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Abstract--Several researchers characterized the activation fimction under which multilayer feedforward networks 
can act as universal approximators. We show that most o f  all the characterizations that were reported thus far in 
the literature are special cases o f  the following general result: A standard multilayer feedforward network with a 
locally bounded piecewise continuous activation fimction can approximate an3, continuous function to any degree 
of  accuracy i f  and only i f  the network's activation function is not a polynomial. We also emphasize the important 
role o f  the threshold, asserting that without it the last theorem does not hold. 
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1. BACKGROUND 

The basic building block of a neural network is a pro- 
cessing-unit that is linked to n input-units through a 
set of n directed connections. The single unit model is 
characterized by ( 1 ) a threshold value, denoted 0; (2) 
a univariate activation function, denoted a : R -~ R; 
and (3) a vector of  "weights," denoted w = wn . . . . .  
wn. When an input-vector x = xj . . . . .  x~ is fed into 
the network through the input-units, the processing- 
unit computes the function g(w. x - 0), w.  x being 
the standard inner-product in R ~. The value of this 
function is then taken to be the network's output. 

A network consisting of a layer o fn  input-units and 
a layer of  m processing-units can be "trained" to ap- 
proximate a limited class of  functions f : R" --~ R m. 
When the network is fed with new examples of vectors 
x ~ R ~ and their correct m a p p i n g s f ( x ) ,  a "learning 
algorithm" is applied to adjust the weights and the 
thresholds in a direction that minimizes the difference 
between f ( x )  and the network's output. Similar back 
propagation learning algorithms exist for multilayer 
feedforward networks, and the reader is referred to 
Hinton (1989) for an excellent survey on the subject. 
This paper, however, does not concern learning. Rather, 
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we focus on the following fundamental question: If we 
are free to choose any w, 0, and a that we desire, which 
"real life" functions f : R n --~ R "  can multilayer feed- 
forward networks emulate? 

During the last decade, muitilayer feedforward net- 
works have been shown to be quite effective in many 
different applications, with most papers reporting that 
they perform at least as well as their traditional com- 
petitors (e.g., linear discrimination models and Bayes- 
ian classifiers). This success has recently led several 
researchers to undertake a rigorous analysis of the 
mathematical properties that enable feedforward net- 
works to perform well in the field. The motivation for 
this line of research was eloquently described by Homik 
and his colleagues (Hornik, Stinchcombe, & White, 
1989) as follows: "The apparent ability of sufficiently 
elaborate feedforward networks to approximate quite 
well nearly any function encountered in applications 
leads one to wonder about the ultimate capabilities of  
such networks. Are the successes observed to date re- 
flective of  some deep and fundamental approximation 
capabilities, or are they merely flukes, resulting from 
selective reporting and a fortuitous choice of  prob- 
lems?" 

Previous research on the approximation capabilities 
of  feedforward networks can be found in le Cun (1987), 
Cybenko (1989), Funahashi (1989), Gallant and 
White (1988), Hecht-Nielson (1989), Hornik et al., 
(1989), Irei and Miyake (1988), Lapedes and Farber 
(1988), Stinchcombe and White (1990), and Chui and 
Li (1992). These studies show that if the network's 
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activation functions obey an explicit set of assumptions 
(which vary from one paper to another), then the net- 
work can indeed be shown to be a universal approxi- 
mator. For example, Gallant and White ( 1988 ) proved 
that a network with "cosine squasher" activation func- 
tions possess all the approximations properties of Fou- 
rier series representations. Hornik et al. (1989) ex- 
tended this result and proved that a network with ar- 
bitrary squashing activation functions are capable of 
approximating any function of interest. Most recently, 
Hornik ( 1991 ) has proven two general results, as fol- 
lows: 

HORNIK THEOREM 1. Whenever the activation function 
is bounded and nonconstant, then, for any finite measure 
~, standard multilayer feedforward networks can ap- 
proximate any function in LP( #) (the space of all fimc- 
tions on R" such that fR. If(x)IPd#(x) < ~ )  arbi- 
trarily well, provided that sufficiently many hidden units 
are available. 

