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N-WIDTHS AND OPTIMAL RECOVERY
A. PINKUS

ABSTRACT. These lecture notes are intended as a short introduction
to the theory of n-widths, and to the theory of optimal recovery.
Some simple examples are studied in detail in an attempt to explain
and motivate the main ideas.

1. GENERAL INTRODUCTION, In this lecture I hope to whet the reader's
interest in both the theory of n-widths and the theory of optimal recovery.
As such, these notes are intended as an introduction to the subject matter,
and not as an overview or survey.

The twinning of the two topics of n-widths and optimal recovery in one
lecture is somewhat artificial. Nonetheless a relationship does exist in the
type of problems considered. Both subjects differ from the more classical
problems of approximation theory in that they are concerned with determining
optimal subspaces, operators, algorithms, or whatever, with which to
approximate elements of an a priori given set. However because we are dealing
with two topics we have divided these notes into two distinct parts. In
Section A we discuss n-widths, and in Section B optimal recovery. In each of
the sections we present a simple example and try, using the example, to
motivate some of the main concepts and ideas of the theory. Readers interested
in mdre comprehensive surveys are urged to consult references [3], [4], [6],
[7] and [9].

A. N-WIDTHS

2. INTRODUCTION. Perhaps "the" classic problem of approximation theory is the
following. Given an element x of a normed linear space X, and an n-dimensional
subspace Xn of X, find a best approximation to x from Xn’ and determine the
value of the error, i.e. the measure of the distance of x from a best
approximant. Thus, for example, if X = H is a Hilbert space over ¢ with inner
product (+,+), and Xn.is spanned by ViseeesV) which, for convenience, we
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52 A. PINKUS

n
assume to be an orthonormal basis for Xn’ then E (x,vi) vj is the unique
' 1=1

best approximant to x from X_. The "error", generally denoted as E(x3X,), may
be expressed by

ety = T2 - 3 10ovp 2112

Very often one is not so much interested in approximating a given element

of X, but in approximating a subset A of X. By this we mean determining
E(AsX)) = sup inf [1x - yl}.
X€A y€Xn

There are many reasons for considering such a quantity. One is often not
interested in a best approximant or in the specific error obtained, but in
measuring the error in terms of some other criteria such as, for example,
smoothness. We consider an example of such a problem.

We denote by W‘{)[O,Zn] the (Sobolev) space of real-valued 2m-periodic
functions on R, for which f(r']) is absolutely continuous, and whose rth
derivative on [0,27] exists as a function of L2[0,2n]. Set X = LZ[O,Zw], and

A =B = or felD0,200, 11, <10

Let Tn denote the (2n + 1)-dimensional subspace of trigonometric polynomials
of degree n, i.e.

Tn = span{ 1, sin x, cos X,..., sin nx, cos nx }.

It is not at all difficult to prove that.E(A;Tn) = (n+1)7" for all
non-negative integers n and r.

A more common, but totally equivalent way of stating this result is the
following. For every fEW(Zr)[O,Zn],

E(FT ) < (ne )T 0,

and (n + 1)™" §s the best constant in the above inequality. It is often to
obtain inequalities of this form, with best constants, that we study the
quantities E(A;Xn).

As above, we assume that X is a normed linear space and A a subset of X.
For each n-dimensional subspace Xn’ we have the associated quantity E(A;Xn). In
1936, Kolmogorov [1] proposed the following idea. Instead of considering E(A;Xn)
for different but specific Xn, let us vary E(A;Xn) over all n-dimensional
subspaces Xn of X. We then search for n-dimensional subspaces (if they exist)
which best approximate A, and also for the associated minimum value of E(A;X ).
To state this in more precise mathematical terms, we have

DEFINITION 1. X is a normed linear space and A a subset of X. The n-width
of Kolmogorov of A in X is given by
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dn(A;X) inf E(A;Xn)

Xn

inf sup inf ||x - y||,
Xn X€A yeXn

where the lTeft-most infimum is taken over all n-dimensional subspaces X of X.

We would like, if possible, to identify n-dimensional subspaces X: of X
for which dn(A;X) = E(A;X:). Such subspaces are quite naturally said to be ‘e
optimal for dn(A;X).

