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For an arbitrary subset I of � and for a function f defined on I, the number of
zeros of f on I will be denoted by

ZI�f ��
In this paper we attempt to characterize all linear transformations T taking a linear
subspace W of C�I� into functions defined on J (I	 J ⊆ �) such that

ZI�f � = ZJ�Tf �
for all f ∈ W .  2002 Elsevier Science

1. INTRODUCTION

Let I and J be arbitrary subsets of �. Let F�J� denote the space of
(real-valued) functions defined on J, and let W be a linear subspace of
C�I�. In this paper we consider linear transformations T from W into F�J�
for which

ZI�f � = ZJ�Tf � (1.1)

for all f ∈ W , and we attempt to completely characterize such transforma-
tions. When we can say something positive, it transpires that T always has
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the specific form

�Tf ��y� = q�y�f �r�y��	 (1.2)

for all y ∈ J, where q ∈ F�J� does not vanish on J and r is a 1–1 map from
J onto I. That these conditions define a linear transformation T satisfying
(1.1) is readily checked. It is the converse claim which we will work to
verify.

We consider four main cases. If W = C�I� we prove (1.2) if I is compact
or if I is an interval (we conjecture that for W = C�I� Eq. (1.2) should hold
independent of I). When W = � (the space of all algebraic polynomials,
restricted to I), we prove that (1.2) holds for arbitrary I ⊆ �. If W = πN

(the space of algebraic polynomials of degree at most N), we show that
(1.2) always holds for arbitrary I if N is even. However, for N odd we have
only been able to prove this result if I is bounded above or below or if we
impose certain additional constraints. (Again we conjecture that this result
should always be valid.) We also consider certain subspaces W which are
somewhat different (containing complete Chebyshev systems of dimension
3) and look for a mechanism which enables us to verify (1.2) thereon.

Before proving these results, we point out that it is not true that for every
I	 J ⊆ �, subspace W of C�I�, and T satisfying (1.1) we must have T of the
form (1.2) for some q and r. As a simple example consider I = J = �0	 1�
and the space

W = span�1	 x	 �1/x� sin�1/x���
Note that

Z�0	 1���1/x� sin�1/x� + ax+ b� = ∞	

for every choice of a	 b ∈ �. Let h ∈ C�0	 1� have this same property; i.e.,

Z�0	 1��h�y� + ay + b� = ∞	

for every choice of a	 b ∈ �. Then the linear operator T given by T1 = 1,
Tx = y, and

T ��1/x� sin�1/x���y� = h�y�
satisfies (1.1), but is not of the desired form. Nevertheless, if T1 = 1, Tx =
y, and

Z�0	 1��f � = Z�0	 1��Tf �	
for all f ∈ C�0	 1�, then necessarily Tf = f .

The analytic problem we consider in this paper is related to the following
geometric problem: Consider two curves A and B in the plane, and assume



zero-preserving linear transformations 239

that the number of intersections of each straight line with A and B is the
same. Does this imply that A = B? If A and B are the graphs of two
continuous function f and g, with a common domain of definition I, we
can reformulate this problem as follows: Assume f	 g ∈ C�I� and

ZI�f �x� − �ax+ b�� = ZI�g�x� − �ax+ b��	
for all a	 b ∈ �. Does this imply that f = g? Defining the linear transfor-
mation T by T1 = 1, Tx = x, and Tf = g brings us back to our setting. (If
(1.2) holds then f = g.) For this geometric problem, the values ZI�f �x� −
�ax + b�� define what is known as the Crofton transform of f . For more
on this subject, see Fast [2], Richardson [7], Horwitz [3], and the references
therein.

We, however, were led to a consideration of this problem from a totally
different perspective. We were interested in the question of characterizing
linear transformations T � πn → πn, all n, for which

ZI�p� ≤ ZJ�Tp�
for all p ∈ �. This problem has a long history; see Carnicer et al. [1]. The
“equality” case seemed simple. But, as so often happens in mathematical
research, one thing led to another and the result is this paper.

2. SOME GENERAL RESULTS

In this paper we use three types of convexity. As our domain of definition
I need not be connected or compact; we formally define them so as to
prevent any misunderstanding.

Definition 2.1. Let f ∈ C�I�, where I is an arbitrary subset of �. We
say that f is convex on I if for each α ∈ I there exist constants a�α�	 b�α�
such that

f �x� − �a�α�x+ b�α�� ≥ 0	 (2.1)

for all x ∈ I, and in addition

f �α� − �a�α�α+ b�α�� = 0� (2.2)

f is said to be strictly convex on I if it is convex thereon and the equality
in (2.1) only holds for x = α. We say that f is uniformly convex on I if f
is strictly convex and if for each α ∈ I and δ > 0 there exists a constant
C�δ	 α� > 0 such that

f �x� − �a�α�x+ b�α�� ≥ C�δ	 α� (2.3)

for all x ∈ I for which �x− α� ≥ δ.
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For example, x2 is a strictly and uniformly convex function on every
I ⊆ �.

