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1. INTRODUCTION. Negative theorems have a rich tradition in mathematics. In
fact mathematics seems to be unique among the sciences in that negative results are
very much a part of the mathematical edifice. Most mathematical theories try to explain
what is possible and also what is not. To understand the structure of a mathematical
theory is also to understand its limitations.

There are many different types of negative theorems. Some simply say that some-
thing is impossible. For example, one of the classical problems of Greek mathematics
asks whether it is possible, using only a ruler and a compass, to square the circle, i.e.,
to construct a square with the same area as a given circle. This was answered in the
negative in 1882 when Lindemann proved that π is transcendental. (Lambert had al-
ready proved that π is irrational, but this is insufficient to prove the impossibility of
squaring the circle.) We recall that Abel established the insolvability of the general
quintic equation, i.e., one cannot find a formula for the roots of fifth degree polynomi-
als that involves only the coefficients of the polynomials and radicals. And, of course,
there is Wiles’s proof of Fermat’s Last Theorem. Each of these problems and results is
a fundamental part of our mathematical heritage. Each has had a profound influence.
Nevertheless, the results themselves simply say that something is impossible.

Other negative results delineate what cannot be done, as compared with what is pos-
sible. The best of these results also highlight the salient features that illustrate why they
are not possible. For example, Gauss proved that a necessary and sufficient condition
for the construction of a regular n-gon, using only ruler and compass, is that

n = 2k p1 · · · pr ,

where each p j is a Fermat prime, a prime of the form 22� + 1. And Galois proved that
a polynomial over a field K of characteristic zero is solvable by radicals if and only if
the Galois group of the polynomial over K is solvable. Both these deep results tell us
when certain things are possible, but also when they are impossible.

In this note we consider some negative results in approximation theory, what they
tell us, and why they are important. Certain of these simply tell us that something is
impossible. However most of the results delineate what is impossible in order to deter-
mine more fully what is possible. The results we present all center about one theme,
namely, that approximation processes are necessarily of limited capability. As approx-
imation theory is concerned with the ability to approximate functions and processes by
simpler and more easily calculated objects, it is important to know these limitations.
This can save us from spending time and effort on futile attempts to improve what can-
not be bettered. These approximation processes are also limited for specific reasons,
and we should be aware of and try to understand these reasons, especially if we hope
to amend and circumvent them in some way.

There are many negative results in approximation theory. We discuss three main
categories of results, with a few elementary examples from each. The first category
consists of inverse theorems, the second set of results is connected with limitations
of linear processes, and the third group is concerned with n-width type results. There
have been a multitude of papers written in each of these areas. We can certainly not do
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justice to any of these topics within these few pages. Rather it is our hope to whet the
reader’s appetite to learn more about the subject.

2. INVERSE THEOREMS. Let C[a, b] be the space of real-valued continuous
functions on the real interval [a, b], endowed with the uniform norm ‖ · ‖ (‖ f ‖ =
max{| f (x)| : x ∈ [a, b]}), and let C̃ be the space of real-valued 2π-periodic continu-
ous functions on R, also endowed with the uniform norm. We denote by �n the space
of algebraic polynomials of degree at most n, i.e.,

�n = span{1, x, . . . , xn},
and by Tn the space of trigonometric polynomials of degree at most n, i.e.,

Tn = span{1, sin x, cos x, . . . , sin nx, cos nx}.
We also set

En( f ) = min
p∈�n

‖ f − p‖

for f in C[a, b], and

Ẽn(g) = min
t∈Tn

‖g − t‖

for g in C̃ . These are measures of the distance of f and g from—or the errors in the
approximation of f and g by—functions from �n and Tn , respectively.

In 1885 Weierstrass [25] proved that the set of algebraic polynomials is dense in
C[a, b] and that trigonometric polynomials are dense in C̃ . This may be formulated as

lim
n→∞ En( f ) = 0

for every f in C[a, b], and

lim
n→∞ Ẽn(g) = 0

for each g in C̃ . The subsequent major themes in this theory were successfully tackled
only some twenty-five years later. These concerned exact estimates for the rates at
which En( f ) and Ẽn(g) tend to zero in terms of some intrinsic properties of f and
g, and the development of useful and practical methods of approximation. These two
problems, in diverse settings, were and are at the heart of approximation theory.