The quantity dn(A;X) measures the extent to which A may be approximated by
n-dimensional subspaces of X. It is not only that dn(A;X) is an interesting
theoretical quantity (and it is), but also that knowledge of it can help us in
other problems. For example, suppose that while we may or may not know dn(A;X)
precisely, we do know something about its asymptotic behaviour as n ¢+ =,

d,(A;X) is a Tower bound on the extent to which A is approximable by n-dimension-
al subspaces. As such, if we have a given sequence {Xn} of n-dimensional
subspaces and estimates for E(A;Xn), then it is possible to judge whether it is
worthwhile spending energy, time, and money, in using better but more

complicated subspaces in our approximation process.

In the above general framework, very little of interest can be said. But
let us consider a specific example in detail. Before doing so we remark that
many other n-width concepts now abound in the literature. We will touch upon
some of these in the next few pages.

3. EXAMPLE. Set X = L7[0,1]. The (Sobolev) space w(l)[o,1] is the set of
absolutely continuous real-valued functicns defined on [0,1] for which f' exists
a.e. as an element of L°[0,1]. We define

(=80 = relDrogy, ey <y,

and we are interested in the quantity dn(B(l);Lm).

A natural approximating subspace to consider is Xn =Ty where -1 is
the set of algebraic polynomials of degree n-1 (dimension n). The quantity
E(B(l);nn_1) has been much studied and although an exact formula is not known
to the best of my knowledge, there does exist from Jackson's Theorem ( see e.g.
[8.p.22] ) the upper bound E(8'))sr 1) < 3/(n-1).

We now consider an even more elementary subspace. Let Sn denote the subspace
( of dimension n ) of left-continuous step functions with jumps at i/n, i=1,...,
n-1. Thus ses, if s{x) = c; on ((i-1)/n,i/n], i=1,...,n, for some choice of real
constants {ci}?. ( Modify the first interval to include the point zero. ) We
claim

proposITION 1. E(81)5s ) = 1/(2n), n = 1,2,... .
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PROOF. For fEB(l), let stSn be uniquely defined by sf((Zi-l)/zn) =
f((21-1)/2n), i = 1,...,n. We claim that ||f - sc|| < 1/2n. For x€[0,1], we
have x€((j-1)/n,j/n] for some j = 1,...,n ( recall that x = 0 is in the first
interval ). Thus f(x) - sc(x) = f(x) - f((2j-1)/2n). Since ||f'||_< 1, it
follows that

F(x) - £((23-1)/2n)| < |x - ((25-1)/2n)| < 1/2n.

Thus ||f - sfH°° < 1/2n. To prove the desired equality, it remains to find an
f*éB(l for which E(f*;Sn) = 1/2n. Set f*{x) = x. Then it is easily seen that
E(f*;Sn) = 1/2n, and Spx is in fact the unique best approximation to f* from
Sn. This proves the proposition. o

We claim that dn(B(l);L‘”) = 1/2n, for n = 1,2,... . ( do(B(l);L“) = w
since every constant function is in B(l . ) From Proposition 1 we have
dn(B(]);Lm) < 1/2n. 1t is therefore necessary to prove the lower bound, i.e.
E(B(l ;Xn) > 1/2n for every n-dimensional subspace Xn of L"[0,1]. This problem
is non-linear in nature and is generally the more difficult. In the proof of

this result we use the following general theorem which we will not prove.

THEOREM 2 [2]. Let X be a normed linear space. Let X .4 and X be (n+1)-
and n-dimensional subspaces of X, respectively. There then exists an x€Xn+1\0

for which
E(xsX) = |1x]1,

i.e. the zero element is a best approximation to x from Xn'

This theorem is often used in obtaining lower bounds for n-widths. Let us

see how.

Let L denote the (n+1)-dimensional subspace of continuous functions on

n+l

{0,1] which are linear on [(i-1)/n,i/n], i = 1,...,n. The key to the Tower bound

is Theorem 2 and this next result.
PROPOSITION 3. If feL ,. and ||f||_ < 1/2n, then feB{l).