Our first result concerns the form of T when restricted to convex func-
tions if W contains the functions 1 and x.

Proposition 2.1. Let I	 J ⊆ �, and assume that W contains the functions
1, x and a function g strictly convex on I. Assume T is a linear transformation
from W to F�J� satisfying

ZI�f � = ZJ�Tf �
for all f ∈ W . Then there exists a q ∈ F�J� which does not vanish on J and
an r ∈ F�J� which is a bijection (1–1 onto map) from J to I, such that

�T1��y� = q�y�	 �Tx��y� = q�y�r�y�	
and

�Tf ��y� = q�y�f �r�y��	
for every convex f ∈ W .

Proof. Set q�y� = �T1��y�. Since ZI�1� = 0 we have ZJ�q� = 0. Thus
q ∈ F�J� and q does not vanish on J.

Set �Tx��y� = q�y�r�y�; i.e., let

r�y� = �Tx��y�
q�y� �

Since q does not vanish, the function r is well-defined. By assumption,

ZJ�r�y� − c� = ZJ�q�y�r�y� − cq�y�� = ZI�x− c� =
{

1	 c ∈ I,
0	 c /∈ I.

Thus r is also 1–1 and the range of r is all of I.
It remains to prove that

�Tf ��y� = q�y�f �r�y��	
for every convex f ∈ W . Since T is linear, it suffices to prove this fact for
strictly convex f . (We first prove this result for the strictly convex g and
then for f + g, which is also strictly convex for any convex f .)

For each α ∈ I, set

h�x�α� = f �x� − �a�α�x+ b�α��	
where a�α�	 b�α� are as in Definition 2.1. Let

p�y�α� = �Th�x�α���y��
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Thus

ZJ�p�y�α�� = ZI�h�x�α�� = 1	 (2.4)

for all α ∈ I. Furthermore, from (2.1) we have that for all c > 0,

0 = ZI�h�x�α� + c� = ZJ�p�y�α� + cq�y�� = ZJ

(
p�y�α�
q�y� + c

)
�

Thus p�y�α�/q�y� + c has no zero in J for all c > 0, which implies that

p�y�α�
q�y� ≥ 0

for all y ∈ J.
Set

v�y� = �Tf ��y��
Now

p�y�α� = �Th�x�α���y�
= T �f �x� − �a�α�x+ b�α����y�
= v�y� − �a�α�q�y�r�y� + b�α�q�y��
= v�y� − q�y�f �r�y�� + q�y��f �r�y�� − �a�α�r�y� + b�α����

Thus

0 ≤ p�y�α�
q�y� =

[
v�y�
q�y� − f �r�y��

]
+ h�r�y��α�� (2.5)

For y ∈ J, let α = r�y�. Substituting in the above it follows from (2.2)
that

v�y�
q�y� − f �r�y�� ≥ 0	 (2.6)

for all y ∈ J.
For each α ∈ I there exists a τ�α� ∈ J such that

p�τ�α��α� = 0�

This follows from (2.4). Substituting in (2.5) we have from (2.6) and (2.1)
that

p�τ�α��
q�τ�α�� − f �r�τ�α��� = 0

and

h�r�τ�α���α� = 0� (2.7)



242 carnicer, peña, and pinkus

Now r�τ�α�� ∈ I and we therefore know that (2.7) implies that r�τ�α�� = α
since f is strictly convex (see (2.2) and the definition of strict convexity).
As r is a 1–1 map from J onto I, it thus follows that as α ranges over all
of I, τ�α� ranges over all of J. Thus for each y ∈ J,

v�y�
q�y� − f �r�y�� = 0�

i.e.,

�Tf ��y� = v�y� = q�y�f �r�y���

We can use the linearity of T and the fact that it is of the desired form
on convex functions to prove the following result.

Theorem 2.2. Let I	 J ⊆ �, and let W be a linear subspace of C�I� con-
taining 1	 x, and a uniformly convex g. Assume T is a linear transformation
from W to F�J� satisfying

ZI�f � = ZJ�Tf �
for all f ∈ W . There exists a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a bijection from J to I such that for any f ∈ W which is
also bounded on I we have

�Tf ��y� = q�y�f �r�y���
Proof. The q and r are, of course, as given in Proposition 2.1; i.e., T1 =

q and Tx = qr. We use the method of proof of the well-known Bohman–
Korovkin Theorem, which may be found in the book by Korovkin [5].

