p-homogeneous
polynomials. Assume that h is a p-homogeneous polynomial and 'P(h) φ Π.

The Hessian of a polynomial (or function) / on Rd is defined as the matrix

Let
J

H(f) = det

We claim that if q*{h\,... ,hd) = 0 for some polynomial h on Rd and for some
non-trivial polynomial q*, then H{h) vanishes identically. This can be proved
in a number of ways. For example, the Hessian of h is just the Jacobian of the
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functions hi,... ,hd. If the determinant of the Hessian does not vanish identically,
then it follows that the range of the map (hi,... , ha) :Md —ίΜ.ά contains an open
ball. However, since q*(hi,... , hd) — 0, it follows that the range of this map is a
subset of the zero set of q*, which cannot contain any open set. This contradiction
implies that the determinant of the Hessian of h vanishes identically.

Homogeneous polynomials for which the determinants of their Hessians vanish
identically were investigated by Hesse [5] and by Gordan and Noether [4].

Theorem 3.10 (Gordan and Noether). Let r be a homogeneous polynomial in Cd

such that the determinant of its Hessian vanishes identically. If d ^ 4, then the
first partial derivatives of r are linearly dependent.

First proof of Theorem 3.9. Assume that h is a homogeneous polynomial. By
Proposition 3.7 there exists a homogeneous polynomial q* such that
q*(hi,h2,h$) = 0. Thus H(h) = 0. An application of Theorem 3.10 implies that
hi,/i2,h3 are linearly dependent, which proves Theorem 3.9.

Suppose that h is a p-homogeneous polynomial, with ρ φ (1,1,1), that is, it is
not homogeneous. If 7(h) φ Π and 7(h) separates points, that is, hi,h2,h3 are
linearly independent, then by Corollary 3.8 the homogenization h of h is a homoge-
neous polynomial of four variables for which hi,h2,h3,Tn are linearly independent,
and

q*(hi,h2,h3) = 0

for some homogeneous polynomial q*. Thus H(h) = 0 and from Theorem 3.10 it
follows that hi,h,2,ii3,h4 are linearly dependent. This contradiction implies that
hi,h2,h3 are linearly dependent, proving Theorem 3.9. Π

The proof of the Gordan-Noether theorem is beautiful and uses mainly elemen-
tary algebra and algebraic geometry. But it is rather complicated. This is particu-
larly true in the case d = 4. We now outline a different proof of Theorem 3.9.

Second proof of Theorem 3.9. We first consider the case where h is a homogeneous
polynomial of degree η in I 3 . Let 5 be a surface in M3 defined by h(xi, £2,^3) =
c φ 0. We choose c for which 5 is not empty. By Euler's formula, Σ*_α xi^i = n ^ ·
Hence at every point of S some hi φ 0, and 5 is a smoooth, complete surface.
Consider a point s = (si,S2,S3) on S. Suppose that /i3(s) φ 0. By the implicit
function theorem there exists a unique smooth function ψ of two variables, defined
in a neighbourhood of (s i ,^), such that ¥>(si,s2) = s3 and h(xi,X2,ip(xi,X2)) = c.
We can compute the partial derivatives of ψ at χ in terms of the partial derivatives
of h. Using Euler's formula, we obtain

and find that

Λ 2(
dx\dx\ \dxidx2J
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is proportional to the determinant of the Hessian of h at x. The Gaussian cur-
vature of 5 at χ is proportional to Κ (see Spivak [8], p. 95). If H(h) vanishes
identically, then the Gaussian curvature of 5 vanishes identically. By Auslander
([1], Theorem VI.3.3) a connected, smooth, complete surface S" in R3 with zero
Gaussian curvature is a cylinder, that is, after a linear change of variables S' has
a parametrization (t,it) —• (xi(t),X2{t),u). Let 5' be a connected component
of S. By the above theorem we may assume that 5' has a local parametrization
(t,u) -»· (xi(£),X2(t),u) and therefore h(xi(t),x2(t),u) — c in some neighbourhood.
Taking the derivative with respect to u, we get h3(xi,x2,x3) = 0 on an open subset
of S. Thus h3 must be zero on an irreducible algebraic component of 5, and must
be divisible by its irreducible equation. But every factor of h3 is homogeneous and
every factor of (h — c) has a constant term. It follows that h3 = 0. In particular, the
partial derivatives of h are linearly dependent. (This proof, although quite natural,
is not very satisfactory since it uses analytic methods to prove an algebraic fact
about polynomials. The proof of the Gordan-Noether theorem in the case d = 3 is
long, but not difficult.)

