ON n-WIDTHS OF PERIODIC FUNCTIONS

By

ALLAN PINKUS

§1. Introduction

Let X be a normed linear space and * a subset of X. The n-width of %, relative
to X, in the sense of Kolmogorov, is given by

d.(¥; X)=infsup inf |a — x||x

X, a€¥X xEX,

where the infimum is taken over all n-dimensional subspaces X, of X. If there
exists an n-dimensional subspace X} for which

d.(%; X)=sup inf |la —x||x
aEX xEX,

then X7 is said to be optimal.

A typical choice for ¥ is the image of a unit ball of some normed linear space Y
(which may be different from X) under a compact linear mapping K of Y into X.
Thus, #={Ky: ||y |ly =1}. When X =Y is a Hilbert space, then it is possible to
obtain an expression for d.(¥; X) and identify optimal subspaces. These facts
originated with the example given by Kolmogorov in his paper [2] in which the
concept of n-widths was introduced. In this case, d.(%; X) is related to the
s-numbers of K.

Our concern here is with computing the n-widths and determining optimal
subspaces for various classes of periodic functions. In [7] and [8], C. A. Micchelli
and the author were concerned with the problem of obtaining n-widths and optimal
subspaces for X = L% Y = L? (where p = %, or ¢ = 1), and where K had the above
form. The results were, in the main, restrictions to the case where the mapping K
had certain total positivity properties. These properties are in a certain sense
natural and give rise to particularly elegant solutions of the n-width problem.

An example of the above mentioned theory provides a solution to the n-widths
of the Sobolev spaces W{’[0,1]} in L9[0,1] (for p = % or g = 1), a result which had
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210 A. PINKUS

been previously obtained in the case p = ¢ = @by V. M. Tichomirov [14] and which
was, to some extent, the motivation behind much of [7].

If, in place of considering W{’[0, 1], we consider W$’[0,27], the restriction of
W{0,27] to 2ar-periodic functions, then the situation is somewhat altered. Any
f€ WY[0,27] may be written in the form

flx)= aﬁ%f B.(x — t)f(t)dt

, <, and [37f(t)dt = 0. Unfortu-
nately, various problems now arise, not the least of which is that B,(x — ¢) is not

where B.(x) is a given known kernel, ||f*

totally positive. Nevertheless this class is important and natural, and even has a
certain symmetry lacking in W$’, Thus it has been extensively studied. If we set

By ={f:fe WP, lIfl, =1},

then Tichomirov [14] was able to determine d». (B%’; C) and d.,(BY; C) where
C = C[0,27] is the class of 2r-periodic continuous functions, while d»,_,(B{; L")
was studied by Makovoz {4] and Subbotin [12], and Makovoz [5] also computed
dZn—l(Bg); Ll)-

The purpose of the present work is to determine the underlying structure of the
functions of Wf," which allow us, in certain cases, to determine their n-widths and
identify various optimal subspaces. In this search we were led to a consideration of
the n-widths of

o, = {f: 000 = j 6(x = y)h(y)dy, [hl, =1}

in L[0,2m], where ¢(x) is a given 2w-periodic function with certain cyclic
variation diminishing (CVD) properties. With the aid of these tools, we are able to
refine and extend the known results, and hopefully provide a better intuitive
understanding of the underlying theory.

The organization of the paper runs as follows. Section 2 contains a discussion of
the definition and properties of CVD kernels. In addition, we also prove that if

T.-1=span{l,sin x,cos x, - - -, sin (n — 1)x, cos (n — 1)x},
i.e., trigonometric polynomials of degree =n — 1, and if ¢ is a CVD kernel, then

for any t., € T,-4, the function ¢ — ¢, , has at most 2n sign changes on any interval
of length 24r. This sign change property is referred to by various authors as property
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A, or N,, and has immediate application in the problem of characterizing the
extent to which the class ¥.. is approximable in L~ from T,_,.

Section 3 is concerned with the characterization of optimal subspaces for
daw-(¥.; L7) and d2,(H; L™). We prove that T, is an optimal 2n (and hence
2n — 1) dimensional subspace, and that S%, =span{¢(x — 7k/n)}i~; is also an
optimal 2n-dimensional subspace. In fact, let us define the linear n-width of ¥, in

L? by

8:(#,; L*)y=1inf inf sup

X, Pp:L9—X, ki, =1

| f o= yh)y - Ph ()]

where the first infimum is taken over all n-dimensional subspaces X, and the
second infimum is taken over all linear maps P, from L? to X,. Then we in fact
show that 8.(¥.; L7)= d.(¥.; L™} for all n, i.e., linear approximation methods
suffice.

Section 4 is concerned with these same problems if we replace % . by

i) ={f: 10 = [ 6= »ho)d h)I=H))

where H is some given positive continuous function. The results of Section 3
concerning the optimality of T,._, and the fact that d,._ (¥ .; L) = d;,(#.; L”) are
no longer valid. We are however able to compute d..(¥.(H); L") and obtain an
optimal 2n-dimensional subspace.

In Section 5, we show that S3, is an optimal 2n-dimensional subspace for
d2n(H.; L") forall 1 = p =, and compute the 2n-width. In Section 6 we show that
this same result holds for d..(%,; L") and also, by duality, consider d,,_,(¥:; L").
We return to a consideration of the n-widths of the Sobolev spaces in Section 7. All
the above results carry over in this case and we also draw upon a result of Taikov
[13] to obtain the (2n — 1)-widths d,.(BY; L"), 1=p =co.

§2. Cyclic variation diminishing kernels

Our concern is with cyclic variation diminishing (CVD) kernels ¢. The definition,
various properties, and examples of CVD kernels may be found in Mairhuber,
Schoenberg, and Williamson [3}, and Karlin [1]. Perhaps the best known CVD
kernel is the de la Vallée Poussin kernel also studied in Polya and Schoenberg [11].
On the not unreasonable assumption that many readers are not totally familiar with
this concept, we sketch the definition and some of the properties.
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Various definitions of sign changes and zeros (S, $", Z, Z*, - - -) of functions and
vectors exist, and are intimately connected with the definitions of total positivity,
sign consistency, variation diminishing, etc., - - -. Our concern here is with periodic
functions where the ordering induces a slightly altered definition.

If x = (x,,- - -, x,) is a real non-trivial vector, then S (x) indicates the number of
sign changes in the sequence x,,- - -, x,, with zero terms discarded. The number
S<(x) of cyclic variations of sign of x is given by

Sc(x)=max S7(x, Xivr,* 5 Xy X1, 7 X)) = 8T (Xey Xicwry 00y Xy X1y 77 %, Xi)
1

where k is any integer for which x, # 0. Obviously, SZ(x) is invariant under cyclic
permutations, and S:(x) is always an even number.

