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w  I n t r o d u c t i o n  

Let X be a normed linear space and Y{ a subset of X. The n-width of ~,  relative 

to X, in the sense of Kolmogorov,  is given by 

d. (YF; X )  = inf sup inf II a - x fix 
X n a ~ f x E X  n 

where the infimum is taken over all n-dimensional  subspaces X. of X. If there 

exists an n-dimensional  subspace X* for which 

d,,(Y[; X ) =  sup inf I t a -  xll~, 
a E K  x~X'~ 

then X*, is said to be optimal. 

A typical choice for Y{ is the image of a unit ball of some normed linear space Y 

(which may be different from X)  under a compact  linear mapping K of Y into X. 

Thus, Y{= {Ky: ]]y][v =< 1}. When X = Y is a Hilbert space, then it is possible to 

obtain an expression for d,(Y{'; X)  and identify optimal subspaces. These facts 

originated with the example given by Kolmogorov in his paper  [2] in which the 

concept of n-widths was introduced. In this case, d,(Y[; X) is related to the 

s -numbers  of K. 

Our  concern here is with computing the n-widths and determining optimal 

subspaces for various classes of periodic functions. In [7] and [8], C. A. Micchelli 

and the author were concerned with the problem of obtaining n-widths and optimal 

subspaces for X = L q, Y = L p (where p = ~, or q -- 1), and where K had the above 

form. The results were, in the main, restrictions to the case where the mapping K 

had certain total positivity properties. These properties are in a certain sense 

natural and give rise to particularly elegant solutions of the n-width problem. 

An example of the above mentioned theory provides a solution to the n-widths 

of the Sobolev spaces W~'~[0, 1] in Lq[0, 1] (for p = o0 or q = 1), a result which had 
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been previously obtained in the case p = q = oo by V. M. Tichomirov [14] and which 

was, to some extent, the motivation behind much of [7]. 

If, in place of considering c~ W e [0, 1], we consider I,V~')[0, 27r], the restriction of 
( r )  W e [0, 27r] to 2~--periodic functions, then the situation is somewhat  altered. Any 

f E --p'v~'f~ 2~'] may be written in the form 

2 ~  

f ( x ) :  ao+ 1 f 
o 

where /3 : (x ) i s  a given known kernel, IIf<'l[  < ~ ,  and f~=f'~)(t)dt = 0. Unfortu- 

nately, various problems now arise, not the least of which is that /3,(x - t) is not 

totally positive. Nevertheless this class is important  and natural, and even has a 

certain symmetry lacking in W~'. Thus it has been extensively studied. If we set 

~,"--  {[: f E r  < 1}, P 

then Tichomirov [14] was able to determine d2,_1(/~); C') and d2,(/3~); C) where 

= C[0, 2rr} is the class of 27r-periodic continuous functions, while dz,_~(B]'); L 1) 
was studied by Makovoz [4] and Subbotin [12], and Makovoz [5] also computed 

d2o , ( ~ ;  L'). 
The purpose of the present work is to determine the underlying structure of the 

functions of t~/~r~ which allow us, in certain cases, to determine their n-widths and �9 , p 

identify various optimal subspaces, In this search we were led to a consideration of 

the n-widths of 

2 ~  

0 

4,(x - y)h (y)dy, II h lie ~ 1} 

in Lq[0,27r], where 05(x) is a given 2~--periodic function with certain cyclic 

variation diminishing (CVD) properties. With the aid of these tools, we are able to 

refine and extend the known results, and bopeful/y provide a bet ter  intuitive 

understanding of the underlying theory. 

The organization of the paper  runs as follows. Section 2 contains a discussion of 

the definition and properties of CVD kernels. In addition, we also prove that if 

T._~ = span {1, sin x, cos x , - - . ,  sin (n - 1)x, cos (n - 1)x}, 

i.e., tr igonometric polynomials of degree =< n - 1, and if ~b is a CVD kernel, then 

for any tn-, E T,-1, the function ~b - t, , has at most 2n sign changes on any interval 

of length 27r. This sign change property is referred to by various authors as property 



PERIODIC FUNCTIONS 211 

A ,  or N., and has immediate  application in the problem of characterizing the 

extent to which the class Y{= is approximable  in L = from T._,. 

Section 3 is concerned with the characterization of optimal  subspaces for 

d2.-1(~C=; L =) and d2.(YC=; L~). We prove that T,_~ is an optimal 2n (and hence 

2 n -  1) dimensional subspace, and that Sz*. = span{~b(x-  7rk/n)}Zk"-_~ is also an 

optimal 2n-dimensional  subspace. In fact, let us define the linear n-width of Y~p in 

L q by 

27r 

X n Pn:Lq~Xnllh[Ip<~l q~ 
0 

where the first infimum is taken over all n-dimensional  subspaces X,  and the 

second infimum is taken over all linear maps P. from L q to X,. Then we in fact 

show that 6,(5f=; L =) = d , (~=;  L =) for all n, i.e., linear approximation methods 

suffice. 

Section 4 is concerned with these same problems if we replace ~= by 

2 ~  

0 

where H is some given positive continuous function. The results of Section 3 

concerning the optimality of 71._, and the fact that dz.-~(Y{=; L | = d2. (~=; L | are 

no longer valid. We are however able to compute  d2.(K=(H);  L =) and obtain an 

optimal 2n-dimensional  subspace. 

In Section 5, we show that $2". is an optimal 2n-dimensional  subspace for 

d2.(Y{=; L p) for all 1 =< p =< 0% and compute  the 2n-width. In Section 6 we show that 

this same result holds for d2.(Yl'p; L ~) and also, by duality, consider d2._~(Y{~; L1). 

We return to a consideration of the n-widths of the Sobolev spaces in Section 7. All 

the above results carry over  in this case and we also draw upon a result of Taikov 

[13] to obtain the (2n - 1)-widths ,4 tf~r). < ~.2,-1~,~, , L~), l=<p =o~. 

w Cyclic variation diminishing kernels 

Our concern is with cyclic variation diminishing (CVD) kernels qb. The  definition, 

various properties, and examples of CVD kernels may be found in Mairhuber,  

Schoenberg, and Williamson [3], and Karlin [1]. Perhaps the best known CVD 

kernel is the de la Vall6e Poussin kernel also studied in P61ya and Schoenberg [11]. 

On the not unreasonable assumption that many readers are not totally familiar with 

this concept, we sketch the definition and some of the properties. 
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Various definitions of sign changes and zeros (S-,  S § Z, Z* ,  �9 �9 .) of functions and 

vectors exist, and are intimately connected with the definitions of total positivity, 

sign consistency, variation diminishing, etc., �9 �9 .. Our  concern here is with periodic 

functions where the ordering induces a slightly altered definition. 

If x = ( x , .  �9 x , )  is a real non-trivial vector, then S- (x )  indicates the number  of 

sign changes in the sequence X l , ' . . ,  x,, with zero terms discarded. The number  

S; (x )  of cyclic variations of sign of x is given by 

S2(x)  = m a x  S - ( x , ,  x,+,,'" ", x,, X l , ' "  ", Xi)  = S - - (Xk ,  X k * l , " "  ", Xn, X I , ' "  ", Xk)  
i 

where k is any integer for which xk J 0. Obviously, S2(x) is invariant under cyclic 

permutations, and S2(x)  is always an even number.  

Let f ( x )  be a piecewise continuous, real, periodic 27r function. We define 

S2(f)  = sup S 2 ( f ( x l ) , "  ",f(x,.)), where the supremum is extended over all xl < 

�9 �9 �9 < Xm < X, + 2~r, m arbitrary. 

Let ~b(x) be a continuous, real, periodic, 27r function on [0, 2~r]. Our  concern is 

with the transformation 

(2.1) 

2~ 

f ( x )  = ( 6 h ) ( x )  = f qb(x - y )h(y)dy .  
o 

D e f i n i t i o n  2 .1 .  The transformation (2.1) is said to be cyclic variation dimin- 

ishing of order 2n (CVD2.) if S~(f)<=S2(h) for all h for which ST(h)<=2n. 

In this case we shall also say that ~b is a cyclic variation diminishing kernel of 

order 2n, or ~ is CVD2.. 

To properly understand concepts related to that of a CVD2. kernel, we need the 

following definition. 

