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MOMENT THEORY FOR WEAK CHEBYSHEV SYSTEMS WITH
APPLICATIONS TO MONOSPLINES, QUADRATURE FORMULAE

AND BEST ONE-SIDED L-APPROXIMATION BY SPLINE
FUNCTIONS WITH FIXED KNOTS*

C. A. MICCHELLI" AND ALLAN PINKUS$

Abstract. The chief purpose of this paper is to Present an alternative approach to results
concerning the existence and uniqueness of monosplines which have a maximum number of zeros (the
fundamental theorem of algebra for monosplines). In addition, we discuss the related problems of
"double precision" quadrature formulae and one-sided L 1-approximation by spline functions with
fixed knots.

1. Introduction. The chief purpose of this paper is to present an alternative
approach to the results of S. Karlin and L. Schumaker [6] and S. Karlin and C. A.
Micchelli [3] concerning the existence and uniqueness of monosplines which have
a maximum number of zeros (the fundamental theorem of algebra for mono-
splines). In addition, we discuss the related problems of "double precision"
quadrature formulae and one-sided L 1-approximation by spline functions with
fixed knots.

Our approach to these problems is based on moment theory. The relationship
of the above problems to moment theory is not surprising. In fact, I. J. Schoenberg
originally suggested this relationship in [13] and S. Karlin and W. J. Studden [7]
discuss a special case of the fundamental theorem of algebra for monosplines by
means of moment theory.

However, the method used in [6] (and later in [3], [4] and [10]) to prove
Schoenberg’s conjecture [13] does not use moment theory and is needlessly
complicated. Our proof uses Theorem 2.1; see Theorem 5.1 and Corollary 5.1.
Nevertheless, the methods of [6] are indeed valuable when the simplicity of
moment theory is not applicable, as in I-4] and [10].

A thorough treatment, with improvements, of M. G. Krein’s work [8] on
moment theory for Chebyshev systems is contained in I-7]. The basic difficulty that
we face here is to provide a suitable version of these results for weak Chebyshev
systems. In his thesis 1], H. Burchard studied the problem of interpolation of data
by generalized convex functions and was also led to the problem to extending
moment theory to weak Chebyshev systems. His extension, however, is too
restrictive for the application we have in mind. For the related problem of
determining the "envelope" of smooth functions "pinned down" on some parti-
tion, see Micchelli and Miranker [14].

In 2 we present an extension of moment theory to weak Chebyshev systems,
which improves on Burchard’s result. We also discuss the related problem of
one-sided approximation for weak Chebyshev systems. In 3 we apply the
general theory to certain classes of spline functions to obtain "double precision"
quadrature formulae. Section 4 contains our version of the fundamental theorem
of algebra for monosplines satisfying mixed boundary conditions, which subsumes
[3] and [6].
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2. Moment theory for weak Chebyshev systems. We begin by recalling the
main results of moment theory for Chebyshev systems. LetMbe a linear subspace
of C[0, 1] of dimension n spanned by the functions Ul(t)," ", u,(t) and let dc(t)
be a nonnegative finite measure on [0, 1]. If da(t) is a discrete measure

Iol s
f(r) da(t)= Y ajf(t.), f e C[0, 1],

j=l

A >0,* AN >0, 0<tl <" "<tN <- 1, then the index of da, denoted by I(a), is
defined to be Y.j w(t,) where o(t) when t {0, 1}, and o(t) 1 when (0, 1).
Following [8], we call da(t) a positive measure (relative to M) provided that
1o u(t) da(t) >0 whenever u is a nontrivial nonnegative function in M. A positive
measure corresponds to an interior point of the moment space determined by the
set of functions {Ul(t),""", Un(t)} [7]. The measure dao is said to be a principal
representation of da provided that Iao u(t)deeo(t)=Iao u (t) dee (t) for all uM
and I(eeo)= n/2. If deeo has mass at one, it is referred to as an upper principal
representation; otherwise, it is called a lower principal representation. The set of
functions {ul(t)," .,u,(t)} is called a Chebyshev system on [0, 1] (M a
Chebyshev subspace) provided that

ul(tl) ul(tn)

Un(tl) u.(t.)