Let f(x) be a piecewise continuous, real, periodic 27 function. We define
S:(f)=supS:(f(x.), -, f(x.)), where the supremum is extended over all x, <
<o < Xm <X+ 2, m arbitrary.

Let ¢(x) be a continuous, real, periodic, 27 function on [0, 27]. Our concern is
with the transformation

(2.1) f(x)=(¢h)(x)= f $(x —y)h(y)dy.

Definition 2.1. The transformation (2.1) is said to be cyclic variation dimin-
ishing of order 2n (CVDz,) if S:(f)= S-(h) for all h for which S;(h)=2n.

In this case we shall also say that ¢ is a cyclic variation diminishing kernel of
order 2n, or ¢ is CVD,,.

To properly understand concepts related to that of a CVD,, kernel, we need the
following definition.

Definition 2.2. Thekernel ¢(x)is said to be sign consistent of order [, SC,, if

22) eib (;‘ - ;‘) = e det (¢ (x — y, )= 20

whenever 0=x,<---<x, <27, 0=y, <:-:-<y, <2m and & = =1, fixed.
¢(x)is said to be strictly sign consistent of order ! (SSC,) if strict inequality holds
in (2.2).

If, as above, ¢(x) is a periodic, continuous function, then it is easily seen that if
the rank of ¢(x) is at least [, then ¢(x) cannot be SC, for even I
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Definition 2.3. The kernel ¢(x) is said to be a cyclic Pdlya frequency kernel
of order 2n + 1 (CPF,,.,) if ¢(x) is SCyuy with £5,=1, I =0,1,-- - n.

The relationship between CPF,,., and CVD,, kernels is partially contained in
the following theorem.

Theorem 2.1 ([1], [3]). Assume that ¢(x) is a continuous, real, periodic 2
function and that ¢(x) has rank at least 2n +2, i.e., there exists 0=y, < --<
Va2 <27 such that dim(span{¢(x — y:)}i2i>)=2n +2. Then ¢(x) is CVD.. iff
ed(x) is CPF,,.. for some £ = *1, fixed.

Although the following result is not explicitly used in this paper, it is perhaps one

of the more interesting properties of CVD,,. kernels.
Associated with ¢ is its Fourier series

d(x)~ ,.5_:.» a.e™, a, = i f é(x)e ™dx.

Since ¢ is real, a_, = a.. There is a direct relationship between the Fourier
coefficients {a.}.--. and the CVD,, property of ¢(x).

Theorem 2.2 ([1], [3]). Assume that ¢(x) is as in Theorem 2.1, and ¢ is
CVD,,. Then,

azla|z--Zla.zlal, =n+ln+2,--

While it is true that for any CVD,, kernel, S:(¢h) = S_(h) provided S;(h) = 2n,
it is in fact not necessary to consider all h in order to determine whether a given
kernel is CVD,,.

Theorem 2.3 ([1], [3]). The kernel ¢(x) is CVD,, iff

S (¢ph)=S-(h)
for any trigonometric poiynomial h for which S:(h)=2n.

Connected with the class of CVD,, kernels are the class of functions A..

Definition 2.4. A continuous function f of period 2 is said to belong to A,
if
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S:(f—t.-)=2n
for every t,_, € T,._..

The following property is essential in the consideration of the best approximation
of ¢ by trigonometric polynomials of degree =n — 1.

Theorem 2.4. Let ¢(x) be a CVD,, kernel of rank at least 2n —1. Then
$EA,.

Proof. If ¢, ,€ T,_; then

f d(x — y)ta-i(y)dy = f S (y)ta-ax — y)dy

is also a trigonometric polynomial of degree =n-1, ie., is also in T,_..

Furthermore, since the rank of ¢(x) is at least 2n — 1, and ¢(x) is SC,,.-;, the

mapping induced by the kernel ¢, as a mapping from 7., to T,.-,, is 1-1 and onto.
Let

M 0=x éfl/l-’
fm(X)=
0 xé[o,ﬁ].

Given t,_,E T.-,, there exists a f,,€ T,_, for which [3"¢(x — y)t,. (y)dy =
t.-1(x). Given f,_,, there exists an M, such that for all M = M,, S_(fu — f._,) = 2n.
(Recall that S;(t.-,)=2n — 2 for any t,_, € T._..) Thus, since ¢ is CVD,,, S-(dfu —
¢t ) =2n. Since ¢f = t,—y, and liMuyow Ofys (x) = limpe MY (x — y)dy =
& (x), it follows that S (¢ — t.-:))=2n, i.e., ¢ € A,.

§3. n-widths of ¥*. in L~
Let ¢(x) be a CVD,, kernel as in Section 2, with the additional assumption that

{&(x — y.)}i-, are linearly independent functions for any k =1, --,2n + 1, and any
0=y, < - <y <2 Set

@) st {1210 = [ x=yh)ay, Il=1},
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and let

d.(¥; L*)= d.(HX.) = inf sup inf ||f — g,

X, fEH.REX,

where the infimum is taken over all n-dimensional subspaces of L7[0,27], and

8.(#.)= inf sup |ph — P.h|,

P :L™—X, [h{.=1

where the infimum is taken over all linear maps P, which map L™[0,2 ] onto some
n-dimensional subspace of L7[0,27]. Let h%(x)=(=1), in/n =x <(i + )7 /n,
i=0,1,---,2n -1, and fi(x) = [ ¢ (x — y)h *(y)dy. The following theorem is the
main result of this section.

Theorem 3.1. With the above assumptions and notation,

(32 don oK) = don(H) = 820 s(He) = 82n(He) = || ]
Furthermore,
(1) T._,=span{l,sinx,cosx, -, sin(n—1)x,cos(n —1)x} is an optimal sub-

space for don.-i(%.) (and d».(¥#.)), and Ps._h(x)= [Tt (x —y)h(y)dy is an
optimal linear map for 8,,_,(¥.), where t*_(x) is the unique best L'-approximation
to ¢(x) on [0,27].

(2) S%. =span{p(x — kmw/n)}i%, is also an optimal subspace for d,.(¥.), and
interpolation to f € ¥.. from S%, at B+ wk/n, k =1,---,2n, the zeros of fi(x) is an
optimal linear map for 8,,(¥X..).