D e f i n i t i o n  2 .2 .  The kernel qb (x) is said to be sign consistent of order 1, SCt, if 

(2.2) ]/Xl~ �9 ~ �9 Xl~ 1 
�9 ] y i ) ) i , j = ,  = 0 e,6~y,,  ,Y, = e, de t (ch(x , -  

whenever O _ - < x , < ' - ' < x t < 2 7 r ,  O _ - < y l < . - . < y t < 2 ~ ,  and e t =  -+1, fixed�9 

th(x) is said to be strictly sign consistent of order I (SSC,) if strict inequality holds 

in (2.2). 

If, as above, ~b(x) is a periodic, continuous function, then it is easily seen that if 

the rank of 05(x) is at least l, then ,;b(x) cannot be SC~ for even I. 
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D e f i n i t i o n  2.3.  The kernel ~b(x) is said to be a cyclic Pdlya frequency kernel 

of order 2n + 1 (CPF2.+m) if ~b(x) is SC:,+a with e2t+l = 1, I = 0, 1,. �9 n. 

The relationship between CPF2.+~ and CVD2. kernels is partially contained in 

the following theorem. 

T h e o r e m  2.1 ([1], [3]). Assume that 4~(x) is a continuous, real, periodic 2~r 

function and that oh(x) has rank at least 2n + 2, i.e., there exists 0 <-yl < " "  < 

y2..2 < 27r such that dim (span {~b(x - y,)}~-2) = 2n + 2. Then 49(x) is CVD2. iff 

ecb(x) is CPF2,+I for some e = • 1, fixed. 

Although the following result is not explicitly used in this paper, it is perhaps one 

of the more interesting properties of CVDz. kernels. 

Associated with th is its Fourier series 

r  

a.e , a. = ~ ch(x )e-'"~dx. 
- - I t  

Since 4~ is real, a_. = ti.. There is a direct relationship between the Fourier 

coefficients {a.}~=_~ and the CVD2, property of 4~(x). 

T h e o r e m  2.2 ([i], [3]). Assume that ~b(x) is as in Theorem 2.1, and q~ is 

CVD2,. Then, 

ao>=la,l~...~la,}eta~}, k = n + l , n + 2 , - - . .  

While it is true that for any CVD2. kernel, S~(chh ) <= S2(h) provided S2(h ) <-_ 2n, 

it is in fact not necessary to consider all h in order to determine whether a given 

kernel is CVD2.. 

T h e o r e m  2.3 ([1], [3]). The kernel ch(x ) is CVDz. iff 

S:(~bh ) <~ S:(h ) 

for any trigonometric polynomial h for which S~(h )<-2n. 

Connected with the class of CVD2. kernels are the class of functions A.. 

D e f i n i t i o n  2.4.  A continuous function f of period 2zr is said to belong to A.  

if 
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S~-(f - t._,) _--< 2n 

for every t,_~ ~ T,-~. 

The following property is essential in the consideration of the best approximation 

of & by trigonometric polynomials of degree -< n - 1. 

T h e o r e m  2.4 .  Let  oh(x) be a CVD: .  kernel o f  rank at least 2n - 1. Then  

& E A . .  

P r o o f .  If t. 1U T._1 then 

2 ~  2~" 

f ~b(x - y) t . - l (y)dy = f ~b(y)t.-l(x - y)dy 
0 0 

is also a trigonometric polynomial of degree =< n - 1 ,  i.e., is also in T~_~. 

Furthermore,  since the rank of ~b(x) is at least 2n - 1, and 4~(x) is SC2,-~, the 

mapping induced by the kernel ~b, as a mapping from 7", ~ to T._~, is 1-1 and onto. 

Let 

 xf? 
Given t . _ ~  Tn_l, there exists a /~n_l ~ Zn-- 1 for which f ~ ' c k ( x -  y)/ ' .  ~(y)dy = 

t.-l(X). Given/ ' ._ , ,  there exists an Mo such that for all M => Mo, S;(fM - / ' . -1 )  -< 2n. 

(Recall that S i ( t .  ,) ~ 2n - 2 for any t, t ~ T.-~.) Thus, since & is CVD2., S~(qbfM - 

4~f. 1)=<2n. Since 4,t-._~= t.-,, and l i m ~ _ = 4 ~ f ~ ( x ) = l i m ~ = M f l / M c k ( x - y ) d y  = 

&(x), it follows that Si(ck - t.-~)<=2n, i.e., (k E A . .  

w  n - w i d t h s  o f  Y(~ i n  L ~ 

Let 4~(x) be a C V D z .  kernel as in Section 2, with the additional assumption that 

{&(x - y~)}~=, are linearly independent functions for any k = 1 , . . . ,  2n + 1, and any 

O--<yl< " ' ' < y k < 2 7 r .  Set 

(3.1) 

2 ~  

0 
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and let 

d. (X=;  L | = d . (X=)  = inf sup inf I [ f -  g [[~, 
X n f E Y ( ~  g ~ - X  n 

where  the inf imum is taken over  all n -d imens iona l  subspaces  of L=[0,2~-],  and 

6, (Y{=) = inf sup I[ dph - P.h I1=, 
P . : L ~ X n  [[hll~_< 1 

where  the inf imum is taken over  all l inear maps  P,  which m a p  L=[0, 2~-] onto  some  

n -d imens iona l  subspace  of L=[0,27r].  Le t  h * ( x ) =  ( -  1)', irr/n <= x < (i + 1)Tr/n, 

i = 0, 1 , "  ", 2n - 1, and f*(x)  = f~=c~(x - y)h  *(y)dy.  The  following t h e o r e m  is the 

main result of this section.  

T h e o r e m  3 .1 .  With the above assumptions and notation, 

(3.2) d 2 , , - l ( f f { ~ )  = d z n ( f f / ~ )  = ~2n , ( ~ [ ~ )  = ~2,,(ff tr~) = IIf*ll~. 

Furthermore, 

(1) 7", ;=span{1, sinx, c o s x , . . . , s i n ( n - 1 ) x ,  c o s ( n - 1 ) x }  is an optimal sub- 

space for d2.-dY[=) (and d2.(ff{~)), and P2.-lh(X)=f2=t*-l(X-y)h(y)dy is an 

optimal linear map for 62._1(9{=), where t*-l(X) is the unique best L '-approximation 

to 4~(x) on [O, 2~r]. 
(2) S * .  = span {&(x -k~r/n)}~"_-~ is also an optimal subspace for d2.(Y{=), and 

interpolation to f E 9{~ from S*. at [3 + rrk/n, k = 1 , "  .,2n, the zeros of f*(x)  is an 

optimal linear map for 62.(Y[~). 

For  the sake  of convenience ,  the p roof  of  the above  t h e o r e m  is divided into parts .  

Since 6,, (Y[=) => d,. (Y&) and d,, (YG) --> d,, +,(Y(=) for  any m, it is only necessary to 

p rove  that d~.(YG)=> IIf*[[~, and to show that  the l inear deviat ion of ~ r  f rom 7".-1 

and  S* ,  is no m o r e  than  IIf*Jl . 
We first p rove  an ancil lary l emma.  For  ease of exposi t ion,  we also in t roduce  the 

following notat ion.  Let  -=2,, = {~r s r = (~1,"" ", ~2.), 0 =  < ~:1 --< " ' "  --< &,  N 21r}, i.e., the 

closed 2n -d imens iona l  simplex. For  each ~: E ~2,, we define h ~ ( x ) =  ( - 1 )  ~+', 

~:i-1 = x < ~:~, i = 1,. �9 -, 2n, where  ~0 = ~%, - 2~-, on an interval  of length 27r, and 

then ex tend  it periodical ly.  No te  that  S2(he)<-_ 2n for every  ~: E-=2.. 

L e m m a  3 .1 .  Let ~, *! E ~2.. Then, 

(3.3) S2(h~ +- h,,) <= min {S2(h~), S2(h.)} <= 2n. 
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Moreover, if ~ = 7qk+2, ]:or s o m e  k and some 1, then 

(3.4) S~(h,  - h , )  <= 2(n - 1). 