Fix α ∈ I. Since f is continuous at α, given any ε > 0 there exists a δ > 0
such that if

�x− α� < δ	

then

�f �x� − f �α�� < ε�

We assume f is bounded on W and let M ≥ �f �x�� for all x ∈ I.
Let g ∈ W be uniformly convex and C�δ	 α� be as defined in (2.3) with

respect to g. Set

pu�x� = f �α� + ε+ 2M�g�x� − �a�α�x+ b�α���
C�δ	 α�
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and

p%�x� = f �α� − ε− 2M�g�x� − �a�α�x+ b�α���
C�δ	 α� �

We claim that pu�x� > f �x� > p%�x� for all x ∈ I. We prove only the first
inequality. The proof of the second inequality is totally analogous. (In fact,
we construct −p% with respect to −f in the same way as we construct pu

with respect to f .)
If x = α, then

pu�α� − f �α� = ε > 0�

If 0 < �x− α� < δ then �f �x� − f �α�� < ε, and

pu�x� − f �x� > 2M�g�x� − �a�α�x+ b�α���
C�δ	 α� > 0�

If �x − α� ≥ δ, then �f �x� − f �α�� ≤ 2M and �g�x� − �a�α�x + b�α��� ≥
C�δ	 α�. Thus

pu�x� − f �x� ≥ ε− 2M + 2M > 0�

Since pu�x� > f �x� for all x ∈ I we have

ZI�pu − f + c� = 0	

for all c ≥ 0. Thus

ZJ�Tpu − Tf + cq� = 0	

for all c ≥ 0. As q does not vanish on J, this implies that

�Tpu��y� − �Tf ��y�
q�y� > 0	

for every y ∈ J. Similarly,

�Tf ��y� − �Tp%��y�
q�y� > 0	

for every y ∈ J. Now from Proposition 2.1,

�Tpu��y� = q�y�pu�r�y��	
�Tp%��y� = q�y�p%�r�y���

Thus

pu�r�y�� >
�Tf ��y�
q�y� > p%�r�y��
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for all y ∈ J. As r is a 1–1 map from J onto I, there exists a z ∈ J such
that r�z� = α. Set y = z in the above to obtain

f �r�z�� + ε = pu�r�z�� >
�Tf ��z�
q�z� > p%�r�z�� = f �r�z�� − ε�

Thus ∣∣∣∣�Tf ��z�q�z� − f �r�z��
∣∣∣∣ < ε�

As the choice of ε > 0 was arbitrary,

�Tf ��z� = q�z�f �r�z���

Since r is a 1–1 map from J onto I, this equality is valid for every z ∈ J.

Remark. Once we identify q and r, we can define

�Sf ��x� = �Tf ��r−1�x��
q�r−1�x�� �

Note that for f ∈ C�I� we have �Tf ��y� = q�y�f �r�y�� if and only if
�Sf ��x� = f �x�. In Theorem 2.2, S is the identity on 1, x, and a uniformly
convex function. In addition, a property which we very essentially used
in the proof of Theorem 2.2 translates into the fact that S is a positive
linear operator. This is why the method of proof of the Bohman–Korovkin
Theorem applies. Nonetheless, it actually makes little difference if we work
with T or S. We find it more convenient to work with T .

If I is compact, then every continuous function on I is bounded. In addi-
tion, on a compact set every strictly convex function is uniformly convex.
We have, as a consequence of Theorem 2.2,

Corollary 2.3. Let I	 J ⊆ � and assume I is compact. Let W be any
linear subspace of C�I� containing 1	 x, and a strictly convex function. Assume
T is a linear transformation from W to F�J� satisfying

ZI�f � = ZJ�Tf �	

for all f ∈ W . There exists a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a bijection from J to I such that for every f ∈ W ,

�Tf ��y� = q�y�f �r�y���
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3. THE CASE W = C�I�

A special case of Corollary 2.3 is when W = C�I�. We formally state this.

Corollary 3.1. Let I	 J ⊆ � and assume I is compact. Assume T is a
linear transformation from C�I� to F�J� satisfying

ZI�f � = ZJ�Tf �

for all f ∈ C�I�. There exists a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a bijection from J to I such that for every f ∈ C�I�,

�Tf ��y� = q�y�f �r�y���

What if I is not compact? Since T is linear, we have, by Proposition 2.1,
the following result. (For n even, xn is convex. For n odd, xn can be written
as the difference of two easily defined convex functions in C��� and thus
in C�I�.)

