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1. INTR~DLJCTI~N 

If L is a linear lattice and E is a linear subspace of L, it is natural to ask 
whether there is a positive projection of L onto E (a projection P is positive, 
or monotone, if x > 0 implies Px > 0). This is always the case, for example, 
when L is Lp(u) and E is a closed linear sublattice [4, Chap. 31. However, 
much less is known about the situation when L is the function space C(X) 
(X compact, Hausdorff) with supremum norm, though for certain subspaces 
Korovkin’s theorem implies that there is no positive projection. 

In Section 2, we give necessary and sufftcient conditions for there to be a 
positive projection of a normed linear lattice L onto an n-dimensional 
subspace L,. As a corollary, we see that if M is a closed sublattice of a 
Banach lattice L and there is a positive projection of M onto L,, then there 
is a positive projection of L onto L,. In particular, every finite-dimensional 
sublattice of L admits a positive projection. When L is C(X), our charac- 
terization reduces to the following: L, admits a positive projection if and 
only if there exist positive functions b, ,..., b, in L, and points x, ,..., x, of X 
such that b,(x,) = 6,. 

In Section 3, we study the companion problem for finite-codimensional 
subspaces of C(X). We prove, in fact, that if X has no isolated points, then 
such subspaces never admit positive projections. 
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In Section 4, we are concerned with projections of C(XX Y) onto certain 
natural subspaces. Here we consider minimal as well as positive projections. 
More precisely, let M be the subspace consisting of all functions of the form 
4(x, y) =f(x) + g(y). Also, for fixed x* E X, Y* E Y, let C,(X x Y) be the 
set of functions in C(X x Y) that vanish at (x*,Y*), and let 
M,, = M n C,(X x Y). Then there exists no positive projection of C(X X Y) 
onto M, and exactly one positive projection P* of C,(X X Y) onto M,. 
Furthermore, if X and Y are infinite, then for any projection P of C(X X Y) 
onto M (IPJI 2 3, while for any projection P of C,(X x Y) onto M,,, 
JIPJI > J/P* II= 2. These results easily generalize to the product of k spaces 
X’. Also, the method of proof establishes exact estimates (in the first case) 
for the norms when some or all of the spaces Xi are finite. 

2. FINITE-DIMENSIONAL SUBSPACES 

Our first result applies to general normed linear lattices. A linear lattice 
(or Riesz space) is a linear space (over the real field) with a lattice ordering 
> such that 

x20, Y>O implies x+y>O, 

x20, IElT?+ implies J..x > 0. 

We use the usual notation: sup{x,y] =x VY, inf{x,y}=xAy, 
Ix I = x V (-x). A normed linear lattice is a normed linear space equipped 
with a lattice ordering such that (xl Q I y ( implies l/xl/ < I( y 11. If the space is 
also complete with respect to the norm, it is called a Banach lattice. 

Let L, denote an n-dimensional linear subspace of a normed linear lattice 
L. Suppose that there is a positive projection P of L onto L,. It is then 
elementary (and well-known) that the ordering of L, is a lattice ordering: in 
fact, we have 

SUPL”(X, Y) = P(x v Y) 

for x, y E L,. (This does not mean that L, is a sublattice of L since x V y 
need not belong to L,). The positive cone in L, is closed, hence 
Archimedean. By a standard result on finite-dimensional linear lattices [4, 
p. 701, L, has a basis (b, ,..., 6,} such that C; I,b, > 0 if and only if Ai > 0 
for all i. We deduce the following characterization of finite-dimensional 
subspaces that admit positive projections: 

THEOREM 1. Let L, be an n-dimensional subspace of a normed linear 
lattice L. Then the following statements are equivalent: 
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(i) there is a positive projection of L onto L,, 

(ii) there exist positive elements bi of L, and positive linear 
functionals h on L (i = l,..., n) such that f;:(bj) = 6,. 

Proof. If (ii) holds, then a positive projection P is simply given by 
Px = C;h(x) bi. 