For the sake of convenience, the proof of the above theorem is divided into parts.
Since §,.(H ) Z dn(H») and d,. (He) Z dni(H.) for any m, it is only necessary to
prove that d,.(%.) = | f*|., and to show that the linear deviation of ¥. from T,-,
and S%, is no more than |f*]..

We first prove an ancillary lemma. For ease of exposition, we also introduce the
following notation. Let B, = {&: £ = (&1, -+, € ), 0= &= -+ - = &30 =27}, 16, the
closed 2n-dimensional simplex. For each & € E,. we define hg(x)=(—1)"",
&Ga=x<§& i=1,---,2n, where &= &, —2m, on an interval of length 27, and
then extend it periodically. Note that S (h¢)=<2n for every £ € San

Lemma 3.1. Let £ € E,.. Then,

(3.3) SZ(he = hy) = min{S;(he), Sz (1)} = 2n.
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Moreover, if & = My.u for some k and some |, then

(3.4) Si(he —h,)=2(n—1).

Proof. Let £ =(&, - -, &n). Since he(x)=(-1)", &,=x<& i=1,---,2n,
and |h,(x)[=1, then (—1)"" (h; £h,)(x)20, &, =x <&, i=1,---, 2n, which
implies, S (h; = h,)= S:(h;). Similarly, S;(h¢ =h,)= S:(h,) from which (3.3)
follows.

To prove (3.4), let us assume, without loss of generality, that n,_y,2 = &;. Thus
for x € [& -1, &], (he — hy) (x) =0. Furthermore, as above, (— 1)*'(h, — h,) (x) 20,
L =Ex <, i=1,---,2n. The result easily follows.

Proposition 3.1. Let P,,.; be as defined in the statement of Theorem 3.1.

Then
(3.5) Sup ¢k — Ponsht [l = || f 5]
Proof.
sup 19 =Pl = s | [ 1006 9)= i =)y

= max [ [d(x —y)—ti.(x —y)|dy
= [160)- 1201y
= "d) - t?:—l”l-

Thus,

sup [[¢h — P,_ih .= . Vigjf. b — ta-sllro2m.

o1 1€

Since ¢ (y)— t.-.(y) can vanish at at most a finite number of points, a necessary and
sufficient condition for t*_,(y) to be a best L '-approximation to ¢(y) on [0,27] is
that

2n

(3.6) | sen@ - )0 ay =0

0

for every t,_, € T,_,. (From Theorem 2.4, S:(¢ — t%_,) =2n.)
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We wish to prove that (¢ — t%-:)(y) changes sign at 2n equally spaced points,
i.e., that there exists an a such that sgn (¢ —t¥_)(y))=(—-1), a+7wi/n<y <
a+m(i+D)/ni=0,1,---2n—1L.Lethi(y; a)=hi(y —a).Since S (¢ —ti )=
2n, there exists a £ € E,, such that sgn ((¢ — 13-} (y)) = £ he(y).

From (3.6), [i"he(y)t.-i(y)dy =0 for all t,, € T,_,. It is easily verified that

T h¥(y; a)t.—(y)dy =0 for all t,, € T,_, and for every choice of «. Thus,

3.7) [ th105 @) he)lt-s(y)dy =0

for all t._, € T,_,, and for each «. Since T,_, has a 2n — 1 dimensional basis which is

a Tchebycheff (T) system on [0,27), a standard argument proves that Sc(h%(-; a) =

h)=2n or hi(y;a)zx h.(y)=0. (If not, one may construct a t,., € T,_, which

agrees in sign with h %(y, @) = h(y), and thus contradicts (3.7).) From Lemma 3.1,

we see that there exists an a, and a choice of = for which S;(hi(-; ao) X he) =

2(n —1). Thus, h ¥(y; ao) = he(y)=0. The uniqueness of ¢%_,(y) also easily follows.
Thus,

sup [ 9h = Pucsh = [ 160) = 12.0)ldy

llfle=1

= [ G0)= 1 OIhI0; ady

il

= [ $ImA0 - andy

= ¥ fi(ao)
=) £

Since P,..h% =0 and f} = ¢h, the proposition is proven.

Remark 3.1. An alternate equivalent proof of Proposition 3.1 exists. Rather
than considering the best L'-approximation to ¢ from T,._,, we construct an
explicit approximant ¢,_; which interpolates ¢ at 2n equally spaced points and such

that ¢ — t._, changes sign there, and only there. The existence of such a function

t .-, implies Proposition 3.1. The approach taken here is an indirect construction of
the function f,_..

Since f%(x)=Ji"d(x —y)hi(y)dy, it follows that S:(f%)=2n. Moreover,
f¥(x + m/n)= —fi(x) so that f} has 2n equally spaced zeros, which are at the 2n
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sign changes of fi(x). Let 8+ wk/n, k =1,---,2n, denote these 2n zeros. The
following lemma may be found in [6] and [8]. For completeness, we include its

proof.

Lemma 3.2. For ¢ and B as above,

B+%,B+2T”,~-,B+27r
(3.8) ¢< ro2m #0.
_’ _—".-’ 7T
n n

Proof. The proof is by negation. Assume that the above determinant is zero.
Then there exist 2n constants (not all zero) ai,---, a», such that u(x)=
27, a.p(x — wi/n) vanishes at B+ mj/n, j =1,--,2n. Since {¢(x — mi/n)}iz, are
linearly independent, then there exists a z € [0, 27) for which u(z) # 0. Thus, since
friB+mji/n)=0,j=1,---,2n, there exists a ¢ # 0 such that f%(x)— cu(x) vanishes
atx=B+aj/n,j=1,---,2n,and x = z. Since {p (B + wj/n — y N2, U{d(z — y)}is

2n+1

a WT-system of dimension 2n + 1 on [0,27), there exist coefficients {8:};21" (not all
zero) such that

2n .
v(y)= Zl 5]‘4)(3 *'%‘l_ )’>+ S2nr1p(z = y)
b=
changes sign at #i/n, i = 1,---,2n, and nowhere else. Now

0= 12 8,[fﬁ<[3 + 7—3) - cu(B + 7—}?)] + 8annilfi(z) — cu(z))
:221 a,»[f cb(B + ’—;1— y>h ’::(y)dy] + 82n+1[f $(z—y)h t(y)dy]
S oS el 2T (S el

1 i=1

2m

j v(y)h 3(y)dy —CZ “”(%)

a

Il

= [ Jo(y)lay#0.

This contradiction implies (3.8).
Let Q.. denote the linear map which is interpolation to f € ¥.. at 8 + wk/n,
k=1,--+,2n, from S%, This map, by Lemma 3.2, is well defined.
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Propesition 3.2. Let Q., be as defined. Then

(3.9) sup [[¢h — Qzuh [|-= [ f3]l-.

