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1. INTRODUCTION

T p

A classical theorem of Lukadcs, see Szegd (1939), p. 4, states that an
algebraic polynomial p(t) of degree at most n, nonnegative on the interval
[a,b], has a representation of the form ;

LT e

b _Jt=-a)(b=-t)R*(t) + Q*(t), n=2m
¢ (1.1) p(t)‘{Et_agfsz(t)L(glt)Tz((t)), n=2m-1

where R, S and T are real polynomials of degree < m— 1, and Q is a poly-
nomial of degree < m. This result and its corresponding versions on [0, co)
and (—oo,00) have spawned numerous generalizations and applications.
They have been used, for example, in the theory of orthogonal polyno-
mials, in the solution of moment problems, and in the study of certain
extremal problems for polynomials. One recent use was given in Edel-
man, Micchelli (1987), where they studied the problem of interpolation by
monotone piecewise polynomials.
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164 CHARLES A. MICCHELLI and ALLAN PINKUS

A refinement of Lukdcs’ Theorem was given in Karlin, Shapley (1953),
where it was proven that an algebraic polynomial p(t) of degree at most n,
nonnegative on [a, b], with at most n — 1 zeros on [a, b] counting multiplic-
ities, admits a unique representation of the form

m—1 m
(1.2a) p(t) = alt —a)(b—1) [Tt =) + B[t — t2;-1)%,
i=1

j=1

for n = 2m, and
m-—l m—1

(1.2b) p(t) = aft — a) H (t —t2)% + B(b — 1) H (t —t25-1)%,
j=1 Jj=1

for n = 2m — 1, where o, 8 > 0 and a < t; < - < th_; < b. In
Karlin (1963), see also Karlin, Studden (1966), this result is generalized
to Chebyshev systems. The role of this result in the geometry of moment
spaces is well documented in Karlin, Studden (1966). In this regard (1.2)
not only. identifies the extreme rays of the cone of nonnegative polynomials
of degree n on [a, b], but also states that any other element of this cone is
a positive combination of at most two such rays.

Attempts to generalize Lukdcs’ Theorem in its various forms to polyno-
mials of more than one variable quickly lead to negative results. For in-
stance, in one dimension, if p(t) is nonnegative for all real ¢, it is a sum of
two squares. However, Hilbert (1888) showed that there exists a real poly-
nomial of degree six in two variables which is nonnegative on R?, but which
is not a finite sum of squares. His argument did not lead to an explicit
polynomial. Motzkin (1967) was the first to provide such an example.
Subsequently, several authors have provided other examples ¢f. Robin-
son (1973), Choi (1975), Schmiidgen (1979) and Berg, Christensen, Jensen
(1979). It is interesting to note that Hilbert (1893) later showed that non-
negative polynomials are a sum of squares of rational functions.

Our initial starting point was the modest problem of a representation
theorem, similar to (1.2), for quadratic polynomials of two variables on a
triangle. Keeping (1.2) in mind for n = 2, we believed that any quadratic
polynomial p(z) nonnegative on the triangle ¢ = [v!, v2 3], with vertices

v!,v%,v3 € IR? could be represented in the form

(1.3) p(z) = adi(2)2(2) + BA1(2)As(z) + YA2(2)A3(z) + ¢(2)
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where the (A1 (z), A2(2), As(z)) are the barycentric coordinates of z relative
to o, the numbers o, 3, and v are nonnegative, and ¢ is a bivariate quadratic
polynomial nonnegative on all of JR?, and vanishing at some point in ¢. To
somewhat explain this analogue to (1.2), each of the first three terms vanish
on two sides of the triangle and are nonnegative thereon, and therefore
correspond in a sense to the factor (¢t — a)(b — t) of (1.2a). Our intuition
was correct and we will prove this result in the course of our discussion.
Nevertheless, even representations of quadratic polynomials in more vari-
‘ ables on a simplex becomes a murky problem indeed. We were only able to
% prove an analogue of (1.1), and not (1.2), for nonnegative quadratic poly-
f nomials on simplices in IR?, while an analogue of both (1.1) and (1.2) on
J simplices in R* is in general false. The reason, as we shall later see, is
; that this question relates to the notion of copositive matrices introduced
by Motzkin (1952), (1965). Unfortunately the extreme rays of n x n copos-
itive matrices have yet to be classified and they are not, for n > 5, what
*{ is demanded by a representation of the form (1.3) for simplices in R"™!,
i More explanation will be provided shortly.

