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§1, Introduction

A good deal of research has recently been devoted to the pro-
blem of characterizing those finite dimensional subspaces U, for
which one has unigueness in the problem of determining the best
L'-approximation (one-or two-sided) from U, to continuous func-
tions. This paper is concerned with this problem in the case of
one-sided Ll—approximation to continuously differentiable functions.
Before relating the relevant results in this area, we first fix
some notation.

K -~ a bounded, closed, convex subset of ]Rm, with piecewise
smooth boundary.

C(X) - real-valued continuous functions defined on K.

C(K)~ continuously differentiable functions in C(K).
W ~ strictly positive (weight) functions in C(K).
U, - a fixed n-dimensional subspace of C!(K).

For oL €C(K), we set
2(f) = {x: f(x)=0} .
For fe€CHK), we also set
Z,(f) = {x: f(x)=0, and |f(x)| is differentiable at x} .

For fGC(K) and wEwW,




tive functio

approximating Subspace [

82 A. Pinkus and H. Strauss

ves with the problem of oné-sided L}-
0 f€CYK) trom Un.
Definition 1.1 For given
one-sidedqd L
[ -uxj
X ¢k,

wEW, we Say that u*¢ U, is a best
~approximant to f if u*(x) s f(x) ali X €K, and

Slt-uf,  tor a11 €Un satisfying y(x) s 2(x)  for all

In geheral it may be th

at for certain
no qy €U, satisfying usgf,

f€CHK) there exist
However we Will always assume that
As such, to each fe
Ly-approximant .
question of the.uniqueness of the

Inake the following definitions.

We are’ interesteqd in the
best approximant,

Definition 1,2 ¥or

w

As such we

wEew, U,
if to each fe¢ Cl(K)
approximant from U

is said to be a unicity space for

there exists 3 unique bhest One-sided Lé-

Definition 1.3 u, is sa

id to be g unicity space for W
is a unicity Space for

W  for each WEW,

+« The
reader interested in thj

~approximation
Strauss [11],

§ problem for two-sideg 1!

[4], Pinkug [71,
The One-sided ?!
received considerable attention,

to continucysg functions,

character, Results jp th
by DeVore [1],

should consult Kroo [31, and re-

ferences therein, ~approximation problem has also
When restrictin
most of the results are
is direction fop
Pinkus [6],

g ourselves only
'"megative ip

K=[a,b]

were obtained
Strauss [10] anqg g

ommer, Strayss [9].

Totik [8] that
s then it jg

Furthermore, Pinkus, Totik [8]
for W jif and only if Uy 1is
By this it ig meant that U, pag a basis of non-nega-
ns with disjoint Support,
The Situation ig radi

Contains g
ot a unicity Space for g
roved that U,

"trivigln,

striectly Positive function
ny wew,
is a unicity Space

cally altered if we demaqd that both the
and the»approximated Tunctions

n»

T, be

-, ~App 3
A rOXL tio, entci tions
mation to D.lf ferent able Func &
e Slded L

on

be more
sults tend to

1v differentiable, Iere the re

inuously

all continu

is a
i ved that Up
DeVore [1] essentially pro : Cl[a,b]

U is a Chebyshev system 1in oy
' . » u n,
B . 1 for every non-trivial
s o in [a,b], where we

Subspaces satisfy-

positive in nature.

unicity space for W

] hat

i i roperty t r rery

e 2 ? )pcounts the number of Aeros(o) :

. e 1 =ut(x)=0. -
e eeet 10 - stems (extended Cheby

count X as re referred to as ET,-sy sended Chebs

ing this property 2 T e o ant &

, In Pin

where

shev of order ).

19! fllrther eXteUSLOUS may be i()und.
y

Ihls ])a.DeI CODtalnS two ain re LlltS. In Section 24 we (',l arac—

w €W (Theorews 2.1 and 2.4).

i Strauss
or iven s of Str
terize unicity spaces for g zations of result

- enerali ider the
results are essentially g In Section 3 we conside
These !

i ting. R
] to the multidimensional setting which are unicity
(10

[ f()r w I ]le()[ em - L . I{u")ez ous exa[“p le are g en -
( S 1V an Se(}

tion 4.