>0

for all 0=<tl <t2<" <t, _-<1.

The following result of Krein is proven in [7]. If M is a Chebyshev subspace
then every positive measure da(t) has exactly two principal representations,

fO fo fou(t) dee(t)= u(t) dg(t)= u(t) dYe(t), u M,

where dg is a lower principal representation and dd is an upper principal
representation.

Let us denote by K the convexity cone generated by M. Thus every f K is a
function defined on (0, 1) which satisfies the inequality

Ul(tl) Ul(tn+l)

u2(tl) u2(tn+l)

u.(t,) u.(t.+,)

f(tl)

for all 0<tl <’" (ln+ < 1. The principal representations corresponding to a
positive measure have the additional property that for f e Ko C[0, 1] fq K,

(2.1) Io f(t) dg(t)<= f(t) da(t)<= f(t) dd(t).
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This.inequality is called the Markoff-Krein inequality.
We shall now discuss the extension of the above results to a weak Chebyshev

system which contains a positive function.
A set of linearly independent continuous functions {ui(t)}i"--a form a weak

Chebyshev system (M a weak Chebyshev subspace) on [0, 1] provided that for all
points 0 -< tl <" < tn -< 1,

ul(ta) u(tn)

u2(tl) u2(t,)

u.(ta)

TI-IEORZM 2.1. Let M be a weak Chebyshev subspace of dimension 21 on
[0, 1], which contains a strictly positive function on (0, 1). Then every positive
measure relative to M has a lower principal representation.

Proof. The basic idea of the proof is to "smooth" the weak Chebyshev system
{ui(t)}=a into a Chebyshev system and then apply the previous results for
Chebyshev systems. Specifically, let 6 > 0 and define

Ui(t; )--2 e-(X-’2/2ui(x) dx.

Then {ui(t; 6)}//a is a Chebyshev system [7], and lim_0+ ui(t; 6) ui(t) uniformly
in any closed subinterval of (0, 1) and lim_,0+ ui(t; 6)= u(t)/2, for {0, 1},

1,. , 21. Thus for every positive measure da, there exists a lower principal
representation d_a such that for 1,..., 21,

(2.2) Io ui(t; () da(t)= u(t; 6) da_(t)= E Aj(6)u(tj(6); 6),
j=l

where hi(6) > O, j 1,. , l, and 0 < ta(6) <" < tl(6) < 1. (We may assume that

Io Io(2.3) lim u(t; ) da_(t)= u(t) da(t), i= 1,..., 21.
6-0

Otherwise, we construct another measure dk (t), positive relative to M, such that

fo folim u(t; ) d(t)= u(t) da(t), i= 1,..., 21,
60

and let da_(t) be the lower principal representation of dk(t). Then clearly (2.3) is
21

valid.) Construct the "polynomial" u(t; 6)=Yi= a(6,)2(/t; 6) which satisfies
u(t(6); 6)=0, i= 1,..., l, u(t; 6)>-_0 for t>=q(6), ana L=a [a(6)]2= 1. Since
{u(t; 6)}2a is a Chebyshev system on [0, 1], the above conditions uniquely
determine u(t; 6). Hence from (2.2), we conclude that I u(t; 6) da(t)= 0 for all
6 >0. Since 0<q(6)<... < t/(6) < 1, there exists a subsequence {6k}=a, 6k $ 0,
such that ti(6)t, i= 1,... ,l, where 0-<q-<.. .=<t=<l. Choosing a subse-
quence of {6}= a, if necessary, it follows that u (t; 6) u (t) as k ]’ oo, uniformly in
any closed subinterval of (0, 1). Thus I u(t) da(t)= 0, and u(ti)= O, 1,..., l,
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while u(t) >-0 for >-tl, and u(t)O. Since da is a positive measure relative to M,
tl > 0. In a similar manner, one proves that tl < 1. Furthermore, using the fact that
M contains a function which positive on (0, 1), it follows that A 1(6), , A(6) are
uniformly bounded in 6. Now we may easily pass to the limit in (2.2), perhaps
through a subsequence, and obtain a limit da_(t) for da_(t), where

u(t) d(t)= u(t) de(t), i= 1,..., 21.