P r o o f .  Let  ~ = (~1, �9 �9 ", ~2,). Since h~(x) = ( -  1) '+1, ~,-1 --< x < ~,, i = 1 , - . . ,  2n, 

and I h , ( x ) [  =< 1, then ( -  1) '+1 (h~ --+ h~) (x)  _-> 0, ~_1 =< x < ~, i = 1 , . . . ,  2n, which 

implies, S~(h~ +-- h , )  <= S~(h~). Similarly, S~(h~ +_- h , )  <-_ S j ( h , )  f rom which (3.3) 

follows. 

To  prove  (3.4), let us assume, without  loss of generali ty,  that r/~_~+2~ <= ~k-~. Thus  

for  x E [~-1, ~k], (h~ - h , )  (x) -~ 0. Fur the rmore ,  as above,  ( -  1)'+l(h~ - h , )  (x)  > 0, 

~:~_~ = x < ~, i - 1, �9 - -, 2n. The  result easily follows. 

Propos i t i on  3.1.  
Then 

Let  P2.-1 be as defined in the statement of  Theorem 3.1. 

(3.5) sup llckh - P 2 , - l h  11= = Ill*]l| 
lib II=-- < -- I 

Proof .  
2~r 

 sup: IIfI.(..,:(x.,,h.,.ll 
0 

2 ~  

= max f Ith(x - y ) -  t*~-l(x - y) /dy  
o 

2 ~  

= f I~b(y)- t*-~(Y)ldY 
0 

= limb - t * ~ _ t [ [ ~ .  

Thus,  

sup ]I 4,h - P,-~h [[| = inf ]] ~b - tn-1 ]lL,[0,2~-]. 
flhll < 1  t . _ I E T . _ ~  

Since ~b (y ) -  t . - t (y )  can vanish at at most a finite number  of points, a necessary and 

sufficient condit ion for  t*_.(y)  to be a best L Lapp rox ima t ion  to ~b(y) on [0, 27r] is 

that 

(3.6) 

2rr 

f sgn ((~b - t*-l)  (y ) ) t ._ , (y )dy  = 0 
o 

for  every t,-i E T,_1. (From T h e o r e m  2.4, S~-(tb- t*- ,)  -< 2n.) 
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We wish to prove that (~b - t*,_,)(y) changes sign at 2n equally spaced points, 

i.e., that there  exists an s such that sgn ((4, - t* ~)(y)) = ( -  1)', a + ~ri/n < y < 

s + rr(i + 1)/n, i = 0, 1 , "  ", 2n - 1. Let  h *(y;  s )  = h *~(y - s ) .  Since S~-(~b - t*,_~) _-< 

2n, there  exists a ~ E Ez,  such that sgn ( ( ~ b - t * , _ 0 ( y ) ) =  •  

F rom (3.6), f~ 'h~(y ) t ,_~(y )dy  = 0  for all t ._~E T,_~. It is easily verified that 

f~=h*(y;  s ) t ._~(y)dy  = 0 for  all t._l E T,_~ and for  every choice of s .  Thus, 

2 ~  

f [h *(y; a )  • h,(y)] t ,_~(y)dy = 0 
o 

(3.7) 

for  all t. 1E T._1, and for  each a. Since T,_~ has a 2n - 1 dimensional  basis which is 

a Tchebycheff  (T) system on [0, 2rr), a s tandard argument  proves that S~(h *,(.; s )  • 

h~)>=2n or h*~(y;s)--+-h~(y)-=-0. (If not,  one  may construct  a t._~E T,_~ which 

agrees in sign with h *(y, s ) •  h~(y), and thus contradicts  (3.7).) F rom L e m m a  3.1, 

we see that there  exists an s0 and a choice of • for  which S~-(h*(.; So)• 
2(n - 1). Thus, h *(y ; So) • h~(y) -= 0. The  uniqueness  of t*_~(y) also easily follows. 

Thus,  
2~r 

sup II r - P,_,h II~ = f 
Ilhll| 

0 

_~_ -4- 

16(Y) - t*~-l(Y) IdY 

2-n- 

( th(y) - t*_l(y))h *(y;  ao)dy 
J 
0 

2~r 

f ~b(y)h *(y - a0)dy 
o 

= -7-f*(ao) 

= II f .  IP 

Since Pn-lh *, - - 0 and f*  = ~bh * ., the proposi t ion is proven.  

R e m a r k  3 .1 .  An al ternate  equivalent  p roof  of Proposi t ion 3.1 exists. Ra the r  

than considering the best L 1-approximation to ~b f rom T.-1, we construct  an 

explicit approximant  t . -1 which interpolates  ~b at 2n equally spaced points and such 

that ~b - i ,-1 changes sign there,  and only there.  T he  existence of such a function 

/'.-1 implies Proposi t ion 3.1. The  approach taken  here  is an indirect construct ion of 

the function i',_1. 

Since f , ( x ) = f ~ c k ( x - y ) h * ( y ) d y ,  it follows that S c ( f , ) = 2 n .  Moreover ,  

f * ( x  + ~r/n) = f . ( x )  so that  f*~ has 2n equally spaced zeros,  which are at the 2n 
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sign changes  of  f*(x) .  Let fl + 7rk/n, k = 1 , " - , 2 n ,  deno te  these  2n zeros.  T h e  

following l e m m a  may  be found in [6] and [8]. For  comple teness ,  we include its 

proof .  

L e m m a  3 . 2 .  

(3.8) 

For & and [3 as above, 

rr 27r 
( [3+n , [3+ . . . .  [3 + 2rr)  

n '  ' / 0 .  
& ~ 2rr 2rr 

n ~ n '  

P r o o f .  T h e  p roo f  is by negat ion.  A s s u m e  that  the a b o v e  de t e rminan t  is zero.  

Then  there  exist 2n constants  (not all zero)  a l , ' " , c ~ 2 ,  such that  u ( x ) =  

E2"=~ a,O(x - ~ i /n)  vanishes at [3 + 7rj/n, j -- 1 , . . . ,  2n. Since {~b(x - 7ri/n)}~"=l are 

linearly independen t ,  then there  exists a z E [0, 27r) for  which u (z )  J 0. Thus,  since 

f*([3 + 7rj/n) = 0, j = 1 , . . - ,  2n, there  exists a c ~  0 such that  f * ( x ) -  cu(x) vanishes 

at x = [3 + 7rj/n, j = 1 , - ' . ,  2n, and x = z. Since {4~([3 + ~rj/n - y)}~"=~ U {~b(z - y)} is 

a WT-sys tem of d imens ion  2n + 1 on [0, 27r), there  exist coefficients {&}~"_-]" (not all 

zero)  such that 

v ( y )=  ~ 6jO([3 4 zr--Jn- y)+ 62,+l$(z - y) 

changes sign at 7ri/n, i = 1 , " . ,  2n, and nowhere  else. Now 

0: + . + +  ;)cuO+ ..,z), 
) = !  

2 ~  2 w  

:~ 8,[f 4 , ( [ 3 + ~ - y ) h : ( y ) d y ] + ~ 2 . . , [ f  ~(z-y)h:(y)dy] 
o o 

- c ~ a, ~,r [3 + ~ _  ~i -ca2.+, ~,4~ z -  
i=1 n n / J  L~=1 

2 ~  

= v(y)h *(y)dy - c a,v 
. =  

o 

2 ~  

-- • f I v ( y ) lay /O .  

This contradic t ion implies (3.8). 

L e t  O2,~ deno te  the  l inear map  which is in terpolat ion to f E  ~| at fl + zrk/n, 
k = 1 , . . . , 2 n ,  f rom S*, .  This  map,  by L e m m a  3.2, is well defined.  
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P r o p o s i t i o n  3 .2 .  Let O2n be as defined. Then 

(3.9) sup [[ 4,h - Q 2 . h  I[= = [[ [*  II=. 
I[ h [I~N 1 

P r o o f .  We shall make  use of the SC2.+1 proper ty  of 4, (x),  and the fact that 

x ' ~ + n ' 1 3  n '  . /3+27r  

2 .  2 .  4 ,  rr 2rr, _ 

4, (x - y )h (y)dy  - Oz.h (x) = ( 2. . . . .  
0 o / 3 +  n , / 3 +  

4, rr 2rr . . .  2rr 
11 ~ n ~ , 

h (y)dy.  