HORNIK THEOREM 2. Whenever the activation fimction 
is continuous, bounded and nonconstant, then, for ar- 
bitrary compact subsets X ~_ R", standard multilayer 
feedforward networks can approximate any continuous 
function on X arbitrarily well with respect to uniform 
distance, provided that sufficiently man), hidden units 
are available. 

In this paper we generalize in particular Hornik's 
Theorem 2 by establishing necessary and sufficient 
conditions for universal approximation. In particular, 
we show that a standard multilayer feedforward network 
can approximate any continuous function to any degree 
of accuracy if and only if the network's activation func- 
tion is not polynomial. In addition, we emphasize and 
illustrate the role of the threshold value (a parameter 
of the activation function ), without which the theorem 
does not hold. The theorem is intriguing because ( 1 ) 
the conditions that it imposes on the activation function 
are minimal; and (2) it embeds, as special cases, almost 
all the activation functions that were reported thus far 
in the literature. 

2. MULTILAYER 
FEEDFORWARD NETWORKS 

The general architecture of a multilayer feedforward 
network consists of an input layer with n input-units, 
an output layer with m output-units, and one or more 
hidden layers consisting of intermediate processing- 
units. Because a mapping f : R" --~ R m can be com- 
puted by m mappings~ : R" --~ R, it is (theoretically) 
sufficient to focus on networks with one output-unit 
only. In addition, since our findings require only a single 
hidden layer, we will assume hereafter that the network 
consists of three layers only: input, hidden, and output. 
One such network is depicted in Figure 1. 
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FIGURE 1. Single hidden layer feedforward neural net. 

In the figure, the weights-vector and the threshold 
value associated with the j th  processing-unit are de- 
noted w j, and 0j, respectively. The weights-vector as- 
sociated with the single output-unit is denoted/3, and 
the input-vector is denoted x. With this notation, we 
see that the function that a multilayer feedforward net- 
work computes is: 

k 

f (x)  = ~] f l j . a ( % . x -  0j) (1) 
j ~ l  

k being the number of processing-units in the hidden 
layer. Hence, the family of functions that can be com- 
puted by multilayer feedforward networks is charac- 
terized by four parameters, as follows: 
1. The number of processing-units, denoted k; 
2. The set of weights { wij}, one for each pair of con- 

nected units; 
3. The set of threshold values { 0j }, one for each pro- 

cessing-unit; 
4. An activation function a : R --,- R, same for each 

processing-unit. 
In what follows, we denote the space of these param- 

eters A = (k ,  { wij} ,  {0i}, ~ ,  and a particular quad- 
ruple of parameters is denoted to E A. The network 
with n input-units that is characterized by to is denoted 
dV~(n), but for brevity we will drop the n and use the 
notation N~. Finally, the function that N~ computes is 
denotedf~ : R --~ R", and the family of all such func- 
tions is denoted S t = { f~ I to E A }. 

Our objective is thus to find all the functions that 
may be approximated by multilayer feedforward net- 
works of the form N~. In order to do so, we will char- 
acterize the closure 5 t = closure { f~lto E A }. This clo- 
sure is based on some metric defined over the set of 
functions from R" to R, described in the next section. 

3. DEFINITIONS 

DEFINITION 1. A metric on a set S is a function d : S 
X S --~ R such that: 
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1. d ( s , t )>-O 
2. s = t i f  and only i f  d(s, t) = 0 
3. d(s, t) = d(t, s) 
4. d(s, u) < d(s, t) + d(t, u). 

If we take S to be a set of  functions, the metric d( f ,  
g) will enable us to measure the distance between func- 
tions f ,  g E S. 

DEFINITION 2. The closure of  a set S of  a metric space 
( Y ,  d) is defined as follows: 

closure(S) = S =  {tlV~ > 0, q s E S ,  d(s, t) < ~}. 