PROOF. Obviously L +1 g_w(l). We must therefore prove that if f€Ln+1 and
[1f]{, < 1/2n, then l[f'rlw < 1. Assume that feL ., and [[f[{_ < 1/2n. Then
|f{i/n)| < 1/2n, i=0,1,...,n. Since f is Tinear on [(i-1)/n,i/n], i = 1,...,n,
then for xe((i-1)/n,i/n), '

LFrx)| = n [f(i/n) - F((H-1)/M)] <1, @

PROPOSITION 4. lf~Xn is_any n-dimensfional subspace of L 10,11, then
e{1)ix ) > 1/2n.

PROOF. Let Ln+1 be as above, and Xn be any n-dimensional subspace of
Lw[O,l]. Then from Theorem 2 there exists a non-zero f€Ln+], which we normalize
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so that ||f|]_ = 1/2n, satisfying
E(f3Xx,) = |Ifl], = 1/2n.
From Proposition 3, fEB(l). Thus
e ) > 1720, @

To summarize, we have proved the following result.

THEOREM 5. Let B{!) be as previously defined. Then d (8{1)517) = 1/2n,
n=1,2,... . Furthermore Sn, the n-dimensional_subspace of-step functions
with jumps at i/n , i =1,...,n-1, is an optimal subspace for dn(B(l);L”).

REMARK. Before proving Theorem 5 we noted that E(B(l);"n_]) < 3/(n-1).
While we do not know if algebraic polynomials of degree n-1 are optimal for
dn(B(l);Lm), it does follow from the above inequality that they are at least
asymptotically optimal in the sense that both quantities decrease to zero at
the same rate.

4., OTHER N-WIDTHS. Theorem 5 is a special case of a more general result. We
defer the statement of the general result to the next section. We will now use
the above example and its proof to motivate additional probliems and definitions.

4. A, LINEAR N-WIDTH. 1In the proof of Proposition 1 we obtained the upper bound
constant 1/2n by the simple Tinear process of interpolating from Sn to each
fEB(l) at (2i-1)/2n, i = 1,...,n. That is, we did not calculate the best
approximation to each feB l from SZn' We calculated instead a linear approx-
imation. This suffices because the quantity E(A;Xn) is a "worst case" measure.
It is not necessary when calculating E(A;Xn) that we actually determine E(x;Xn)
for each xeA.

In a Hilbert space setting the best approximation is an orthogonal
projection and is therefore a linear approximation. This is no longer the case
in a non-Hilbert space setting, for there[the best approximation operator is a .

nonlinear operator which is generally exceedingly difficult to exactly determine.

Linear approximations are easier to calculate, and are of interest in and of
themselves. Let us therefore consider linear approximations rather than best
approximations. In other words, we replace E(A;Xn) by

E(AsP 5X,) = sup I1x - Poxl|

where Pn is a continuous linear operator from X to Xn‘ ( Pn is said to be of
rank n if its range space is of dimension n. )

Analogous to the Kolmogorov n-width we now define what is termed the
linear n-width of A in X.

.
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DEFINITION 2. X is a normed linear space and A a subset of X. The linear
n-width of A in X is defined by
8, (AsX) = inf sup ||x - P x|,
P xeA
n
where the infimum is taken over all continuous linear operators of rank at
most n.

If dn(ﬁ;x) = E(A;P:;X:) where P: is a continuous linear operator of rank
< n, then P is said to be optimal for & .

From our definitions, it follows that dn <8 If X is a Hilbert space,
then dn = 8. In general n is an easier quantity to determine. When dn and 8,
are unequal, then serious problems generally arise in the computation of the
former. Both dn and 8y depend on "worst case" situations. As such they may be
equal even in. a non-Hilbert space setting. This is true of the example of the
previous section.

THEOREM 6. Let B(l) and S be as previously defined. Then an(B(l);Lw)
=1/2n, n = 1,2,... . Furthermore P*, the rank n linear operator;geffned by
interpolating from S to each feB!}) at (2i-1)/2n, i = 1,...,n, is optimal
for 6n(B(P;L°°).

4.B. BERNSTEIN N-WIDTH. Let us examine, in our example, the proof of the lower
bound using Theorem 2. The following idea was used. Assume X1 is an (n+1)-
dimensional subspace of X, and let S(Xn+]) denote the unit ball of Xn+1' If
AS(Xn+]) c A, then from Theorem 2 ( see Proposition 4 ), dn(A;X) > X. This
technique for obtaining lower bounds for dn has been so often used that it has
been codified.