Let us now turn to the case where h is a p-homogeneous polynomial of p-degree
η in E3, with ρ = (ρι,Ρ2,Ρ3) Φ (1,1,1). We shall assume that p\ ^ p2 ^ p3,
(pi < p3)- Suppose that J"(/i) φ Π. By Proposition 3.7 there exists a homogeneous
and p-homogeneous polynomial

β» =

pj=<

such that q*(hi,h2,h3) = 0. The two equations p\j\ + p2j2 + p3j3 = t, j \ + j 2 +
j 3 = rn have a solution depending on one parameter s. If αϊ denotes the smallest
power of X\ that appears in q*, then for any j = (ji,j2,j3) for which dj φ 0 we have
ji = αϊ +s{p3 - p 2 ) , J2 = O2 +s(pi - p 3 ) , J3 = a3 + s(P2 ~Pi), where οι,ο 2,α 3 are
non-negative integers, and s ^ 0 is a rational number. If d = gcd{p3 ~ p2,P2 - Pi}
and if p 3 - p2 = dk, p2 — p\ = d/, then p3 — pi = d(/c + /), and

y

<7»=ua

i = 0

where a = (01,02,03). The polynomial Y^r

i=QCiZl splits into linear factors. There-
fore

r
(ukul

3 - aiU

k

2

+l).
t = l

If q*(hi,h2,h3) = 0 we have either hi = 0 for some i (in which case we have
finished) or hkh3 = ahk+l for some α φ Ο (α is real since all the hi are real). If
P! = p2 or P2 = p3, then I = 0 or k = 0, respectively. In either case it follows from
the previous equation that the hi are linearly dependent. We therefore assume that

Pi < P2 < P3-

Let D = gcd{h1,h2,h3}, /n = AD, h2 = BD, and h3 = CD. Then AkCl =

aBk+l and gcd{A,C} = 1. For any polynomial / we have the set /; = ——.
CJXi
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d2f
We put fij = ——-—. Let deg; / denote the degree of / as a polynomial in χι,

C/XiC/Xj
that is, the largest power of Zj. If ft φ 0, we have deg, fa = deg ;/ - 1. For
any irreducible polynomial P, let e(P, f) denote the exponent of Ρ in /, that is,
e{P,f) = max{i : P^f}. Now,

a) e(P,0) = oo,
b) if Pi φ 0, and e(P, /) > 0, then e(P, /*) = e(P, /) - 1,
c) i f P ^ O . t h e n e i P . / O ^ e C P , / ) .

Let e(P,A) > 0 and assume that Pi φ 0. We put e{P,h\) = s > 0. Since
h\hl

z = ah2

+l, we deduce that e(P,h2) - t > 0. From (b) and (c) we deduce
that e(P,h12) ^ s - 1 and e(P,/i2i) = ί - 1. Hence i ^ s. Therefore e{P,B) ^
β(Ρ,Λ) > 0. Since gcd{j4,C} = 1, we have e(P,C) = 0. These facts contradict
AkCl = a B t + l . Thus de g l A = 0.

If degj C φ 0, then degj /i3i = degx h3-l = degj C+deg! £> —1, while degx h\3 ^
degx hi = degx Z?. Thus degj C ^ 1. If deg! C = 1, then from the fact that
degx A = 0 and A*C' = ai?*"1"' it follows that 0 < deg! Β < 1, a contradiction.
Thus degx C = 0 and degj Β = 0.

In the same way we can prove that ^4,i? and C are independent of x3. The
polynomials A, B and C, as factors of p-homogeneous polynomials, are themselves
p-homogeneous. Thus A, B and C must each be a power of x2. Let A, I? and C be
powers of x2 of degree nii,m2 and m3, respectively. Since /ι is a p-homogeneous
polynomial of degree n, each of the polynomials hi is a p-homogeneous polynomial
of degree η — pi. Let m denote the p-degree of D. Thus η — ρχ = τη\ρ2 + τη,
η — ρ2 = τη2ρ2 + τη and η — ρ$ = TO3P2 + τι. But this implies that p\ (and p3)
divide p2. Since, by assumption, 0 < pi < p2, we have arrived at a contradiction.
This implies that the hi are linearly dependent, and proves Theorem 3.9. D

Another application of the previous results is the following.