Since 4, is SC2.+i, 

27"/" [sg, ( )1 h *(y)e  (x)  => 0, 
"rr 2rr, 2~r 

Y' n '  n " '  

for  all y E [0, 2rr), 

where  e(x)  is e i ther  I or  - 1 depending on x. Thus,  

2 ~  

sup j,~h o , ~ h , , ,  sup m,x If ~ x  ,,h~,,~,O,~h~x, I 
0 

= m a x  
x 

2~4, rr 
n '  lI 
n '  

+ 2~-,... t3 + 2~-) /3 n ' 

2rr . 2rr ] 

n ' ' h *.(y)dy 

2r fl + - - , . . . , f l  + ) 

2 rr . . .  2 rr 
n 

2,n. 

=maxlf  ~x-,,h:~,,d,r="~:"~ 
0 

We have here  used the fact that fg~4,(fl + ~rj/n - y)h*~(y)dy = 0, j = 1 , . - . , 2 n .  

To  comple te  the proof  of T h e o r e m  3.1, we need the following result. 
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Propos i t ion  3.3. d2.(~| > Ilf-II~- 

The proof of Proposition 3.3 makes critical use of the following lemma. 

L e m m a  3.3 .  For each ~ E "~2,, set [e(x) = f~"ck(x - y)h~(y)dy. Then, 

(3.10) min IIY, I1| = Ilf: II-. 

Proof .  Since f * (x  + 7r/n) = - f * ( x ) ,  f * ( x )  achieves its norm in L| 27r], 2n 

times, alternately. That is, there exists a 3' such that 

(- I)~/* (y + ~-J) = Hf*I,., i = 1,-- -,2n. 

Assume ~r E~=2,, and Ilf~ll.<llf*.ll=. Thus f * (x  +a)+--re(x)  has at least 2n sign 

changes in [0,2~r), i.e., S j ( f * ( x  + ~)+-[e(x))>= 2n, for each a and each choice of 
-4- 

Now, 

21r 

f * ( x  + a ) + - f , ( x )  = f c h ( x - y ) [ h * ( y - a ) + - h , ( Y ) l d y .  
o 

Since 4' is CVD2., it therefore follows that ST(h *(y - a )  -+ he(y)) _-> 2n for each a 

and each choice of -+. We now obtain a contradiction of Lemma 3.1 as in 
Proposition 3.1. 

P r o o f  of Propos i t ion  3.3.  To prove Proposition 3.3, we must prove that 

given any 2n-dimensional subspace X2., there exists an f E ~= for which 

mins~x~.llf- g II =--> IIf,lI| 
Let  S2, = {t: t = (ta, "" ", t2.+1), El=a2"+1 t~=2 2zr}. For each t E S2., let ~(t  ) E ~2. be 

defined by ~0(t)=0,  and ~:~(t)=Ei=l' tj,2 i = l , - - . , 2 n + l .  Thus s%(t)=0=<~5,(t)_- < 

�9 " <= ~2.(t) <= ~2.+1(t) = 2~-. Set h~(,)(x) = sgn t,, 6-~(t) -- x < sc~(t), i = 1, . .  -, 2n + 1. 

Since 2n + 1 is odd, either h~(,)(x) or - he(,)(x) is equal to some h,  where lq E ~=2. 

for each t E $2,. 

The idea of the proof of Proposition 3.3 is to consider, for each t E S2., the best 

approximation to c~he(,) from X2. and to show that there exists a t* E $2. for which 

the best approximation is the zero function. An application of Lemma 3.3 would 

then prove the proposition. A slight difficulty arises due to the fact that the best 

L| from X2, is not necessarily unique. To circumvent this difficulty 

we consider the best LP-approximation and let p 1' oo. 
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The idea of this proof is to be found in [8]. Let 1 < p < ~, and Xz, = span {g,}~. 

For each t ~ $2,, let E~ ,  a,(t)g~(x) be the best L~-approximation to f~ch(x-  
y)h~o~(y)dy from X2,. The  mapping A(t) = (a~(t) ,-- . ,  a:~(t)) is a continuous odd 

mapping of $2, into R 2". By the Borsuk Antipodensatz (see e.g. [9]) there exists a 

t * E  $2. for which a~(t*)= 0, i = 1 , . . . , 2 n .  Thus 

sup inf [If -  g lip => min IIf~ll~- 
f E ~ ' ~  g E X 2 n  ~ E ~'~2n 

Letting p 1' ~, and since the set {f~: ~ E E2n} is compact, we obtain 

snp i f/lf-glI = > m i ,  ll[,ll . 

From Lemma 3.3, min~_=:, lib [[| = IIf*~ll~, and thus the proposition and the theorem 

are proven. 

w n - w i d t h s  of  ~r~(H) in L ~ 

It seems to some extent strange, if we have at our disposal a 2n - 1 dimensional 

subspace T,-1 which is optimal for dz,-~(5(~) and d 2 , ( ~ ) ,  that we should concern 

ourselves with an optimal 2n-dimensional subspace {th(x - 7rk/n)}~L~. One of the 

reasons for this is historical and this is discussed to some extent in Section 7. 

Another  reason is that this latter subspace is reasonable, is fairly easy to work with, 

and it is often advantageous to realize that it is optimal. Moreover,  in this section, 

we see that perturbations of this subspace remain optimal under certain perturba- 

tions of ~ ,  where d2n-1 and d2. are no longer equal. 

Let H ( y )  be a continuous, positive function. (Both these conditions may be 

considerably weakened.) Let 

2 ~  

0 

In this section we prove the following theorem. 

T h e o r e m  4.1 .  Let the assumptions and notation of Section 3 hold. Then, 
(1) The minimum in 

(4.1) 

2~r 

mi l f 
0 
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is attained by a ~* @ =-2. for which ~:* = ( ~ ' , . . - , ~ : 2 . ) ,  where 0 = s ~  < c* < s z < ' " <  ~* 

~ .  < 2rr, i.e., by a ~* in the interior of EZ,. 

(2) 

2xr 

0 

(3) S* .  = span {~b(x - ~*)}~"_-1 is an optimal subspace for d2.(3{~(H)), and interpo- 
lation from S*,  to any function in Yf~(H) at the zero of f * ( x ) =  

2~  X fo 4)( - y)h  ~(y )H (y )dy is an optimal linear method of approximation. 
(4) d2._,(~(H))>= d~.(~(H)), with equality iff H ( y ) =  H, i.e., H ( y )  is a con- 

stant. 

Let  

~ 2 . ( 7 / ) = { g : g ~ 2 , , ~ = r /  for  some i}. 

The  proof  of T h e o r e m  4.1 relies upon  the following proposi t ions.  

Proposition 4 .1 .  Given n E [0, 2~-), there exists a ~*(71) ~ =-2. (71) satisfying 
(a) SU(h~.(,)) = 2n, 

(b) The function f*~(x) = f ~  eb (x - y)h~.(,)(y ) H ( y  )dy has 2n points of equioscil- 
lation. 

Proof. Fix r/ and let S2.-x = {t: t = (tl, �9 " " ,  t 2 n ) ,  "~j=12" tj2 = 27r}. Set ~l(r/; t)  = ,/, 
i 2 and ~,+1(~/; t ) = ' q  +Ei=~t j ,  i = 1 , . - . , 2 n .  Thus  g (7 / )E .~2 , ( r / ) .  As  previously,  let 

h~(,;,)(x) = sgn t,, sc~(r/; t)  =< x < ~,+i(~/; t), i = 1 , . . . ,  2n. Let  Y2.-1 be any 2n - 1 

dimensional  T-sys tem on [0,2~r]. (We may, for example ,  choose Y2._x= 

span {1, x, - - -, x2"-z}.) By the Borsuk Ant ipodensa tz  and the  arguments  of the  

previous section, we see that there  exists a t * E  $2,-~, for  which the best 

L|  to 

2 ~  

f ~b(x - y)h  
0 

e(~ ;,',(Y ) H ( y  )dy = f*.,(x) 

f rom Yz.-1 is zero.  (In the situation cons idered  herein it is not  necessary,  as in the 

previous section, to al ter  the L = norm to a strictly convex norm since the best 

L%approx imat ion  f rom Y2.-1 is unique.)  Since Y2.-1 is a T-sys tem on [0, 2~-], the 

er ror  function necessarily equioscillates at 2n points. Thus  f* (x)  necessarily 

equioscillates at 2n points on [0,27r]. Since 2n is even it follows that f*(x)  
necessarily equioscillates at 2n points in [0, 27r), and part (b) of the proposi t ion is 
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proven. Let ~:*(r/)= st(n; t*). Since f*(x) equioscillates at 2n points on [0, 2rr), 
S2(f*)-> 2n. Part (a) of the proposition is a direct consequence of the CVDz. 

property of ~ and the fact that S~(hv~,))<= 2n since ~*07)E-=2.(rt) .  