DEFINITION 3. A function u defined almost everywhere 
with respect to Lebesgue measure u on a measurable 
set ~2 in R ~ is said to be essentially bounded on ~2 ( u 
L~°(f~)). tf lu(x) l is bounded almost everywhere on 
ft. We denote u E L o~(f~) with the norm 

Ilull,~c~j 
= inf{Xlu{x: I , (x)l  > X} = 0} : esssup lu(x)l. 

x E l l  

DEFINITION 4. A fimction u defined almost everywhere 
with respect to Lebesgue measure on a domain ~2 ( a 
domain is an open set in R ~) is said to be locally es- 
sentially bounded on ~2 ( u E L ~ (  f~) ), i f  for every com- 
pact set K C fl, u E L ~ ( K). 

DEFINITION 5. We say that a set F of  fimctions in 
oo t l  Lto~(R ) is dense in C(R")  i f  for every fimction g E 

C( R")  and for ever.v compact set K C R". there exists 
a sequence offunctionsfj E F such that 

lim lie-£IIL®~K~ = 0. 
j ~ o o  

Hence, if we can show that a given set of  functions 
F is dense in C(R") ,  we can conclude that for every 
continuous function g E C(R ~) and each compact set 
K C  R",  there is a function f ~ Fsuch  that f is a good 
approximation to g on K. In this paper we take C(R")  
to be the family of"real  world" functions that one may 
wish to approximate with feedforward network archi- 
tectures of  the form Ate. F is taken to be the family of 
all functions implied by the network's architecture, 
namely the family [eqn ( 1 )], when ~0 runs over all its 
possible values. The key question is this: Under which 
necessary and sufficient conditions on a will the family 
of networks A t be capable of approximating to any de- 
sired accuracy any given continuous function? 

4. RESULTS 

Let M denote the set of  functions which are in 
L Io~(R) and have the following property. The closure 
of the set of points of discontinuity of  any function in 
M is of zero Lebesgue measure. This implies that for 
any a ~ M, interval [a,  b], and/~ > O, there exists a 
finite number  of  open intervals, the union of which we 
denote by U, of  measure 6, such that a is uniformly 

continuous on [a,  b]/U.  We will use this fact. Note 
that we do not demand the existence of one-sided limits 
at points of discontinuity. 

We then have the following result: 

THEOREM 1. Let ~r E M. Set 

= span { cr(w.x + 0) : w E R " ,  O E R } .  
n 

Then Z ,  is dense in C(R")  i f  and only i f  or is not an 
algebraic polynomial ( a.e. ). 

PROPOSITION 1. Assume ~ is a non-negative finite mea- 
sure on R" with compact support, absolutely continuous 
with respect to Lebesgue measure. Then ~ ,  is dense in 
LP(U), 1 < p < oo, ( land  only i f  a is not a polyno- 
mial ( a.e. ). 

We recall that LP(u) is the set of  all measurable 
functions f s u c h  that: 

[IfL,,,,= (fR lf(x)lpdu(x))'/'< ~. 
The following proposition is worth stating as it is a 

simple consequence of Theorem 1 and some known 
results. 

PROPOSITION 2. I f  a ~ M is not a polynomial ( a.e. ), 
then 

(.4) = span{a(~w.x + 0): ~,, 0 E R, w E ..4} 
n 

is dense in C( R")  for some o4 ~_ R"  i f  and only i f  there 
does not exist a nontrivial homogeneous polynomial 
vanishing 
on ,4. 

5. DISCUSSION AND C O N C L U S I O N  

First, we wish to illustrate why the threshold element 
is essential in the above theorems. Consider the acti- 
vation function (without a threshold) a(x) = sin(x).  
This function is not a polynomial; In addition, it is 
continuous, bounded, and non-constant. Now, the set 
{sin(w. x ) l w  E R}  consists of only odd functions 
(a (x)  = - a ( - x ) ) .  Thus, an even function like cos(x) 
cannot be approximated using this family in [ - 1 ,  1], 
implying that { s i n ( w . x ) [ w  E R}  is not dense in 
C ( [ -  1, 1 ]). This could be corrected by adding to the 
family sin(.  ) functions with a threshold (offset) ele- 
ment (e.g., s in(x + ~r/2) = cos(x)) .  Moreover, if a is 
an entire function, there exist sufficient and necessary 
conditions on a under which Theorem 1 will hold 
without a threshold ( for a more general discussion see 
Dahmen & Micchelli, 1987). On the other hand, the 
threshold may have absolutely no effect. Take for ex- 
ample the function a( x)  = e". 