Returning for the moment to univariate polynomials to obtain some guid-
ance and motivation, we remark that there is yet another characterization
theorem for strictly positive polynomials on [0, 1]. It is given in terms of a
nonnegative sum of Bernstein polynomials of some degree, generally higher
than the degree of the polynomial they represent, cf. Pélya, Szegd (1976),
p. 78, and Karlin, Studden (1966), p. 126. We will generalize this theorem
; to any number of variables by using the concept of degree raising. This idea J
provides us with a simple iterative test for determining when a polynomial i
1s strictly positive on a simplex, and a rather simple iterative test for strict
copositivity of a matrix. Tests for copositivity and strict copositivity have
been the subject of numerous papers, cf. Motzkin (1952), (1965), Garsia
(1964), Cottle, Habetler, Lemke (1970), Martin (1981), Hadeler (1983), and
; Vailiaho (1986), (1988). The above test is linear in the matrix elements as
opposed to various determinantal criteria of other authors. 4

We will now discuss these ideas and related ones in detail. Our first task
| is the precise formulation of the problem which we will address.
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2. NONNEGATIVE POLYNOMIALS: PROJECTIVE
COORDINATES

We let II,,(IR*) denote the class of real algebraic polynomials of degree
at most n on IRY, i.e., p € I, (RY) if

p(z)= aaw“(: S agzf ---m‘;d)

lof<n lo|<n

where o = (ay,...,a4) € Wi, la| = a1 + -+ + a4, and a, € R. We
consider polynomials p € H,Z(Rd) nonnegative over a convex polyhedron
Q in IR%. The polyhedron is described by a finite set of linear inequalities.
Namely,

Q={z:Az)>0,ze R

where the mapping A : R? — R™, A(z) = (A\(2),..., Am(z)) has affine
coordinates given by

Ai(z) =8 x4, i=1,...,m,

with {6*,...,6™} C R*, = (y,...,ptm) € R™, and § -z = Y}, 6.
Since we are concerned with nonnegative polynomials over 2, we can and
will always assume, without loss of generality, that 0 € Q. This simply
means that 4 > 0. We also suppose that g # 0. This can always be
assumed by adding redundant inequalities in the description of €.

We first list several concrete examples of polyhedra Q to motivate and

illustrate our subsequent remarks.

EXAMPLE 2.1 (Simplex). Let o := [v!,...,v%*!] denote the convex hull
of v1,...,v%*! in IR?, where we assume that the v!,..., v do not all lie
on a hyperplane in IR%. In other words, this is an arbitrary simplex in IR%.
We define A(z) = (A1(z),..., A¢+1(x)) as the barycentric coordinates of x
relative to . The {\i(2)}&F] are determined by the equations

d+1

T = Z /\j(:c)vj

d+1

1= EA](.’D) .
j=1
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d+1

Then Q = ¢ and the map ¢,(A) := ;1)

{A:A>0, Z;li} Aj =1} onto o.
ExaMPLE 2.2 (First Quadrant in R?). Let ¢ = (z1,z2) and Ai(z) = 21,
Aa(z) = 22, Az(z) = 1. (Note the redundant inequality Az(z) > 0.)
ExAMPLE 2.3 (Vertical Slab in RZ). A(z) = 21, Ao(z) = 22 and Az(z) =
1— Tq.

EXAMPLE 2.4 (Oblique Slab in R*). A(z) = 21, A2(2) = z2 and A3(z) =
1—2z1+ zs.

Aj v/ takes the standard simplex

EXAMPLE 2.5 (Square in R?). A\i(z) = z1, Ao(z) = 22, A3(2) = 1 — 21
and Ag(z) =1 — z9.

ExaMPLE 2.6 (Right-Half Plane in IR?). A\;(z) = z; and Ao(z) = 1.

Each of these examples offer certain peculiarities in delineating a repre-
sentation for quadratic polynomials on their respective domains. We will
deal with each in detail in Section 3.

We now consider the problem of when a polynomial p is nonnegative on
2.~We will first introduce projective coordinates so that later, in the case
when p is a quadratic polynomial, we can relate the nonnegativity of p on
2 to the notion of conditionally positive semi-definite matrices. To this end
we introduce y = (z,7) € R%*! and define L(y) = Az + 74, where A is the
m X d matrix whose columns are 6!, ...,6™. We assume that the linear map
L : R — R™ has a trivial null space, i.e., the m x (d+ 1) matrix [A, ,u]
is of rank d + 1. Examples 2.1-2.5 have this property. Example 2.6 does
not. Under this condition, there exist integers 1 < i} < -+ < ig473 < m
such that the map L: R — ROt given by

E(y) = (6" @+ Ty, .., 60 4 Thigs)

is invertible on R**!. By reordering, we may assume that i; = j, j =

1,...,d+ 1. Thus there exist vectors v!,...,v?t! € R**! and constants
wy, ..., wqy1 such that
d+1
= Z v' ()
i=1

(2.1)

d+1

1 _—;Zwi/\i(w).
i=1
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We use the tilde notation A(z) = (M (z),. .., Ap1(z)) = Az + Ji, where A
is the matrix obtained from the first d + 1 rows of A, and i is the vector

of the first d + 1 elements of u. Note the following correspondance with
projective coordinates.