DEFINITION 3. Let X be a normed linear space and A a closed, convex,
centrally symmetric ( x€A implies -x€A ) subset of X. The Bernstein n-width
of A in X is defined by

b (AsX) = sup sup { x : AS(X ;) €A},
n+l
where the Xn+] range over all subspaces of X of dimension n + 1.

Thus dn(A;X) Z_bn(A;X). The quantity b, is often of interest, other than
simply as a lower bound for d_. In our example we proved that bn(B(l);Lm) = 1/2n.
Restating this we may write

sup || /1fll, > 2n, n=1,2,...,
fe

n+1
f#0
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(

for any (n+1)-dimensional subspace Kooy OF W l). From Proposition 3, equality
holds with Xn+1 = Ln+].

This constant 2n is, in some sense, a smallest "smoothness constant"
relating the size of f' with that of f. This fact should be considered in the
light of Markov's inequality. The well-known Markov's inequality for algebraic

polynomials of degree n states that if pem , then on (o,1]

lip*11, < 2n® [|pll,,

and equality is attained ( by the Chebyshev polynomial of the first kind ).
Equivalently we may write

sup |1p*l|./11pl ], = 2n’.
p€1rn

p#0

Algebraic polynomials are thus far from being optimal in the above sense.

4.C. GEL'FAND N-WIDTH. There is one other n-width concept which we wish to
introduce and it is the Gel'fand n-width of A in X. It is related to the
Kolmogorov n-width via a duality relationship which we will not discuss. It is
considered again in Section 6 and will reappear when dealing with optimal
recovery problems. The Gel'fand n-width is defined as follows.

DEFINITION 4. X 1is a normed linear space and A is a closed, convex,
centrally symmetric subset of X. The §el'fand n-width of A in X is given by

d"(A;X) = in sup | 1x]1,
L" xeAnL"

where L" varies over all subspaces of X of codimension n.

A subspace L" is said to be of codimension n if there exist n linearly
*
independent linear functionals x?EX ( the continuous dual of X ) i = 1,...,n,
such that

"= x: X¥(x) =0, i=1,...,n}.

There is no a priori relationship between dn(A;X) and d"(A;X). Either may
be larger. Perhaps surprisingly they are often equal. There is a simple reason
for this and it is that the inequalities Gn(A;X) 3_dn(A;X) j_bn(A;X) always
hold. The inequality s (A;X) > d"(A;X) follows from the fact that every rank
n continuous linear operator Pn may be written in the form

n
an = 121 x?(x)xi

*
where xqex s 1 =1,...,n, and the {xi}? span the range of Pn' Thus

[

s o

A
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sup ||x - Pox|| > sup Hx} 1
X€EA X€EA
x?(x)=0, i=1,...,N

from which follows the desired inequality. The inequality d"(A;X) 3_bn(A;X) is
even simpler to prove. For every (n+1)-dimensional subspace Xp41 Of X, and for
every subspace L" of codimension n of X, XanLn #{0}Thus if AS(X ;) = A,
then there exists an x€AnL" for which ||x|] = A. Hence d"(A;X) > A, and the
inequality follows. Thus in our previously considered example we necessarily
have dn(B(l);Lm) = 1/2n.

5. N-WIDTHS OF SOBOLEV SPACES. As stated earlier, the results of the previous
two sections may be considered as particular cases of a more general theorem.
We present this generalization and the remarks thereafter in an attempt to give
the reader a taste for the type of research done in this subject.

| w(;)[o,1] = 15+ £"Vabs. cont., £{MeLPlo,1] 3.
‘ Let B(;) = {f: few(;)[0,1], llf(r)|[p <11, and for a nonnegative integer m,

N Furthermore,

The Sobolev space w(;)[o,1] for pe[1,=], r a positive integer, is defined
as follows:

set

m
Xy

0, x<@0
xm, x> 0.
THEOREM 7 [7]. Fix p€ll1,~] and r a positive integer. Then for n > r,
(r). ;) = gnelr),p (r). Py (r)..p
d (B* ";LF) =d ;LF) = 3 = 3
RCARR R UL RN RPN (L)

1 )Y‘-.I

1) X: =span { 1, x,..., X", (x-89)3 e (X-f:n_,,.),‘:'1 } is an optimal

(r).,p i
subspace for dn(B b ;LF) for some choice of 0 < B < ver S8 p < 1.