Conversely, suppose that there is a positive projection P. Then L, has a 
basis {b, ,..., b,} as above. For x = 2: A,b, E L,, let g,(x) = li. The gi are 
positive linear functionals defined on L,, and gi(bj) = 6,. The required 
functionals on L are given by & = gi o P. m 

COROLLARY. Let L be a Banach lattice, M a closed linear sublattice. Let 
L, be an n-dimensional subspace of M. If there is a positive projection of M 
onto L,, then there is a positive projection of L onto L,. 

Proof Theorem 1 gives us positive linear functionals fi defined on M. It 
is well-known that every positive functional on a Banach lattice is 
continuous ([4, p. 841; if there were positive elements xk with ]]xk]] < 2-k and 
f (xk) > k, then no definition would be possible for f (C x,J). Further, every 
continuous positive functional defined on M has a positive extension defined 
on L [4, p. 861. I 

In particular, every finite-dimensional linear sublattice admits a positive 
projection. As we shall see, this is far from being the case for infinite- 
dimensional sublattices of C(X), though it is true in Lp(u), 1 <p < CO [4, 
p. 2121. 

Remark. It is sufficient in Theorem 1 if L, instead of having a lattice 
ordering, has an Archimedean ordering satisfying the Riesz decomposition 
property, that is, if x, , x, 2 0 and 0 Q y < x, + xz, then y = y, + y,, where 
0 ,< yi ,< xi, i = I, 2. Finite-dimensional spaces with this property are order- 
isomorphic to IF?” with the usual order. 

The next result shows that in the case L = C(X), we can take the 
functionals in Theorem 1 to be point-evaluations. 

THEOREM 2. Let X be a compact, Hausdorflspace and let L, be an n- 
dimensional subspace of C(X). Then the following statements are equivalent: 

(i) there is a positive projection of C(X) (or of a closed linear 
sublattice of C(X)) onto L,, 

(ii) there exist non-negative fuctions b, ,..., b, in L, and points x1 ,..., x, 
in X such that bi(xj) = 6,. 

Proof. Let the functionalsfi be as in Theorem 1, and let S(h) denote the 
support ofJ. For j > 2, we have f,(bj) = 0, hence bj(x) = 0 for all x in S(f,). 
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Since f,(b,) = 1, there exists xi in S(fi) with b,(x,) > 0. Replace b, by a 
positive scalar multiple to obtain b,(x,) = 1. The points x2,..., x, are found 
similarly. I 

Remarks. (1) In the same way, one sees that if for a certain set of non- 
negative functions b ,,..., b, in L,, there exist unique points xi such that 
bi(xi) > 0 and bi(xj) = 0 for j # i, then there is a unique positive projection 
onto L,. 

(2) For any positive linear mapping T of C(X) into itself, we have 
II TII = II Tell2 w h ere e is the function with constant value 1. Hence if P is a 
positive projection onto a subspace containing e, then IJPIJ = 1 (and if e is in 
the subspace, IJPI( = 1 implies P is positive). For the positive projection 
Pu = C: u(xi) bi given by Theorem 2, we have llPl[ = 1) b, + a+. + bnll. If the 
subspace does not contain e, this may well be greater than 1, even when a 
non-positive projection of norm 1 exists, To obtain a simple example, let X 
be a 3-point set, so that C(X) is IR3. Let L, be the subspace consisting of 
elements (x, y, z) satisfying x =y + 22. Then there is an unique positive 
projection given by P(x, y, z) = ( y + 22, y, z). (This corresponds to 
b, = (1, LO), b, = (2,0, I).) Clearly, lIPI/ = 3. However, there is a non- 
positive projection with norm 1, namely, Q(x,v, z) = (x, y, (x -y)/2). 

On the other hand, if the subspace does contain e, then the problem of 
finding the minimal norm projection is equivalent, in a certain sense, to that 
of finding the “least negative” projection. By this we mean the following. It 
is easy to show that forf> 0, 

and equality is attained when we take the intimum over all f > 0. 
It was shown by Morris and Cheney [2, Theorem 91 that if 12 > 3 and L, 

is an n-dimensional Chebyshev subspace of C[a, b] containing the constant 
functions, then every projection onto L, has norm greater than 1. Conse- 
quently there is no positive projection onto L, . Using our Theorem 2, we can 
prove the following stronger statement. 