The essential role of the threshold in our analysis is 
interesting in light of the biological backdrop of artificial 
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neural networks. Because most types of  biological neu- 
rons are known to fire only when their processed inputs 
exceed a certain threshold value, it is intriguing to note 
that the same mechanism must be present in their ar- 
tificial counterparts as well. 

In a similar vein, our finding that activation func- 
tions need not be continuous or smooth also has an 
important biological interpretation, because the acti- 
vation functions of real neurons may well be discon- 
tinuous, or even nonelementary. These restrictions on 
the activation functions have no bearing on our results, 
which merely require "nonpolynomiality." 

As Hornik ( 1991 ) pointed out, "Whether or not the 
continuity assumption can entirely be dropped is still 
an open and quite challenging problem." We hope that 
our results solve this problem in a satisfactory way. 

6 .  P R O O F S  

We use the following definition to prove our main re- 
suits: 

DEFINITION 6. For a fimction u we denote by supp( u) 
the set supp(u) = {xl u(x)  4: 0}. 

Proqfo[ Theorem 1. We divide the proof into a series 
of steps. 

Step 1. I.f a is a polynomial, then Y,, is not dense 
in C( R").  

If a is a polynomial of degree k, then a(w.  x + 0) is 
a polynomial of degree k for every w and 0, and in 
fact Y., is exactly the set of algebraic polynomials of 
degree at most k. Thus E,, cannot be dense in 
C(R") .  • 

In what follows we always assume that a is not a 
polynomial. 

Step 2. I f  Z~ is dense in C(R) ,  then Y., is dense 
in C( R").  

The space V = s p a n { f ( a ,  x) l a  E R",  f ~  C(R)}  
is dense in C(R") .  This follows in various ways, [e.g., 
Dahmen & Micchelli (1987), Chui & Li (1992), 
Vostrecov & Kreines (1961), Lin & Pinkus (in 
press)]. Now, let g E C(R" )  and K C R" be any 
compact subset of R". V is dense in C(K) .  Thus 
given ~ > 0 there exist f E C ( R )  and a i E R",  i = 
1 . . . . .  k, such that 

k 

I g ( x ) -  ~ f ( a l ' x ) l  <~/2,  
i ~ l  

for all x E K. Now {a i. x [x  E K} ~ [ai ,  /3i] for 
some finite interval [ai ,  fl~], i = 1 . . . . .  k. Because 
Y.~ is dense in [a~, /3~], i = 1 . . . . .  k, there exist 
constants c o, w o and 0 o, j = 1 . . . .  , m~, i = 1 , . . . ,  
k, such that 

mr 

IfCY) - ~ coa(woY + 00)1 < ~/2k, 
j = l  

for all y E [ cti,/3i ]. Thus, 

k m i 

Ig(x) - Z ~ cijcr(wo(ai'x) + 0ij)l < e, 
i=1 j = l  

for all x E K. Thus Et dense in C ( R )  implies that 
~ ,  is dense in C(R") .  • 

Step 3. I f  a ~ C ~ (the set o f  all fimctions which have 
derivatives o f  all order), then Y.~ is dense in C(R) .  

If a ~ C°°(R) then because [a ( (w + h ) x  + O) - 
a(wx + O)]/h E El for every w, 0 E R and h 4= 0, 
it follows that ( d / d w ) a ( w x  + 0) E Y-i. By the same 
argument ( d k / d w k ) a ( w x  + O) E Y.--~l for all k E N 
(and all w, 0 E R).  Now ( d k / d w k ) a ( w x  + O) = 
xka (k)( WX + 0), where a (k) denotes the kth derivative 
of a, and since a is not a polynomial there exists a 
Ok E R such that a(k)(0k) 4: 0. Thus, 

dk woo.o=0, .r%~k~(0~.) = dw--- z a(wx + 0) E ~ .  