2) L"={ F: f(“i) =0, 1=1,...,n } is an optimal subspace for dn(B(;);Lp)
for some choice of 0 < np < ... < < 1.

3) The rank n linear operator Pn defined by interpolation from X; Eg_f€B(;) at
Ebg_{ni}? is optimal for Sn(B(g);Lp).

LY

It is also possible to identify an optimal subspace for bn(B(;);Lp).

REMARK. The proof of Theorem 7 is far beyond the scope of this lecture.
*
However to give an inkling as to how Xn arises, recall Taylor's formula with

remainder in integral form. B(;) is the set of functions

0o i
f00 = 1 ag x+ (/DD ] )T hly) gy
i=0
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where ||h||p.5 1(h= f(r) and a; = f(1)(0)/1!, i =0,1,...,r-1 ). The subspace
X; is the span of the first r monomial terms ( which must appear since there is
no restriction on their coefficients ) and the kernel (x—y):'] evaluated at n-r

distinct points.

REMARK. Theorem 7 is also valid in certain mixed norm cases. Consider the
n-widths of B(r) in L9, where p and q are arbitrary numbers in [1,]. If p = =
or q = 1, then Theorem 7 holds ( except that bn(B(;);Lq) is unknown ). It is
conjectured that Theorem 7 is valid ( except for by ) for all p > q. For p <'q,
the situation is considerably more involved. No exact results are known and it
was only some years ago that the asymptotic behaviour of each of the n-widths
was determined. They do not all behave asymptotically in the same manner.

6. N-WIDTHS AS GENERALIZATIONS OF S-NUMBERS. Let T be a compact linear
operator mapping X into itself. Set

A={Tx:|Ix]|] <11.

The choice of A as the image of the unit ball under a Tinear map is a common
choice in the theory of n-widths. B(;) is of this form, aside from the free
r-dimensional polynomial subspace.

Assume for the moment that X = H is a Hilbert space with inner product
(+5-). Associated with T is its adjoint T*. The compact maps T*T and TT* are
self-adjoint and non-negative. They possess the same eigenvalues {An(T)},
n=20,1,..., { given in non-increasing order of magnitude ) which are all
non-negative numbers. The values sn(T) = [)\n(T)]]/2 are called the s-numbers,
or singular values, of T. Functional analysts who study n-widths generally
regard them as generalizations of s-numbers, see e.g. Pietsch [5]. Let us
explain why.

There exist many well-known characterizations for the s-numbers of T. Thus
the "max-min" characterization is given by

* 1/2 R
s (T) = sup inf LITIZ—l—§l
n X XEX X X
n+l n+l
=  sup inf Ti

Xpr1 X€Xn4g

where Xn+1 varies over all subspaces of H of dimension n+l. But this last
quantity is simply a restatement of the definition of the Bernstein n-width
bn(A;H) for this choice of A. Thus bn(A;H) = sn(T). In a totally analogous
manner, it may be seen that the classical "min-max" characterization of sn(T)
given by
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rre x|
~ X TTx , X
(M) = [gﬂf o _(x_—_ﬂ_]

where the L" vary over all subspaces of H of codimension n, is essentially

the Gel'fand n-width d"(A;H). In this same vein sn(A;H) = 5,(T), since the
definition of 6n(A;H) corresponds to the classical singular value decomposition
of T ( and dn(A;H) = an(A;H) since we are in a Hilbert space ). Thus dn(A;H) =
d"(AsH) = 5, (AsH) = b, (AsH) = s (T).

B. OPTIMAL RECOVERY

7. INTRODUCTION. Let X be a normed linear space and A a subset of X. In a
very general sense optimal recovery is concerned with the problem of estimating,
in as efficient a manner as possible, some specific information about elements
of A based on a number of given pieces of information.

Many problems fall into this wide setting. Before presenting a general
framework, let us consider some specific examples.