P r o p o s i t i o n  4 . 2 .  

2 ~  2 ~  

min f q~(x-y)hdy)H(y)dy = f d)(x 
0 0 

- y ) h , . ( ~ , ( y  ) H ( y ) d y  = = [If* I1~. 

The proof of Proposition 4.2 is totally analogous to the proof of Lemma 3.3. 

P r o o f  of  T h e o r e m  4.1.  Propositions 4.1 and 4.2 immediately imply Theorem 

4.1, Part 1. Let r/* be such that min, llf*H~ is attained and let f*(x) = f*.(x),  and 
�9 = ~:*(7/*). Thus, 

2 ~  2 ~  

~'~-~.ll f 4)(x-y)h'(y'H(y)dyl}| f (b(x-y)hv(y)H(y'dyl|174 
o o 

Now, by the method of proof of Proposition 3.3, it is readily shown that 

2 ~  

d2.(X=(H)) > min I f  
o 

ff)(x - y)h,(y)H(y)dy ]~ = Ill* I]~, 

and also that for each r I E [0,2~'), 

2 ~  

d2._,(X=(H))--> ,~-=2.,.,,min f 4)(x - y)h~(y)H(y)dy ~ = ]]f*]]=. 
o 

Therefore, 

d2.-,(Yg~(H)) > max fir*I[=, while d2.(X| >= min ]lf*.]l~. 

The remaining portions of Theorem 4.1 will therefore ensue if we can show that 

62, (YL(H)) _-< [If* [[~ and that interpolation to f E Yg~(H)from S*2, at the zeros of 
f*(x) is indeed optimal. The proof of this fact is totally analogous to the proof of 
the corresponding result in Section 3. 
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w 2 n - w i d t h s  o f  ~ ( H )  in L p 

The preceding analysis need not only be restricted to a consideration of 

d,(~f~; L ~) or d . ( ~ ( H ) ;  L~). As we shall soon see, we have effectively laid the 

groundwork for the consideration of d 2 , ( ~ ( H ) ;  L p) for every p E [1, oo]. In fact 

the proof of the following theorem has been almost completely given in the 

preceding sections. 

T h e o r e m  5.1 .  Let the assumptions and notation of Section 3 hold. Let 

1 <-p < % p fixed. Then, 

I. The minimum in 

21r 

 51, minll f ll p 
o 

is attained by a ~*C=-2, for which ~:* = (~*,-. . ,~:*~), where 0 _ - < ~ * < ~ : ~ . . . <  

~*,~ <27r i.e., by a ~* in the interior of =-2,. 

2w 

II. 

0 

III. S~, = span{4,(x -~:*)}~--"1 is an optimal subspace for d2,(Yg| LP), and 

interpolation from S~. to any function in 5g~(H) at the 2n zeros of f * ( x ) =  

f ~  4)(x - y )h~ . ( y )H(y )dy  is an optimal linear method of approximation. 
IV. dz,_,(YC| L p) -> d 2 . ( ~ ( H ) ;  L ~) and the inequality is strict if H(y )  is not 

a constant. 

P r o o f .  The proof of this theorem follows from the proof of Theorem 4.1 if we 

can prove part I of the theorem, i.e., ~* is in the interior of =-2,, and also that f*(x)  
has 2n zeros. 

A compactness argument shows that since N2n is closed, the minimum in (5.1) is 

attained. Assume that ~:*~ =-2n attains this minimum, with ~:*= (seT, .. ",~:*k), 

where 0 _-< ~:T < �9 �9 �9 < ~:*k < 2rr, for some k = 0, 1,- �9 n. A simple perturbation 

argument shows that since ~* is optimal, 

2 ~  2~r 

f lf 
(5.2) 

sgn(f 4,(x y)h, . (y)H(y)dy)rb(x  * * - - ~ , ) H ( ~  , ) d x  = O, 

o 

i = 1 , - . . , 2k .  
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It then follows f rom the fact that { ~ ( x -  , 2k ,)},=t is a weak Tchebycheff  system on 

[0,27r) that S;(f~=ch(x - y)hg.(y)H(y)dy)>-_ 2k. Since 4~(x - y)  is CVD2,, n _-> k, 

and S~(h~.) = 2k, we have S~(f~=&(x - y)h~.(y)H(y)dy)<=2k.  Thus  
- 2* r  X Sc(f,, oh( - y )he . ( y )H(y )dy )  = 2k, and it remains to prove that k = n. 

Assume that k < n. For  e sufficiently small and for each ~ {SOl *, .- . ,~:2k}, we 

introduce c* ~ -=2, which aside from the knots  ~r ~:*~ has the addit ional two 

knots  s c - e and ~: + e. Since ~:~ is admissable in (5.1) and ~* with e = 0 is optimal,  it 

follows as in (5.2) that 
2 ~  2 ~  

0 0 

(5.3) 
2 ~  

t~ 

= 0 .  

The  fact that (5.3) holds for every ~ ~ [0, 2rr) immediately leads to a contradict ion.  

Thus k = n and T h e o r e m  5.1 follows. Note  that the claim of T h e o r e m  5.1, IV, is 

ra ther  weak. Even in the case where H ( y )  is a constant  function,  nothing is known 

concerning d2.-~(Y{~; L P). 
However ,  if H ( y )  is a constant  (we shall assume H ( y ) = - 1 )  then more  can be 

proven concerning the optimal subspace S*,.  

T h e o r e m  5 .2 .  Let the previous assumptions obtain, H ( y )  -= 1, and p E [1, ~). 

Then 

, ,  

It thus follows f rom T he o re m  5.1 that S* ,  = span {4,(x - k~/n)}~"_-i is an opt imal  

subspace for d2,(Y/~; L~'), and the analogous  result holds for 62,(Yg=; LP). 

The proof  of T h e o r e m  5.2 utilizes certain technical details. We  see little point  in 

entering into an analysis of these details. Instead,  we provide a sketch thereof.  

Our  problem is one  of  zero counting. As  defined in this paper,  4~ is CVD2,  which 

implies that S,.(f) < Sc(h)  if S2(h) <-_ 2n and f ( x )  = f~'ch(x - y)h  (y)dy.  Let f be a 

cont inuous  periodic function of period 2~'. Let  S~(f) denote  the n u m b e r  of zeros of 

f where sign changes are counted  once and zeros which are not sign changes are 

counted twice (as if they were double  zeros). If 4~ is CVD2,  and 4~ is SSC2~.1, 

l = 0, l, �9 �9 -, n (see Definition 2.2), then S~(f) ~ S2(h ), if S2(h ) ~ 2n, where  f and h 

are related as above.  It is this latter p roper ty  which we wish to hold for  th, i.e., that  

S~(f) <= S ; (h )  provided S 2 ( h ) ~  2n. We shall assume hencefor th  that 4) has the 

above proper ty  by uniformly approximat ing our  kernel 4' by kernels with the 

desired property.  One  method  of approximat ion  is by smooth ing  and it is the details 
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of this process  which we omit .  For  kernels  of the above  form we shall p rove  the 

following result. 

T h e o r e m  5 .3 .  

satisfies 

(5.4) 

A s s u m e  that ~ = ( ~ , , . . . , ~ . 2 , )  with 0 < - ~ , < ~ 2 . . .  <~2,  <2rr  

2 ~  2 ~  

f lf 
f) 0 

2~  

sgn(  
0 

i =  1 , . . - , 2 n  

for some p E [1,or Then ~ + , -  ~ = 7r/n, i = 1 , . . . , 2 n  (where ~:2,+~ = c + 27r). 