This implies that ~ contains all polynomials. By 
Weierstrass's Theorem it follows that Z~ contains 
C(K)  for each K C R. That  is, E t is dense in 
C(R) .  • 

Step 4. For each ~o ~ Co ,  ( C ~ function with compact 
support), a*~o ~ ~ l .  

We first recall that 

(~.so)(x) = f ~(x - y)~o(y)d.v, 

is the convolution of tr and ~o, and is well-defined. 
We prove Step 4 constructively. ( I f  a were continuous 
this could easily be proven using a soft analysis ap- 
proach.) 

Without loss of  generality, assume that supp ~o ___ 
[ - ~, a],  and that we wish to prove that we can uni- 
formly approximate a*~p from Y-t on [ - a ,  a].  We 
will prove that 

m 

tr( x - Yi )~o( yi ) A yi 
i=1 

uniformly converges to a ,  So on [ - a ,  a] ,  where 

2ia 
y~ = - a + - - ,  i =  1 . . . . .  m ,  

m 

and Ayi = 2 a / m ,  i = 1 . . . . .  m.  
Given E > 0, we first choose t5 > 0 so that: 

10allallL~t-2..2.~ IkollL® ~ *. (2) 

For this given 6 > 0, we know that there exists a finite 
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number  r(fi) of  intervals, the measure  of  whose union 
U is ~, such that  a is un i formly  cont inuous  on [ -2o~, 
2 a ] / U .  We now choose msut f ic ien t ly  large so that  
m6 > c~r( 6 ) , and: 

I f  I s -  t[ -< 2 a / m ,  then 

ISO(s) - SO(t)I ~ (3) 
2~ l l~ l l~= t -~ . . z~  " 

If  s, t E  [ - 2 a ,  2 a ] / U ,  and Is - t l  -< 2 a / m ,  then 

la(s) - a(t)l ~ (4) 
IlSOlIv " 

All these conditions can be satisfied. Equat ion (3)  
follows f rom the uni form continuity of  SO. By as- 
sumpt ion  a is uni formly  cont inuous on [ - 2 a ,  2o d / 
U and thus eqn (4)  holds. 

Fix x E  [ - a ,  a] .  Set A i = [Y i - I ,  Y i ] ,  ( Y 0  = O / ) .  Now 

f " f ~  - y,)so(y)d.v a(x - y)SO(j,)dy- Y. a(x 
i=1 i 

-< f y,)llsoml ey, 
i= l  i 

because supp so C [ - a ,  c~]. I f  x - Ai does not in- 
tersect the U, then f rom eqn (4) ,  

I ~ ( x  - 3') - ~ ( x  - 3,, ) Ilso(.v) I d y  -< I so(.v) I dy. 
t i 

Thus  if we sum over those A~ for which this holds 
we get an error of  at most  ¢. 

Let us now consider those intervals A, for which 
(x  - A,) 13 U 4= ~ .  We denote such intervals by 
A~. Because U has measure  a and is composed  of  
r(a) intervals, the total length of  the 2x~ intervals is 
at most  ~5 + (4~ / m) r(6). By our  choice of  m,  we 
have that  ~ + ( 4 a / m ) r ( ~ )  < 56. Thus  from eqn (2) ,  

Z r .  i,~(x - y) - a(x - y,)[iso(.v)l d3, 

< 2114~®t-_,o.~.111SOlIL®5a < ~. 

Finally, 

g f m Yi )SO()'i )AYi ~ ( x -  y~)SO(y)4v- Z ~ ( x -  
i=1 i i=1 

= i=~faa(x-yi)[SO()')-SO(yi)]dy 

E r I (x - y,)l ISO(y) SO(y~)l dy, I 

and f rom eqn (3)  

[ ' ] 
i=~l - -  ~ ( ~ "  

< = , l a ( x  v ~ ) l d y  2all~rll~=t_z=.z,] 

Thus,  we obtain 

f tr(x - y)SO(y)dy - ~ a(x - yi)SO(yi)Ayi < 3~, 
i=l 

for a l l x E  [ - a ,  a] .  • 

Step 5. I f  for  some SO E C~ we have that ~r, SO is not a 
polynomial, then Y,I is dense in C( R ). 