Proposition 3.11. Let g be a polynomial of total degree 2. If'J'(g) separates points,
then 9(g) = Π.

Proof. We apply Lemma 3.1 and Proposition 3.3 to obtain h. If h is homogeneous,
we write

The first partial derivatives of h are linearly indepedent if and only if the matrix
{aij}i,j=i *s non-singular. The determinant of the Hessian of h, H(h), is simply
the determinant of this same matrix. This proves the result.

Assume that h is p-homogeneous, ρ φ (1,1,... , 1). If the first partial derivatives
of h are linearly independent, then, after a linear change of variables, h is of the
form

d-\

^-χ2

ί +bxd,
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where b φ 0, and the matrix {dij}^^ is non-singular. A simple calculation shows

that H(h), where h is the homogenization of h, is the determinant of the matrix
of the a,ij, raised to the power — b2. The result follows by using Corollary 3.8. D

§4. The space ΊΊ for d ^ 4 and some open problems

In [7] we stumbled across an example of a polynomial h* in 1R4 that is
p-homogeneous, and for which 7(h*) φ Π and "P(h*) separates points. That is,
Theorem 3.9 is not valid for d ^ 4. The example given was

h*(x1,x2,x3,xi) = xix\ + X2+ 0:3X4. (4.1)

We can check that
q(D)(h')k=0, k = 0 , 1 , 2 , . . . ,

for q(ui, U2, U3, ui) = uiu2 — i t | .
Gordan and Noether showed in [4] that there is a whole class of homogeneous

polynomials in C 5 whose first partial derivatives are linearly independent, but for
which the determinant of their Hessian vanishes identically. This class (up to a
linear change of variables) is a subset of the class of polynomials of the form

h(xi,X2,X3,X4,X5) = /(Z1 Pi (3:4,3:5) +0^2(3:4,2:5) +X3P3(X4,X5),X4,X5), (4-2)

where each P, is a homogeneous polynomial of degree m,i = 1,2,3, and / is an
(ra+1,1, l)-homogeneous polynomial (implying that h is homogeneous). It is imme-
diate that H(h) = 0 for each h of the form (4.2), while some minor assumptions
imply that the {/ij}f=1 are linearly independent.

We proved (see the beginning of the proof of Theorem 3.9) that T'(/i) φ Π, for
h homogeneous, implies that H(h) — 0. We do not know if the converse holds.
However, if h is of the form (4.2), then this is indeed the case. Since Pi, P 2 and P 3

are three polynomials in two variables, they are algebraically dependent. That is.

for some choice of non-trivial {ciijk}- Since Pi, P 2 , P3 are homogeneous polynomials
of the same degree, we can assume i + j + k = I in the above formula. We put

q(ui,u2,u3,u4,u5) = ^2 aiifc">2u3- ( 4 · 3 )
i+j+k=l

Then it is readily verified that

q(D)(h)k=0, fc = 0,1,2, . . . .

Thus T(h) φ Π for every h of the form (4.2).
For an h of the form (4.2) we put

v(xi, 2:2,3:3, x4) — h{xi,x2,x3,X4,1).
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Then
q{D)(v)k=O, k = 0 , 1 , 2 , . . . ,

where q is as in (4.3). Thus ?{v) φ Π. The polynomial ν may or may not
be p-homogeneous. The polynomial h* of (4.1) should be considered from this
perspective.

Based on the above results and those of §3, we should in our estimation be asking
the following questions.

Question 1. What is the general form of the polynomial g for which 7(g) φ Π?

Question 2. Is it true that if CP((?) φ Π, then there exists a polynomial q such that
q(D)(g)k = 0 for all kl

Question 3. Is Τ(/ι) φ Π equivalent to H(h) = 0 for every homogeneous poly-
nomial hi

Question 4. Is it true that 7{g) φ Π implies 7(g) φ C{Rd)?

We know that the answers to Questions 2 and 4 are in the affirmative if g is a
p-homogeneous polynomial (and by the proof of Corollary 3.5 a positive response to
Question 2 implies a positive response to Question 4). Furthermore, the answer to
Question 3 is yes if d ̂  4, since H(h) = 0 in this case implies the linear dependence
of the {hi}. Finally we know a complete solution to Question 1 in the case d ̂  3.