(L=

Proof. We shall make use of the SC,,., property of ¢(x), and the fact that

x,B+%,B+277T,---,B+27r
2m 2m 4 T 2m
)’, - Ty, 277
n n
d(x = y)h(y)dy — Quah(x) = I h(y)dy.
- 4 B+ Bt ,B+2m
o]
z’ 27_7‘1 9 277
n n

Since ¢ is SCppis,

x,3+%,3+27”,---,3+27r
sgn ¢ ” 2 h¥(y)e(x)=0, forall y €[0,27),
Y, w PR ™

where £(x) is either 1 or — 1 depending on x. Thus,

sup | ph — Qb [ = Elllp max

Ik fl=1 b oo 1

f é(x —y)h(y)dy — Qzh(x)

$B+Z g+2T ... g2
& n n
2m T 2
Yoo ot 2
= max J h(y)dy
vt B+E’B+2_7T’..‘,3+27T
& n n
z 2_'”’...’ 2
n n
27
- max | [ 6= y)hz)dy | =21
o]

We have here used the fact that [i7d(B + mj/n —y)hi(y)dy =0,j=1,---,2n.
To complete the proof of Theorem 3.1, we need the following result.
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Proposition 3.3. d,.(¥.)=|f%]-
The proof of Proposition 3.3 makes critical use of the following lemma.

Lemma 3.3. For each £ € B, set fi(x)= [3"d(x — y)he(y)dy. Then,

(3.10) min || fe [lo=[| % ]l.

£€5;,

Proof. Since fh(x-+ w/n)= — fi(x), fr(x) achieves its norm in L~[0,27], 2n
times, alternately. That is, there exists a y such that

‘ i .
COf(r+ ) =lfih i=1-e2m

Assume £ € B,,, and |fefl. <||f%|l-. Thus f¥(x + @)= fe(x) has at least 2n sign
changes in [0,27), i.e., ST(fi(x + a) = f;(x)) = 2n, for each a and each choice of
+

Now,
f’f-(X+a)tf§(x)=f d(x = y)[hi(y — @) = he(y)ldy.

Since ¢ is CVD,,, it therefore follows that S (h¥(y — a) = h.(y)) = 2n for each «
and each choice of . We now obtain a contradiction of Lemma 3.1 as in
Proposition 3.1.

Proof of Proposition 3.3. To prove Proposition 3.3, we must prove that
given any 2n-dimensional subspace X, there exists an f& ¥. for which
mingex, [|f — g - = | f%]--

Let Sy, ={t: t = (11, -+, taar1), 221" t7 = 27}. For each t € S,,, let £(t) € E,, be
defined by &(t)=0, and &(t)=Z]-1¢7, i=1,---,2n+ 1. Thus &) =0=&() =
c o ZE Lon(t) = Luen(t) = 27 Set hygy(x) =sgnt, & () =Ex < &(@),i=1,---,2n+ 1.
Since 2n + 1 is odd, either h(x) or — h.u(x) is equal to some h, where € E,,
for each t € ...

The idea of the proof of Proposition 3.3 is to consider, for each ¢t € S.,, the best
approximation to ¢h,, from X,,. and to show that there exists a ¢ * € S, for which
the best approximation is the zero function. An application of Lemma 3.3 would

then prove the proposition. A slight difficulty arises due to the fact that the best
L"-approximation from X, is not necessarily unique. To circumvent this difficulty
we consider the best L”-approximation and let p 1 .
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The idea of this proof is to be found in [8]. Let 1 <p <, and X, = span {g;} ;.
For each t € S.,, let 22, a,(t)g.(x) be the best L”-approximation to [3"¢(x —
¥)hew(y)dy from X,.. The mapping A(¢) = (a:(t), - - -, @2.(t)} is a continuous odd
mapping of S,. into R*". By the Borsuk Antipodensatz (see ¢.g. [9]) there exists a
t*€ S,, for which a;(¢*)=0, i =1,---,2n. Thus

sup inf |[f - gl, = min [|fell,
fEHn gEX,, £EE;,

Letting p 1 =, and since the set {f,: £ € B} is compact, we obtain

sup inf £~ g -2 min Ifl-

From Lemma 3.3, mingexs,, || fe l- = || f%|l~, and thus the proposition and the theorem
are proven.

§4. n-widths of #.(H) in L~

It seems to some extent strange, if we have at our disposal a 2n — 1 dimensional
subspace T,.-, which is optimal for d,_,(¥.) and d..(%.), that we should concern
ourselves with an optimal 2n-dimensional subspace {¢(x — 7k /n)}i%,. One of the
reasons for this is historical and this is discussed to some extent in Section 7.
Another reason is that this latter subspace is reasonable, is fairly easy to work with,
and it is often advantageous to realize that it is optimal. Moreover, in this section,
we see that perturbations of this subspace remain optimal under certain perturba-
tions of ¥#., where d..-, and d,, are no longer equal.

Let H(y) be a continuous, positive function. (Both these conditions may be
considerably weakened.) Let

(8 = {f: 0= [ 6=k )= H)J

In this section we prove the following theorem.

Theorem 4.1. Let the assumptions and notation of Section 3 hold. Then,
(1) The minimum in

4.1 i

Zf 8(x = IOy
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is attained by a £* € B,, for which £* = (€%, -, £3.), where 0= £t <¢3<--- <
£3. <2m, ie., by a £* in the interior of B,

@ dun(HH) = 5 CEE) | [ .

(3) S%. =span{¢(x ~ £*¥)}:2, is an optimal subspace for d,.(%-(H)), and interpo-
lation from S3%, to any function in ¥ (H) at the zero of f*(x)=
Jo"d(x — y)h ¥(y)H(y)dy is an optimal linear method of approximation.

4) don-(HAH))Z don(H(H)), with equality iff H(y) = H, i.e., H(y) is a con-
stant.

Let

Hw(n)=1{¢: (€5, & =7 for some i}.
The proof of Theorem 4.1 relies upon the following propositions.

Proposition 4.1. Givenn €[0,217), there exists a £*(n) € E..(n) satisfying

(a) S;(hf‘(fl)) = 2",

(b) The function f%(x)= fo" ¢(x — y)he-w(y)H(y)dy has 2n points of equioscil-
lation.