8. EXAMPLES.

8.A. RECOVERY OF A FUNCTIONAL. Let X = L°[0,1] and A = B{!) ( see Section 3 ).
Assume that for each fEB(l) we are given the values f(xi), i=1,...,n, for
some fixed 0 < x; < ... < x. < 1. For convenience we set I(f) = (f(xy),...,f(x,))
€R", and call I(f) the information vector. Let ye[0,1], fixed. The problem we
consider is that of optimally reconstructing f(y), for f€B l), based only on
the data I(f).

Any function T which maps I(f) to R is called an algorithm. The error of
the algorithm T is defined by

E(T) = sup £ [fly) - T(1(f)] : feB{1)y

.
o«

The value
*
E =1inf { E(T) : T}

is the intrinsic error in our problem, If E* = E(T*) for some algorithm T*, then
we' say that T* is an optimal algorithm or provides for an optimal recovery of
f(y). The problem is to find £ and an optimal algorithm T,

An important tool in the solution of this problem is the following simple
lower bound for E*.

PROPOSITION 8. E- > sup { |f(y)| : feB(l), I(f) = 0 1.

PROOF. Let feB!) with 1(f) = 0. Since -feB']) and 1(-f) = 0, it follows
that for every algorithm T,
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E(T) > max {|f(y) - T(0)}, [-F(y) - T(O)| }
> ([fly) - (@] + [f(y) + T(0)] )/2
> |fiy).

The claim now follows. o

*
We will prove that equality holds, calculate E , and identify an optimal

algorithm. ..

PROPOSITION 9. E* =min { |y - X1|5 i=1,...,n }. Furthermore, if
ly - le =min { |y - xilz i=1,...,n}, then the algorithm Ty defined by
T (1(£)) = flx;) is optimal.
PROOF. The function f*(x) = min { |x - X |: 4 =1, N } is in B( ) and

satisfies f*(x1) 0, i=1,...,n. Thus from Propos1t1on 8, E > f*(y) =
min { |y -'xi|: i= 1,...,n }. For Ty as above,
£ < E(Ty) = sup { |f(y) - f(xj)l: fEB(l)}
= l.Y'Xj‘
*
< E. o

8.B. RECOVERY OF A FUNCTION. Within this same framework, we change our
example somewhat. Assume that based on the same information vector I(f), we
are now interested in recovering not f(y), but the full function f on [0,1].
Our algorithms T are therefore functions from R" to L”[0,1]. As previously

E(T) = sup { ||f - T(I(FN ] - fEB(l)}=

*
and E = inf { E(T) : T}
Totally analogous to Proposition 8, we have

PROPOSITION 10. E >sup {|If]]_ = fEB(l), I(f) =0 1.

*

Thus, in particular, E > ||f*|| where f* is as defined in the proof of
Proposition 9. We will prove equality. To this end set z, = ( X; + x1+])/2
i=T1,...on-1, ( zR =0, z, = 1). Let S, denote the space of step functions
with jumps at {21}1 . For each fEB(1) def1ne stSn by sf(x1) f(x1), i=1,.
N

PROPOSITION 11. E = |1f*||_. Furthermore, if T" is_the algorithm given
* *
by T (I(f)) = Sgs then T  is an optimal algorithm.

PROOF. For T  as above,

" < E(T) = sup (| |F - sl fesl) 3,

IF(x) - f(x;)] < Ix - x5 = £*(x). Thus

I}

For x€(z;_y,z;1s [f(x) - se(x)]

n
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- K

B < E(TT) < |lf*l|sz*- o

8.C. OPTIMAL INFORMATION. We again alter our problem. We assume that we wish,
as in (8.B), to recover ﬁEB(l) based on I(f). However, now we may choose, a
priori, the n information functionals which constitute I(f). For ease of
discussion, let us assume that we may choose n points X5 eeesX in [0,1],
which appear in I(f), at which to sample f.

We exhibit this dependence on I by letting E(T,I) and E*(I) denote the
E(T) and E* of (8.8B). We are therefore concerned with the problem of evaluating

T - inf E'(1),

where I ranges over all information vectors of the form I(f) = (f(xl),...,f(xn))
with 0 < xq < ... < x < 1. Set x = (Xg,...,% ), and Tet f*(x,x) denote the
f*(x) of(8.B). It is now a simple matter to prove

PROPOSITION 12. E = inf { ||f*(-,x)||_: x} = 1/2n. Furthermore, an
optimal x is given by x* = (1/2n,3/2n,...,(2n-1)/2n).