Gordon and Noether also claim to have determined all homogeneous polynomials
in C5 for which the determinants of their Hessians vanish identically. They claim
that all such polynomials are of the form (4.2). Unfortunately we were not convinced
by part of their argument, although we have found no reason to doubt the veracity
of their result. We will thus record their statement as a 'claim', caveat emptor.

Claim 4.1 (Gordan and Noether [4]). Let h be a homogeneous polynomial in C5

such that the determinant of its Hessian vanishes identically and the {hi}\=l are
linearly independent. Then, after a linear change of variables, h has the form

h{xi,X2,X3,Xi,X5) = f(xiPl (24,2:5) + X2P2 {Xi, X5) +X3P3(Xi,X5),X4,Xs),

where each Pi is a homogeneous polynomial of degree m,i — 1,2,3, and f is an

(m + 1,1,1)-homogeneous polynomial.

If we accept the statement of Claim 4.1 for d = 5, then we get an affirmative
answer to Question 3 for d = 5. Assuming Claim 4.1 we can give a complete solution
to Question 1 for d — 4 and g a p-homogeneous polynomial.

Claim 4.2. Let h(xi,x2,X3,xn) be a p-homogeneous polynomial (ρ φ (1,1,1,1))
such that y(h) separates points and 'P(h) φ Π. Then, after a renumbering of the
variables,

h(xi,X2,X3,Xi) = f{x\ + c2x2{x4 + ax3)
a + c3x3(x4 + ax3)

0,x4 + ax3), (4.4)

where 0 < a < β, c-2 φ 0, C3 φ 0, and f is a (pi,p4)-homogeneous polynomial,
Pi = P2 + api = P3 + ppi, where p3 = p4 if α φ 0.
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Proof. Let h be the homogenization of h. By Corollary 3.8 J"( h) separates points
and there exists a homogeneous polynomial q*{u\,U2, u3,Ui) such that
q*( hi, h-2, h3, hi) — 0. We may assume that q* is a polynomial of minimal degree
with this property. Then Vi = q*( hi, h2, /13,/14) φ 0 or q* = 0. Let ρ =
gcd(wi,U2,f3,Ui) and let u» = pi i 1 . Then if = (Η1, Η2, Η3, HA) defines a homo-
geneous map from C 5 to C 4 . It is proved in [4] that d i m l m u ^ 3 (projective
dimension ^ 2).

It is claimed that \irP{h) separates points, then d i m l m i i ^ 2, but this part of
the argument is not clear to us. It is further proved that if d i m l m i i ^ 2, then
Ηλ,Η2,Η3,ΗΑ are linearly dependent, say H4 = mH1 + a2H

2 + a3H
3. Further

argument in [4] shows that then

where

y — α,χΧι + α-ιχ-ι + 030:3 — X4.

Since 7(h) separates points, Ρ\,Ρ2,Ρ3 are linearly independent and in particular
at least one of them must have positive degree. Therefore the homogeneous part
of h of maximal degree is divisible by y. From this it follows that y itself must be
p-homogeneous. A short argument then implies that xiPi(y) +0^2(2/) + x-iPz{y)
is also p-homogeneous. Hence each Pi must be a power of y and thus

h{xi,x2,X3,Xi) = f{cixiym + c2x2y
n2 +c3x3y

n3,y).

Since the Pi are linearly independent, n\,n2,n3 must be distinct. Thus the
'weights' Pi,P2,P3 are also all different. Since y = α,χΧι + a2x2 + o,3x3 — £4 is
p-homogeneous, it now follows that, up to a renumbering, αϊ = a2 = 0. Moreo\rer,
if p3 φ pi, then also a3 = 0. In this case y = —2:4. If p3 = p\, then it follows that
n3 > max{ni,n2}.

We now factor out ayni, for rij = min{ni,n 2 ,n 3 }, from the first argument of /.
Up to a renumbering, h can now be written in the form (4.4). D

Remark 4.3. If h is a homogeneous polynomial in <C4, then by Theorem 3.10 we
have y{h) = Π if and only if CP(/z.) separates points.

In a rather weak sense the answer to Question 2 is in the positive, and we
can thus solve Question 1. However this result is far from satisfactory. We mean
'weak sense' since q need not be a polynomial.

P r o p o s i t i o n 4.4. Let g be a polynomial in Cd. Then y(g) / Π ι / and only if there
exists a power series

such that

q(D)(g)k=Q, k = 0,1,2,.... (4.5)
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Remark 4.5. Note that (4.5) is well defined, since

D*{g)k = o

for all but a finite number of j e Z^..