Corollary 3.2. Let I	 J ⊆ �. Assume T is a linear transformation from
C�I� to F�J� satisfying

ZI�f � = ZJ�Tf �	

for all f ∈ C�I�. There exist a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a bijection from J to I such that

�Txn��y� = q�y�rn�y�	

for all n = 0	 1	 � � � .

The idea used in the proof of Theorem 2.2 can be applied to the case
where W = C�I� and I is any interval.

Theorem 3.3. Let I be an interval. Assume T is a linear transformation
from C�I� to F�J� satisfying

ZI�f � = ZJ�Tf �

for all f ∈ C�I�. Then there exists a q ∈ F�J� which does not vanish on J and
an r ∈ F�J� which is a bijection from J to I such that for every f ∈ C�I� we
have

�Tf ��y� = q�y�f �r�y���
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Proof. Our proof is based on the method of proof of Theorem 2.2.
Given any f ∈ C�I�, α ∈ I, and ε > 0, we will construct a convex pu ∈ C�I�
and a concave p% ∈ C�I� such that

pu�x� > f �x� > p%�x�	

for all x ∈ I, while

pu�α� = f �α� + ε	 p%�α� = f �α� − ε�

This is exactly what is needed in the proof of Theorem 2.2. Previously, we
had to take into consideration the demand that pu and p% be elements of
W . Here W = C�I�, so we have more freedom in our construction of pu

and p%.
We will explain how to construct pu. The construction of p% is analogous.

Let a < b be the endpoints of I and choose sequences �an�∞1 , �bn�∞1 such
that an strictly decreases to a while bn strictly increases to b. Assume a1 <
a0 = α = b0 < b1. (If α is an endpoint we alter things very slightly.) We
construct pu as follows: pu will be continuous; strictly decreasing for x < α;
strictly increasing for x > α; linear on each �bm−1	 bm� and �am	 am−1�;
m = 1	 2 � � �; convex; and will satisfy pu�x� > f �x� for all x ∈ I and pu�α� =
f �α� + ε. This is in fact easily accomplished. Assume, for example, that
pu has already been defined on �am	 bm� satisfying the above properties.
Thus pu is linear on �bm−1	 bm� with slope cm > 0 and p�bm� > f �bm�. On
�bm	 bm+1� the function f is continuous and thus bounded. We simply let
pu on �bm	 bm+1� be any linear function with slope cm+1 > cm (this gives
the convexity) which is continuous at bm and satisfies pu�x� > f �x� for all
x ∈ �bm	 bm+1�. A similar construction is done on �am+1	 am�. The remaining
details are left to the reader.

Remark. If I is the union of two disjoint open intervals, then it is not
true that every f ∈ C�I� can be bounded above by a function which is
convex in the above sense.

Remark. If I	 J are arbitrary sets in �, and if T is a linear transformation
from C�I� to F�J� satisfying

ZI�f � = ZJ�Tf �	

for all f ∈ C�I�, then we conjecture that we always have

�Tf ��y� = q�y�f �r�y��	

for q and r, as previously defined.
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4. THE POLYNOMIAL CASE

If 1	 x ∈ W , and x2n ∈ W , for n ∈ �, then since x2n is strictly convex, it
follows from Proposition 2.1 that

�Tx2n��y� = q�y�r2n�y��
For x2n−1 ∈ W , we would have this same result if, for example, we could
express x2n−1 as the difference of two strictly convex functions in W (see
Corollary 3.2). (There are many ways in which x2n−1 can be expressed as the
difference of two convex functions. However, it is not necessarily true that
these two functions are in W .) We now consider the special case where W
is not all of C�I�, but rather W = �, the space of all algebraic polynomials,
or W = πN , the space of all algebraic polynomials of degree at most N .

Proposition 4.1. Let I	 J ⊆ �, and let � be the linear subspace of alge-
braic polynomials. Assume T is a linear transformation from � to F�J�
satisfying

ZI�p� = ZJ�Tp�	
for all p ∈ �. There exists a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a bijection from J to I such that for every p ∈ � we have

�Tp��y� = q�y�p�r�y���
Proof. Our proof is simple. The q and r are of course given by T1 = q

and Tx = qr. We also have from Proposition 2.1 that

�Tx2n��y� = q�y�r2n�y�	 (4.1)

for every n ∈ �.
Let n ≥ 2. Given any a �= 0, we claim that there exists a b > 0 such that

x2n + ax2n−1 + bx2

is strictly convex on all of �, and thus on any I ⊆ �. To prove this, simply
consider the second derivative

2n�2n− 1�x2n−2 + a�2n− 1��2n− 2�x2n−3 + 2b�

For given a there exists an N such that for all �x� > N ,

2n�2n− 1�x2n−2 + a�2n− 1��2n− 2�x2n−3 > 0�

Thus for b > 0 sufficiently large

2n�2n− 1�x2n−2 + a�2n− 1��2n− 2�x2n−3 + 2b > 0	

for all x ∈ �.
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We now use the fact that T is linear, Proposition 2.1, and Eq. (4.1), which
prove that

�Tx2n−1��y� = q�y�r2n−1�y�	
for every n ∈ �.