The proof of Theorem 2.1 will be complete if we can show that I(da_)= I.
From the above analysis, I(da_ <= I. If strict inequality holds, then we construct by
smoothing, a nonnegative nontrivial polynomial in {u (t)}t__ which vanishes at the
points of increase of d_a. This contradicts the positivity of the measure da. Thus
I(da_)= l, and Theorem 2.1 is proven.

Under the stronger assumption thatM contains a strictly positive function on
the closed interval [0, 1], we may prove the following result.

THEOREM 2.2. LetMbe a weak Chebyshev subspace on [0, 1] which contains
a function which is strictly positive in [0, 1]. Then every measure which is positive
relative to M has an upper and lower representation.

Remark 2.1. Theorem 2.2 was proven in [1] under the stronger hypothesis
that M is a weak Chebyshev subspace on some closed interval strictly containing
[0, 1].

Remark 2.2. Theorems 2.1 and 2.2 are not valid if there does not exist a
positive function within the weak Chebyshev subspace. For example, consider the
two-dimensional weak Chebyshev subspace composed of cubic polynomials
which have a double zero at 1/2. On [0, 1] the positive measure dt has no lower
principal representation relative to this subspace.

LEMMA 2.1. LetM be a weak Chebyshev subspace of dimension n on [0, 1]
and letf Ko-M. Ifda_ is a lowerprincipal representation ofsome measure which is
positive relative to M, then there exists a nontrivial nonnegative function g(t)=
cof(t)+i= ciui(t) such that 1o g(t) da_ (t)= 0, and]or any g(t) of the above form,
Co > O. Ifwe replace da_ (t) by an upperprincipal representation dd (t), then the above
holds with Co < O.

Proof. If M is a Chebyshev subspace, then the proof of Lemma 2.1 may be
found in [7]. For M as above, the existence of a g(t) as indicated in the statement
of the lemma follows by smoothing as in the proof of Theorem 2.1. Thus for da_ (t),
Co--> 0, and for dd(t), Co <= O. However, if in either case Co 0, then we contradict
the positivity of d_a, or dd relative to M.

COROLLARY 2.1. Let M be a weak Chebyshev subspace of dimension n on
[0, 1]. If da_ (t) and dd(t) are lower and upper principal representations of a positive
measure da(t) relative to M, then

f(t) d_ (t) <= f(t) da (t) <= f(t) da (t),

for any f Ko.
Proof. We may assume without loss of generality that f 6 Ko-M. Then from

Lemma 2.1 we conclude that there exists a nontrivial nonnegative function
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g(t)=Cof(t)+Ej=l cju(t)with c0>0 such that og(t)dg(t)= 0. Hence

io io io0 <- g(t) da(t)= g(t) da(t)- g(t) dg(t)

Co f(t) da(t)- f(t) d_(t)

This proves the lower inequality. The upper inequality is similarly proven.
Remark 2.3. When da(t) satisfies the hypothesis of Corollary 2.1 and is also

a positive measure relative to the subspace Mt which is spanned by the functions
{f, u1," ", u,}, then strict inequality holds in the above inequality whenever
fKo-M.

We will denote the smallest linear subspace containing K0 by [K0].
The following useful corollary appears in 1] in a weaker form.
COrOLLArY 2.2. Let M be a weak Chebyshev subspace of dimension n. I[

[Ko] contains an n-dimensional Chebyshev system on [0, 1], then every positive
measure relative toMhas atmostone upper and one lowerprincipal representation.