In direct theorems we estimate from above the error in approximating a given func-
tion by functions from certain approximation classes—the classical classes that play
this role are algebraic and trigonometric polynomials, splines, etc.—based on cer-
tain qualities or characteristics of the function being approximated. Inverse theorems
(sometimes called converse theorems) infer a quality or a characteristic of the function
from this rate of approximation. Thus inverse theorems also provide us with lower
bounds on the approximation error. In this sense they are negative theorems. Direct
and inverse theorems are generally paired. The best of these theorems, such as those
that follow, are paired because they determine exact rates of approximation.

Example 1. To illustrate what we mean, consider the example of C̃ and approxima-
tions from Tn. We let Lip α (0 < α ≤ 1) denote the Lipschitz class of all functions g
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in C̃ that satisfy ∣∣g(x) − g(y)
∣∣ ≤ M|x − y|α

for some constant M and all real x and y.
The following direct theorem is due to Jackson [10] (it is contained in Jackson’s

prize-winning doctoral thesis written in 1911 under the supervision of Edmund Lan-
dau): if g belongs to C̃ and its r th derivative g(r) is in Lip α for some α satisfying
0 < α ≤ 1, then there exists a constant M such that

Ẽn(g) ≤ Mn−r−α

for every n. So we see that, at least for continuous periodic functions, the smoother g
is the better it is possible to approximate g by trigonometric polynomials. Of course,
Jackson’s theorem furnishes only an upper bound on the rate of approximation. It does
not say that we cannot in some cases do much better. The answer to the question of
whether or not it is possible to do better was essentially answered almost before it
was asked in the wonderful prize-winning 1912 memoir of Bernstein [2], submitted
even prior to the publication of Jackson’s thesis. The final form as presented here was
completed by de la Vallée Poussin [23] (whose contribution is generally overlooked).

The Bernstein inverse theorem states: if there exist r in N, α in (0, 1), and a constant
M independent of n such that

Ẽn(g) ≤ Mn−r−α

for all n, then g is r-times differentiable and g(r) belongs to Lip α. In other words, if g
is not r -times differentiable with g(r) in Lip α, where 0 < α < 1, then necessarily

lim sup
n→∞

nr+α Ẽn(g) = ∞.

This is the negative implication of Bernstein’s theorem. (The case α = 1 is more com-
plicated and was ultimately settled by Zygmund [26]. It involves second, rather than
first, differences.)

At first glance these two theorems, and more especially the latter, seem rather sur-
prising. Why should the smoothness of a g in C̃ depend upon the rate of decrease of
Ẽn(g)? Hindsight is a marvelous teacher. We now realize that the critical role in the
Bernstein theorem is played by the Bernstein inequality:

‖t ′‖ ≤ n‖t‖
for every t in Tn . This measures, in some sense, the “stiffness” of the polynomials. (The
inequality was first proved in the aforementioned Bernstein memoir [2] in a slightly
weaker form.)

Here is a short outline of a proof for the case r = 0 and 0 < α < 1; i.e., we assume
that Ẽn(g) ≤ Mn−α for all n. Let tn denote the best approximant to g from Tn , and set
v0 = t1 and vn = t2n − t2n−1 for n = 1, 2, . . . . Note that

‖vn‖ ≤ Ẽ2n (g) + Ẽ2n−1(g) ≤ M12−nα.

Because the tn approximate g uniformly we can express g as the sum of a telescoping
series:
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g =
∞∑

n=0

vn.

From the mean value theorem and Bernstein’s inequality it follows for given x and y
that ∣∣vn(x) − vn(y)

∣∣ ≤ ‖v′
n‖ |x − y| ≤ 2n‖vn‖ |x − y|.

Thus for every m

∣∣g(x) − g(y)
∣∣ =

∣∣∣∣∣
∞∑

n=0

(
vn(x) − vn(y)

)∣∣∣∣∣ ≤
m−1∑
n=0

∣∣vn(x) − vn(y)
∣∣ + 2

∞∑
n=m

‖vn‖

≤
m−1∑
n=0

2n‖vn‖ |x − y| + 2
∞∑

n=m

‖vn‖

≤ M1|x − y|
m−1∑
n=0

2n(1−α) + 2M1

∞∑
n=m

2−nα

≤ M2

[|x − y|2m(1−α) + 2−mα
]
.

In the last step we use the fact that α lies in (0, 1). We now choose m so that 2−m ∼
|x − y|, from which it follows that∣∣g(x) − g(y)

∣∣ ≤ M3|x − y|α.
This puts g in Lip α.