Remark. When considering algebraic polynomials it is often natural to
consider Z∗ rather than Z, where Z∗ counts zeros, including multiplicities.
Is there any difference in our results if, for example, we are asked to char-
acterize all linear transformations T mapping �, defined on I, to C∞�J�
and satisfying

Z∗
I �p� = Z∗

J �Tp�	
for all p ∈ �? The q and r must now be in C∞�J� and must satisfy the
previous properties. There is only one further difference, and that is that r ′

must not vanish on J.

Let us now restrict ourselves to T restricted to polynomials p and such
that Tp is also a polynomial. If we have

ZI�p� = ZJ�Tp�	
for all p ∈ � and Tp ∈ �, then from Proposition 4.1 we must have q ∈
� and also qrn ∈ � for all n. This latter condition implies that r ∈ �.
Furthermore, as r is a 1–1 map from J onto I this restricts the pair of
permissible I and J. For example, if J is an interval, then I must be an
interval of the same type. However, the converse need not hold. What if, in
addition, T � πn → πn, for every n, where πn denotes the set of polynomials
of degree at most n? Then it necessarily follows that q is a nonzero constant
and r is a linear function (which is not a constant). This implies that the I
and J are related by translation and dilation; i.e., I = aJ + b, a �= 0.

We formally state this as follows:

Corollary 4.2. Let I	 J ⊆ �, and let πn be the linear subspace of alge-
braic polynomials of degree at most n. Assume T is a linear transformation
from πn to πn, for all n, satisfying

ZI�p� = ZJ�Tp�	
for all p ∈ �. Then

�Tp��y� = cp�ay + b�	
for some constants a	 b	 c ∈ �; a	 c �= 0. Furthermore, I = aJ + b.
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If T � πN → πN for some fixed N , then from the method of proof of
Proposition 4.1, it follows that if N is even we have

�Tp��y� = q�y�p�r�y��	
for all p ∈ πN , without any a priori restriction on I or J. If N is odd, then
we necessarily have

�Tp��y� = q�y�p�r�y��	
for all p ∈ πN−1 (again from the method of proof of Proposition 4.1). If,
in addition, I is bounded, either above or below, then A�x− α�N is strictly
convex on I for some A and α, and we therefore also have

�TxN��y� = q�y�rN�y��
Another case in which the desired result holds is the following. T will be

a map from πN to C∞�J� (with restrictions on J), and we will demand that

Z∗
I �p� = Z∗

J �Tp�
for all p ∈ πN , where Z∗

I �f � counts the number of zeros, including multi-
plicities, of f on I. As f ∈ C∞�I�, we have no problem with such a count.

Proposition 4.3. Let I	 J ⊆ �, and assume that J is a countable union
of connected intervals, none of which is a singleton. Assume T � πN → C∞�J�
for N odd, and

Z∗
I �p� = Z∗

J �Tp�	
for all p ∈ πN . There exists a q ∈ C∞�J� which does not vanish on J, and
an r ∈ C∞�J� which is a bijective map from J to I for which also r ′ does not
vanish on J, such that

�Tp��y� = q�y�p�r�y��	
for all p ∈ πN .

Proof. We assume that N = 2m+ 1 ≥ 3 is odd. Set q�y� = �T1��y�, and
q�y�r�y� = �Tx��y�. This defines q and r with the desired properties. As
stated above, we have from Corollary 3.2 and the proof of Proposition 4.1
that

�Txn��y� = q�y�rn�y�	 (4.2)

for n = 0	 1	 � � � 	 2m. It remains to prove that

�Tx2m+1��y� = q�y�r2m+1�y��
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For α ∈ I, set

p�y�α� = �T �x− α�2m+1��y��
Thus

Z∗
J �p�y�α�� = Z∗

I ��x− α�2m+1� = 2m+ 1�

We claim that p�y�α� has a zero in J of multiplicity at least 2. This follows
from the fact that for each α ∈ I,

Z∗
I ��x− α�2m+1 + c� ≤ 1	

for all c ∈ �, c �= 0. Thus

Z∗
J �p�y�α� + cq�y�� ≤ 1	

for all c ∈ �, c �= 0. The function p�y�α� has 2m+ 1 zeros in J, counting
multiplicity. Each zero lies in a component of J which is connected, but
not a singleton. For each such zero the function p�y�α� + cq�y� contains at
least one nearby zero for all c sufficiently small and of one fixed sign (since
q does not vanish). But then p�y�α� has at most two distinct zeros. Since
2m+ 1 ≥ 3, one of these zeros must be of multiplicity at least 2.