_ A z), y=(z,7), T#0
Lly) = {Z\x, 7=20

and similarly for the tilde maps.

From the above we can associate with every polynomial p € II,,(IR?) a
unique polynomial 7 of degree n on R**! which is homogeneous of degree
n in its variables (A1, ..., Ag41), such that

B(A(2)) = p(z), «e R

The existence of p is easily established. For a given monomial z{* ---z3*
with |a| = a1 + - - + a4 < n, we can use (2.1) to rewrite it as

d d+1 . dtl n—
37(111 ,“wgd — H <Zv;/\l(x))aa(zwz)\z(x)) led
j=1 i=1 i=1

which is homogeneous of degree n in the ;. The uniqueness of 7 is obvious.
Any given p has, of course, different representations from different choices
of the tilde map. We formalize this observation in the following:

PROPOSITION 2.1. Given any invertible linear map L : R® x R — R,
there is a one-to-one correspondance between p € Hn(Rd) and homogeneous

P € M, (IR* 1) given by the equation

p(e) = p(L(z,1)), =€ R*.

Going back to the polyhedron §2, we see that fixing a choice of the tilde
map leads to a cone in R**?, namely

Q4 ::{U:V:E(x,r),rzo,meﬂ%d, L(z,7)>0}.

The nonnegativity of p on € transforms into the nonnegativity of pon §+.
For clearly if p(v) > 0 for all v € Q4 then p(z) = p(L(z,1)) > 0 for all
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z € () since v = L(z,1) € Q4. Conversely, assume p(z) > 0 for all z € .
Let vp € Q+ be such that vy = L(:cg,ro) 10 > 0, L({zo, ) > 0. If 7o > 0,
then 75 Lye = L('r'0 zg,1) and 75 120 € Q. Therefore

0 < p(r5 'o) = B vo).-
By the homogeneity of p, we get
0 < B(r5 'vo) = 75 "B(vo)

and thus p(vo) > 0. If 0 = 0, ie., vo = L(xo,O) we let ve 1= L(ezg,1).
Since by assumption 0 € Q, we have v, € Q+ Therefore

0< lim ¢ "p(exg) = lim e "plr.) = p .
< lim e™"plezo) = lim e™"p(ve) = B(vo)

We can improve the above observation by noting that under an additional
hypothesis on €2, the polynomial pis actually nonnegative on the larger cone

Q={v:v=1IL(,7), L(z,7) >0, (z,7) € R}

which is determined by one less inequality (i.e., 7 > 0 is deleted), and as a

further consequence strict positivity of p on Q is then equivalent to strict
positivity of p on Q.

PROPOSITION 2.2. With the above assumpiions, set
C={z: Ac>0, zec R%}.

Assume C = {0}. Then §+ = Q and futhermore, whenever p is a polyno-
mial, then p(x) > 0, z € Q if and only if p(v) > 0, v € Q\{0}.

REMARK 2.1. Since 0 € © we have 4 > 0 and therefore C C . Fur-
thermore if Q2 is bounded it is easily seen that C = {0}. Therefore this
condition holds for Examples 2.1 and 2.5, but does not hold for the other

examples. However, as may | be seen from Example 2.3, it is not necessary
that C = {0} in orde1 that Q. = Q.

PROOF. Let (z,7) € R satisfy L(z,7) > 0. Then Az > —7u and so,
if 7 < 0 we conclude (since u > 0) that z € C. Therefore z = 0, and since

15 i T, R
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p # 0, we also get 7 = 0. We have established not only that Q, = Q, but

also that the only v = Z(:B, 0) € is v = 0. Hence the remaining claim of
the proposition is also immediate. B

REMARK 2.2. It is easy to see that the condition C = {0} is equivalent to
the fact that the cone spanned by the §1, ..., 6™ is all of IR®. We also remark
that since we have shown that the inequalities L(z,7) > 0 imply 7 > 0

whenever C' = {0}, it follows that there exist, in this case, nonnegative ~;,
t=1,...,m, for which

1= Z'n/\i(:c), r e R,

i=1

We now investigate in some detail the special cases alluded to earlier.
Most of our remarks pertain to Example 2.1. Here  is a given simplex o,
m = d+1 so that the tilde and un-tilde maps are the same, and Q = R
Furthermore, in this case Proposition 2.1 merely gives us what is com-
monly referred to as the Bernstein-Bézier representation of a polynomial

p € I, (IR?) in barycentric coordinates relative to o. We adopt the usual
notation and write

(2.2) px)= 3 baBI(Y)
|al=n

where A% = A% .- A4t and BL(A) = ()2~

From Proposition 2.2 we have that p(z) is nonnegative (positive) on ¢
if and only if the Bernstein-Bézier polynomial is nonnegative (positive) on
R (R*1\{0}). Recall that an m x m symmetric matrix A is copositive
if (Az,2) > 0 for all z € RT}. It is strictly copositive if (Az,z) > 0 for all
x € RT\{0}. As a corollary we have:

COROLLARY 2.3. Let p be a quadratic polynomial on IR®. Then p is
nonnegative (positive) on a simplex o if and only if in the Bernstein-Bézier
form (2.2), the (d + 1) x (d + 1) matriz A = (ai;) defined by a;; = beiqei
where ¢! € R, () = ik, ts copositive (strictly coposilive).