COROLLARY. Let L, be an n-dimensional subspace of C[a, b]. Assume 
that L, contains an m-dimensional Chebysh’ev subspace X,,,, where m > 3. 
Then there is no positive projection onto L,. 

ProoJ Since X,,, is a Chebyshev subspace, for each x,, in (a, b) there 
exists an f0 in X,,, such that f. > 0 on [a, b] and f,(x) = 0 only for x=x,. 

Assume that there is a positive projection of C[a, b] onto L,. Let b,,..., b, 
and x, ,..., x, be as in the statement of Theorem 2. Choose x, in 
(d)\{x, ,..., xn}, and let f. be as above. Express f. in the form C: libi. 
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Since &(x,) > 0, we have Ai > 0 for i = l,..., n. However, fO(xO) = 0, so 
b,(x,) = 0 for each i. This holds for all x,, as above, which implies that each 
bi is identically zero, a contradiction. a 

Actually, an even stronger statement is true. We say that a subspace E of 
C(X) has the “Korovkin property” if the identity is the only positive 
operator of C(X) into itself that agrees with the identity on E. (This differs 
slightly from the usual definition, which refers to a sequence of positive 
operators.) The Korovkin property implies, of course, that there is no 
positive projection onto E. 

In the situation of the above corollary, X, (and hence L,) has the 
Korovkin property. For f in C[a, b] and each x, set 

f(x) = inf{ g(x): g E X,, g >.$I, 
j-b> = sup{ g(x): g E X,9 g <f\. 

It is easily proved that if X, is an m-dimensional Chebyshev subspace, with 
m > 3, then fix) =fcu) =f(x) f or each x in (a, b). Let T be any positive 
operator of C[a, b] -into itself which is the identity on X,,,, and take any f in 
C[u, b]. Then it follows from the above equalities that (Tf)(x) =f(x) for all 
x in (a, b), and hence that Tf = f (cf. Berens and Lorentz [ 1 ] and SaSkin 
PI). 

While the Korovkin property implies the non-existence of a positive 
projection, the converse is certainly not true. For example, if E has the 
Korovkin property, then so has any subspace containing E. No such 
inclusion property holds for the existence or non-existence of positive 
projections. Two specific examples will be given after Proposition 3. 

When L, is considered as a subspace of LP[a, b], a statement similar to 
the above corollary holds even for m = 2. In fact, we have as a corollary of 
Theorem 1: 

COROLLARY. Let L, be an n-dimensional subspace of C[a, b]. Assume 
that L, contains an m-dimensional Chebyshev subspace X,, where m > 2. 
Then there is no positive projection of LP[a, b] onto L, (where 1 <p < 00). 

Proof. By the previous corollary, we need only consider the case m = 2. 
Since X, is a Chebyshev subspace, there exist g in X, such that g(a) = 0 and 
g(x) > 0 for a < x < b, and h in X, such that h(a) > 0. Let b, ,..., b, and 
f, ,...,f,, be as in the statement of Theorem 1. Then g can be expressed as 
Cypi b,, with each per, > 0. Since g - eh takes negative values for each E > 0, 
we must have p, = 0 for some k. It follows that f,.(g) = 0. But this is 
impossible, since fk is a non-zero, non-negative element of LP’[a, b] and g is 
a non-negative, continuous function that vanishes only at a. 1 
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Let rr,, denote the space of algebraic polynomials of degree <n. It follows 
from the elementary form of Korovkin’s theorem (or from the above) that 
there is no positive projection of C[a, 61 onto K,, for n > 2. We give here a 
simple direct proof of a slightly stronger statement, together with a variant 
which is not obtainable from Korovkin-type theorems. Let C,[a, b] denote 
the set of functions in C[a, b] that are 0 at a, and let XII = rr, n C,[a, b]. 