Set

v�y� = �Tx2m+1��y��
A simple calculation based on (4.2) shows that

p�y�α� = v�y� − q�y�r2m+1�y� + q�y��r�y� − α�2m+1� (4.3)

We first prove that

1
r ′�y�

(
p�y�α�
q�y�

)′
≥ 0	

for all y ∈ J.
We know that r ′ never vanishes on J. Assume that there exists a point

y0 ∈ J at which

1
r ′�y0�

(
p�y0�α�
q�y0�

)′
< 0�

Then for some constants a	 b ∈ �, a > 0,

p�y�α�
q�y� + a�r�y� + b�
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has a double zero at y0. Thus

2 ≤ Z∗
J

(
p�y�α�
q�y� + a�r�y� + b�

)
= Z∗

J �p�y�α� + aq�y��r�y� + b��
= Z∗

I ��x− α�2m+1 + ax+ ab��
≤ Z∗

���x− α�2m+1 + a�x− α� + a�b+ α��
= Z∗

��z2m+1 + az + c�
Since a > 0, it easily follows that

Z∗
��z2m+1 + az + c� = 1	

for any c ∈ �. This contradiction implies the above claim.
From (4.3),

p�y�α�
q�y� = v�y�

q�y� − r2m+1�y� + �r�y� − α�2m+1�

Differentiate each side and then divide by r ′�y� (which is nonzero) to obtain

1
r ′�y�

(
p�y�α�
q�y�

)′
= 1

r ′�y�
(
v�y�
q�y�

)′
− �2m+ 1�r2m�y�

+ �2m+ 1��r�y� − α�2m	

for all y ∈ J, α ∈ I. We now follow the proof of Proposition 2.1 almost
word-for-word. We have shown that the left-hand side is nonnegative on all
of J. This easily implies that

1
r ′�y�

(
v�y�
q�y�

)′
− �2m+ 1�r2m�y� ≥ 0	

for all y ∈ J, while obviously

�2m+ 1��r�y� − α�2m ≥ 0	

for all y ∈ J. By a previous claim, p�y�α� has a double zero in J, and at
such a point �p�y�α�/q�y��′ = 0. It therefore follows, using the previous
reasoning, that at this zero τ�α�,

r�τ�α�� = α	

and thus we obtain for all y ∈ J,

1
r ′�y�

(
v�y�
q�y�

)′
= �2m+ 1�r2m�y��
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That is, (
v�y�
q�y�

)′
= �2m+ 1�r ′�y�r2m�y�	

for all y ∈ J, which implies that

v�y� = q�y�r2m+1�y� + cq�y�	
for some constants c ∈ �, which may differ from component to component
of J. Substituting in (4.3) we get

p�y�α� = cq�y� + q�y��r�y� − α�2m+1�

Setting y = τ�α� (and since q does not vanish) we see that c = 0 on the
component containing τ�α�. But as α varies over all I, τ�α� varies over all
J. Thus c = 0 on every component of J, which proves the result.

We do believe that the result of Proposition 4.3 should hold without these
unnecessary topological conditions.

Remark. The arguments of this paper are analytic. We have used very
little geometry. To use the geometry in some meaningful way, it seems
necessary to restrict the sets I and J and the range of T . For example, let
I = J = �a	 b�, and let T satisfy T1 = 1, Tx = x, and Tp = q, where p and
q are some fixed polynomials. Assume

Z∗
I �ap+ bx+ c� = Z∗

I �aq+ bx+ c�	
for all possible constants a	 b	 c. Thus T is defined only on the span
�1	 x	 p�. It follows from Horwitz [3, Theorem 3] that necessarily p = q. It
seems that we can in fact replace Z∗

I with ZI .

The next proposition tells us about the possible forms of T if it is a map
from πN to πN which satisfies (1.2).

Proposition 4.4. Assume T � πN → πN for some fixed N and

�Tp��y� = q�y�p�r�y��	
for every p ∈ πN , where q does not identically vanish and r is not a constant
function. Then r has the form

r�y� = ay + b

cy + d
	

with ad − bc �= 0, and q�y� = A�cy + d�N , for some constants a	 b	 c	 d,
and A.
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Proof. Since q and qr are in πN , it follows that q is a polynomial of
degree at most N and r is a rational function with numerator and denomi-
nator in πN . Assume r = g/h, where g	 h ∈ πN have no common factors.