Proof. Fix n andlet So ={t: t = (t,, ", t2n), Zi21 85 =2m}. Set &(n; t) =7,
and &a(n; t)=n+2j_1t% i=1,---,2n Thus £(n) € E,.(n). As previously, let
hemn(x)=sgnt, &(n;t)=x<é&in;t), i=1,---,2n Let Y., be any 2n—1
dimensional T-system on {0,2#7]. (We may, for example, choose Ya,-,=
span{l,x,---,x**%.) By the Borsuk Antipodensatz and the arguments of the
previous section, we see that there exists a ¢t*€ S,,_,, for which the best
L™-approximation to

| 66 = YheamIHO )y = £30)

from Y,_, is zero. (In the situation considered herein it is not necessary, as in the
previous section, to alter the L™ norm to a strictly convex norm since the best
L"-approximation from Y., is unique.) Since Y;._; is a2 T-system on [0,27], the
error function necessarily equioscillates at 2n points. Thus f¥(x) necessarily
equioscillates at 2n points on [0,27]. Since 2n is even it follows that f*(x)
necessarily equioscillates at 2n points in [0,27), and part (b) of the proposition is
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proven. Let £*(n) = &(n; t*). Since f}(x) equioscillates at 2n points on [0,27),
S:(fx)=2n. Part (a) of the proposition is a direct consequence of the CVD,,

property of ¢ and the fact that S;(hg)) =2n since £*(n) € Ez.(n).

Proposition 4.2.

£€52,(n)

min, | qu(x - DheHG | -] T"’(" - Dhew®HO|_=1fl-

The proof of Proposition 4.2 is totally analogous to the proof of Lemma 3.3.

Proof of Theorem 4.1. Propositions 4.1 and 4.2 immediately imply Theorem
4.1, Part 1. Let n* be such that min,||f%||. is attained and let f*(x) = f*.(x), and

£*=£*(n"*). Thus,

min

£€5,,

27 27

[ oG-ymommay] =| [ 66-yhtHOW] =15l
] 0

Now, by the method of proof of Proposition 3.3, it is readily shown that

o= min | [ 66— ye)HIay] =171

and also that for each n €[0,27),

doneHH) = it | f 8= IH)y| =173l

Therefore,
Ao (HA(H))Z max Ifel- while dy(H(H))= mjn I

The remaining portions of Theorem 4.1 will therefore ensue if we can show that
8:.(H(H))=|If*|- and that interpolation to f € ¥.(H) from S%, at the zeros of
f*(x) is indeed optimal. The proof of this fact is totally analogous to the proof of
the corresponding result in Section 3.
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§5. 2n-widths of #¥.(H) in L*

The preceding analysis need not only be restricted to a consideration of
d.(¥.; L™) or d.(%.(H); L”). As we shall soon see, we have effectively laid the
groundwork for the consideration of d,,(¥.(H); L*) for every p € [1,=]. In fact
the proof of the following theorem has been almost completely given in the
preceding sections.

Theorem 5.1, [Ler the assumptions and notation of Section 3 hold. Let
1=p <, p fixed. Then,

1. The minimum in

(5.1) min
§€5,,

f 8 = Y (IH )y |

is attained by a £* € E,, for which £* = (£%,---,&3.), where 0= £3<¢%---<
£3,.<2mie., by a £* in the interior of E,..

1L doy(HH); L7) = 8ua (H(H); L) | f 8= yhe-(y H()dy |

III. S%, =span{¢(x — £¥)}2, is an optimal subspace for d»,(X(H); L*), and
interpolation from S3%, to any function in %X.(H) at the 2n zeros of f*(x)=
5" (x — y)he(y)H(y)dy is an optimal linear method of approximation.

IV. dop- (K AH); L?)Z don (X LH); L?) and the inequality is strict if H(y) is not
a constant.

Proof. The proof of this theorem follows from the proof of Theorem 4.1 if we
can prove part 1 of the theorem, i.e., £* is in the interior of E,,, and also that f*(x)
has 2n zeros.

A compactness argument shows that since 5,, is closed, the minimum in (5.1) is
attained. Assume that £* € 5,, attains this minimum, with £* = (£%,--- £3,),
where 0= ¢ <---< €3 <2, for some k =0,1,---,n. A simple perturbation
argument shows that since £* is optimal,

27

[] f $(x = e (HG)dy |

-1

(5.2)

27

sen (| &0~ y)heIHO )Y )6 (x — £DHEDd =0, i=1,--,2k,
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It then follows from the fact that {¢(x — £*)}%, is a weak Tchebycheff system on
[0,27) that S.(Ji" d(x — y)he-(y)H(y)dy) = 2k. Since ¢(x —y) is CVD,,, n =k,
and S:(h;-)=2k, we have S:(fi"d(x— y)h.(y)H(y)dy)=2k. Thus
S:(UJo" d(x — y)he-(y)H(y)dy) = 2k, and it remains to prove that k = n.

Assume that k < n. For ¢ sufficiently small and for each £¢& {&%, -+, %}, we
introduce ¢£* € 5., which aside from the knots ¢%, - - -, £%, has the additional two
knots g — ¢ and £ + &. Since €7 is admissable in (5.1) and £* with £ = 0 is optimal, it
follows as in (5.2) that

T[T¢u—ymywHowﬂ”'
(5.3) b

sen (| 60— »RIHG)Y) 6(x - HH(E)dx =0.

The fact that (5.3) holds for every & € [0, 27) immediately leads to a contradiction.
Thus k = n and Theorem 5.1 follows. Note that the claim of Theorem 5.1, IV, is
rather weak. Even in the case where H(y) is a constant function, nothing is known
concerning da,-(H.; L7).

However, if H(y) is a constant (we shall assume H(y)=1) then more can be

proven concerning the optimal subspace S3%..

Theorem 5.2. Let the previous assumptions obtain, H(y)=1, and p € [1, ).
Then

&= (7;7, %:—T, cee gﬂg_lﬁf 277) is a solution of the minimum problem (5.1).

It thus follows from Theorem 5.1 that S¥%, = span {¢(x — kmr/n)}i~, is an optimal
subspace for d..(%-; L"), and the analogous result holds for 8,,(%..; L”).

The proof of Theorem 5.2 utilizes certain technical details. We see little point in
entering into an analysis of these details. Instead, we provide a sketch thereof.