Proof. Suppose ddl and rid: are two upper principal representations for
da(t). Then according to Corollary 2.1, 0 [(t) d(t)= of(t) d:(t)for all [ K0.
Since [Ko] contains a Chebyshev system of dimension n, and I(dd)= I(dd:)=
n/2, we conclude that dd rid:.

Chebyshev systems have the property that for any points 0 x <. <x 1
and any data y, y.,. ., y there exists a unique u M satisfying

(2.4) U(Xi) Yi, 1, 2,. , n.

For a weak Chebyshev system, the determinant of the linear system (2.4) may be
zero. However there does exist at least one set of points in [0, 1] for which (2.4) has
a unique solution. We will show that the support of the principal representations
of positive measures has this property under the assumptions of Corollary 2.2.
To explain this further.let us suppose for the moment thatn 21, M__ C[0, 1],
and da is a positive measure with lower principal representation d_a. Then

f(t) da(t)= E Af(t), feM,
1=1

where A1 >0, A2 2>0, A >0, 0</1 <" "<tl < 1.
We associate with d_a the interpolation problem

u(ti)= y, i=1,2,...,/,

u’(ti) yi, i=l, 2,"’,l.

This set of equations has a unique solution for all real data {y}, 1,..., l,
j 0, 1, provided that the homogeneous set of equations

u(ti) 0, i=l,...,l,
(2.5)

u’(ti) O, i=1,...,1,

has only the trivial solution in M. We will denote (2.5) simply by u(da_)= 0. In
general, for any discrete measure, we interpret u(dB)= 0 as the interpolation
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problem which sets u(t) and its first derivative equal to zero at an interior point of
the support of dfl while at an endpoint of [0, 1] only the value of u(t) is set equal to
zero.

COROLLARY 2.3. Suppose M is a weak Chebyshev system contained in
C1[0, 1], and [Ko]f’)C1[0, 1] contains an n-dimensional Chebyshev system on
[0, 1 ]. If]or allf Ko, d is a positive measure for the subspace M, then u(d) 0
has only the zero solution in M, ifd is a principal representation for da.

Proof. Let us again restrict ourselves to the case when n 2l and to the
interpolation problem corresponding to the lower principal representation. Thus
we are required to show that the only solution to the system of equations

(2.6)

21

Y aiui t. O, 1, 2,..., l,
i=1

2l

Z aiu(t) O, f 1, 2,’"., l,
i=1

is the zero solution. Suppose to the contrary that (2.6) has a nontrivial solution.
Then we conclude that there exist constants c o

i, c, i= 1, 2,..., l, not all zero,
such that

F(u)=- E cu(t) + E cu’(ti) =0,
i=1 i=1

for all u e M. From our hypothesis, there exists an fo e K f3 C1[0, 1] such that
F(fo) 0. Choose a constant c such that

v da v da_ + cF(v), v Mto.

We arrive at a contradiction, as before, by constructing a nontrivial nonnegative
Vo Mo which vanishes on the support of d_a and necessarily has the property that
F(vo) 0. Thus we have contradicted the fact that da is a positive measure for Mo.

Remark 2.4. Let w(t)>0, t[0, 1]. Then the measure da(t)= w(t)dt is a
positive measure for all subspaces Ms, f Ko.

Corollary 2.3 enables us to treat the question of one-sided approximation by
weak Chebyshev systems. Let us consider the minimum problem

(2.7) min (f(t)- u(t)) da(t).
<=1:
uM

COROLLARY 2.4. Let the hypothesis of Corollary 2.3 hold and suppose da_ is a
lower principal representation for d. Then every f K f) Cl[0, 1] has a unique best
one-sided approximation from below. The best approximation Uo to f is determined
uniquely by the interpolation conditions (Uo-f)(d_ )= O.
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Proo[. Let Uo be uniquely determined by the conditions (Uo-f)(da_)= O.
From Lemma 2.1 and Corollary 2.3, we conclude that Uo-<-fi Now let u be any
element in M such that u =<f. Then

(2.8)
u(t) da(t)= u(t) da_ (t)<= f(t) da_ (t)

Uo(t) dg(t)= Uo(t) da(t).