W it
; Spaces for ing unicity
§2, Unicity op . present theorems characteriz
. ion we:
In this sect

i lways
i d, we will a
ew As previously.mentioned,
i W . s
for given
spaces

tions

. n only func

c CH*(K), that we are apprOX1m:ti i strictly positive
t Uy ’ contains

assume tha

i
n hic

b) I U(}{)W

ds. ere
Proof Assume that (2.1) hol perturbation, that th

Zy(u)
) v(x) <0 for all  x €2y (2.2)
a . d

K




n» u;_:uz_ Note
that
e-‘\t.ery A € [0’1]. set u.l+(1-A)u2

h(x)

[

1) - (uitu, )(x) /9

and -

U(x)

it

(Ui-uy)(x) ,

It now eassy
lly fOllo .
that 0,4,y Ws that h(x); lﬁ(x)/zl for al
and hgzo all x €K, and
. » W& have Z(p)-= . Sin
Z1(D) S 2, (M), Frog (; )=2.(1).  Furthermore o ce heCl(x)
O for all xey o *2) there exists 5 o . nce hz|id/2i,
& = .
h(x) on an o : Z(h), and [ vixw €Uy for which v{x)<
Pen neighborhooq of g(h V(dx> 0. Thus v(x) <
J.

hzo0, tn
ere exist i |
Sa enp nce K ig compact and

X €K. Sine y Small
e »y Such
is a p [KCV(X)W(x)dx>-0 that ev(x) < h(x)
est a » this ¢ ST all
> pproximant 1o " ontradictg the fact th
O prove the ) o
- converse
;?u? there exists o u* ¢y ri ) oone that
X) 50 n\ {0}
th for al1 € 2y (u*)
€ converse ig » then

s t(2.1) does not hold.
. at if v €U, satisfies
X x)w(x)dxso. The proof

oof of

of lemn
s as. In the first lemma
re formulga that it "

Le’m” Uﬂd@l 4 S
a 2-2 the above as
Xr¢€ Zl(“ ), 1=z =:n, and {

for a11 € Uy
Proof set

P={¢
ul(x),---,un(x)): X €Zy(u*)}

Where u
1y -au,un is a
n .
y basis for Up. Let 9
: denote th
€ closed
»

—Approximation to Differentiable Functions 85

One-Sided *

convex,
det

84
s | | — - A. Pinkus and . strayss
1S not .
a n a
nof¢Clg) Which has 1 unicity space for Thu
U WO best one-sideq 1% ap S there exists
) wapproximants
Uy sup¢

are al
SO best approximants fop

Assume ¢ §Q.
origin separating

-.',a11)¢_0_

positive cone generated by P.

c = <] w1 GOW(R)AR , + o ,[ u, (x)W(x)dx) .
K K

There then exists a hyperplane passing through the

¢ from Q. That is, there exists an a = (a1,

for which

n . n
N a.J u; (x)w(x)dx> 02 1oagux)
i=1 K i=1
n
x €Z,Cu*). Bet v(x)==_21aiui(x). Then v(x)s0 for
l:

for all
and ij(x)w(x)dx> 0, contradicting our assumption.

all X EZ]_(V);
, there exists

ceQ. gince () 1is a closed convexcone in R",
iI‘l Zl(u*), and )\1,"',)\r,

0sr$n, points

Thus

an T,
Ai> 0, such that

Xyy®® s Xr

r
[Kuj(x)w(x)dx = 'z N pus(xy)
i=1
for j=l,+++,n.. Thus
r
j w(w(xddx = § Aulx;)
K i=1
since U, contains a strictly posi-

for all u€ Uy, Furthermore,
tive function it follows that
1f FeCN(X), Fz0 and F(xy) =0, i=l,e0e,T,

2.2 that the zero function is a best a
F with the further property

are all best
w. We

rzl. Q.E.D.
then it fol-
lows from Lemma pproximant
1f we can construct guch an
for all x €K, then 0,Tu*
is not a unicity space for

to F.
that  F(x) & fux(x)]
approximants to ¥, and Up
now construct such an F.
Tor convenience we assume that

boundary 98K. TFor u ¢ Un, we consider, in grea

in %,(u). Recall that K Assume
Then u(Xg,¥o)=0. In addition we have:

If (X,,ve)€ int K, then ux(xn,yo)==uy(x0,y0)==0.
exists at  (Xo,¥o)s

with piecewise smooth
ter detail, points
(%g,Vo) €Z, (0.

KcR?
is convex.