Before continuing note that the value obtained is exactly the value of
the n-widths of B(l) in L”. This is not a coincidence. We will discuss the
connection in the next section.

8.D. OPTIMAL RECOVERY WITH ERROR. We now return to the problem, considered
in (8A), of recovering f(y), for f B(l), based on I(f) = (f(x]),...,f(xn)) for
fixed 0 < xy < ... < x, < 1. However, Tet us assume that we do not know I(f)
exactly. Errors may occur in our calculation and rather than being given I(f),
we are given w = (w1,...,wn) where |w1 - f(xi)l < €5s i=1,...,n. The error
bounds e; > 0 are given fixed values. We therefore define, for an algorithm T
mapping R" to R,

E(T;e) = sup { |f(y) - T(w)}: fEB(l), Iw,i - f(xi)l <e =100 ),

and E(¢) = inf { E(Tse) : T 1.
This next result is totally analogous to Proposition 8.

PROPOSITION 13. E'(e) > sup { |f(y)|: feB{]), |f(x)] < eiu i =1, 3.

1
Set f*(x3€) = min { e; + |x - xilz i=1,....n1%. Then f*(-,E)EB(l) and

*
PROPOSITION 14. E (e) = f*(y;e), and the algorithm defined by Ty(y) =Wy
is optimal.
PROOF. From Proposition 13, E*(EQ > f*(yse). Let fEB(l) with

lwi - f(xi)l < &5 i =1,...,n. Then

: e o Dt R

i=1,...,n Let 5 + ly - le =min {e; + |y = x;[: i=1,..,n}.
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1£(y) - T, ()] = [F(y) - wyl

< 161 = Flxg) |+ F(xg) - gl
ly - XJ‘ + Ej
= f*(yse).

| A

Thus E'(g) < E(Tse) < f*(yie). @

Analogues, with error, of examples (8B) and (8C) are similarly constructed.

9. GENERAL THEORY. The above simple examples are prototypes of some of the
problems considered in the theory of optimal recovery. In our general discussion
we will somewhat restrict ourselves. Thus, for example, all our operators will
be linear, and we will not touch upon problems of recovery with error as
exemplified by example (8D).

Let X, Y and Z be normed linear spaces. A is a subset of X which we assume
to be closed, convex, and centrally symmetric. By U we denote a linear
operator from X to Z. U(x), for x€A, will be the element which we wish to
recover, and U is therefore termed the object operator. I is a linear operator
from X to Y, called the information operator. Any function T from I(A) to Z is
said to be an algorithm. Each algorithm gives rise to a recovery scheme with
error

E(T) = sup { ||U(x) - T(I(x))]]: xeA }.

The value E* = inf { E(T) : T } where T ranges over all possible algorithms, is
called the intrinsic error of the process. If £ = E(T*) for a specific
algorithm T*, then T is called an optimal algorithm and we have found an
optimal recovery for U on A.

There is no reason to suppose that optimal algorithms exist, or if they
do, are linear. To obtain such results, additional assumptions are needed.
However, certain very general properties do hold. As an analogue of Proposition
8 we have the following.

PROPOSITION 15. E > sup { ||U(x)[[: x€A, I(x) = O 3.

PROOF. Let x€A and I(x) = 0. By assumption -x€A and I(-x) = 0. Thus for
every algorithm T,

[HU(x) - T(0){], [{u(-x) - T(0)|] < E(T).
Since U is linear, it follows that ||U(x)|| < E(T), proving the proposition. o

For ease of exposition, set

e* = sup { |{U(x)||: xeA, I(x) =0 }.
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In a1l our examples we had E* = e*, However, this is not generally valid as the
following simple example shows.