Our problem is one of zero counting. As defined in this paper, ¢ is CVD,, which
implies that S, (f)= S /(h)if S.(h)=2n and f(x) = [i"¢d(x — y)h(y)dy. Let f be a
continuous periodic function of period 2. Let S:(f) denote the number of zeros of
f where sign changes are counted once and zeros which are not sign changes are
counted twice (as if they were double zeros). If ¢ is CVD,, and ¢ is SSCu.y,
[=0,1,---, n (see Definition 2.2), then S;(f)= S.(h),if S.(h)=2n, where f and h
are related as above. It is this latter property which we wish to hold for ¢, i.e., that
Si(f)=S.(h) provided S (h)=2n. We shall assume henceforth that ¢ has the
above property by uniformly approximating our kernel ¢ by kernels with the
desired property. One method of approximation is by smoothing and it is the details
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of this process which we omit. For kernels of the above form we shall prove the
following result.

Theorem 5.3. Assume that £ = (£, -+, &) With 0=¢, <& <&, <2m
satisfies

27 2

| Uﬂcﬁ(x—y)hg(y)dy ,,

-1

(5.4)
sgn(f cb(x-Y)hg()’)dy)ci)(x—g.-)dx=0, i=1,---2n

for some p €[1,x). Then & — & =m/n, i=1,---,2n (where &y = &+ 27).

Theorem 5.3 states that on the basis of (5.2), the unique solution of (5.1) (up to
translation) is the vector & with equally spaced knots. If ¢ is simply CVD,, and
does not possess the additional properties assumed above, then by approximating
¢, we obtain the result, without uniqueness. Thus Theorem 5.2 is proven. Our proof
of Theorems 5.2 and 5.3 follows the method of approach of Zensykbaev [15].

Proof of Theorem 5.3. Due to the translation invariance property of %, we
may assume that the ¢ in the interior of =,, which satisfies (5.4) is such that
E=0<E< <6, <2mand 8 = £,— €= Mo, & — &, Where £, = 2

Let f(x)=[i"¢(x = y)hs(y)dy, and F(y)=Ji"|f(x)I" 'sgn (f(x)) d(x — y)dx.
Thus from (5.4), F(&)=0,i=1,---,2n and it is in fact (see the proof of Theorem
5.1) easily seen that these 2n zeros of F are sign changes and F has no additional

Zeros.
Let g(x)=[i"d(x — y)he(y + 8)dy. From Lemma 3.1, S_(h(y)+ he(y + 8)) =
2(n —1). Thus Sc(fx)+gxN=2(n—-1). Since sgn(a+ b)=

sgn(la|""'sgna +|b|""' sgnb) for a, b real and 1 < p <=, it therefore follows that
Sc(f(x)P'sgnf(x)+]g(x)'sgng(x))=2(n—1) for any 1=p<w». Thus,
S{F(y)+G(y)=2(n—1), where G(y)=[i"|g(x)" 'sgn(g(x)$p(x —y)dx. A
simple change of variable argument shows that G(y)= F(y +8) whence
S{F(y)+F(y +8))=2(n—1).

Now F(y +8) vanishes at &.,~ &, i =1,---,2n, and & = &, — &= £, Since
(—1)EF(y)>0,¢&<y<é&.,i=1,--+,2n, where £,.., =27 and ¢ = =1, fixed,
therefore (—1)'e (F(&)+ F(& +8))=0,i=1,---,2n Hence S(F(y)+ F(y + 8)) =
2n, a contradiction unless F(y)= — F(y + §). The theorem follows.

§6. n-widths of %, in L'

In this section we concern ourselves with
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i, = {1: o) = f b=y, [, =1},

and especially %, and its closure in L'[0,27], %, ={f: f(x)= 3" (x = y)du (y),
i | =1}, where ||u | = total variation of u on [0,2m). We shall compute the
n-widths of %,, 1=p =~ and %, as subsets of L'[0,27].

Our method of proof is intimately connected with the duality between L? and
L4 for 1/p +1/q = 1 and the effective computation of what is referred to as the
n-width, in the sense of Gel’fand, of %.. as a subset of L9[0,27], 1 =g =cc.

Before stating the result, we recall from Section 3 that fi(x)=

" (x — y)h ¥(y)dy, where h %(y) is the step function with 2n changes of sign from
—1to 1 at equally spaced points.

Theorem 6.1. With the above notation and under the assumptions of Section
3

() d(H; LY=d,(H; L") =8(H; L") = §(Fr; L") =||f %] for j =2n—1,2n.

(D) don(H,5; L) = 821 (Hp; L) =||f% g for 1=p =0, where 1/p +1/q = 1.

Furthermore,

(A) T.., is an optimal subspace for dz, (%,; L') (and da.-(% ;L") and
Paih(x) =[5 t%_(x — y)h(y)dy is an optimal linear map for 8., (¥ ,; L"), where
t¥_, (x) is the best L'-approximation to ¢(x) from T..,.

(B) S%. =span {¢(x — 7i/n)}i%, is an optimal subspace for d,.(¥,;L') and
interpolation from S%,.to f€ ¥, at B+ mwi/n, i =1,--,2n, the zeros of fi(x), is an
optimal linear map for 8:.(%,; L").

Proof. The proof is an application of the extremal properties of f%(x) which
were proven in Sections 3 and 5.
For h € L'[0,27}, let Py,_h{(x)= [{7t%_(x — y)h(y)dy. Thus,

2w

San (5 L) = sup | ]wd)(x—y)h(y)dy— [ G- vmea|

k=1

= sup
il =1

T [60c =)~ t3ix = Oy |

27 2w

~ sup sup f f[¢(x—y)—tﬁ~u(x—)’)]h()’)g(x)dydx

e =t (gll.=!

= [If2ll--

£

= sup | T[d)(x —y)= £ x — g (x)dx

g ez



228 A. PINKUS

The last inequality follows from Section 3.
Similarly 8. «(%:; L") = f%|-.
We also wish to show that the interpolation as defined in (B) is also optimal. Let
Q.. denote the linear map from L?[0,27] to S3%. which interpolates to
T d(x —y)h(y)dy at B+ mi/n, i =1,---,2n. Thus,

l,

sup
Il =1

| f (x — y)h(y)dy ~ Qs

x,B+7—T,B+2—7T,---,ﬂ+21r)
n n
2 d) e 27T
y’ _7 _7...’ 27T
n r
-] | : hoas|
J B+-:;T,B+77T,~--,B+27r
¢
7_7’ 2_77,..., 27
v n
T 27
B+ B+ B2
n n
27 27 (f)
T 2
Y, ;» —n_’ "y 27
o2t felar) j J > h(y)g (x)dydx
6 0 B+E’B+—7_T7"',B+27T
b n n
E’ 2_71" , 2
n n
T 2
X, B+ B+ B+27
d) n n
2 T 2 2w /
Y7 na n’ 3
= sup g (x)dx
leli==t 2 q
J B+§,B+77T,---,B+27r
b
7_"’ 2_7"’...’ 27,-}
n n

where 1/p + 1/g = 1. 1t is now a simple matter, as in Section 3, to prove that this
quantity is bounded above by |/f%[.,.