Thus Uo is a best one-sided approximation to f from below. Furthermore, if u is
any other best one-sided approximation to f from below, then according to (2.8)
we have a0 (f(t)-u(t)) da_(t)= 0. Thus (f-u)(da_)= 0, and from Corollary 2.3
we conclude that u o =_ Uo.

Remark 2.5. The unique one-sided approximation from above for f e
K fq C1[0, 1] is determined by the interpolation conditions (f- u0)(dff) 0, if dff
exists.

We end this section with some remarks concerning weak Chebyshev systems
which satisfy linear constraints. This will enable us to conveniently apply the
above results to certain classes of spline functions.

Given linear functionals Ll(U),’’’, Lk(u) defined on the linear subspace M
spanned by the functions ,n/r

’tUi’i= 1, we denote by M(L) the subspace of functions in
Mwhich satisfy the linear constraints Li (u) 0, 1, 2, , k. We may construct
a basis for M(L) in the following way. We define the (k + s)th order determinants

ik, ik+l, lk+sI
L1, Lk, X ,’Xs !

L(ui) L(ui) ui,(x,) Uil(Xs)

gl(/gik+s)""" Lk(Uik+s) Uik+s(Xl) Uik+s(Xs)

< n + r and 0 < x <" < xs < 1 If the set of linear function-for 1 -< il <" "< ik +s
/r

als {Li}= is independent over M, that is, rank IIL (u )IIL k, then there exists
exist <"" < ik such that

and the functions

il,’’’,ik )d
\LI,.. ,Lk

#0,

U( il,’’’,iki )V(t) La, Lk, t
l= 1, 2," , n +r-k,

where {i’ i’1, n+r-k} are the set of complementary ordered indices to
{il," ", ik} in {1, 2,..., n + r}, form a basis for M(L). Furthermore, employing
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Sylvester’s determinant identity, see Karlin [2], we have for some

v,(x) v(x,+,_)

/)i(Xl) I)i(Xn+r_k)

Oi’n+r_k (X 1) Vi’n+r--k (Xn +r-k

=o.d,,+r_k_U(1, 2,..., k, k + l, n +r]
El, Lk, Xl, Xn+r_k ]"

Thus if M(L) has dimension n + r-k, rank IIL,(u)ll k and

U(1,"’,k,k+l,"’,n+r) >-_0,(2.9) cr
L1, Lk, Xl, Xn+r-k

for all 0 < Xl <" < Xn+r-k < 1, then the ,set of functions "tvtlt=l
.n+r-k form a weak

Chebyshev system on [0, 1].
Furthermore, let us note that if there exists a set of points for which strict

inequality holds in (2.9), then it follows that the rank II(Li(u)ll-k and the
dimension of M(L) is n + r- k.

Let f be a function defined on [0, 1] such that

LI(ua) Ll(un+r)

L(u) Lk(Un+r)
(2.10) O"

u(xl) u.+(x)

u,(x.+_+)

Ll(f)

Lk(f)

f(x,)

Un+r(Xn+r-k+l) f(Xn+r-k+l)
for 0_<-xl <. <X,+r-k+l <- 1. Then according to Sylvester’s determinant iden-
tity, we may express the determinant in (2.10) as

dn+r-k

where

(2.11)

Ll(Ui,) Ll(Ui,) L(f)

f(t) Lk’(f)Lk(Uix Lk(Uik

Uil(t uik (t) f(t)

Thus f is in the convexity cone of M(L) and Li(f)= O, 1,..., k. Among all
functions which satisfy these relations, (2.11) gives us a correspondence between
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the elements in the cone of M(L) and functions for which (2.10) is valid.
Finally, observe that we may expand the determinant in (2.11) by the last

column and express f(t) in the form

k

f(t) dr(t) + . aj(t)Lj(f),
j=l

where al(t),’’’, ak(t) are elements of M.
We now consider some application of our previous results.