Using a result of Hadeler (1983) characterizing 3 x 3 copositive matrices,
we immediately obtain a condition for a bivariate quadratic polynomial to

s | A iR 4 2
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be nonnegative over a triangle o, in terms of the coefficients of its Bernstein-
Bézier representation of degree 2.

COROLLARY 2.4. Let p be a bivariale quadratic polynomial. Then p(z) >
0, x € 0, 0 a given triangle if and only if when

3
(2.3) p(z) = Z bis Ai(2)A; ()

ij=1

where A = (A1, A, A3) are the barycentric coordinates of z, we have
(i) b >0, i=1,23
(1) bij 2 — /b, alli # j
and at least one of the following
(1it) b1a+/baz + baz\/b11 + b1sv/baa + V/b11b2aabsz > 0
(iv) det B > 0
holds. Furthermore, p is positive on o if and only if (i) and (ii) hold with
strict inequality, and either (i1i) holds or (iv) holds with strict inequality.

M«

'REMARK 2.3. In (2.3) it is to be assumed that b;; = b;; for all 7 and j.

REMARK 2.4. This result was recently discussed by Nadler (1988) from
another point of view.

Another characterization of 3 x 3 copositive matrices leads us to an ana-
logue of (1.1). To explain, we first observe that any symmetric matrix A
which is a sum of a positive semi-definite matrix plus a matrix with non-
negative elements is necessarily copositive. More importantly, it is known
that all copositive matrices of order < 4 can be so represented, see Di-
ananda {1962). However there are 5 x 5 copositive matrices which cannot
be decomposed in this form. This leads us to the following representation
of bivariate and trivariate quadratic polynomials, nonnegative on a simplex.

COROLLARY 2.5. Let p be a quadratic polynomial of either two or three
variables. Then p(z) is nonnegative on the simplex o if and only if p(z)
has the form

(2.4) p(e) = Z aij (@) (2) + q(z), =€ RY,
1<i<j<d+1
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d=2,3, where A = (A1,..., Aay1) are barycentric coordinates of x relative
too, a;;20,1<i<j<d+1, and ¢ is nonnegative for all x € Re.

REMARK 2.5. It is known that the homogeneous quadratic
(A/\, /\) = (/\1 + Ao+ A3+ Ay +)\5)2 —4A1 A9 —4Ao A3 —4A3Ag —4A 4 5 —4As50

s nonnnegative on R‘i, but the matrix A is not the sum of a positive
semi-definite and nonnegative matrix, cf. Hall (1986). The corresponding
quadratic polynomial p(z) := (4A(2),A(2)), z € o, o a simplex, cannot be
written in the form (2.4).

The representation (2.4) is an analogue of (1.1) in that we only know that
¢ is nonnegative on JR%. In the next section we show that in the case d = 2,
we can choose ¢ so that it vanishes at some point in o. Firstly, however,
we give an alternative characterization of positive polynomials on o, of any
degree in any number of variables.

To this end, we need to review the process of degree raising, an idea well-
known in the methodology associated with modelling curves and surfaces

by the Bernstein-Bézier technique. Any p € Hn(JRd) has a representation
in Bernstein-Bézier form

(2.5) p(e)= Y bTBT(N),
|a|=m

b7 = 07 (p), for all m > n. Furthermore, there is a simple iterative rela-
tionship between successive representations as witnessed by the formula

d+1

1
b?+1:mzajb?_e]‘, !a|=m+1.
j=1

At each stage, the new representation (2.5) is formed by a simple convex
combination of the previous coefficients. Hence

ofnax et < max |b], m2n.