Proof. If (4.5) holds, then 7(g) φ Π whenever q(D)f = 0 for all / € ?{g), while,
for example, q{D)q' φ 0, where q' is the lowest order homogeneous term of q.

Assume that

T(g) = span { D*{g)k : j e Z* , A 6 Z + } φ Π.

Then CP(<?) Ππ^ ^ π*; for some fc. Thus there exist dj, | j | ^ k, not all zero, such that

for all / G V(g) Π nk of the form

j

We now show how to construct dj, | j | = k + 1, such that

for all / € ^ig) Π π^+ι, written in the form (4.6), without altering the previously
defined dj, (|j| ^ k). We then continue this process and define

?(u) = Σ diui-

Then q(D)f = 0 for all / € I^g), which proves the proposition.
The set <J>(g)Cink+i is finite-dimensional. Let / i , . . . , fs be a basis for

Then

where the qi are homogeneous of degree k + 1, and the r̂  are polynomials of
degree ^ k. Thus from (4.6)

(i) x J /• \ V ^ (») x J

Consider the equations

Σ d J c J 0 = - Σ dJ cJ° = e - * = !.·•·.«·
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Note that the right-hand side is well defined. We need to prove that the set of
equations

has a solution. Assume not. This implies the existence of yt, i = 1 , . . . , s, such that

Y^Vicf=0 for all | j | = k + 1

and

However, Σ1~ι yicj ~ 0 f° r all | j | = & + 1 is equivalent to

Then

Now

(
t = l I J I ^ * V t = l

By the definition of the dj, | j | ^ k,

However,

which is a contradiction. D

B,emark 4.6. If CP(g) / C(Kd), then there is a much simpler method of proving the
proposition. Namely, let F be a non-trivial linear functional which annihilates CP(g);
then

d, = F(XJ/j!).

Remark 4.7. If g is a homogeneous or quasi-homogeneous polynomial, and
T'(g) φ Π, then we can choose the dj so that all but a finite number of them
are zero. This is what was done in Proposition 3.4, and has many advantages.
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§5. 3>2 and 3>3

We refer the reader to §2 for the definitions of 3>2 and 3>3. The following two
propositions characterize exactly when IP 2 and CP3 are equal to Π.

Proposition 5.1. 9 2 = Π if and only if

Proof. If ——(0) = 0 for some j € { 1 , . . . , d}, then it is easily seen that Xj is not

in 7>2 • We therefore assume that

Thus

g(x) =

where α» 7ε 0, i = 1,... , d.

Assume that ao = 0. We claim that in this case

x m G s p a n { ( 5 ( a 1 - , . . . , i l d - ) ) | m | : a G l R d } .

The lowest order homogeneous term of g>m> is ( 5Z i = 1 ctiXi) • Now

d \ |m|
α^) = Σ &

7 |j| = |m|

and /3j / 0 for all such j . Applying Lemma 2.4 we obtain our result.

If αο Φ 0, we put

p = g - a o { = g - i

Then

From our previous result, each polynomial may be obtained as a linear combi-
nation of the (p(a\·,... ,a,d-))k. Arguing in the reverse direction, we prove the
proposition. D

An immediate consequence of Proposition 5.1 is the following proposition.
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Proposition 5.2. !Ρ3 = Π if and only if

Proof. If —— = 0 for some j e {1,. . . , d}, then g does not depend on Xj and can
j

neither contain all polynomials nor be dense in C(E.d).
Assume that

Thus there exists a point b* = (6J,... , b*d) such that

Now,

73 = span { {g(ai{- - %),... ,ad(- - ^ ) ) ) f c : a e Kd } C T 3 .

From Proposition 5.1 we deduce that ? 3 = Π. Thus V3 = Π. D

As noted, the condition given in Proposition 5.2 is both necessary and sufficient
for J^ = C(IRd). This is not true of the condition given in Proposition 5.1. For
example, when d = 1 it is known that span {xmi }f2.0 (distinct increasing m; G Z+)
is dense in C[a, b] for every finite interval [a, b] if and only if m0 = 0, and

m, odd m ' e v e n

We recall that we always have the constant function in ?2 (since we permit taking
the Oth power). It is an elementary exercise to prove, based on the above fact and
Lemma 2.4, that for every polynomial g that is not even we have

% = C(R).

We do not know how to characterize such g when d ^ 2.
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