PROPOSITION 3. (i) Zf n > 2, then there is no positive projection of 7c, + , 
onto 7cL,. 

(ii) If n > 3, then there is no positive projection of PI:+ 1 onto XII. 

ProoJ It is sufftcient to consider [a, b] = [0, 11. Write rk(x) = xk. For 
both (i) and (ii), suppose that there is a positive projection P, and let 
P(r,+,)=u. Now O<rn+l, n, < r so 0 < u < r,. It is elementary that this, 
together with the fact that ZJ is in rr,, implies that ZJ = ar,, for some a in 
[0, 11. Now ~“+~>nx~-(n- 1)x for x in [O, 11. Hence 
u(x) > .x2 - (n - 1) x. In particular, u(1) > 1, so a > 1. 

For (i), let 

Then h, is in rr2, and for a suitable k we have h, 2 r,,+ 1 (h, is a “narrow” 
quadratic having twice the value of rn+ i at 4). Hence h, 2 u. Evaluation at $ 
gives a < f , a contradiction. 

For (ii), modify this slightly, as follows. Let 

Choose k such that x” < gk(x), so that x”+ ’ Q xgk(x). The function xgk(x) is 
in 71!, so we obtain ox” < xgk(x). This gives GL < f , as before. m 

Remarks. (1) There is a positive projection of C[O, l] onto rri, and in 
fact onto any two-dimensional subspace containing the constant functions. 
For if f is a non-constant function, then we can define fi = af+ /3 such that 
0 <f, < 1 and f, attains the values 0, 1. Then f, and 1 -f, satisfy the 
conditions of Theorem 2. The positive projection onto a, is unique. 

(2) The subspace rr: does not have the Korovkin property in CIO, 11. 
This is shown by the mapping (Tf)(x) =f (x) +f (0). 

An additional example, containing the constant functions, is as follows. 
Let L, denote the subspace of C[-I, I] spanned by the functions 1, x2, x4. 
The mapping (Tf )(x) = )f (x) + ff (-x) shows that L, does not have the 
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Korovkin property. By an application of Theorem 2 (and zero counting), or 
by the method of Proposition 3, it is easily seen that there is no positive 
projection onto L 3. 

EXAMPLE. The subspace n;, consisting of polynomials of the form 
ax + bx’, displays several interesting features. Note first that ax + bx’ > 0 
on [0, 1 ] if and only if a, a + b > 0. Consequently, $ has a basis (b, , b2} 
such that A., b, + I,b, > 0 if and only if A, > 0 and A2 > 0: let b,(x) =x - x2, 
b*(x) =x2. We prove that there is no positive projection of CIO, l] onto n;, 
showing that the existence of such a basis is not in itself sufficient. Let g,, g, 
be the positive functionals on z!: such that g,(bj) = 6,. We show that there is 
no positive extension of g, defined on C[O, l] (or even on n,); this implies 
the non-existence of a positive projection, Suppose, in fact, that f, were such 
an extension, and let a > 0. Since 

O<(x-a)*=x*-2ax+a*, 

we have 

0 < -2a + a2fi(e), 

sof,(e) > 2/a for all a > 0, which is impossible. 
Since C,[O, l] is a sublattice of C[O, 11, it follows from the corollary of 

Theorem 1 that there is no positive projection of C,[O, 1 ] onto ni. However, 
it is not hard to show that for each it > 3, there is a unique positive 
projection P,of zi onto 7~:: if f(x) = a,x + .-a + 11,x”, then (P,f)(x) = 
a,x + (a, + *** + a,) x2. By considering f,(x) = 1 - (1 - x)“, one sees that 
lIPfIll +to asn-tco. 

3. FINITE-C• DIMENSIONAL SUBSPACES OF C(X) 

In this section, we prove: 

THEOREM 4. Let X be a compact, Hausdorfl space with no isolated 
points. Then there is no positive projection of C(X) onto any proper, finite- 
codimensional subspace. 