From Step 4, a ,  SO E Z I. It thus follows that  
( a ,  so)(wx + 0) is also in ~--~l, for each w, 0 E R. 
Now for tr and any SO E C ~ ,  we have tr, so E C ~,  
see Adams  (1975, pp. 29-31 ). Thus  f rom Step 3, if 
a ,  SO is not a polynomial  then Y,~ is dense in 
C(R). • 

We therefore now assume that  ~ .  SO is a polyno- 
mial for all SO E C ~ .  We will conclude f rom this fact 
that  cr is itself a polynomial  (a.e.). 

Step 6. I f  for all SO E C~ ,  or. SO is a polynomial, then 
there exists an m E N such that a* SO is a polynomial 
o f  degree at most m for all SO E C~ .  

For any a < b, define the set of  functions C ~ [ a ,  b] 
to be the set of  all C ~  functions with support  in [a ,  
b] .  We first prove the claim in the case of  SO E 
C ~ [ a ,  b]. We define a metric  o on C ~ [ a ,  b] by: 

o ( ~ , .  so;) = Z 2 - "  Ib,,  - so~l l .  
.=o 1 - 4 - I l s o , -  so=ll.. ' 

where Ilsoll.  = 7 ,y=0 s u p . , . ~ t a , o ] l s o U ~ ( x ) l .  C~[a, b] 
with the o metric  is a complete  metric  vector space 
( Fr6chet space).  

By assumpt ion  cr. SO is a polynomial  for any SO E 
Cff~[a, b]. 

Define: 

Vk = {SO @ C~[a, b]l degree(a.SO) <- k}. 

We have that  Vk is a closed subspace, Vk _ Vk+~, 
and 

0 = C [a, b]. 
k=0 

As C ~  [a ,  b] is a complete  metric  space, by Baire's 
Category Theo rem [ Bachman  and Narici ( 1972, p. 
77)] there exists an integer m such that  V,, = 
C ~  [ a ,  b] ( C ~  [ a ,  b] is o f  the second category and 
therefore some I/',, contains a non-void open set. Be- 
cause V,, is a vector space thus V,, = C ~ [ a ,  b]) .  
This completes  the p roof  for the C ~ [ a ,  b] case. For 
the general case we note that  the number  m does not 
depend on the interval [a ,  b] .  This can be seen as 
follows. By translation m depends at most  o f  the 
length of  the interval. Let [A, B] be any interval. 
For SO E C ~ [ A ,  B] we can find SOl E C~[a~, bi], i 
= 1 . . . . .  k,  such that  [A, B] _ U~=l [ai, bi], bg - 
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ai = b - a and SO = X ~=, SOi. Thus  a .  SO = X ~= i ~* soi, 
and for every i = 1 . . . . .  k, a ,  9~ is a polynomial  of  
degree less than or equal to m. Therefore de- 
gree(a, so) <_ m . • 

Step 7. I f  a.SO is a polynomial of  degree at most m for 
all ~ E Cff ~ , then ~r is a polynomial of  degree at most 
m (a.e.). 

