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Extremal problems play an essential role in approximation theory. One
such elegant problem is the following. Assume we are given m fixed points
0 ≤ t1 < · · · < tm ≤ 1, m real data e1, . . . , em, and n ∈ IN. Our problem is to
solve

(1) inf{‖f (n)‖p : f ∈ C(n)[0, 1], f(ti) = ei, i = 1, . . . , m},

where ‖ · ‖p is the usual Lp[0, 1] norm, 1 ≤ p ≤ ∞, and to characterize f for
which the above infimum is attained.

If m ≤ n, then this problem has a simple solution. There are algebraic
polynomials of degree at most n−1 satisfying the interpolation data, and any
of these polynomials obviously solve our problem.

If m > n then, in general, the above infimum is not attained within
C(n)[0, 1]. We are in the wrong space. For 1 < p ≤ ∞ we should be in

W
(n)
p [0, 1], the standard Sobolev space of real-valued functions on [0, 1] with

n − 1 absolutely continuous derivatives and nth derivative existing a.e. as a
function in Lp[0, 1]. It is here that our solution is to be found. For p = 1 the
situation is slightly more complicated, but known (see e.g., Fisher, Jerome [8],
de Boor [5]).

This extremal problem has played an important role in the development
of spline theory. In the case p = 2 the unique solution of this extremal problem
is a natural spline of degree 2n − 1 (with simple knots t1, . . . , tm). This oft-
quoted result, see de Boor [3], Schoenberg [18], was fundamental in the history
of spline theory. For p = ∞ a solution (not necessarily unique) is a perfect
spline of degree n with at most m − n − 1 knots, see Karlin [9], de Boor [4].
For p = 1 there is a solution which is a spline of degree n − 1 with at most
m − n knots.

In general, for 1 < p < ∞, this problem has a unique solution. It is
attained by the unique function f satisfying f(ti) = ei, i = 1, . . . , m, whose
nth derivative has the form

(2) f (n)(x) = |h(x)|q−1 sgn(h(x))

where 1/p + 1/q = 1, and h is a spline of degree n − 1 with the simple knots
t1, . . . , tm, which vanishes identically off [t1, tm].

Let us now generalize this problem somewhat and bring it outside the
realm of classic moment type problems, or minimum norm extension problems,
where (1) may and should be considered. Assume that the data e1, . . . , em is
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given as above, and we look at this same problem of finding the infimum of

‖f (n)‖p over f ∈ W
(n)
p [0, 1] satisfying f(ti) = ei, i = 1, . . . , m, but we permit

the points t1, . . . , tm to vary within [0, 1] while maintaining their order. That
is, consider
(3)
inf{‖f (n)‖p : f ∈ W (n)

p [0, 1], f(ti) = ei, i = 1, . . . , m, 0 ≤ t1 < · · · < tm ≤ 1},

for 1 ≤ p ≤ ∞, and try to characterize those f for which the above infimum
is attained.

Why consider this problem? Aside from its intrinsic interest, geometric
motivation comes from the fact that curves may be parametrized differently.
Thus we are, in a sense, asking for a best parametrization. A physical in-
terpretation, for the natural generalization of this problem to IRd, is that a
solution of (3) represents a trajectory through prescribed points with least
kinetic energy (the case n = 2). These matters are discussed somewhat in
Marin [10] and Töpfer [19].

Marin [10] proves, in the one-dimensional setting, the existence, charac-
terization and uniqueness of the solution of (3) in the case p = 2 and n = 2.
Scherer, Smith [17] deal with the existence problem in IRd, again restricted to
p = 2, while Scherer [15] studies the periodic version thereof. In Rademacher,
Scherer [14] the problem of existence and characterization in IRd is studied
for all p.

In Pinkus [13] was considered (3) (in IR) for all p ∈ [1,∞]. Before ex-
plaining some of the results obtained we can and will assume that

(4) (ei − ei−1)(ei+1 − ei) < 0, i = 2, . . . , m − 1,

and t1 = 0, tm = 1. The condition (4) follows from continuity considerations.
Under these assumptions we proved in Pinkus [13] the following.

For 1 < p < ∞ the optimal f∗ is of the form (2) and has the additional
property that the optimal {ti}

m
i=1 are the extreme points of f∗. That is, f∗

is strictly monotone on [ti, ti+1], i = 1, . . . , m − 1, or equivalently,

(5) f∗(ti) = ei i = 1, . . . , m, and f∗′(ti) = 0 i = 2, . . . , m − 1.

Essentially the same result holds when p = 1 and p = ∞. For p = 1, f ∗ is a
spline of degree n − 1 with m − n knots which satisfies (5).

For p = ∞ the solution is unique. It is the unique perfect spline of degree
n with m− n− 1 knots satisfying (5). A further generalization of this p = ∞
result is due to Bojanov [2]. In Draganova [7] is to be found a study of the
periodic problem. Naidenov [12] gives an algorithm for the construction of
this unique perfect spline. The case m = n + 1 is especially interesting since
the solution is the unique algebraic polynomial of degree n + 1 satisfying (5).
This particular problem has a history, see Davis [6], Mycielski and Paszkowski
[11], and Bojanov [1].

Thus in the one-dimensional setting we have in (3), for 1 ≤ p ≤ ∞,
existence and characterization, and uniqueness for all n if p = ∞ (where, in-
terestingly enough, problem (1) does not always have a unique solution). In
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addition Rademacher and Scherer [14], and Uluchev [20] have proven unique-
ness for n = 2 and all p ∈ (1,∞), while Uluchev [20] also proved uniqueness
in the case n = 3 with p = 2. Uniqueness in IRd for p = 2, all n, is studied
in Scherer [16]. This is where things now stand. So the uniqueness problem
even in the one-dimensional setting is far from settled, while relatively little
is known in the multi-dimensional setting.
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