3. Quadrature formulae [or spline unctions with boundary conditions. Let
Ar denote the partition 0 0 < s1 <" < r < :+1 1 of the unit interval [0, 1].
The class of spline functions on [0, 1] of degree n- 1 with simple knots at A is
defined by

0- 0._(Ar) {S" S C"-[0, ], SI,+, 1-I.-,, 0, ,..., r},

where II,_l denotes all polynomials of degree _-<n 1. Every element S 6 0 has a
representation of the form

S(t) Z at + c(t-)-,
i=0 i=1

where t+ max {0, t} (we shall always assume n _-> 2).
We are interested in the subclass of ow which satisfies boundary conditions of

the following form.
Let n + r k + m, and define

n--1 n--1

(3.1) C/(f)= Ad(i)(0)+ Bd((1), i= 1,... ,k.
=0 =0

Denote by 5e(ck) the subset of ow satisfying C/(S)= 0, i= 1,..., k, and let
c IIc;ll;\ " where

(.2) G
,(-/+"+’+ k, o,, n

i.2,-1-i, i=l,’",k, ]=n,...,2n-1.

The following conditions on the matrix C are assumed to prevail throughout this
paper.

(i) 0 N k N min {2n, n + r}.
(ii) There exist {i,. ., i, ]1," ", ]k-s} {0, 1," ", 2n 1}, 0 N i <. <

iNn--l<]<...<]k_N2n--1, satisfying M-l+mu, =m+l,...,n,
where M counts the number o[ terms in {il," is, 2n 1 -]1," ", 2n 1 -jk-}
less than or equal to , and

1, ..., k)0.(3.3) C
i, is, jl, fl_s

(iii) For all {il, , is, jl, jk-s} satisfying (ii),

is of one fixed sign.
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Remark 3.1. Note that we make no assumptions on the k k minors of C for
which My_ + m >= u, u m + 1, , n does not hold.

The main theorem of this section is the following result.
THEOREM 3.1. Given a positive weight function w(t) > 0 and nonnegative

integers n, r, k, with n >= 2, and n + r k + 21, then there exists a quadratureformula
of the form

k

(3.4) f(t)w(t) dt= 2 ciC(f)+ Y Aif(ti),
j=l i=1

which is exactfor all s 5f, where A > O, j 1,. ., 1, and 0 < <" < t < 1.
We remark that the formula appearing above is of "double precision" since

the dimension of 0 is n + r while the number of "free" parameters appearing on
the right hand side of (3.4) is k + 21.

In general, the above quadrature formula is not unique as the following
example demonstrates.

Example 3.1. Let n 2 and r 3 with the knots chosen at :1 3, :2 1/2,
:3 , and 2 and k 1 where the boundary condition is S(0) + S(1) 0. This
boundary condition satisfies (3.3) and the following two quadrature formulae hold

(t-’forf{1 t,(t -1 )+, (t

f(t) dt -(f(O)+f(1))+xf(5)+ f

f(t) dt=-(f(O)+f(1))+ f - 4 f -Whether uniqueness persists for all n >-3 remains unresolved. However, we
will later give some partial results on the uniqueness of (3.4).

The main idea in the proof of Theorem 3.1 is simply to show that the subspace
0(cgk) has a lower principal representation. The remainder of the section is
devoted to the details of the proof of this fact.

Let us write

ui(t) i-l, i= 1,’’’, n,

and

u.+,(t)=(t-)-1, i= 1,. ,r.

Then in the notation of 2, Melkman [9] (see also [5]) proved.
THEOREM 3.2. If n + r k + m and (3.3) is valid, then

", n+t)o’_->0,(3 5)
CI, ", Ck, X l, ", Xm

where tr + 1 or 1 fixed, for all choices of 0 < x " Xm < 1 (where at most n of
the xi’s coincide), and (3.5) is strictly positive iff there exists an {s, k-s} for which
(ii) of (3.3) is satisfied and

(3.6) :,+s-,, <x, < :,+s,
(whenever the inequalities are meaningful).
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Thus according to the discussion at the end of 2, we conclude that 6e(ck) is a
weak Chebyshev subspace of dimension rn on [0, 1].