We combine this with the fact that there exists a positive constant ¢, de-
pending on o and n, such that for all p € IT,(R%)

¢ max |05(p)| < max|p(z)]
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to obtain

¢ max b7 (P}l < max[p(z)f, m2>n.
Using the Bernstein operator
B\ pm
Bu(fo))@) = Y. F(ea(Z))BFO)
‘ [Bl=m

where, as before, z = c,(A) = Zf:; Ajv? ) we get

¢ max |b’g] - p(cg (3))| < max |p(z) — Bm(p(a))(z)|
la|=m m TEC

since for every m, By, (p(0)) is in fact a polynomial of degree n, ¢f. Dahmen,

Micchelll (1988). It is well-known that there exists a constant K depending

on p and o such that the error in approximating p by its Bernstein operator

value is bounded by % We therefore finally obtain

2 (e ()| <

This demonstrates the well-known fact that in degree raising the coeffi-
cients converge uniformly to values of the polynomial. As a consequence
we obtain:

(2.6) max

laj=m

THEOREM 2.6. Let p € Hn(IRd). Then p(z) > 0, all z € o, o0 some
simplez, if and only if there exists an m > n such that

plzy= > TBR(N)

laj=m

with b7 > 0, all o, where A = (A1, ..., Aaq1) are the barycentric coordinates
of x relative to o.

REMARK 2.6. For polynomials of one variable, the above result says that a
p(2) = Y7, aiz® is positive on [0, 1] if and only if there exists an m > n
such that in the representation

(2.7) p(a) = ji__;bj (’;’) 29 (1 — 2y
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we have b; > 0 for j = 0,1,...,m, see Pdlya, Szegd (1976), p. 78, Karlin,
Studden (1966), p. 126. This result continues to fascinate. See the recent

paper Erdélyi, Szabados (1988) where a study is made of the least m needed
in (2.7).

Somewhat more can be said in the case where d = 1. Namely, if p(z) >
0 on the open interval (0,1), then we can always divide p(z) by z"(1 —
z), where » and ¢ are the multiplicities of the zero of p at zero and one,
respectively, to obtain a polynomial strictly positive on [0,1]. Thus (2.7)
persists (with some zero coefficients) when p is positive on (0,1). In two
or more dimensions we cannot relax the hypothesis of strict positivity. For
example, if p is nonnegative on all of JR? and vanishes only at a point
2% € 8o, which is not a vertex (say for definiteness on the face A;(z) = 0)
then A1(2%) = 0 and A2(2°),...,Aa41(2%) > 0. Thus if

(2.8) p(z)= Y V2B

la|=m

and b7 > 0, it follows that 47> = 0 if @; = 0. But then the polynomial on
the right of equation (2.8) vanishes identically on the face A;(z) = 0. Thus
for such a polynomial we never have 7' > 0 for all |a|] = m. The above

Theorem 2.6 and Corollary 2.3 also give us a test for strict copositivity of
a matrix.

COROLLARY 2.7. Let B = (b;;) be a (d+1) X (d+ 1) symmetric malrz.
Set

bgi+ej ZIbij, Z,]‘—‘l,,d+1,

and
1 d+1
1 R
= o ol 22,

where € is the ith unit vector in R*' and o = (a1,...,@41) € N,
lal=ay + -+ agp1 = m+ 1. Then B is strictly copositive if and only if
there exists an m > 2 such that b7 > 0 for all |a| = m.

As the previous example shows, this test may fail if the matrix B is only
copositive. However from (2.6), we see that the above B is copositive if and
only if

liminf min 57’ > 0.
m—oo |aj=m
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Our final remark of this section pertains to even degree polynomials

strictly positive on bounded polyhedra. For this purpose we require the
following result.

ProPOSITION 2.8. Let T be an m x (d + 1) mairiz of rank d + 1, and
p a homogeneous polynomial of degree 2k on IRt satisfying p(z) > 0 i
I'e >0, 2 #0. There then exists a homogeneous polynomial q of degree 2k
on R™ such that (T'z) = p(z), € R, and q(y) >0 ify € RT\{0}.

PRrROOF. Let Q : R™ — IR**! be the orthogonal projection of R™ onto
the columns of I'. That is,

Qy=TTTr)"rTy.
For any t € IR, set

0:(y) = tl(y, v) — (Qu, v))F + p((CTT)"'TTy).

Then ¢; is a homogeneous polynomial of degree 2k on IR™. Furthermore,
for all z € R*H!

q(T'z) = t[(Tz,Tz) — (Pz, Tz)]f + p(z) = p(z) .

We claim that there exists a to > 0 for which ¢;,(y) > 0 if y € RT\{0}.
(Note that if g, is nonnegative for ¢o, then it is nonnegative for all ¢ > ¢5.)
Assume this is false. There then exists a sequence yn, € RT\{0}, (¥n,¥n) =
1, such that g,(y,) < 0. We choose a limit point yo of the sequence {yn}.
Then (yo,¥0) =1 and yo € RT\{0}. Futhermore we have

3 1 _
[(¥n, yn) — (Qun, yn))F < —;p((FTF) 1T y,)
for each n. Let n T oo. Then

(0, %0) — (Quo,w0))F < 0.