When approximating by algebraic polynomials on a finite interval, the results are
similar to those of Example 1, except that there are essential problems near the end-
points. This is due to the fact that for x near an endpoint there exist p in �n for which
|p′(x)| is as large as n2‖p‖. Away from the endpoints a bound on the order of n‖p‖
still holds.

Example 2. Here is another (direct and inverse) theorem that contains both positive
and negative information. A function f defined on [−1, 1] is said to be analytic on
this interval if it can be extended to a complex analytic function on some open set con-
taining [−1, 1]. In this context the important open sets are the interiors of the ellipses
with foci ±1 and with semi-axes having sums ρ larger than one. Let Eρ denote any
such ellipse, say

Eρ =
{(

1

2

(
ρ + 1

ρ

)
cos θ,

1

2

(
ρ − 1

ρ

)
sin θ

)
: 0 ≤ θ ≤ 2π

}
,

and let Dρ signify the interior of Eρ .
The following result is also in Bernstein [2]: f has an analytic extension to Dr but

to no Dρ with ρ > r if and only if

lim sup
n→∞

(
En( f )

)1/n = 1

r
.

(There is a close connection between this result and the formula for the radius of
convergence of a power series in terms of the coefficients of the power series.) The
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negative content of this theorem is that, if f is not analytic on [−1, 1], then we cannot
possibly obtain a geometric rate of convergence to zero for the error in any approxi-
mation to f by algebraic polynomials.

Example 3. Splines are piecewise polynomials with a high order of continuity. When
−∞ = t0 < t1 < · · · < tk < tk+1 = ∞ we set

Sn,k(t1, . . . , tk) = {
s ∈ C (n−1)(R) : s ∈ �n|(ti−1,ti ), i = 1, . . . , k + 1

}
.

Thus a function s belongs to Sn,k(t1, . . . , tk) if it has a certain level of global smooth-
ness and is a polynomial of degree at most n on each of the intervals (ti−1, ti ). We say
that Sn,k(t1, . . . , tk) is the space of splines of degree n with the simple knots {t1, . . . , tk}.
When using splines one fixes the degree and permits the number (and placement) of
the knots to vary. From the perspective of numerical computations, approximation by
splines enjoys many advantages over approximation by algebraic and trigonometric
polynomials. However, direct and inverse theorems for approximation by splines with
equally spaced knots are, up to a point, similar to those for approximation by polyno-
mials.

Let S∗
n,k denote the space of splines of degree n ≥ 1 with k equally spaced knots in

the interval [a, b], and let

ek( f ) := min
s∈S∗

n,k

‖ f − s‖.

Then from Richards [19] we learn:

ek( f ) ≤ Mk−r−α

for fixed α in (0, 1) and r in N with r + α < n + 1 if and only if f belongs to C[a, b]
and f (r) to Lip α. But if

ek( f ) ≤ Mk−r

for r > n + 1, then necessarily f belongs to �n (a subclass of S∗
n,k), in which event

ek( f ) = 0 for every k. In other words, when approximating by splines of a fixed degree
we are also limited in the rate of convergence of the error to zero by the degree of the
splines themselves.

We have described three fundamental direct and inverse theorems. There are many,
many generalizations of these results. The excellent textbooks of Timan [22] and of
DeVore and Lorentz [6] contain an abundance of information on direct and inverse
theorems for approximation by algebraic and trigonometric polynomials. For approx-
imation by splines with fixed or variable knots, see Schumaker [20] or DeVore and
Lorentz [6]. The study of direct and inverse theorems remains an active area of re-
search. This research now centers on approximation by members of various nonclas-
sical and nonlinear classes such as wavelets, shift-invariant subspaces, radial basis
functions, ridge functions, neural nets, multivariate splines, and the like.

3. LINEAR METHODS. Finding the best or even a good approximation is generally
a difficult and costly procedure. In the setting of this paper best approximation opera-
tors are nonlinear. Linear methods of approximation are both preferable and simpler,
and much effort has gone into their study. As it happens, however, linear processes
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often have intrinsic limitations. For example, it is quite natural to try to use interpola-
tion to obtain good approximations. Let us assume that we are given a fixed triangular
array of points with n + 1 points in [a, b] in the nth row of the array, and let pn( f )

denote the (unique) polynomial in �n that interpolates f in C[a, b] at the points of
this nth row. It was Faber who showed in a 1914 paper [7] that for every such array
there always exists an f in C[a, b] for which

lim
n→∞

∥∥ f − pn( f )
∥∥ �= 0.