If h is a constant function then since r is not a constant function, g must
be of degree at least 1. Since qrN ∈ πN , this implies that g is of degree
exactly 1, and as a consequence q is a constant function. (This is the case
c = 0.)

Assume h is not the constant function. As qrN ∈ πN and as g and h have
no common factors, we must have q/hN ∈ πN . As q ∈ πN this implies that
h must be a linear polynomial of the form cy + d and q�y� = A�cy + d�N .
Thus qrN = AgN ∈ πN and hence g is a nonzero polynomial of degree at
most 1.

Remark. Aside from the conditions of Proposition 4.4, we also demand
that r map J to I in a 1–1 manner. This poses additional restrictions. For
example, if I = J = �, then we must have c = 0. If I = J = �0	 1�, then
there exist constants A �= 0 and a	 b > 0 such that either

r�y� = ay

ay + b�1 − y� and q�y� = A�ay + b�1 − y��N	
or

r�y� = b�1 − y�
ay + b�1 − y� and q�y� = A�ay + b�1 − y��N�

(If a = b, then r is linear.)

5. W DOES NOT CONTAIN 1 OR x

Let us consider what we can say if W does not contain the function 1
or x.

We will assume that I is an arbitrary subset of �a	 b� and that we are
given �e0	 e1	 e2� which is a CT-system (complete Chebyshev system)
on �a	 b�. This means that each of �e0�, �e0	 e1�, and �e0	 e1	 e2� is a
T-system (Chebyshev system) on �a	 b�. (A finite-dimensional subspace U
is a T-system on �a	 b� if each u ∈ U\�0� has at most dimU − 1 distinct
zeros in �a	 b�.) What we will need, at least in our proof, is, for each α ∈ I,
the existence of a function

h�x�α� = e2�x� + γe1�x� + δe0�x�	
which is strictly positive on �a	 b�/�α� and vanishes at α. (We may have
to multiply e2 by −1, but this is a minor technicality.) As �e0	 e1	 e2� is a
CT-system on �a	 b�, it follows from a theorem of Krein [6], see also Karlin
and Studden [4, p. 28], that this can be done for all α ∈ �a	 b�. However, the
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endpoints may be problematic. As we also need the endpoint result, we will
impose additional minor conditions. We could, for example, demand that
�e0	 e1	 e2� be a CT-system on �a′	 b′�, where a′ < a < b < b′, or we might
demand that �e0	 e1	 e2� be an ECT-system (extended complete Chebyshev
system) on �a	 b�. (An ECT-system differs from a CT-system simply in that
zeros are counted according to their multiplicity.)

Let W̃ be a linear subspace of C�a	 b� and W be the restriction of W̃ to
I. Thus each f ∈ W is also a bounded function. Assume that e0	 e1	 e2 ∈ W̃ .
Under the above assumptions we will prove the following result.

Theorem 5.1. Let the previous assumptions apply and T be a linear trans-
formation from W to F�J� (J ⊆ �) satisfying

ZI�f � = ZJ�Tf �	
for all f ∈ W . There exist a q ∈ F�J� which does not vanish on J and an
r ∈ F�J� which is a 1–1 map from J onto I such that

�Tf ��y� = q�y�f �r�y��	
for every f ∈ W .

Proof. In the proof of this theorem we use the methods of proof of
Proposition 2.1 and Theorem 2.2. We first construct q and r. Previously, q
and r were easily defined. Here there is a bit more work.

Let Tei = gi, i = 0	 1	 2. As �e0� is a T-system on �a	 b�, it does not
vanish thereon. We assume, without loss of generality, that e0 is positive on
�a	 b�. (If not, simply multiply it by −1.) Thus

0 = ZI�e0� = ZJ�Te0� = ZJ�g0�	
and g0 does not vanish on J. By assumption, �e0	 e1� is a T-system on �a	 b�.
Thus

ZI�βe0 + γe1� ≤ 1	

for every choice of β	 γ ∈ �, �β	 γ� �= �0	 0�. Set

K =
{
e1�x�
e0�x�

� x ∈ I

}
�

For each α ∈ �,

ZJ�g1 − αg0� = ZI�e1 − αe0� =
{

1	 α ∈ K
0	 α /∈ K

� (5.1)