(1)

(3i) If (x,,y,) €3k and a tangent to K




86

"\\\ 4. Pinkus and H. Strauss

then the derivati&e of g
(1ii) 1¢

———

in the tangent direction ig zero,

(X9,¥y,) €38K ang g tangent to g

then there ig ho

Lemmg 2.3 Let the apoy
Zl(u*), r

does not exist there,
additiong] assumption

e assumptiong hold,

Assume {(xi,yi)}§=lc
finite. Then there exists ap FE€C'(K) siich that
. F(xi’yi)==0' i=1, <0 p, and  F(x,y): ]u*(x,y)’ for all (x,y)
K. )

Proof 1t suffices to
a continuously dirf
f(xyy)zlu*(x,y)l

set

construet, jin & neighborhood of each (x;

ction which satisfies
in thisvneighborhood. We then

i)2+(Y‘yi)2), Some M0,
vanishes at

95’i)s
for all (x,y)
B(x,y) = I(x,y) + M(x-x
the above inequality,

tive on the boundary o

g ‘satisfies
(Xi,91), and is Strictly posi-
It is then easily seen
F as in the statemen
. on g neighborhood of
strgct the Tequisite f,

(1)

a
- ABrees with g (X;,9;). Thus we must con-
We construct - f as follows:
(xi,yi)e int Kk,

(xi,yi) = (0,0), . Thus u*(0,0) = u%(0,0) = u;(0,0).= 0,
For OSrSR, Some Rz fixed, set

h(r) = max |9 u*(rcosg, rgq
05852y 9T reine)|

Since ux ¢ Cl(k),

h € C[0,R], ang h(0)=o
Satisfying X,

+ For (Xo0,y4)
= Irycos0,

* Yo =rysing, OSroSR, set

f(xo.yo) = f(rocosev,r031nea) = [ﬁ
0

f(0,0)=0, f is
ferentiable on
f(x03y9)= f(r

nuously dif-

20 Furthermore
¢
ocoseo,rosine,,)a'[ [5; u*(rcoseo,rsineo)]dr

.l‘o 3
2 I)Q 5;.u*(rcoseo,rsin60)]dr

= Iu*(rocoseo,rhsinea)[ = IU*(Xo;yo)l .

(xi’yi),‘ With-
i’yi) = (0,0),
at (0,0) is -along

1
Onpe-Sided L

—AppIOXJ.l'ﬂatJ.OlI to lefezaltlable Functions 87

: 'y I} d g ( y 7 ) .
( j ) ( 1891 ) 1 1

. i y 'S Exten—
5 i ‘ ('. ) ) = y( » ) . BS hl

t;l]e -axXxls IhLlS 0 O O u 0 0 - 0 y W | ne

Si !

1= {(x,y): X2 0} . Now set
! 2 u + Ny? ,
1 *(0,t) | dt
f(y) = Jolay ( |

fecl{-R,R], F(O) =0,
for all |y| $R (some R?20). f€C'[ R,;]l, N
" o f for a < R,
Pl n-negative, and f(y)z2 |ux¢o,y)| fo nobvle
¥ is non- ‘ .
i lsf‘ £(x,y) = F(y)+Mx, where M2z |u,l]
We define ,

and any fixed y we have
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X is an
and also prove

is a unicity space for every w €W in the case where

interval. Here we extend this result to general K,

the more difficult converse result.
if and only

Theorem 3.1 U, is a unicity space for every we¢wW

if U, satisfies Condition B.

Proof Assume
(2.1) holds for every w¢W.,

U, satisfies Condition B. (3.1) implies that
Thus Up, 1is a unicity space for

every wENW.
To prove the converse assume that

There therefore exists a u* ¢U,\ {0}

U, does not satisfy Con-
such that if

dition B.
ue¢U, satisfies Z,(u*)SZ;(u) and u(x)z 0 on K, then u=0.
Set
p={u: uelp, ulx)s0 for all x €Zy(u*)}
Since Up contains a strictly positive function, P# {0}. Fur-:
thermore P contains no non-negative non-trivial function. We
shall prove the following result.
lemmad 3.2 Let P be as above. There exists a w €W such that
J u(x)wi{x)dx s 0
K
for all u¢€P.
Before proving Lemma 3.2, let us note its consequence., Let
w be as in Lemma 3.2 and u* be as above. Then Un does not
i.e., if veUa\ {0}, v(x)s0 for all

satisfy (2.1) for this w,
X €%, (u*), then va(x)w(x)dxﬁ 0. Therefore, by Theorem 2.1 U,

is not a unicity space for this particular w, and Theorem 3.1 is

proved.

Proof of Lemma 3.2 Set
P= {u(x)dx:ueP} .