The proof will be achieved by a series of lemmas. Suppose that P is such a 
projection, and let E be its (finite-dimensional) kernel. We shall work with E 
rather the range of P. Note first that if f E E and 0 <g <f, then Pg = 0, so 
g E E (that is, E is “order-convex”). We deduce: 

LEMMA 1. E contains no non-zero, non-negative function. 
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Proof: Suppose that E contains a non-zero, non-negative functionJ We 
may assume that f > 1 on some open set G. Since X has no isolated points, 
G is infinite. Let (x,) be a sequence of distinct points in G. For each n, there 
is a functionf, in C(X) such that 0 <f, Q l,f,(x,J = l,f,(x,) = 0 for i < n 
and&(x) = 0 for all x in X\G. Then 0 <f, <f, so f, E E, and it is clear that 
the sequence df,) is linearly independent, contradicting the fact that E is 
finite-dimensional. 1 

LEMMA 2. Let E, = {f E E: 11 f II= l}, and for f in C(X), let 
i(f) = inf{ f (x): x E X}. Then there exists c > 0 such that i(f) < -c for all 
fEE,- 

Proof This is clear, since i is continuous, E, is compact and, by 
Lemma 1, i(f) < 0 for f E E,. I 

LEMMA 3. There exist x, ,..., xk in X such that iff E E and f (xi) > 0 for 
each i, then f = 0. 

Proof. Let c be as in Lemma 2. Since E, is a compact subset of C(X), it 
is equicontinuous. Therefore for each x in X, there is a neighbourhood U(x) 
such that if y E U(x), then If(y) -f(x)/ < c/2 for all f in E, . The space X 
can be covered by a finite choice of such neighbourhoods, say 
U(x,>,..., V(x,). If f is in E,, then f (x) < -c for some x, so f (xi) < -c/2 for 
some i. I 

LEMMA 4. Write Q = Z - P. If f is in C(X) and f (xi) = 0 for all i, then 
Qf= 0. 

ProoJ: It is sufficient to prove this for non-negative f (then consider f’ 
and f -). Suppose that f > 0 and f (xi) = 0 for each i. Then Pf =f - Qf>, 0, 
so (Q/)(x,) < 0 for all i. Since u is in E, Lemma 3 gives u= 0. 1 

Proof of Theorem 4. Choose some f > 0 with u# 0. By Lemma 1, u 
has both positive and negative values. Hence (u)(y) > 0 for some y 
different from x1 ,..., xk. Let h be a non-negative function taking the value 1 
at each xi and 0 at y. Let g =j7z. Then g(x,) =f (xi) for all i, so by Lemma 4, 
Qg = @ In particular, (Qg)(y) > 0. But g(y) = 0, so (Pg)(y) < 0. This 
contradicts the positivity of P since g > 0. 1 

Remarks. (I) Let A be a closed, proper subset of X and let C(X,A) 
denote the set of functions in C(X) that vanish on A. The same reasoning 
shows that there is no positive projection of C(X, A) onto any proper, finite- 
codimensional subspace of itself. It is well-known that every closed, order- 
convex linear sublattice (i.e., closed lattice ideal) of C(X) is of the form 
CW, A 1. 
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(2) Let C(X, x0) denote the set of functions in C(X) that vanish at x0. 
If x,, is not an isolated point (whether or not other isolated points exist), then 
there is no positive projection of C(X) onto C(X, x,,). This follows easily 
from the fact that any projection onto C(X, x,,) has the form P’=f--f(x,,) g, 
where g is a function with g(xJ = 1. 

4. CERTAIN SUBSPACES OF C(Xx Y) 

We start with an elementary result. 

PROPOSITION 5. Let X be a compact, Hausdorfl space and Y any 
topological space. Let L, be an n-dimensional subspace of C(X) spanned by 
f, ,..., f,. Let B’ (i = l,..., n) be subspaces of C(Y), each containing the 
constant functions. Let A, be the set of functions of the form C:,f;:(x) gi(y), 
where gi E B’ for each i. If there is no positive projection of C(X) onto L,, 
then there is no positive projection of C(X x Y) onto A,, . 