Then from (5.1) it also follows that

K =
{
g1�y�
g0�y�

� y ∈ J

}
�
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In fact, the two maps
e1

e0
� I → K	

g1

g0
� J → K

are 1–1 maps onto K. As such, (
e1

e0

)−1

exists. From our assumption that �e0	 e1� is a T-system on all of �a	 b� (and
not only on I) it actually follows that �e1/e0�−1 is continuous. Set

r�y� =
(
e1

e0

)−1((g1

g0

)
�y�

)
� (5.2)

i.e.,

e1�r�y��
e0�r�y��

= g1�y�
g0�y�

�

The function r is a 1–1 map from J onto I. Set

q�y� = g0�y�
e0�r�y��

� (5.3)

Thus q ∈ F�J� and does not vanish thereon. These definitions of q and r
imply (from (5.3)) that

�Te0��y� = g0�y� = q�y�e0�r�y��
and from (5.2) that

�Te1��y� = g1�y� =
g0�y�e1�r�y��

e0�r�y��
= q�y�e1�r�y���

We now prove, paralleling the proof of Proposition 2.1, that

�Te2��y� = q�y�e2�r�y���
Let

h�x�α� = e2�x� + γe1�x� + δe0�x�	
where h�x�α� > 0 for all x ∈ �a	 b�, and h�α�α� = 0. Set

p�y�α� = �Th�x�α���y��
Thus

ZJ�p�y�α�� = ZI�h�x�α�� = 1�
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Since h is nonnegative and e0 is strictly positive on �a	 b�, we have for all
c > 0,

0 = ZI�h�x�α� + ce0�x�� = ZJ�p�y�α� + cq�y�e0�r�y���

= ZJ

(
p�y�α�
q�y� + ce0�r�y��

)
�

Thus p�y�α�/q�y� + ce0�r�y�� has no zero in J for all c > 0, which implies
that

p�y�α�
q�y� ≥ 0	

for all y ∈ J.
Now

p�y�α�=�Th�x�α���y�
=T �e2�x�+γe1�x�+δe0�x���y�
=g2�y�+γq�y�e1�r�y��+δq�y�e0�r�y��
=g2�y�−q�y�e2�r�y��+q�y��e2�r�y��+γe1�r�y��+δe0�r�y����

Thus

0 ≤ p�y�α�
q�y� =

[
g2�y�
q�y� − e2�r�y��

]
+ �e2�r�y�� + γe1�r�y�� + δe0�r�y����

For y ∈ J, let α = r�y�. Then α ∈ I and substituting in the above it
follows that

g2�y�
q�y� − e2�r�y�� ≥ 0�

Thus

g2�y�
q�y� − e2�r�y�� ≥ 0	

for all y ∈ J. We continue the proof, word for word, as in the proof of
Proposition 2.1, to obtain

�Te2��y� = q�y�e2�r�y���
We now consider any f ∈ W . We will use the method of proof of

Theorem 2.2, i.e., that based on the idea of the proof of the Bohman–
Korovkin Theorem, to prove the desired result. As the proof is much the
same we just mention where the differences arise and how to deal with
them.
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Fix α ∈ I. Given any ε > 0, it follows from the facts that f is continuous
at α and that e0 is continuous and strictly positive on �a	 b� that there exists
an η > 0 such that for

�x− α� < η	

we have

�f �x� − f �α�� < ε

2
and

e0�x�
e0�α�

>
1
2
�

As f ∈ W has an extension to a continuous function on �a	 b�, it follows
that f is bounded on W . Let M ≥ �f �x�� for all x ∈ I.

We now set

pu�x� = f �α� + ε
e0�x�
e0�α�

+A�η�α��e2�x� + γe1�x� + δe0�x��

and

p%�x� = f �α� − ε
e0�x�
e0�α�

− B�η�α��e2�x� + γe1�x� + δe0�x���

We claim that pu�x� > f �x� > p%�x� for all x ∈ I for some judicious
choice of positive A�η�α� and B�η�α�. We prove only the first inequality.
The proof of the second inequality is totally analogous.

If x = α, then

pu�α� − f �α� = ε > 0�

If 0 < �x− α� < η then �f �x� − f �α�� < ε/2, and

pu�x� − f �x� > −ε/2 + ε/2 +A�η�α��e2�x� + γe1�x� + δe0�x�� > 0�

If �x− α� ≥ η, then �f �x� − f �α�� ≤ 2M and

e2�x� + γe1�x� + δe0�x�
is thereon strictly positive and also bounded below away from zero. We now
choose A�η�α� > 0 so that on this set

A�η�α��e2�x� + γe1�x� + δe0�x�� > 2M�

This then implies that

pu�x� − f �x� > 0

on �x− α� ≥ η.
The rest of the proof now follows the proof of Theorem 2.2.
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