Thus it remains to show that || f%]|, is a lower bound for d.,(¥,; L"'). The proof is
a fairly straightforward consequence of the extremal properties of f%(x) and the
Hobby-Rice theorem. The Hobby-Rice theorem (which may be seen to be an
application of the Borsuk Antipodensatz, see [10]) states that given any 2n
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functions {v;}iZ; in L'(0,27], there exists a ¢ € 5,, for which (v, hy)=0, i =
1,---,2n

Let X, be any 2n-dimensional subspace of L'[0,27]. By a standard duality
theorem of best approximation

sup inf

Il =1 geX),

[ o=yt 500

2w 2w

~ sup sup } f (x - y)h(y)f (x)dydx

I upfl It

= sup
IIfIL.,él
Fix

U eer |

By the Hobby-Rice theorem there exists a £ € Ea, for which h; L X,,. Thus,

sup inf
IR, =1 g€Xz,

[ oG=ymeiay -s]

y)he(x)dx .

= ”f:”q

This last equality is a consequence of the extremal properties of f’. Since the right
hand side is independent of Xo,, d2.(¥,; L") Z | f%]|,, and the theorem is proven.

Remark 6.1. Here and in Section 3 we have shown that for any ¢ within our
class, T,,_; is an optimal 2n — 1 dimensioaal subspace for the 2a — 1 and 2nwidths of
¥ . relative to L™, and %, relative to L'. This same fact is also true for the 2n — 1
and 2n widths of X- relative to L. The proof of this fact may be found in Melkman
and Micchelli [6] and is dependent upon .the fact that T,,_, is also the span of the
2n — 1 eigenfunctions associated with the largest 2n — 1 eigenvalues of the positive
semi-definite kernel ¢ ¢(x —y) = fa"d(z — x)@(z — y)dz.

If, as in Section 2, ¢(x) admits the Fourier series representation

s)~ 3 ae™

n=—w

then e™ and e™™ are eigenfunctions of ¢ ¢ (x) with corresponding eigenvalues
4m%a.’, n =1,2,-- -, and the constant function is an eigenfunction of multiplicity
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one with eigenvalue 47%a;. It follows from Theorem 2.2 that T, is the span of the
2n — 1 eigenfunctions with largest eigenvalues.

It is also proven in [6], that span {¢(x — 7wk /n)}i%, is an optimal subspace for
dan (#2; L?), and dsu(H2; L?) = d5,(H2; L?).

§7. Sobolev spaces

The preceding sections were concerned with the class of periodic functions of the
form f(x)= {07 ¢ (x — y)h(y)dy, where ¢(x) is CVD,,.. An important and related
class of functions is the Sobolev space

WOL0,27]) = W9 = {f: f*Vabs. cont., | f], <=, f periodic of period 27}.

This class of periodic functions is related to our previous class %, in that any
f€ WY may be written in the form

flx)= ao+—71; f B.(x — )f(t)dt,

with the stipulation that ||[f*]|, <, and [3" f”(t)dt = 0 (a, is an arbitrary constant).
The function (kernel) B,(x) is known both as the Bernouilli monospline and the
Dirichlet kernel. One reason for these two names is that on the one hand

(-2

Er(x):kzzlcos——kj——, r=1,2,--'

while on the other hand it is not difficult to prove that B,(x) is, for x €[0,27], a
polynomial of degree r. Essentially (there is a problem of uniform convergence of
the above infinite series if r =1), if we set Bo(x)= —3, then Bl(x)= B,-(x),
B.(x)=(-1YB.Cw —x),r=1,2,--, and B,(0)=0,r=3,5,7,---. Thus B,(x) on
[0,27] is what is generally referred to as the Bernouilli polynomial B,(x), suitably
normalized. B,(x) is the 2#-periodic extension of B.(x) and is known as the
Bernouilli monospline. B,(x) is often denoted by D,(x).

The Bernouilli monospline B, (x) is not CVD,, for any n. In addition the class of
function W9 is not simply the image of the rth derivative under convolution by
B, (x). However, the methods and ideas of the previous sections may, to a great
extent, be applied largely due to the following result.

Proposition 7.1. Let 0= <-- <t <2m, k odd. Then
{(1,B.(x )= B.(x = 1), B.(x —t3)— B.(x = ), -, B.(x = t.)— B,(x — t._,)} con-
stitutes a weak Tchebycheff (WT) system of order k on [0,21).
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Remark 7.1. The above proposition is equivalent to the fact that A,+
Sf.1 CB,(x — t) exhibits at most k — 1 sign changes on [0, 2] if 2., C: = 0 and k is
odd.

Proof. Let f(x)= A+ 2, CGB.(x — &), k odd, =L, C, = 0. Assume that f(x)
has at least k sign changes on [0,27]. Since f(x) is periodic of period 2,
Bix-t)=B..\(x—t), and fEC, it follows that E',CBi(x~t) (or
Ao+ 325, GB\(x — ) in the case r = 1) has at least k sign changes on [0, 27]. Now,
Bi(x)=(m —x)/2 for x €[0,27}. Thus, Bi(x —t)=(—m+t—x)2+ x(x — )2
on [0,27], where x} = 1if x =0, and 0 otherwise. Since =}, C; = 0, we obtain for
rz2

)= S CBilx - 1)

=2 Cx[—ﬂﬂ*—]“rw;: C(x—t)

k
%Z +772 Ci(x — ).

Since f*™"(x)=3Z{, C# for x €[0,¢,) and (&, 27] (i.e., a sign change does not
occur at 0 =27r) it is necessary, in order that f*"(x) possess k sign changes, that
fe79(x) change sign at each f, i = -, k. However k is odd and f"""(x) has the
same sign on [0, ¢;) and (&, 27]. Thus f" " cannot have k sign changes on [0,27].
This contradiction proves the proposition. If r = 1 then the same analysis holds.
Let f*(x)= (1/) J3" B,(x — t)h %(t)dt, where h %(t) is as defined in Section 3, i.e.,
hi(t)=(—1), for t€lim/n(i+1)m/n), i=0,1,---,2n—1. Note that
Shi(t)dt =0. Let BY denote the unit ball in W, ie., BO={f:fe W?,
1], = 1}. It is well-known that

[fille=K = 4 i (=1ye

T &2 Q)T

We are interested in proving the following theorems.