We list. below some examples of boundary conditions which satisfy (3.3).
Example 3.2.

S(")(0) 0, /.t 1,. , p,

s(1) 0, 1,. , q,

wherep+q k, Oia <. <ip n- l, 0j <. <jq n-l, andM’_a+m
u, u=m+l,...,n, where M’ counts the number of terms in
{ia,..., ip, j,..., "1} less than or equal to u.

")(0) S((1 k 1 ifk+n+risodd.Exampte 3.3. ), i=O, 1,. ,
Example 3.4. S((O) -S()(1), O, 1, , k 1, if k + n + r is even.
Example 3.5. Separated boundary conditions. Let

n--1

A,(f)= E AJ(i)(0) =0, 1,.--,p,
j=0

n-1

B,(f)= E Bg(i(1)=0, 1,...,q,
j=O

where p + q k. It may be easily seen (see [5]) that these boundary conditions
satisfy (3.3) provided that

(i) Op, qn;
(ii) there exist {i, iv}, {j,, jq} {O, 1,..., n-l} satisfying

-l + m > u, u m + l, n, where M’ counts the number of terms in

{il,. ", ip, j1," "’, jq} less than or equal to u and

(3.7)

where IlAi(-1)llf= n--1 n--1.

(iii) for all {i, ip}, {jl,""", jq} satisfying (ii),

i, ],
is of one fixed sign.

Note that Example 3.5 includes Example 3.2.
Returning to the general case (3.1), let T denote the set of integers s for which

(ii) of (3.3) is satisfied. Then we have the following interesting corollary
eorem 3.2.
Cooa 3.1. I there exists an s e T or which min {s, k s} r, then

(% has a basis o m uncons which orm a Chebyshev system on (0, 1).
It may also be shown that if s e T is such that min{s, k-s}Nr, then

M_ +m , m + 1,. , n for all {i, , i, ]," , ]_} satisfying 0 N i <
< i N n 1 <] <. <]_ N 2n 1. Note that when the boundary conditions

are separated (Example 3.5), then T= {p}.
In the discussion which follows, we set m 21. Since we wish to prove the

existence of a lower principal representation for any positive measure d(t)
relative to (%), we shall assume > 0 (i.e., k < n + r). If 0, Theorem 3.1 is



MOMENT THEORY 217

easily proven. To apply Theorem 2.1, we must show that there exists a function in
0(c,) which is positive on (0, 1). However, this is not always possible. To
circumvent this difficulty, we introduce the following notion of a zero of degree a
for the subspace 0(c,).

DEFINITION 3.1. If S E,.(qk) implies S(0)=S’(0) S(a-1)(0)--0,
while there exists an S E (,) for which S()(0) 0, then we say that 6e(,) has a
zero of degree a at 0. If there exists no such a, i.e., S()(0) 0, 0, 1,. , n 1,
then we say that 6(,) has a zero of degree n at 0. Similarly we define the degree
of the zero of 6e(c,) at 1.

The following result in the case of separated boundary conditions is to be
found in [12]. The proof of the general case below is essentially the same as the
proof in [12]. We include it here for completeness.

PROPOSITION 3.1. For k < n + r, f]P(fk has a zero of degree a at 0 ifffor all
{il,"" ", is, j1,""" ,jk-s} satisfying (ii) of (3.3), i1=0, i2 1,’.., i =a--1. A
similar result holds at 1.

Proof. Assume 5(k) has a zero of degree a at zero, a > 0. Assume, as well,
that for all {il,""", i, ]1,"’, ]k-} satisfying (ii) of (3.3), il 0,.-., v y--1,
but that there exists an {il,""", i, ]1,"’, ]k-} satisfying (ii) of (3.3) for which

iv+l Y, 0 < y < a. Consider the matrix [[rn,..,,ijlli=ln-llk+ 1, where

(Cq, i=l,...,k;
CiJ=

6v, i=k+l;,

j=O, 1,. , 2n-l,

j=O, 1,..., 2n- 1.