From Step 6, 

f o(x - y)~o~'+~(.v)dy = 0 

for all So C Cff .  From standard results in Distribution 
Theory, [e.g., Friedman ( 1963, 5 7 - 5 9 ) ] , ,  is itself 
a polynomial o f  degree at most  m (a.e.). • 

REMARK 1. Step 6 is one of  those folklore results we 
were rather surprised not to have succeeded in finding 
in the literature. There are other proofs thereof 

REMARK 2. A reading of  the proof of  Theorem 1 shows" 
that the problem of approximating a fimction g on some 
compact K of  R" from ~ ,  can almost be divided into 
two parts. One part is the approximation o f g ( x )  by 
fimctions of  the form X i.fi (a i" x) where the f are fimc- 
tions in C( R ). The other is the approximation o f f  on 
the appropriate set from Y~ t . Because C( R ) is separable, 
one can choose ~r ~ C( R ) so that for each and every f 

C( R ) and any interval [ a, b ], 

0 = inf max If(x) - c~r(w~ + 0)1. 
c,w,O a~_l'~.h 

That is, only one "processing unit"  is needed. However 
there remains the problem of  approximating g ( x )  by 
Z, f ( a  ~" x) (these latter are called ridge functions or 
plane waves), which seems to be the more difficult 
problem. 

REMARK 3. l f  a has a jump discontinuity, say at O, and 
is continuous in [ - r t ,  0) and (0, 71] (some o > O) with 
lim.,-~o, a(x)  and lim.,-_o- a( x)  existing and unequal, 
then one can obtain Theorem 1 ahnost directly (from 
after Step 2). That is, given any f E C( R ) and any K 
compact in R, it is possible to approximate f from ~ 
on K Constants are in Y.~ (ca(O)), and thus choosing 
w ~ { -  1, 1 } and multiplying by a constant we can 
assume that 

lim a ( x ) = 0 ,  lim a (x )=  1. 
x ~ O -  x ~ O *  

Letting w --~ 0 in a(wx),  we can then prove that the 
fimction × E Y~t, where x(x)  = O for x < O, and X(x) 
= I for x > O. It is now easy to see how linear combi- 
nations of  x and its translates can uniformly approxi- 
mate an), continuous fimction on anyfinite interval (and 
thus an), compact subset of  R).  

REMARK 4. There is another method of  proof of  Theo- 
rem 1 for continuous fimctions, which is simple but 

based on a deep result. It comes from the theory of  mean- 
periodic fimctions introduced by Schwartz (1947).  One 
consequence of  that theory is that i f  or E C(R)  is not a 
pol.vnomial, then 

span{a(x + O) : 0 E R } , 

contains in its closure a function of  the form eX-"cos vx 
for some real ( X, v) 4= (0, 0). Because any such fimction 
is in C ~ , Theorem 1 then follows without the necessity 
of  proving Steps 4-7 .  

Proof of  Proposition 2. If  a is a polynomial  o f  degree 
m, then ~ ,  is contained in the set of  polynomial  of  
total degree _< m,  and thus cannot  be dense in LP(V), 
l _ < p < o o .  

Let K denote the support  o f  #. C(K) is dense in 
LP(u) [e.g., Adams ( 1975, p. 31 )] and Z ,  is dense in 
C(K)  in the uni form norm.  Thus  given f ~  LP(t~) and 

> 0 there exists a g E C ( K )  such that 

l i f -  gllL,<,~ -< ~12, 

and for this given g ~ C ( K )  there exists an h E ~,, such 
that 

IIg - hliL=IK, ~ 2---c " 

where c = ~ / P ( K ) .  Thus  l l g  - hllLp~.) ~ ~/2, and 

I l l -  hllL,~,~ -< I I f -  gIIL,I,~ + lie - hllL,~,~ < ~. • 

Proof of Proposition 3. In Vostrecov and Kreines ( 1961 ) 
[see also Lin and Pinkus (in press)] can be found the 
fact that  for given o4 C R" 

M(o4) = span{ f (w .x ) l fE  C(R), w ~ 04 }, 

is dense in C(R")  if and only if there does not  exist a 
non-trivial homogeneous polynomial  vanishing on 04. 
Now span { ~r( kw.  x + O) [ X, 0 E R } ~_ span { f (  w.  x) I f  
E C ( R )  } for every w ~ 04. This proves the necessity. 
To prove the sufficiency assume M(O4) is dense in 
C(R")  and use the a rgument  as given in Step 2 of  the 
proof  of  Theorem 1 to show that if Y.j is dense in C (R)  
then Z,,(O4) is dense in C(R") .  • 
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