M(K), the set of Borel measures of

K, endowed with the weak*-topology
P, it follows that

Consider P as a subset of

bounded total variation on
induced by C(K). From the definition of
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18 a closed,
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Q ={u: e M(K), apzo, f
K
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. nti . -
w(u)$0  for a1l tt?gous linear funetional ; o .M o Thus
. u¢b n  M(K) such th
at

and w(u)>0 for all

tegration over K

against R :
den a cont
ote by w, Thus W € CCK) lnuous function which we again
1

ulx)w T g
JR (x)dx s 0 for all ywep

and

w{x)d
jx K(x) >0 for all peq . .

Since t i
he point functionals are i
1 n

for al +
1 x¢K. Thus R, it follows. that w(x) > 0

wew,
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Example 1 Us = span{i,x,y} ,.

it is easily seen that i
(xo’yo)EaK’ ilel’

K={(XSY): X2+y25 1}
£ u€ US\{O}, and
X§+y§=1, and v

then
(XoayO)G Z, (u),

u(x,y) ='a(1@xox-yoy)

for g

gome ac¢R, a=xz0, Now, v(
XoXty oy S (x2+y2)7 (x24y2)4 | Carnny
U

1-X0X-y,y20 on

K si
S1 for a1l nee

= (X2+y2)!
(X,y) €X. Thus

satisfies Condition B on K

E . .
xampie 2 Us=span{l,x,y}, g

The function ’

No V€‘U3\{O}

={(x,y): 0
’ . : Osx,ys1) .
u(x,y)-x-y is such tha;

vanishes at (0,0) and (1 1 Ay = {<Q'O)'<1»1)}'
: . ’ an i

d is non-negative ‘on
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one-sided L'

1 on ser U €Q. Every con-
LS space may be represented as .in

K. Thus Us does not satisfy Gondition B on K.

has interior in 1RR2.

EXGlee 3 UH:=5pan{1’X9Y9xy}’ K
Let (x,,¥o) € int K, and u(x,y) = (x-x0)(y-yo) € Uy, Then
and every v €U, for which (X0,V0) € Z1(V) is

(%4,¥0) € Zy(u)
a¢R. Thus U, does not satisfy

necessarily of the form V= au,
Condition B .on K.
Example 4 Us = span{l,x,y,x?,y2}, K= {(x,y): x2+y?s1}.

We will show that U, satisfies Condition B on K., Set

v(x,y)= 1-(x2+y2). V is non-negative on X and Zi(v)={(x,y)s’

x24+y2=1}, Let U ¢us\{o}. 1If 7, {u)
the above v can be used in Condition B. Ve

U\ {0} and (xo,yo)elzl(u)IWint XK. It

contains -no interior

points of K, then
therefore assume that u¢€
is easily checked that

u(x,y3'= a(x—x0)2+b(y—y0)2

for some constants a,b, From the above form of u, we see that
¥y (u) contains no other interior points of K. If Zi(u)={(xg,
in Condition B. Assume

v,)}, set v(x,¥)= (x-%)2+(y-¥o)?
Thus x§+yf= i, Bince

(%1,¥1) €Z;(w)NK, (X1,¥1) # (Xgs¥o)+
(x,,¥1)€ Z,(u) we have u(x3,y1)=0 and ylux(xl,yl)—xluy(xl,
We set up the linear equations implied by the above form

¥, =0,
from which 1t necessarily follows that

of u
(Xl“xo)(yl—yo)(l'xlxo"y1yo)=()'

_1f xi=X,, then it follows that ulx,y) = a(x-Xo)%, while if y.=
In each of these cases the choice
Furthermore one of the
for any (Xg,¥02€

yo, then u(x,y)= b(y=-y,)%-
of v, as in Condition B, is obvious.

above two cases must hold since 1-x1x0—y1y020

int K and (%y,y1) € K.
A general negative result is the following.

Let Up,Vp©C {0,115 dim U, =n, dim Vp=1m3 n,mz2. Let P

"denote the tensor product of U, and Vi on'[0,1]3<[0,1]. Thus

n

m
p = {p(x,y) = 1 b) aijui(x)vj(y)}
i=1 j=1

where u1,°"*Y, and Vy,°**sVp are any pbases for . Up and Vo
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n,

{Zl’nan’z.