Since Q is an orthogonal projection, (y,y) — (Qy,y) > 0 for all y € R™.
Thus
(o, o) = (Q¥o, Yo) -

" AT B e S
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But this implies, since @ is an orthogonal projection, that there exists an
Ty € Rd+1\{0} such that yo = I'wg. Thus T'zg > 0, 2o # 0, implying by
assumption that p(xzg) > 0. However

p(TTT) " I yn) < =n(yn, 9n) = (Qum, 9)}* < 0

for all n, and therefore p((T'7T)~!I'Ty,) < 0. But p((TTT)~ITy) = p(z0).
This contradiction proves the proposition. |

REMARK 2.7. This proposition extends a result of Martin, Jacobson

(1981) (Theorem 4.2, p. 239) which corresponds to the case k¥ = 1. The
proof is patterned after that special case.

From this above result we obtain using Propositions 2.1, 2.2 and 2.8:

COROLLARY 2.9. Let p be a polynomial of even degree on IR* which
is strictly positive on a bounded polyhedron Q = {z : A(z) > 0, z € R?},
where A(z) = Az+p, and [A, u] is a matriz of rank d+1. There then exists
a homogeneous polynomial ¢ on IR™, of the same degree as p, satisfying
g(A(2)) = p(z), allz € R?, and ¢(y) > 0 for ally € IRT\{0}.

3. NONNEGATIVE BIVARIATE QUADRATIC
POLYNOMIALS

We begin this section with a proof of the theorem mentioned in the
introduction.

THEOREM 3.1. Let p(z), © € IR? be any quadratic polynomial nonnega- .

tive on a triangle o with vertices v, v2,v3. Let (A1(z), A2(2), As(z)) denote
the barycentric coordinales of x relative to o. Then there are nonnegative
constants «, 3,7, and a quadratic polynomial ¢ which is nonnegative on all
of IR? and vanishes at some point y € 0\{v1,v2,v3} such that

(3.1) p(z) = adi(z)Az(z) + BA1(2)As(z) + vA2(2)As(2) + q(2).
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We base the proof of this result on the following proposition.

PROPOSITION 3.2. Let C be a positive semi-definite 3 x 3 (real) matriz.
There then exist 3 x 3 matrices A and N such that C = A+ N, where
(i) N = (ni;)?;-, satisfies ng; >0, ni; =0, 4,5 =1,2,3.
(i1) A is a positive semi-definite matriz with a vector A° in its null space,
where A0 € ]R‘i and at least two components of A° are strictly positive.

Proor. We divide the proof into various cases, depending on the sign
patterns of the elements of C. We first observe that we may assume that the
diagonal elements of C are all positive. For if not, then after permutation
of rows and columns, if necessary, we may assume that C has the form

C =

o OO
—_ o O
O N O

with b,¢ > 0 and bec > f2. We then set

0 0 0 0 0 0
~A=10 b —VE|],N=|0 0 f+Vbe
0 —Vbe ¢ 0 f++vbe 0

and note that A\° = (0,+/c, \/I;) is an eigenvector of A. If b = 0, then
A% = (1,1,0) is also an eigenvector of A. The similar result holds if ¢ = 0.
We therefore assume that

a d e
C=1|d b f
e f e

with a,b,¢ > 0.

We consider the various possible sign patterns of the off-diagonal elements
of C. Since we can always permute rows and columns, we may assume
that d and e have the same sign (weakly). Thus we need only consider four
cases.

Case 1. d,e, f > 0. In this case we set

0 0 0 d e
b —Vbe|, N=|d 0 f+Vbe
—be ¢ e f+Vbe 0

A=

o O R
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A% = (0, /¢, vb) is an eigenvector of A.
CASE 2. d,e > 0 and f < 0. We decompose C exactly as in Case 1.

Cast 3. d,e, f < 0. We assume from Case 2 that d,e < 0. We claim
that there exists an ag > 1 such that the matrix

a apd ape
A= apd b aof
age  aof c

is positive semi-definite and singular. To see this note that det A is a
cubic or quadratic polynomial in ag with leading coefficient negative, and
is nonnegative for ag = 1. Thus there exists an ag > 1 for which

(3.2) det A = abe + 2a3def — ad(af? + be? + cd®) = 0.

Furthermore, it necessarily follows from (3.2) that ab > a2d?, ac > aZe?

and be > a2 f?. Thus A is positive semi-definite. In fact if ab = a2d?, then
from (3.2),
203def — ai(af? +be?) =0.

Since all terms are nonpositive, this implies that be? = 0 contradicting our
previous hypothesis. Thus ab > a2d?, and similarly ac > a3e?. ‘

Weset N =C—A. Sinceag > 1andd,e, f <0, N has the desired form.
The vector

A0 = (aldf — ageb, —apaf + aded, ab — odd?)
is an eigenvector of A. Since a,b,c > 0, d,e,< 0, f <0 and ab > a2d?, it

follows that all three components of A% are strictly positive.