This was subsequently generalized by Lozinski and Kharshiladze (see Lozin-
ski [16]), who proved the following: for any given sequence (Ln) of linear operators
such that Ln maps C[a, b] to �n and Ln p = p for all p in �n (Ln is a projection of
C[a, b] onto �n), there exists an f in C[a, b] such that

lim
n→∞ ‖ f − Ln f ‖ �= 0.

From this we see that there cannot exist a sequence of linear operators Ln : C[a, b] →
�n satisfying ∥∥ f − Ln( f )

∥∥ ≤ M En( f ) (1)

for some constant M and for all n and f . (If this inequality were to hold, then each
Ln would be a projection onto �n and the norms ‖ f − Ln f ‖ would tend to zero as
n → ∞ for every f in C[a, b].) The analogous result holds for C̃ and trigonometric
polynomials. One of the advantages when approximating by splines is that there do
exist sequences of linear operators that satisfy (1), i.e., that provide asymptotically
optimal rates of approximation.

Another problem we must be mindful of is that linear approximation processes may
exhibit inherent limitations independent of any quality or characteristic of the function
being approximated. We consider some elementary examples.

Example 4. One of the simplest and most natural examples of a linear approximation
process on C̃ is given by the sequence of partial sums sn of a Fourier series. Strikingly,
as du Bois-Raymond proved in 1875 [4], these sequences of partial sums do not neces-
sarily converge for all functions in C̃ . In 1900 Fejér [9] (at the time a twenty-year-old
student) gave an elementary and brilliant proof of the Weierstrass theorem. In a won-
derful piece of lateral thinking, he proved that the Cesàro sums of the Fourier series
of any g in C̃ converge uniformly to g. In other words, assume that we are given the
Fourier series of g,

g(x) ∼
∞∑

k=−∞
ckeikx ,

where

ck = 1

2π

∫ 2π

0
g(x)e−ikx dx

for every k in Z. Consider the nth partial sum sn of the Fourier series,

sn(x) :=
n∑

k=−n

ckeikx ,
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and set

σn(g; x) = s0(x) + · · · + sn(x)

n + 1
.

We call σn the nth Fejér operator. Note that σn(g; ·) belongs to Tn for each n. What
Fejér proved was that, for each g in C̃ , σn(g; ·) tends uniformly to g as n → ∞.
However the following was noted by Zygmund [27]: if

∥∥g − σn(g; ·)∥∥ = o

(
1

n

)
,

then g is a constant function. (The notation an = o(εn) means that an/εn → 0 as
n → ∞.)

Thus except in the very trivial case, and independent of any smoothness property
of g, the Fejér operators σn(g; ·) approximate g very slowly. The proof of this fact is
really quite simple, so we present it here. As is easily checked,

σn(g; x) =
n∑

k=−n

(
1 − |k|

n + 1

)
ckeikx ,

which implies that

1

2π

∫ 2π

0

[
g(x) − σn(g; x)

]
e−ikx dx = ck

|k|
n + 1

for −n ≤ k ≤ n. Therefore∣∣∣∣ck
|k|

n + 1

∣∣∣∣ =
∣∣∣∣ 1

2π

∫ 2π

0

[
g(x) − σn(g; x)

]
e−ikx dx

∣∣∣∣ ≤ ‖g − σn(g; ·)‖

and

|kck | ≤ lim
n→∞ n

∥∥g − σn(g; ·)∥∥.

Accordingly, if ‖g − σn(g; ·)‖ = o(1/n), then ck = 0 for all k �= 0, whence g is con-
stant.

Saturation theory studies results of the foregoing type, i.e., it considers when a
certain approximation rate for a linear process can be satisfied only by some trivial
class of functions. In saturation theory one is also interested in determining the best
rate of approximation that can be obtained by a nontrivial class of functions and in
characterizing this class. For instance, in the case of the Fejér operators σn it can be
shown that

∥∥g − σn(g; ·)∥∥ = O

(
1

n

)

if and only if g belongs to C̃ , g′ is absolutely continuous, and g′ is in Lip 1. (To write
an = O(εn) means that an/εn remains bounded for all n.) Saturation theory was first
defined formally by Favard in 1949 [8], although some of the results of this theory
predate Favard’s paper.
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Example 5. The important Bernstein polynomials (introduced by Bernstein in [3]) are
given for f in C[0, 1] by

Bn( f ; x) :=
n∑

k=0

f

(
k

n

) (
n

k

)
xk(1 − x)n−k .