T h e o r e m  5.3 states that  on the basis of (5.2), the unique solut ion of (5.1) (up to 

translat ion) is the vec tor  ~ with equally spaced knots.  If q~ is s imply CVD2,, and 

does not possess the  addit ional  p roper t i es  a ssumed  above,  then by approx imat ing  

q~, we obtain the result ,  without  uniqueness .  Thus  T h e o r e m  5.2 is proven.  O u r  p roof  

of T h e o r e m s  5.2 and 5.3 follows the me thod  of approach  of Z e n s y k b a e v  [15]. 

P r o o f  of  T h e o r e m  5 .3 .  Due  to the t ranslat ion invar iance p rope r ty  of 3'{~, we 

may assume that  the ~ in the inter ior  of ,~2, which satisfies (5.4) is such that 

E1 = 0 < %E 2 < ' "  " < ~2n  < 2~-, and 6 = ~2  - E l  = mini=~ .2, ~:i+j - ~, where  ~:2,+~ = 27r. 

Le t  f ( x )  = f~,~ ck(x - y ) h , ( y ) d y ,  and F ( y )  = f ~ l f ( x ) [  p 'sgn ( f (x) )  ck(x - y)dx.  

Thus  f rom (5.4), F(~,) = 0, i = l , . . . ,  2n and it is in fact (see the p roof  of T h e o r e m  

5.1) easily seen that  these 2n zeros of F are sign changes and F has no addit ional  

zeros. 

Let  g ( x )  = fz~q~(x - y ) h , ( y  + g)dy.  F r o m  L e m m a  3.1, S ~ ( h , ( y ) +  h , (y  + 6))_-  < 

2(n - 1). Thus  S ~ ( f ( x ) + g ( x ) ) < = 2 ( n  - 1). Since s g n ( a  + b ) =  

sgn (I a Ip-lsgn a + I b I p- '  sgn b) for a, b real and 1 < p < ~, it the re fo re  follows that 

S c ( I f ( x ) I p - l s g n f ( x ) + l g ( x ) l  P ' s g n g ( x ) ) < = 2 ( n - 1 )  for any l _ - < p < ~ .  Thus,  

S~+(F(y)+ G ( y ) ) = < 2 ( n  - 1), where  G ( y )  = f ~ l g ( x ) l p - l s g n ( g ( x ) ) c h ( x  - y )dx .  A 

simple change  of var iable  a rgumen t  shows that G ( y ) = F ( y + 8 )  whence 

S~+(F(y) + F ( y  + 6)) ~ 2(n - 1). 

Now F(y  + 6 ) v a n i s h e s  at ~:~.~- ~c2, i =  1 , . . . , 2 n .  and ~:~ _-< ~:,,-~_~_-< ~+,. Since 

( -  1) ~ E F ( y ) > 0 ,  ~, < y < s i = 1,. �9 . ,2n,  where  ~2,., = 27r and e = -+ 1, fixed, 

therefore  ( -  1)~e(F(~C,)+ F(~, + 6))_->0, i = 1 , . . . , 2n .  Hence  S '~ (F(y)+  F (y  + 6))_- > _ 

2n, a contradic t ion unless F ( y ) ~  - F ( y  + 6). The  t heo rem follows. 

w n - w i d t h s  of  Y{. in L j 

In this section we concern ourselves  with 



PERIODIC FUNCTIONS 227 

2vr 

t,,(x, f 
0 

and especially NL and its closure in Ll[0,2"n '] ,  ~)~'1 : { f :  f ( x )  = f 2 r (~ I (X  -- y)d~ (y), 

I1~ II--<1}, where ]l~t ]1 = total variation of Ix on [0,2~-). We shall compute the 

n-widths of Ne, 1 _-<p =<~ and ~l  as subsets of L~[0,2~-]. 

Our method of proof is intimately connected with the duality between L ~ and 

L q, for 1/p + 1/q = 1 and the effective computation of what is referred to as the 

n-width, in the sense of Gel'fand, of Yt'= as a subset of Lq[0,27r], 1-<q <=co 

Before stating the result, we recall from Section 3 that f*.(x)= 

f~'~4)(x - y)h *(y)dy, where h *(y) is the step function with 2n changes of sign from 

- 1  to 1 at equally spaced points. 

, 

T h e o r e m  6.1.  With the above notation and under the assumptions of Section 

(I) 4(5r{,; L ' )  = d,(~l; L ' )  = 8j(2/~; L ' )  = r L ' )  = ]]f*lb for j = 2n - 1,2n. 

(II) d2o(~r L = ~2o(Jr L ' ) =  IIf*ll., for 1 <=p <=o: where 1/p + 1/q = 1. 

Furthermore, 
(A) T.-1 is an optimal subspace for d:. ~(Y(,; L ~) (and d2.- ,(~, ;  L ' ) )  and 

P2.- lh(x)  = f ~  t*_~(x - y)h (y)dy is an optimal linear map for 82o-~(5'{~; L '), where 

t*_~ (x) is the best L Lapproximation to &(x)  from T._~. 
(B) S*.  = span { 6 ( x -  rriln)}~"-, is an optimal subspace for d2,(~{e; L ~) and 

interpolation from S~.  to f E ~[p at [3 + rri/n, i = 1,." .,2n, the zeros of f*(x) ,  is an 

optimal linear map for 82.(~'/e; L~). 

P r o o f .  The proof is an application of the extremal properties of f* (x )  which 

were proven in Sections 3 and 5. 

f ,  t~ l(x y )h(y )dy .  Thus, For h E L'[0,2zr],  let P2.-~h(x)= ~ * - 

2~- 2w 

J f ,:-l(x-,,h(,,d, 1 
jlhlll---< 1 

0 0 

2 ~  

 suppjf Ilhlh~l 
o 

[6(x  - y ) -  t*_,(x - y) ]h(y)dy  , 

2 ~  2 ~  

= sup sup f f [ c k ( x - y ) - t * _ , ( x - y ) ] h ( y ) g ( x ) d y d x  

2 ~  

o 
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The last inequali ty follows from Section 3. 

Similarly 62, ,(X,; L ' )  =< IIf*ll| 
We also wish to show that the interpolation as defined in (B) is also optimal. Let 

Q2, denote  the linear map from LP[0 ,2~]  to S~,  which interpolates to 

fi 'ch(x - y ) h ( y ) d y  at /3 + 7ri/n, i = 1 , . . - , 2 n .  Thus, 

2 ~  

sup If   x''h "d'O2 hll 
lib lip ~ 1 

0 

= sup 
lib lip ~ I 

2.n. 

r; 
0 

( x , r  t3 + 
4' Z 

Y' n '  

4' 

2n-.  
n '  �9 ",13 + 2~" 

2rr 
- - ,  �9 �9 , 2 ~ "  
7/" 

(/3 + n , / 3  + 2----~ �9 n '  �9 .,/3 + 2rr 

2rr . . . 2n" 
P~ n '  ' 

) 
h (y)dy [, 

) 

= sup sup 

2 ~  2 ~  

4'(x,/3+y, 

4, 

n ' / 3 +  . . . .  n ' , / 3+2n"  

7r 2--E �9 �9 �9 27r 
n '  n '  ' 

_~ +2~-,.. ) 
13 + n'/3 n .,/3 + 2rr 

-rr 2_____~,... 2n" ] 
n '  n ' 

h (y)g (x)dydx 

2 ~  

0 

x,/3 +-~ 
/ I '  

77" 

Y' n'  

3+2~'n ' " " 3 + 2 ~ ' )  

2___~ . . .  27r 

g(x )dx I q 
/3 + 2---~n , . . . , / 3  + 2'n" ) 

2_~ . . .  2n" 
4, 

/3+ n ,  

n '  

where 1/p + 1/q = 1. It is now a simple matter,  as in Section 3, to prove that this 

quantity is bounded above by ]lf*l[q. 
Thus it remains to show that ]If* IIq is a lower bound for d2, (Yfp ; L '). The proof is 

a fairly straightforward consequence of the extremal properties of f*(x) and the 

Hobby-Rice  theorem. The Hobby-Rice  theorem (which may be seen to be an 

application of the Borsuk Antipodensatz ,  see [10]) states that given any 2n 
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functions {v,}~"_-i in L'[0,27r],  there exists a ~:@E2, for which (v, ,h~)=0,  i =  

1 , -  �9 " , 2 n .  