CasE 4. dye < 0and f > 0. If def = 0, then we are in one of the
previous cases. As such we assume that d,e < 0 and f > 0.
If abe — be? — ¢d? > 0, set

5: ,ﬁ:

@ QR

d
b
0

o O %
[ ew i e

0
0
f

O s O

Then C is positive semi-definite and we have reduced our problem to case
3.
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As such we assume that
(3.3) abc — be? ~cd® < 0.

Since det C = abc + 2def — (af? + be? + cd?), and (3.3) holds, there exists
an o € (0, 1] such that

a d e
Co=1|d b af
e af ¢

is singular and positive semi-definite. Since f > 0, C — C, has nonnegative
entries. As such it suffices to work with C,.
If a(af)? > ed?, set

a d —v/ac
A= d b ~\/<d

—ac —./d ¢

3

and

N = 0 0 af +/2d
e++ac af +./%d 0

By assumption af + \/gd > 0, and since Cy is positive semi-definite e +
Vvac > 0. The vector A’ = (1/¢,0,4/a) is an eigenvector of A. If a(af)? >
be?, a similar analysis holds.

The final possibility we must consider is that a(a f)? < cd® and a(af)? <
be?, while C, is positive semi-definite and singular. In this case we set
A = C,. The vector

0 0 e+\/EE)

A = (be — (af)?, e(af) — cd, d(af) — be)

is an eigenvector of A. The first component is nonnegative since Cy 1is
positive semi-definite. Now

o(=d) = Veved? > Vei/a(af)? = Vaclaf) 2 —e(af)
and similarly

b(—e) = Vbvbe? > VbhJa(af)? = Vab(af) > —d(af).
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Thus the second and third components of A® are strictly positive. This
proves the proposition. |

Proor oF THEOREM 3.1. Assume p is a quadratic polynomial nonneg-
ative over a triangle o with vertices v!, v?,v3. From Corollary 2.3 (see also
Corollary 2.5), p may be written in the form

p(z) = (BA(z), A(z))

where A(z) = (A1(z), Az(2), As(z)) are the barycentric coordinates of z
relative to o, and B is a 3 x 3 copositive matrix. From Diananda (1962),
B can be decomposed as C + N where C is positive semi-definite and N
Is a matrix with nonnegative entries. Since adding positive terms to the
diagonal entries of a positive semi-definite matrix maintains the positive
semi-definiteness of the matrix, we may assume that the diagonal entries
of N are all zero. We now decompose C as in Proposition 3.2 to obtain

B=A+N
where A and N are as in the statement of Proposition 3.2. Thus
p(z) = (AX(z), A(2)) + (N A(z), A=) -
.From the definition of N,
(NA(z), Alz)) = adi(z)A2(z) + BAi(z)Aa(z) + vAa(2)As(z)
for some «, 8,7 > 0. In addition,
g(z) = (AX(z), A(z))

is a quadratic polynomial nonnegative on all of JR?, and vanishes at some
point y € o\{v!,v?,v3} corresponding to A(y) = A°, where A® has been
normalized so that the sum of its coefficients is one. |

We now present representation theorems for each of Examples 2.2-2.6.

THEOREM 3.3 (First Quadrant). Let p be a nonnegative quadralic poly-
nomial on R'_Z,_. Then there exisl nonnegative constants «,(,v, and a
quadratic polynomial ¢ which is nonnegative on all of IR? such that

p(z) = azy + fzg + vz122 + q(z), ©=(z1,2).
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Proor. We write p(z) in the form
p(z) = (BA(z), A(z))

where A(z) = (z1,22,1) and B is a 3 x 3 copositive matrix. Here we have
made use of Proposition 2.1 and the remarks thereafter. We now decompose
B as a positive semi-definite matrix A plus a matrix N with nonnegative
entries and zero diagonal entries. |

THEOREM 3.4 (Vertical Slab). Let p be a nonnegative quadratic poly-
nomial on the vertical slab of Ezample 2.3. Then there exist nonnegative
constants a, 3,7, and a quadratic polynomial ¢ which is nonnegative on all

of R* and which vanishes at some point y in the slab, but not at (0,0) or
(1,0), such that

¥ W e el WERT L NEARIRE TS vy 2T T s ey R

p(z) = aziz2 + B1(1 — 1) + y22(1 — 1) + q(z).