The following saturation result due to Lorentz [14] (see also Bajšanski and Bojanić [1])
has its origins in a result of Voronovskaya [24]: the only functions f in C[0, 1] satis-
fying

∣∣ f (x) − Bn( f ; x)
∣∣ ≤ εn

x(1 − x)

n

for some sequence εn → 0 are the linear functions.

Both f �→ Bn( f ) and f �→ σn( f ) are examples of positive ( f ≥ 0 implies
Bn( f ) ≥ 0 and σn( f ) ≥ 0) linear operators. We note the following result: if (Ln)

is a sequence of positive linear operators from C[a, b] to C[a, b], then

lim
n→∞

∥∥ f − Ln( f )
∥∥ = 0 (2)

for every f in C[a, b] if and only if (2) holds for the three functions 1, x, and x2. This
is the content of the Bohman–Korovkin theorem of the 1950s (see Korovkin [13]). A
similar result holds in C̃ , where the “test functions” are 1, sin x , and cos x .

Positivity is certainly a desirable quality for a linear approximation operator. How-
ever, all sequences (Ln) of positive linear operators mapping C[a, b] to �n (or C̃ to
Tn) seem to exhibit a saturation property, or at least to have a fixed lower bound on
the rate of approximation for anything outside a trivial class of functions. But we are
unaware of any general theorem covering all cases. Is it true, for example, that for an
arbitrary sequence of positive linear operators Ln : C[a, b] → �n the only functions
for which

∥∥ f − Ln( f )
∥∥ = o

(
1

n2

)

belong to �2 or are in some other fixed finite-dimensional set? It is known that for at
least one of the functions 1, x , or x2 we always have

∥∥ f − Ln( f )
∥∥ �= o

(
1

n2

)
.

4. n-WIDTHS. In section 2 we noted that for g in C̃ the rate of decrease of Ẽn(g) is
directly related to the smoothness of g. But we are not interested in smoothness. We
want efficient and effective approximation procedures. As this is the case, then per-
haps trigonometric polynomials are not good approximation classes. Maybe there are
better ones. How do we find better approximation classes, and how can we compare
the efficacy of different approximation classes? In 1936 Kolmogorov [11] proposed
the following noteworthy idea. Given a set of functions, rather than considering ap-
proximation from some fixed linear subspace (such as Tn in our example) why don’t
we try to find a “best” approximating subspace of the same dimension?

As an example, recall that if g and g(r) belong to C̃ , then

Ẽn(g) ≤ Mn−r‖g(r)‖ (3)
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for some constant M independent of g and n (Jackson’s theorem). Define

B̃r = {
g : g, g(r) ∈ C̃, ‖g(r)‖ ≤ 1

}
.

For each g in B̃r we see in light of (3) that

Ẽn(g) ≤ Mn−r ,

which we can rewrite as

E(B̃r; Tn) = sup
g∈B̃r

min
t∈Tn

‖g − t‖ ≤ Mn−r . (4)

The quantity E(B̃r; Tn) is a measure of the distance from Tn to B̃r in that it is the
supremum of the errors obtained in approximating members g of B̃r by elements t
from Tn. (This is called “worst case” error.)

Kolmogorov’s idea was to consider how well one might possibly be able to approx-
imate the set B̃r in the sense suggested by (4), not necessarily by Tn , but by any linear
subspace of C̃ whose dimension is the same as that of Tn , namely, 2n + 1. In other
words, he defined

d2n+1(B̃r) = inf
X2n+1

sup
g∈B̃r

inf
h∈X2n+1

‖g − h‖,

where the left-most infimum varies over all subspaces X2n+1 of C̃ of dimension at most
2n + 1. This is now called the Kolmogorov (2n + 1)-width of B̃r . It is a measure of
how well any (2n + 1)-dimensional subspace can possibly approximate B̃r .