Let X2. be any 2n-dimensional subspace of L ' [0 ,2rr] .  By a standard duality 
theorem of best approximation 

2 ~  

lib ]lp ~ 1 g E : X 2  n 1 
0 

2~r 2 w  

IIhllp<=l I[{[J=~ 1 
f •  ,3 0 

2 ~  

:sup IIS,,x 
II . f l l~ 1 q" 
f • 1) 

By the Hobby-Rice  theorem there exists a ~ E-=2. for which h~ • X2,. Thus, 

2 ~  

sup t l llhl[v ~ 1  g ~ X 2 .  1 
0 

2 ~  

 min f S   h' x'dxl ~E--=2.  q 
0 

= IIf*.ll , 

This last equality is a consequence of the extremal properties of f*.  Since the right 

hand side is independent of X2,, d2, (~p; L 1) => II f*  [[q, and the theorem is proven. 

R e m a r k  6.1.  Here  and in Section 3 we have shown that for any 4, within our 

class, To_~ is an optimal 2n - I dimensional subspace for the 2 n  - 1 and 2 n w i d t h s  of 

5r{~ relative to L ~, and ~1 relative to L t, This same fact is also true for the 2n - 1 

and 2n widths of ~2 relative to L 2. The proof of this fact may be found in Melkman 

and Micchelli [6] and is dependent upon the  fact that T,-1 is also the span of the 

2n - 1 eigenfunctions associated with the largest 2n - 1 eigenvalues of the positive 

semi-definite kernel tha'~b(x - y) = f ~ q ~ ( z  - x ) q ~ ( z  - y ) d z .  

If, as in Section 2, ~b(x) admits the Fourier series representation 

4 , ( x ) -  a,,e , 

then e '~ and e - '~ are eigenfunctions of ~bT~b(x) with corresponding eigenvalues 

47r2[ a, [2, n = 1, 2, .,.., and the constant function is an eigenfunction of multiplicity 



230 A. PINKUS 

one with e igenva lue  47r~a,]. It follows f rom T h e o r e m  2.2 that  T,_I is the span of the 

2n - 1 e igenfunct ions  with largest e igenvalues .  

It is also p roven  in [6], that span {~b (x -  7rk/n)}~% is an op t imal  subspace  for  

dz.(ff{2; L2), and d2,, ~(~//2.; L 2) = d2n( ,~(2 ;  L2). 

w Sobolev spaces 

The  preceding sections were concerned  with the class of per iodic  funct ions of the 

form f ( x )  = f~ch(x  - y)h(y)dy,  where  &(x)  is CVD2,.  An impor t an t  and related 

class of funct ions is the Sobolev space  

I'~r 2 ~ ]  = --pl'rr162 = {f: f l ' - " abs ,  cont. ,  Ilf")ll, < oo, f per iodic  of  per iod 2rr}. 

This class of per iodic  functions is re la ted  to our  previous  class Ydp in that  any 

f ~ ff'~') may be wri t ten in the fo rm 

2 ~  

f ( x )  = ao+ 17r f Br(x - t)ff"(t)dt, 
o 

with the st ipulat ion that  lift')lip < % and f~,=fl~ = 0 (a,, is an arbi t rary  constant) .  

The  function ( k e r n e l ) / 3 , ( x )  is known bo th  as the Bernouil l i  monosp l ine  and the 

Dirichlet  kernel .  O n e  reason for these two names  is that  on the one  hand 

/3~(x) = ~ cos r = 1 , 2 , . . .  
k~l k" ' 

while on the o the r  hand  it is not difficult to p rove  that  /3r(x) is, for  x ~ [0 ,2~] ,  a 

polynomial  of degree  r. Essentially ( there is a p rob l em of un i fo rm convergence  of 

the above  infinite series if r = 1), if we set /3o(X) = - 2  ~, then /3 ' , (x)=/3r-~(x) ,  

/3r(x) = ( -  1)r/3r(27r - x ) ,  r = 1 , 2 , "  ", and/3~(0) = 0, r = 3 , 5 , 7 , . . . .  T h u s / 3 , ( x )  on 

[0, 2 x ]  is what  is general ly  refer red  to as the Bernouill i  po lynomia l  Br(x), suitably 

normal ized.  /3,(x) is the 27r-periodic extension of B,(x)  and is known as the 

Bernouill i  monospl ine .  Br(x) is of ten deno ted  by Dr(x). 
The  Bernouil l i  monosp l ine  /3r(X) is not CVD2,  for any n. In addit ion the class of 

function ff/t~ is not simply the image  of the rth der ivat ive  under  convolut ion  by �9 , p 

/3,(x). However ,  the me thods  and ideas of the previous  sections may,  to a great  

extent ,  be appl ied  largely due to the fol lowing result. 

Proposit ion 7 .1 .  Let 0 :< t~ < - �9 �9 < tk < 2:r, k odd. Then 
{1,/3r(x - t 2 ) - / 3 r ( x  - t,), /3r(x - t3) - / 3 r ( x  - t2),"" ",/3r(x - tk) - / 3 , ( x  - tk O} con- 
stitutes a weak Tchebycheff (WT)  system of order k on [0,27r). 
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R e m a r k  7 .1 .  The  above  proposi t ion is equivalent  to the fact that A o +  

E ~ = ~ G B , ( x - t ~ ) e x h i b i t s a t m o s t k - l s i g n c h a n g e s o n [ 0 , 2 7 r ] ' f f Y , ~ = ~ k  C ~ = 0 a n d k i s  

odd. 

P r o o f .  Let  f ( x )  = A o +  E L ,  C B , ( x  - t~), k odd,  E~=, G = 0. Assume that f ( x )  

has at least k sign changes on [0,2rr] .  Since f ( x )  is periodic of per iod 2zr, 

/ ~ ; ( x - t i ) = / ~ ,  , ( x - t ~ ) ,  and f E C  '-~, it follows that E ~ = ~ G / ~ ( x - t , )  (or 

A, ,+ E~=, CJ3dx - t~) in the case r = 1) has at least k sign changes on [0,27r]. Now, 

B~(x) = (rr - x) /2  for x @ [0, 27r1. Thus, B~(x - t~) = ( -  rr + t~ - x ) /2  + zr(x - ti) ~ 

on [0,27r], where  x~+ ~ = 1 if x _-> 0, and 0 otherwise.  Since E~=~ G = 0, we obtain for 

r__>2 

f" ')(x) = ~ G/~(x  - ti) 
i = 1  

= . - 1 r + t , - x  +~r C , ( x - t ~ )  ~ 
i = 1  2 i = l  

1 Gtl + ~r G (x ti)~ 
i = 1  i = 1  

1 k Since f " - ' ( x ) =  ~Ei=, Gtl for  x E [0, t,) and (tk, 2Ir] (i.e., a sign change does not 

occur  at 0 ~-2n-) it is necessary,  in order  that f ~ ' - ' ( x )  possess k sign changes, that 

f ( ' - ' ( x )  change sign at each t, i = 1 , . . . ,  k. H o w e v e r  k is odd and f t ' - ' ( x )  has the 

same sign on [0, tO and (tk, 2~']. Thus f~r-,) cannot  have k sign changes on [0, 2rr]. 

This  contradict ion proves the proposi t ion.  If r = 1 then the same analysis holds. 

Let  f * ( x )  = ( l h r ) f ~ " B . ( x  - t)h *(t)dt, where  h *(t) is as defined in Section 3, i.e., 

h* ( t )  = ( -  1)', for  t E [ i z r / n , ( i + l ) T r / n ) ,  i = 0 , 1 , . - . , 2 n -  1. Note  that 
, - . 

fo h , ( t ) d t  = 0. Let  deno te  the unit ball in W~ '), i.e., /3~')= {f: f E Wtf,  

IIf"[[p <= 1}. It is well-known that 

= K , = 4 ~ '  ( - l f  ~'*'' 
IIf*. [I- 

rr ~=~ (2v + 1) '+'' 

We are interested in proving the following theorems.  