Proof. Choose any y * E Y, and let (Q+)(x) = $(x, y *) for d in C(X x Y). 
If P were a positive projection of C(X X r) onto A,, then QP Icfx) would be 
a positive projection of C(X) onto L,. 4 

A natural application of this is the extension of Proposition 3 to 
polynomials in two or more variables. For x, y E I = [0, 11, set 

iii= xaijxiy-j: i+jgn , 
I 1 

&I = 
I 
2 UijX’J+: i < n, j < m 

I 
. 

Then for n > 2, there is no positive projection of C(Z*) onto $5, or xi,,,. (In 
fact, examination of the proofs of Propositions 3 and 5 shows easily that 
there is no positive projection of f:+ i onto E:, or of zi+ l,m onto zf,,.) 
There is a unique positive projection of C(1*) onto zf,i, given by inter- 
polation at the corners of I*. It follows from Theorem 2 that there is no 
positive projection of C(l*) onto 71 T. The method of proof of Theorem 6 
actually shows that there is no positive projection of n:,, onto 5:. 

Let X, Y be compact, Hausdorff spaces neither containing only one point. 
Let it4 be the subspace of C(X x Y) consisting of functions of the form 
$(x, y) = f (x) + g(y). Also, for a chosen x* E X, y* E Y, let C,(X X I’) 
denote the set of functions in C(X x Y) which vanish at (x*, y*), and let 
A4, = Mn C,(X x Y). We shall consider both positive and minimal 
projections of C(X x Y) onto M, and of C,(X x Y) onto M,. Our first result 
totally characterizes the positive projections. 
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THEOREM 6. There is no positive projection of C(X x Y) onto M. There 
is exactly one positive projection P* of C&X x Y) onto M,,, given by 
P*lk Y) = d(x, Y *) + $(x*9 Y). 

Proof Suppose that P is a positive projection of C(X X Y) onto M. Let 
.fE Ct-0 g E WI b e arbitrary functions such that 0 <f, g < 1, and for 
which there exist points x0, x, E X and y,, y, E Y satisfying 
ftx,) = g(yo) = 0, ftxl) = g(yJ = 1. Set U(X,Y) =f(xk(y)~ and let 
tPu)(x, Y) = 0) + k(y), with h(x,) = 0. Then (Pu)(xo, y) = k(y) 2 0 for all 
y in Y. Now,f(x) > U(X, y), sof(x) > h(x) + k(y) for all x, y. Taking x = x0, 
we see that k = 0. It follows by similar reasoning that h = 0. By 
construction, [ 1 -f(x)] [ 1 - g(y)] ) 0. Application of P gives 
1 -f(x) -g(y) > 0 for all x,y. Set x = x, and y = y, to obtain a con- 
tradiction. 

Obviously P* is a positive projection of C,(X x Y) onto MO. Let P be any 
positive projection of C,(X x Y) onto MO. For Q E C,(X X Y), define 
~(x, y) = #(x, y) - Q(x, y*) - 4(x*, y). The result follows if we prove that 
Pw = 0. Now, w enjoys the property that ~(x, y*) = v(x*, y) = 0 for all x, y. 
Set (Py)(x, y) = h(x) + k(y), where h(x*) = k( y*) = 0. Define 
Y+(X) = max{vtx,Y):y E Yl, and w-(x) = min{ t&x, y): y E Y}. Thus 
I,V+ (x) > ~(x, y) > w-(x) for all x, y. Since v+, y- E MO, it follows that 
O=~+(x*)~h(x*)+k(y)>W-(x*)=0 for all yE Y. Thus k=O. 
Similarly h = 0. This proves the theorem. 1 

Remark. The first part of the proof also shows that there is no positive 
projection of C(X x Y) onto MO. This is interesting in the light of the results 
of Sections 2 and 3. 

For any (x*, y*)EXx Y the map defined by (P#)(x,y)=q)(x, y*) + 
#(x*vY) - $tx*,Y*> is a projection of C(X X Y) onto M of norm 3. We 
prove that this is minimal if both X and Y contain an infinite number of 
points. 