3 2

endowed with the Euclidean norm |{x||, = ( x% + X5
.SetZ=2X,Y=R, U(x)=x,

EXAMPLE. Let X be R
+ x% )]/2

—

A= rxs Hxlly = bl * Il + Ixg <1
and I(x) = x; + X, + X5. A simple calculation shows that e* = 1/vZ. Now

£ - inf sup { Hx = T, Hxlly <13
> inf max {[le} - T(D) ], i=1,2313,
T

where gﬁ is the ith unit vector, i = 1,2,3. T(1) is a vector in R3. No vector

in RS is of distance less that VvZ73 from each of the e', i = 1,2,3. Thus

£ > V273. ( Equality in fact holds for the algorithm T(a) = (a/3,a/3,a/3).)
An opposite inequality to E* > e* is the following.

*
THEOREM 16 [3,p.3]. E < 2e*.

PROOF. For each yeI(A), choose an x'(y)€A satisfying I(x'(y))
define an algorithm T' by

y. We

T(I(x)) = U(x'(I(x))).
Then

]

E(T') = sup { |JUx = T'(I(x))|]: xeA }

sup { ||U(x - x"(I(x)))]|: x€A }.

Set w=x - x'"(I(x)). Then I(w)
centrally symmetric, w/2€A. Thus

I{x) - I{x) =0, and since A is convex and

£ < E(T') <2 sup{||Uw}|: weA, I(w) =0 } = 2e*. =

REMARK. The T' constructed above is, in general, neither continuous nor
linear. If we demand a linear, continuous algorithm, them no inequality of the
above form is valid.

*
One set of assumptions which implies the equality E = e* is the following.

(;Note that our examples do not quite satisfy these assumptions.)

THEOREM 17 [3,p.5]. Assume that there exists a function S from I(A) to X

for which x - S(I(x))€A, and I(x - S(I(x))) = O for every x€A. Then E = e* and

T = US is an optimal algorithm.

The proof of this theorem is an immediate consequence of the definitions
of T and e*.
A totally different set of restrictions gives us similar results.
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Assume that X is a normed linear space over the reals and Z = R, i.e. U
is a linear functional. In addition to the previous assumptions, we also
suppose that I(A) is absorbing in Y, i.e. for any y€Y there exists A > 0
such that ayeI(A). Let Y" denote the continuous dual of Y. Then

THEOREM 18 [3,p.16]. Under the above assumptions,

e* = F = inf, sup {|U(x) - T(I(x))]|: xeA }.
Tey

Furthermore, if 1(A) is a neighborhood of the origin in Y, and if there exists

4
ok
4
3
&
4

a TeY for which
sup £ |U(x) - T(I(x))]: x€A } < =,

*
then there exists an optimal algorithm in Y , i.e. one which is 11near_and
continuous.

We close these notes by examining a connection between certain n-widths
and problems of optimal recovery with optimal information. For convenience, we
now issume that X = Z, Y = R, U(x) = x, and I(x) = (xf(x),...,x;(x)), where
x¥exX ( the continuous dual of X ), i = 1,...,n. Thus for each algorithm T,

E(T) 3_E* > e* = sup { ||x||: xeA, I(x) =

Set L" ={x: I(x) =0 }. Then L" is a subspace of codimension at most n, and
we may write
e* = sup{ ||x|]: xeAnL" 1.

From the definition of the Gel'fand n-width d"(A;X), it follows that e* >
d"(A;X) for any choice of n continuous linear information functionals. In
particular

inf £ > d"(A;X).
L

Let us also recall the definition of the linear n-width Gn(A;X).
§,(A;X) = inf sup ||x - an||
P xeA
n
where P is an operator of the form P nX = y x*(x) X Taking the infimum over

P, is equ1va]ent to taking the 1nf1mum ovel™ Ix*}] and {x, }] If we fix the
{x; }1 and take the infimum over the {x*}1, then we are search1ng for a best

continuous linear approximation to A from span { XqseeeaXy 1. On rever51ng the
process by fixing the {x*}] and taking the infimum over the {x.; }1, we are
searching for the optimal continuous linear algorithm based on the information
{X?}?. As such,

6 (AsX) > inf (E : L.
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Thus the two n-widths 8, and d" are upper and lower bounds, respectively, in
the problem of optimal recovery of A with n optimal linear continuous pieces
of information. If Gn(A;X) = d"(A;X), and P: is optimal for Gn(A;X), then P:
gives rise to a continuous linear optimal algorithm for this problem ( see
e.g. Theorem 7 ).
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