T h e o r e m  7 .1 .  With the above assumptions and notation 

d2.-,(/3~); L ~) = d2.(B~';  L ~) = 62 . - , ( /~) ;  L | = 32. (B~); L =) = llf*ll=- 

Furthermore, 

(I) T. ~ is an optimal subspace for d2._,(/3~); L~), and  
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2 ~  2 ~  11 
Pz,- i f (x)  = ~ f ( t )d t  + --Tr 

0 0 

t*_l(x - t)f<"(t)dt 

is an optimal linear map for 62, .(/3~; L~), where t*-l(x) is the best LL  

approximation to B , (x )  on [0,2rr}. 

(II) Sz*, = {A + ~;~1C~B,(x - rri/n): E~'-I C~ = 0} is a 2n-dimensional optimal 

subspace for d2,( /3~;  L~), and interpolation to f E B ~  at the zeros o f f*  from S'~, is 

an optimal linear map. 

T h e o r e m  7 .2 .  With the above assumptions and notation 

d2. (/3~); L p) = 62. (/3~'; L P) = Ill*. lip 

and part (II) of Theorem 7.1 applies, 1. <= p < oo. 

T h e o r e m  7 .3 .  With the above assumptions and notation, 

d2._l(/~r'; L ~) = d2. (/3~'*; L ' )  = 6z._1(/3~'; L I) = t~2. (/3~'~; Z ' )  = }}f*lt~ 

and parts (I) and (II) of Theorem 7.1 hold with the obvious changes. 

T h e o r e m  7 .4 .  With the above assumptions and notation 

d crib'). ,4 t*5~,). 1)= 2.-,t~-p , L ' )  = -2. t o .  , L 62. (B~"; L ' )  = llf* 11. 

for 1 <= p <= oo, where 1/p + 1/q = 1. Furthermore 

(I) 7"._, is an optimal subspace for d2._lt.-..t5~'~', L') .  

(II) Part (II) of Theorem 7.1 obtains with the obvious changes. 

R e m a r k  7 .2 .  The following results were known. Tichomirov [14] had proved 

that 

where C represents the space of 2~-per iodic  continuous functions on [0, 2~r). This 

condition, as was noted earlier, is unnecessary. The result d~._~(/3~~ L ~) = IIf*ll| 

had been proven independent ly by Makovoz [4] and Subbotin [12]. The result 
d2,-~(/3~'; L 1) = f[f*[ll may be found in Makovoz [51. 

P r o o f  of  T h e o r e m s  7 . 1 - 7 . 4 .  All the results of Theorems 7.1-7.4 except 

part (I) of Theorem 7.4 are analogues of results of Sections 3, 5, and 6. Part (I) of 
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T h e o r e m  7.4 depends  on the fact, due to Taikov [13], that IIf*Hq represents  an 

upper  bound  on the degree  of approximat ion  of /~r~ by t r igonometr ic  polynomials  

of  degree  <_-n-  1, i.e., of  t~ T,_~, in the L ' norm.  

A proof  of the remaining upper  bounds  follows much the same pat tern as the 

proof  found in T ichomirov  [14]. The  method  of proof  given in Section 3 may also be 

modified in o rder  to obtain the upper  bounds.  

To  prove the optimali ty of the subspace T,- ,  in Theorems  7.1 and 7.3 one should 

note  that the or thogonal i ty  condit ion f~'ftr)(t)dt = 0 may be dropped.  The  proof  of  

S f ( B , -  t,_O<=2n for any t,_~ ~ T,_~ is a s tandard  Rolle 's  theorem argument .  

The  major  innovat ion here is the lower bound  argument .  

Let ~2, = {se: sc = (~:,, �9 �9 so2,), ~o = 0_-< ~:, ~ �9 - �9 =< ~:z. =< sG,+, = 2rr, 

Z~2~(- 1)~(~,.r- sr = 0}, and let he(x ) be defined, for  each ~ E ~z ,  as in Section 3, 

i.e., h e (x) = ( - 1) *, so, ~ x < ~:~+~, i = 0, 1 , . . . ,  2n. The condition 
2 n  i E~=0(-1)  (sc~+, - so,)= 0 is equivalent  to f~ 'he(x)dx = 0. The  lower bound  argu- 

ment  depends  upon the following analogue of L e m m a  3.3 and T h e o r e m  5.2. 

Proposition 7 .2 .  For each ~ E ~2,, set 

2r 

t f B~(x - t)he(t)dt. fe(x) = ' ~  
o 

Then for each p @ [1,~],  

min Ila + fe = IIf* ll . 

The proof  follows the same lines as the proof  of  Lemma 3.3 and T h e o r e m  5.2. 

The  details are somewhat  more  tedious. 

Let  X2, be any 2n-d imens iona l  subspace of LP[0, 2rr], 1 < p < ~. In order  that 

su=~.~ inf I I f - g l l p  <0% 
~ X 2 n  

it is necessary that X2. contains lhe constant  function. Thus  we may define a basis 

for X2,, X2, = span {g,, g,, . . ., g2,-,}, where go(x)=- 1. 
= = �9 . -, .~=~ t~ = Let $2, { t : t  (h, t2,+~) -~.+, 2 2rr}, and for each t ES2,,  define 

~:(t) E E : ,  by sG(t) = 0, sc,(t)= E~=, t~, j = 1 , . . . , 2 n  + 1. Thus,  0 = ~:,,(t) ~ ~,(t) = < 

- �9 �9 =< ~'2, (t)_-< ~::,+~(t) = 2rr. Define he~,~(x)=sgnt~, ~,- , ( t )<=x<~(t) ,  i=  
1 , 2 , . . . , 2 n  + 1. Now, let 5~2. be the subset of S: ,  de termined by t E $2. for which 

fg"he(,)(x)dx = 0, i.e., 

2 ~  

J h, ,,x,dx 0} 
0 
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$2. may be represented as the boundary of a bounded, open, symmetric neighbor- 

hood of 0 in R 2". Let A be the mapping of $2. to (aPl, ( t ) , . . . ,  a~._,( t ) ) ,  where a~( t )  

is the coefficient of g~(x), i =  1 , - . - , 2 n - 1 ,  in the best L~-approximat ion to 

( 1 / r  - t )h~ , ) ( t )d t  from X2.. Since 1 < p < 0% this mapping is well-defined, 

continuous, and odd. Thus by the Borsuk Antipodensatz there exists a t* E $2, for 

which a , ( t * ) = 0 ,  i = l , - . - , 2 n - 1 ,  i.e., the best approximation,  t o - a o " ( t * ) +  

( 1 / T r ) f ~ B , ( x  - t ) h , , . ) ( t ) d t  from X2. in L p is the zero function. For p = 1 and 

p = 0% we take limits as in Section 3. Thus the lower bound is proven for Theorems 

7.1 and 7.2. 

To obtain the lower bounds in Theorems  7.3 and 7.4, we utilize the duality 

between L" and L% 1/p + 1/q = 1. Let X 2 .  be any 2n-dimensional  subspace of 

L~[0,27r]. In order  that 

sup inf I I f - g l [ ,  < ~ ,  
feO~ "~ gex~. 

it is necessary that the constant function be in X2,,. Thus we may again assume that 

X2~ = span {1, ga, g2," �9 ", g2,-~}. Now 

2~ 

sup ,nf f t'h "'t   x'll 
2 ] th l lp~l  g E X 2 .  1 

f~=h ( t )d~ = 0 0 

2 w  2~" ' f! = sup sup - -  B . ( x  - t ) h ( t ) f ( x ) d t d x  
IIhllp<=l IffjG~ l 77" 

f2~h(t)dt=O [3-X2n 

2 ~  

=sup in, rf I f  all 
I l f l l =~  1 a E R  q" 
f J-X2n 0 

By the H o b b y - R i c e  theorem, there exists a ~ E ~2. such that h~ • X2.. This implies 

that f ~ h r  = 0, i.e, 6 • ~2. Therefore  

2~r 

sup ,rig ; t,h t,,t   x,Ip 
2 I l h l l p~  l g ~ X 2 .  ! 

fo~h (Odt =0 0 

2~ 

 inf in, l iar 
~ E  --~2n a E R  

0 

B , ( x  - t ) h , ( t ) d t  - aJl q 

-- II f*. flq. 

Thus d2.(B~p"; L ' )  > IIf.ll.. The theorem is proven. 
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