as

Strictly positive'function,
there existg an

»n}  for which ui(z) z 0,
tinuity considerations and

exi

ul(z%), ui(z+)» o,

u* ‘Vanishes at
changes sipn on
if u €U,
that u=gyx

Proof of Preposition 4,1 ass

det(u,(z;)]
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Proposition 4.1 1¢ P
function, then

as above, contains g Strictly positive
P does not satisf

¥y Condition B on [0,1]x[0,1].
We use the following lemma in the proof of the above proposi-*
Lemnq 4-2 Up g"C['O, 1] ’
positive function.
and a function

dim Un=‘-n,n22, and UR
Then there exist pointsg
u* €U, for which

(i) U*(xi)=0
(ii)

cantains g strictly
0<x, < e <X, ;<1
s i=1,"',n~1
u* changes sign on [0,1]

(1ii) if g Un and u(x;)=0,

i=1,---,n~1, then
some aelR,

u=gu¥* for
roof rLet Upy*eee,upy

be any basis for Us.
boints

Since U,cc[O,1],
0<z) <oan <Zp<1 such that

,5=1 #0. Let uJE.Un sa
changes sign for some i,

i-192 475 % %52y}
Sume that ulz0 for a1g

tisfy ui(zj)= 8159 1,3=1, ...,
If gt set  uk=yi,
and we are finished,

We therefore
i=1,s¢4,n,

Since U,

containg a
-t follows that for each

Z € [OJJ-]
From con-

it follows that ther.
and  i,j €{1l,eee,ny,

zZ* szl,---,zu}.

i€{1,...

since np 2,
8ts a point zx* € (0,1)

i#J, such that
Thus

Set
u* = yJ(zxyyd _ ut(zk)yd |

{Xl,-u.’x
[0,17
Satisfies

n-11 = {2),000,2

(u*(zi):>0, u*(zj)
u(xi)zo’ i:l’oot’n_
for some 0 €IR,

n’z*}\{ziszj} » and

<0), Furthermore,

1, then it easily follows

ue p satisfies Condition B.

Since
Y positive function, if follows that
and vy contain Strictly Dositive functions, The sub-~
and Vv, satisfy the conditions of

Lemna 4.2 and there
n=-1<1 and u*€evu,, and
and vk ey, Satisfying the statement
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2.
of Lemna 4. , rio <o, .
. N 13 s=1,++",
jet p*(x,y)=u R
bi(x y }=p;(xr,xs)=0 for each ,
ys)‘=px r?*'ts Y€z (p*). o rzl’
1 Xps¥ ’
e (xr’yz p\ {0} for which pz20 and P(X, Vg
i a p ]
there exists

1t is easily seen that p*(x.,
Since P satisfies Condition B,
i of u*
the properties
follows from : -
R * changes sign
e s=1, : * for some a€¢R., But p e e eion
2ed VT mae =0 and p=0 which contradi
[0,1]. Thus o=
[0,1])([0,
B, Q.E.D.

id.
. 1Onger vali
1 ‘then the above result is ni [a,bIcR
or m= that K=[a, )
Remark If » aining discussion, we assume d that if U, is
In the rem in Section 1, DeVore [1] prove id fact an ET,-
as wes ° then it is a unicity space forB However the Cheby-
an ETz'SYStemdily seen to satisty Condition ¢ itself to guarantee
rea N in and ©
systen is insufficient v [-1,11,
erty is 1 T-system O1
shev space Proih space Up=span{l,x?} 1is ? 3 Yis such that
3 1 Bi e X)=X .
.Condition tisfy Condition B since uf unction which vani-
but does not sa U contains no non-negative ET,-property is
and Uz . 1like the 2~
21(w)={0} r hand, nothing ‘ then Uz
- On the othe =gpan{l,u,}
shes &% O.f Condition B is hold. If U. point’ x which is
or
necessary dition B if and only if for &?y ?:0 it follows that
satisfies Con int or a point at which uj(x ; us on [a,bl.
olin o
either an endp the maximum or minimum value This may be regarded
r .
up(x) is eithe 11 equioscillate many times. ling with this next.
Thus up may We of our next result. In dea
ecial case 10tation,
a8 & % e introduce the following r
result, w

’ b
( ’ )

T,~system
Let U,y be 2p (n"l)-dimeﬁsionzl}? “then U,

Proposition 4.5 te € gl[a,b] and Ungspan{tnnl,tnexist a func-

on C'[a,b]. Let n if and only if there does no I(%,(u)) 2n-1.

satisfies CondiZignhzs » sign change and satisties 1

tion wu €U, ,whic

xists a

and there exl

nat U, satisfies Condition B 1(Z,(u*)) 2 n-1.