THEOREM 1. Let X and Y be infinite, compact, Hausdorf spaces. Let P 
be any projection of C(X X Y) onto M. Then )I PII > 3. 

Proof: Let (xi} r= i and { yi} ;= i be any two sets of n distinct points in X 
and Y, respectively. Let J;: E C(X), i = l,..., n, satisfy 

.fltxj> = 6ij 9 i,j = l,..., n, 

f;:(x) 2 0, i = ,..., n, 1 x E x, 

~s,o= 19 x E x. 
i- 1 

Similarly define g, E C(Y), i = l,..., n, with respect to the points { yi}r=i. 
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Set $‘“(x,y) =f,.(x)g,(y), r, s = l,..., n. It easily follows that 

4'"(xiYYj> = 6,i6sj? r,s, i,j= l,..., n, 

f- f”(x3 Y) = g,(y), s = l,..., n, 
r=I 

n 
2 f”(x, Y) =f,(x>, r = l,..., n. 

(1) 

(2) 

(3) 

Now, set (PqP)(x,, yj) = ai;. 
From (I), (2), and (3), we obtain 

n 
1 a;,“=d,, s, i,j= l,..., n, (4) 
I=1 

n 
t-,&j= l,..., n. (5) 

Furthermore, since P is a projection onto M, and functions in M satisfy 
b(zo9 w,> f $(zl, w,) = 4h, w,) + $(zl 3 +J, we have 

a? = a? + a’! - ars 
lJ r1 15 119 r,s, i,j= l,..., n. (6) 

and applying (4) and (5) we obtain 

n 
C at=2n-1. 

i..i= I 

We show that at > (3 - (1 PII)/ for each i, j. It then follows that 

2n - 1 > (3 - l\PII) d/2 

or ((P(( > 3 - (4n - 2)/n *. This is true for all n, so (IP(I 2 3. 
Consider i, j = 1 (a similar proof holds for each choice of i,j). Since 

0 < (1 -f,(x))(l -g,(y)) < 1, we have 

I1 - v-l(X) - 2g,(Y) + vI,(x)g,(YI d 1 
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for all x E X, y E Y. Applying P and evaluating at x = x, , y = y, , gives 

I1 - vlh) - &l(Yl) + wvm,&)l G lIdI 

from which I-3 + 2a::( < [[PII. Thus u:: > (3 - IIPII)/2. u 

Remark. If X contains exactly n points and Y contains exactly m points, 
then the above argument shows that for any projection P of C(X X Y) onto 
A4, llPl[ > 3 - (2n + 2m - 2)/nm. This lower bound is in fact attained by the 
choice 

a; = - l/rim, rf i, s #.A 

= (n - l)/nm, r = i, s #.A 

= (m - l)/nm, r # i, s =j, 

=(n+m-l)/nm, r = i, s =j, 

where the {U;j}:,i=, slj-1 are understood to be defined as in the proof of 
Theorem 7. 

The projection P* of C,(X X Y) onto M, as given in Theorem 6 is of 
norm 2. Our next result, which is a variant of Theorem 7, shows that this is 
minimal. 

THEOREM 8. Let X and Y be infinite, compact, Hausdorflspaces. Let P 
be any projection of C,(X x Y) onto M,. Then llP[l > 2. 

ProoJ As in the proof of Theorem 7, let {xi)?=, and { yi}r,, be any two 
sets of n distinct points (n 2 2) in X and Y, respectively, with x1 =x* and 
y1 = y*. Let (&)y=i and ( gi}yzi be as in the proof of Theorem 7, and set 
$‘“(x, y) =f,(x)g,(y) for r, s = l,..., n; (r, s) # (1. 1). For notational 
convenience, set 4” = 0. Thus qP E C,(X x Y) for all r, s = l,..., n. Now 

#‘s(xi,Yj) = 6,i6sjY r,s, i,j= l,..., n, (r,s)f (1, I>, (7) 

E V(X~ Y> = g,(y), s = 2,..., n, 
r-1 

r = 2,..., n. (9) 

Set (P#“)(xi, yj) = a;. Since P maps C,(X X Y) onto M,, a;: = 0, 
r, s = l,..., n. From the definition of a;, we have 

a!? = ars + a’? u ii IJ ’ at=O, a;:=O, r,s, i,j= l,..., n, (10) 
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and from (7), (8) and (9), 

C U;;S=6,i, r = 2,..., n. 
s=1 

(11) 

(12) 

BY (lo), (11) and (12), 

= 1 C a: + 2 x ayj 
i=2 j=l /=2 i=l 

= 2(n - 1). 