ProoF. First we write p in homogeneous coordinates as
p(z) = (BA(z), A(z))

where A(z) = (x1,29,1 — 21), and =z = (z1,22). B is a 3 X 3 matrix
and has the property that (Bz,z) > 0 whenever z = (x1, 23, 7 — 1) with
£y 20,29 20, 7~ > 0and 7 > 0. Even though the hypothesis
of Proposition 2.2 is not satisfied, the inequality 7 > 0 is still redundant.
Hence B is copositive. We now proceed as in the proof of Theorem 3.1.
The polynomial g vanishes at some point y as claimed since the eigenvector
A% of A can be normalized so that its first and third components sum to
one. |
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THEOREM 3.5 (Oblique Slab). Let p be a nonnegative quadratic poly-
nomial on the oblique slab of Example 2.4. Then there erist nonnegative

%‘ constants o, 8,7, 6, ¢, 1, and a quadratic polynomial ¢ which is nonnegative
on all of R? such that

p(z) = azi+Bzs + (1 — z1 + x2) + bz120 +ex1(1 — &) + T2) :
+ pzo(l — 21 + 22) + ¢(2) . :
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For a proof of this result, we first appeal to the following theorem.

THEOREM (Martin, Jacobson (1981)). Let Q be an n x n symmetric
matriz and A an m x n matriz with m < 4. Suppose (Qz,z) > 0 whenever
Az > 0, and there exists an T € IR" with AT > 0. Then there erists a
coposttive m X m mairiz C, and a positive semi-definite n x n matriz S
such that

(3.4) Q=4Tca+s.

REMARK 3.1. Necessary and sufficient conditions for the existence of a
decomposition of the type (3.4) is given in Martin, Powell, Jacobson (1981).

ProoF oF THEOREM 3.5. By Proposition 2.1 we write

p(z) = (QA(z), A(z))

where A(z) = (21,22,1 — 21 + z2), = = (x1,22) and @ is a 3 x 3 matrix.
We know that (Qz,z) > 0 whenever z = (21,22, 7 — &1 + x2) with z; > 0,
zg > 0,7 —a; +a3 > 0 and 7 > 0. The last condition is not redundant
here. Thus (Qz,z) > 0if Az > 0 where

O = O

0
0
1
1

—_ O O =

-1
We use the above stated theorem to express p in the form
p(z) = (CAA(z), AA(z)) + (SA(z), Alz))

where C is a 4 x 4 copositive matrix and S 1s a 3 x 3 positive semi-definite
matrix. We use the result of Diananda (1962) to decompose C as B + N
where B is positive semi-definite, and N has nonnegative entries with zero
diagonals, plus the fact that AA(z) = (21,22, 1 — 21 +22,1)T to obtain the
statement of the theorem. B
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The representation theorem for the square is proved in a similar fashion.
We omit the details.

THEOREM 3.6 (Square). Let p be a nonnegative quadratic polynomial
on the square of Ezample 2.5. Then there erist nonnegative constants

«,B,7,8,e, 1, and a quadratic polynomial q which is nonnegative on all
of R? such that

p(z) = azize + Bz1(1 — 21) + 21 (L — 22) + S22(1 — 21)
-+ E:L'g(l - .’L'z) + u(l — .711)(1 - 332) + q(:c) .

REMARK 3.2. In Theorems 3.3 and 3.5 we cannot choose the ¢ appearing
therein to vanish at some point in the respective polyhedra. This may
be seen by representing the polynomial p(z) = 1 thereon. In these cases
we necessarily have ¢(z) = 1. It may be that the ¢ appearing in Theorem
3.6 and the ¢ of three variables in Corollary 2.5 can be chosen to vanish in
their respective polyhedra. This fact would seem to require us to prove an
analogue of Proposition 3.2 for 4 x 4 matrices. The existence of such an
analogue remains an open question.

Our final characterization theorem requires a special limiting argument
as it cannot be directly converted to homogeneous coordinates.

THEOREM 3.7 (Right-Half Plane). Let p be a nonnegative quadratic poly-
nomial on the right-half plane (Ezample 2.6). Then there exists a nonneg-
ative constant a and a quadratic polynomeal ¢ which s nonnegative on all
of R? such that

p(z) = azy + g(z) .

Proor. For every t > 0, p is nonnegative on the cone z; > 0, ©; +ix2 >
0. Therefore we can (after a linear change of variables) use Theorem 3.3 to
express p in the form

(3.5) p(2) = avzy + Bi(zy +122) + veer (21 +122) + ¢u(2)

where oy, 8,7 > 0 and g4 is a quadratic polynomial nonnegative on all of
R%. We claim that

b = oy + ﬁt +v: + max Qt(m)

(z,z)=1
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remains bounded as ¢ — 0. If not we would divide both sides of (3.5) by
6; and pass to the limit through a subsequence to obtain

0=0a'z;+ Bz +723 +¢(2)

where o', 8’,4’ and ¢’ are not all zero. Since all these quantities are non-
negative we easily obtain a contradiction. Thus é; must remain bounded
ast — 0%. We now pass to a limit in (3.5) through a subsequence, add the
B term to the o term, and the ¥ term to the ¢ term. |
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