Proof ~Assume t sZgn change and satisfies 0 and Z,(u¥)E
has a vz

ut € O Whichi ts a v eU\{0} satisfying

< s
Thus there ex
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Zy(v
1{V). From our assumption on y

Thus  u*
u*=cu,+u n-1ls we se
= e
nT41, V dun+uz that

A u¥, y €07,
o and Ui U €U,_,. Now
> 1(du*-cv)) < n-1 (U is
cevzo . n-~1

Since, ux* changes sign on

and 7, (ux) g

. . . —‘Z d*- B

- This is a.contradiction a P S Mhue Ha
" prove the conversé W :
n7{0} which change sign on

where

and thus

. HOWEVQr d'
u*

[2,b] and -v does not

cv)) 2 n-1, '

*eoy =
du QV“‘du1~cu2€ U, ,
an ET,-system),

€ nee
d only consider functions u €

IZ, (uy) < [a,b]: B
A n-1. =Rv o ’ V assumpti
tains a v2o (v zjy ET;-system Un-; of d? ionm such u satisfy.
. S T imensi -
Ties Condition B. " g :u;h that 2 (u) <z, (v) Thzn 3 1 con-
. . . M s
D, n satis-—

Remark — In Devore's
necessary that
that -y

'l_!‘esu]_t and i
Ure o be 1n the above propositi i
;s &-1,~ © an BT, -system ton it is not
= & T-system » A
The only difference phere .and I(ZiCu)) sn-2  tor a11 cu
. 1s that w, u n-1\{0].

e al
ways count zeros at the end

It suffices to assume

po i
polnts once and never twice

Propositi
on 4.4 1r
‘ o ! n is od
position 4.3 j odd, n2 3, the
. lmpl . s en the e
by U Y that up lies in the convex?:ndltIOHS of Pro-
ity cone induced

n=1» i.e. Span{U
n-7,4 } fo
Proof a : n r™mS a weak Chebys
Ssume tha .. : ebyshev sub
T u, ‘is not ¢ space.,

Un-g: Th | ontai

i . b l s

1 en there exists a lned in the convexit

©8St n sign oh U€U,.; sueh th R y cone. of
are i anges. Assume that the &t U=up+u has at

‘ paints

n .
Sign changes'" of ¢

U and B<ty<essct, <b

i(t,,) = '

21 0 gt :

S ’ u (t2i) £0 for i=j s, (n=1)/

i _ - ' e °
nce U,_; is an ET, ' |

s . -syste . ‘
atisfying m there exigtg a (unique) § 4
. n U
n-1

Uty = fct,,)

- ul(t?i) :ﬁ.(tz‘) ’ lzl,tcn’(n_l)/z .
1

We shall represent i b

= LY y:f )
H=1l, 0, (n=1)/2 and undamental.P01ynomials 1

v=0 . i
Vi9:1, based on the points {UV " Tn-

, . t,,} 8
(3) “rl . . 247+ et
1“\) (tZi) = { ' i'f _u=l and =J-

0 elsewhere

one-gided Lt
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for all

i=1,"‘,(n‘1)/2 and j=0,1. Then

- (n-1)/2
u(t) = _21 (W, )1;,(8) + 81 (25,01, (8D
1= .
(n-1)/2

= ) u'(tzi)lil(t) .

i
=
~
ot

i=1

Suppose that: ﬁ'(tzi)=0 for all i=1,+++,{(n-1)/2 then

- 2 - . g ~
(n-1)/ c Z1(u), 1.e. I1(%,(i1))2n-1. Moreover u has a sign

RS PR S

This contradicts the assumptions. Hence we assume that

change.
is an ET,-system it Tol-

ﬁ'(tzio) <0 for some ip. Since U, ;
jows from the construction of 1;; that 1;,(t)<0 for t <ty
and 1;,(t)>0 for t>t,.;. Then W' (ty;) %0, i=1,e0+,(n=1)/2
implies u(t)>0 for t<%t: and U(t)<0 for t>tp_g. Hence
(§-T)(ty)=-u(ty) <0 and (§i-T)(t,)=-u(t,) >0 and therefore u-u
has a sign change. Moreover 1(Z,({-u)) 2 n-1. This contradiction
completes the proof. Q.E.D.
Other examples of B-spaces have been already given.

[6] that all éubspaces of differentiable polynomial spline
g with fixed knots are B~spaces.
aces which are differentiably com

It was

shown in
function

all subsp
gshev subspaces are also B-spaces.

In [9] it was proved that

posed from certain Cheby~
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