In general, given a set A in a normed linear space X , the Kolmogorov n-width dn(A)

of A in X is defined by:

dn(A) = inf
Xn

sup
f ∈A

inf
h∈Xn

‖ f − h‖X ,

where Xn varies over all n-dimensional subspaces of X . The quantity dn(A) delineates
what is feasible and what is not in this approximation context. On the one hand it is a
measure of the extent to which A may be approximated by n-dimensional subspaces
of X . On the other hand the n-widths dn(A) are lower bounds on how well it is possible
to approximate A. That is, for each ε > 0 and each n-dimensional subspace Xn of X
there necessarily exists an f in A (dependent upon Xn) satisfying

inf
h∈Xn

‖ f − h‖X ≥ dn(A) − ε.

In this sense n-width estimates are negative results. We can never do better than dn(A)

when approximating A by n-dimensional subspaces.
It happens, but it is rare, that one can identify a subspace Xn for which

E(A; Xn) = sup
f ∈A

inf
h∈Xn

‖ f − h‖X = dn(A).

In general one is more interested in identifying asymptotically optimal subspaces,
meaning sequences (Xn) of n-dimensional subspaces Xn such that

E(A; Xn) ≤ Mdn(A)
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for some constant M and for all n. These are good approximating subspaces for A in
that they yield a rate of approximation that, up to the constant M , cannot be bettered.
Unless the constant matters, it is generally not worth spending the time and effort to
search for better subspaces. This is why it is important to pin down the asymptotics of
n-widths.

Example 6. The example of B̃r in C̃ represents one of those rare cases where we can
identify “best” subspaces. Tikhomirov [21] proved that

E(B̃r; Tn) = d2n+1(B̃r) ≈ n−r .

However we should also note that the more stable space of periodic splines of degree
r − 1 with 2n + 2 equally spaced simple knots (a subspace of dimension 2n + 2) is
optimal for d2n+2(B̃r), and additionally

d2n+1(B̃r) = d2n+2(B̃r).

There are also linear operators that map C̃ to Tn and to the indicated space of splines
that attain this same error bound.

Example 7. Let

Br := {
f : f, f (r) ∈ C[a, b], ‖ f (r)‖ ≤ 1

}
.

Then dn(Br) is also asymptotically of the order n−r , and the spaces �n−1 of algebraic
polynomials of degree at most n − 1 are asymptotically optimal subspaces. However,
the �n−1 are not optimal subspaces, nor are they very useful in practice. Optimal sub-
spaces for dn(Br) are splines of degree r − 1 with certain specific n − r simple knots.
We can characterize these optimal knots, but their exact values are not easily calcu-
lated. Nonetheless, the exact same order of approximation can be achieved by using
the more practical space of splines of degree r − 1 with n − r equally spaced simple
knots.

Kolmogorov n-widths have been studied in a variety of different settings and
for many diverse sets of functions. The interested reader is referred to Pinkus [18],
Korneı̆chuk [12], Lorentz, von Golitschek, and Makovoz [15], and DeVore [5]. Per-
haps just as important as the Kolmogorov n-widths themselves is the idea behind the
concept that has spawned a myriad of variations. For instance, in our examples we
considered “worst case” error. Perhaps “worst case” error is far from typical and we
should look at average errors or some variant thereof (see, for example, Maiorov and
Wasilkowski [17]). Other variations include the Gel′fand n-width, which considers the
best n bits of linear information with which to approximate, and the linear n-width,
which asks for the best rank n linear approximation operators. In addition, numerous
nonlinear n-width concepts have been proposed for providing effective lower bounds
on different classes of nonlinear approximation schemes.

5. EPILOGUE. In these pages we have described results that demarcate the effec-
tiveness of approximation processes. Inverse theorems, which depend on the approx-
imating subspaces, define certain qualities or characteristics of the functions being
approximated in terms of the rate at which the error in the best approximation tends
to zero. Accordingly, for functions without these qualities, inverse theorems provide a
lower bound on the rate of approximation. Linear approximation processes often ex-
hibit inherent limitations on the rates of approximation independent of the functions
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being approximated. In the study of n-widths one obtains structural lower bounds on
how well it is possible to approximate classes of functions by n-dimensional sub-
spaces, independent of the choice of the approximating subspaces. Researchers today
are very much interested in multivariate and nonlinear approximation. Many different
approximation procedures have been suggested. It is only by the study of the approxi-
mation properties of these multivariate and nonlinear approximations that we will more
fully understand their advantages and disadvantages. Negative results such as inverse
theorems, the limitations of linear approximation processes, and n-width type results
have an important role to play in this endeavor.
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