We show that Q: > 2 - ((&‘(I, for i,j = l,..., n, (i, j) # (1, 1). It then follows 
that 

2(n-I)= 5 a$>(n’--1)(2-\lP\J) 
i,j=l 

or ((P(( >, 2 - 2/(n + 1). This is true for all n, so (\P(( >, 2. 
We divide the proof of this claim into two cases. First assume that i, j > 1. 

For convenience, consider i = j = n. Since 0 Q f,, , g, < 1, 

0 at(x) + g”(Y) -f,(x) g”(Y) G 1. 

Because f, + g, -f, g, E C,(X x I’), we can apply P and evaluate at x = x,, 
y = y, to obtain 

12 - 4 G IIPII. 

So a”,: > 2 - ((P(I. 
Now assume that either i or j, but not both, is equal to 1. For convenience 

set i = 1, j = n. The function g, - (1 -f,)( 1 - g,) E C,(X X I’), and since 
ocf-l,g,< 1, 

I g,(v) - (1 -fdx))(l - iL(Y))l G 1. 

Applying P and evaluating at x = x, , y = y, gives 

12 - 4il G IIPII~ 

So a:: > 2 - [IPI\. This completes the proof. a 
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Remark. Theorems 7 and 8 generalize as follows. Let X’, X2,..., Xk be 
infinite, compact, Hausdorff spaces. There exists no positive projection of 
C(X’ x x2 x s-e X X”) onto M = C(X’) + C(X’) + . .- + C(X”), and any 
projection of C(X’ X X2 X ..a x X”) onto M is of norm at least 2k - 1. Let 
xi* E x’, i = l,..., k. Set C,(X’ x . . . x Xk) = (qk fj E C(X’ x * *. x Xk), 
#(xl* ,..., xt) = 0) and M, = Mn C,(X’ x . - - x Xk). There is a unique 
positive projection P* of C,(X’ x . . . x X”) onto MO, given by 
(P*$)(xI 3*.-r xk) = #(x1, xz* ,..., xk*) + -*a + $(xf , x: ,..., xk). For every pro- 
jection P of C,(X’ X e-e x Xk) onto M,, llPl[ 2 JIP*II = k. 

If Xi contains exactly m, points, i = l,..., k, then every projection P of 
C(X’ x .f. X X”) onto M satisfies 

llPll> W- 1) 

- (2k - 2) 
Ii 

2 l/m, - x l/mimj + +.. + (-l)k-‘/m,m2 “’ mk , 
i#j I 

and this lower bound is attained (see the remark after Theorem 7). 
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Note added in proof. Remark. Many results relating to positive projections are to be 
found in Donner 151. In particular, it follows as a special case of his Theorem 4.7 that a linite- 
dimensional subspace L, of a Banach lattice L admits a positive projection if (and only if) it 
(i) is a lattice in the induced ordering and (ii) any subset of L, that has an upper bound in L 
has an upper bound in L,. Our Theorem 1 provides a simple proof of this. One need only 
establish that any positive linear functional on L, has a positive extension defined on L. This 
is an immediate consequence of the Hahn-Banach theorem and the fact that there is a K such 
that II(x+lr,ll <Kll(xt)LII for all xEL, where (x’)~ = sup,(x, 0). To prove this, assume 
instead that there are elements x, with Il(x,‘)J < 2-” and I/(x~)~./) > n. Let y = C;” (xi), 
andA=(xEL,:x~~y).ThenAcontainsOandallx,, which leads to a contradiction of (ii). 
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