Theorem 7.1. With the above assumptions and notation
dono( BY; L) = don(BY; L7) = 820-(BY; L7) = 82.(BY; L) = |If 1)l

Furthermore,
(1) T, . is an optimal subspace for d,,_(BY; L™), and
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27

Pz,l,lf(x)=2—17r—f f(t)dt+%f 1 (x — OFO(t)dt

0

is an optimal linear map for 8. (BY; L), where t%_,(x) is the best L'-
approximation to B,(x) on [0,27}.

(II) S%.={A + 32, CB,(x — mwi/n): £, C. =0} is a 2n-dimensional optimal
subspace for d,,(BY; L™), and interpolation to f € B at the zeros of % from S%., is
an optimal linear map.

Theorem 7.2. With the above assumptions and notation
d2n(BY; L7) = 8:,(BL; L7) = | 3],
and part (I1) of Theorem 7.1 applies, 1 =p <,
Theorem 7.3. With the above assumptions and notation,
dza o B LYY= don(BY L) = 820(BY; L) = 82.(BY; L) =i f 2
and parts (1) and (11) of Theorem 7.1 hold witI; the obvious changes.
Theorem 7.4. With the above assumptions and notation
doni(BO; LY = don(BY; L) = 82,(BY; LY = || %l
for 1=p =, where 1/p +1/q = 1. Furthermore
(I) T,., is an optimal subspace for d,._(BS’; L").
(11) Part (11) of Theorem 7.1 obtains with the obvious changes.

Remark 7.2. The following results were known. Tichomirov [14] had proved
that

d2n~l(B~g);-é) = d1,(BY; C) = 8:.-(BY; C)= 8:(BY; C) = £ 3],

where C represents the space of 27 -periodic continuous functions on [0, 277). This
condition, as was noted earlier, is unnecessary. The result d,._(B{’; L) =|f%].
had been proven independently by Makovoz [4] and Subbotin [12]. The result
dya(BO; LYy = fxll, may be found in Makovoz [5].

Proof of Theorems 7.1-7.4. All the results of Theorems 7.1-7.4 except
part (I) of Theorem 7.4 are analogues of results of Sections 3, 5, and 6. Part (I) of
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Theorem 7.4 depends on the fact, due to Taikov [13], that ||f%|, represents an
upper bound on the degree of approximation of BY’ by trigonometric polynomials
of degree =n -1, i.e, of t..,€ T,_,, in the L' norm.

A proof of the remaining upper bounds follows much the same pattern as the
proof found in Tichomirov [14]. The method of proof given in Section 3 may also be
modified in order to obtain the upper bounds.

To prove the optimality of the subspace T,._, in Theorems 7.1 and 7.3 one should
note that the orthogonality condition [5” f*’(t)dt = 0 may be dropped. The proof of
S;(B, —t.1)=2n for any t._, € T,_, is a standard Rolle’s theorem argument.

The major innovation here is the lower bound argument.

Let §2n={§:§=(§1,'.',§2n)7 §0:0§§1§"'§§zn§§2n+l=2‘m
22.(— 1Y (&, — &) =0}, and let h.(x) be defined, for each £ € E,,, as in Section 3,
ie., he(x)=(—1), LE=x <&, i=0,1,---,2n. The condition
20(— 1) (&4 — &) =0 is equivalent to fi"h,(x)dx = 0. The lower bound argu-
ment depends upon the following analogue of Lemma 3.3 and Theorem 5.2.

Proposition 7.2. For each £ € E,., set

fg(x)=% f B.(x — t)he(t)dt.

Then for each p € [1, ],

min“ ”a +fe ”p = ”f:”,v

aER . EES;,

The proof follows the same lines as the proof of Lemma 3.3 and Theorem 5.2.
The details are somewhat more tedious.
Let X>. be any 2n-dimensional subspace of L*[0,27], 1 < p <. In order that

sup inf If-gl, <=,
1t is necessary that X, contains the constant function. Thus we may define a basis
for Xz, Xz, = span {go, g1, -, g2.-1}, Where go(x) = 1.

Let So.={t:t=(ti, ", taar,) Z27'ti=27}, and for each (€ S,, define
EMVEE., by &)=0, &(M)=2i_,t% j=1,---,2n+ 1. Thus, 0= &)= &(1) =
=26 ()= 6.(t)=2m  Define  hgo{x)=sgnt, &L (t)=x<E&(), i=
1,2,---,2n + 1. Now, let S,, be the subset of S, determined by t € S, for which
i hey(x)dx =0, ie.,

2%

S, = {z: tES,., f hew(x)dx = 0}.
0
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S.. may be represented as the boundary of a bounded, open, symmetric neighbor-
hood of 0 in R*". Let A be the mapping of $,. to (a4, (t), - - -, a._,(t)), where a?(t)
is the coefficient of gi(x), i=1,---,2n—1, in the best LP-approximation to
(1/m) f37 B.(x — t)hee(t)dt from X, Since 1< p <, this mapping is well-defined,
continuous, and odd. Thus by the Borsuk Antipodensatz there exists a t* € S, for
which a;(¢*)=0, i=1,---,2n~1, ie., the best approximation. to— aj(t*)+
(1/7) 37 B,(x = t)heen(t)dt from X, in L? is the zero function. For p=1 and
p = o, we take limits as in Section 3. Thus the lower bound is proven for Theorems
7.1 and 7.2.

To obtain the lower bounds in Theorems 7.3 and 7.4, we utilize the duality
between L* and L% 1/p +1/g = 1. Let X;, be any 2n-dimensional subspace of
L'[0,27]. In order that

sup inf [If — gl <ee,

feBY geX,,

it is necessary that the constant function be in X,,. Thus we may again assume that
Xz, = span {1, 81,82 an—1}~ Now

27
. 1 ~
”s”ug gg}(fzn - f B.(x —t)h(t)dt — g(x) 1
fﬁ"n(x)d: 1] ]
27 2w
- sp f f B.(x - h (1) (x)drdx
iR l, = Ilfllmsl m

fz"’h(z)dt 0 f1X,,

= sup inf
Il <x acR

f B,(x — t)f(x)dx — a

fiX2,

By the Hobby-Rice theorem, there exists a £ € E,. such that h, L X5, This implies
that [3"h(t)dt =0, i.e, £ € E,,. Therefore

%f B.(x - Dh(t)dt — g(x)

sup inf
=t seXa,

z inf inf
g€, 2€R

27
lf B.(x — t)h(t)dt — a
™ q
[

= ”f"k- ”q-

Thus d.(B$; L") 2|/ f*],. The theorem is proven.
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