It is easily shown, since il 0,. , v 3’- 1 for all {il," , is, jl," ,
satisfying (ii) of (3.3), that C satisfies (3.3) unless k 2n. However, if k 2n, then
the proposition is immediate. Let 5(,+1) denote the subset of 5 satisfying the
boundary conditions associated with the matrix C. Since (,+1) satisfies (3.3),
5(,+1) is a weak Chebyshev subspace of dimension 21- 1 on (0, 1) (recall that
n + r k + 2/). However, every S 6 5(,) satisfies S()(0) 0 since y < a, and thus
()(+a). () is a subspace of dimension 2l, and a contradiction
follows.

Now let us assume that () has a zero of degree a at 0, and for all
{il," , i, ja,. , j_} satisfying (ii) of (3.3), we have il 0,. ., i a 1, and
t+l a. Construct C as above with y a. en (ii) of (3.3) is not satisfied, and
from the analysis of Theorem 3.2 (see [5]) the determinant associated with the
conditions S (+a), S(x) 0, 1, , 21-1, is singular for every choice of
{Xi}q in (0, 1).

Now (k+l) (k) and there exists an S(k) for which S(")(0)0.
(X)}]=us(+1) has dimension at most 21 1. Since we may choose a basis {Si 21

for () such that S(0) 0, ] 1,..., 21-1, (+1) has dimension 21-1.
e {S(x)li= are linearly independent functions and thus there exist points
{y}]l, 0<y<’"<y2_a<l, such that any S(,+1), i.e., S(x)=- aiS(x) satisfying S(y)=0, i= 1 2l-1 implies S(x)O. This con-=1

tradicts the fact that the determinant associated with the conditions S (k+1),
S(x) 0, 1 2l 1 is singular for every choice of Xii=l The proposition
is proven by applying the same analysis at 1.
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From Proposition 3.1, we have
COROLLARY 3.2. For all S 5(Ck), S(t)=--O in [0, :1] ifand only if s n for

alls T, andS(t)--O on [,, 1]forallS 5(Ck) i[andonly i[k-s nforalls T.
Now, let da(t) be any positive measure relative to 5(k), and construct, as in

the proof of Theorem 2.1, the points {ti}_-1, 0 < tl =<" =< te < 1 for the subspace
5e(ck). Corollary 3.2 shows that we cannot, in general, expect 5e(k) to contain a
positive function. However, in the proof of Theorem 2.1, we see that we only
require the existence of a function which is positive on the set {6}i=1 to conclude
that da has a lower principal representation. In our next proposition we will
explore the relationship between the {6}l=a and the {sci}= 1.

Let us note that from the proof of Theorem 2.1, there exists a nontrivial
(t) oW(k) such that

S(t,) 0, i=1,...,l,

(t) >= O, t >= tl,

and

dee(t)= O.(t)

Therefore, since d(t) is.a positive measure with respect to 5e(Ck), (t)< 0 for
some t < tl. On the basis of this observation, we have

PROPOSITION 3.2. If (qk) has a zero of degree n at O, then tl > 2, while if
(Ck) has a zero of degree n at 1, then

Proof. If (Ck) has a zero of degree n at zero, then S 5(k) implies
S(t)=O, t[O, :1]. Since S")(1)=0, i=0, 1,..., n-2, and S[(,,2)II,_1, if
S(tl) 0 for tl <= :2, then S(t) 0 for =< tl. However, (t) < 0 for some t < tl, and
thus we conclude that ta >:2. By an analogous argument we obtain the corre-
sponding result at one.

PROPOSIWION 3.3. If k < n + r, then there exists an S 6(Ck) which is strictly
positive on an open interval containing [tl, tl].

Proof. If k 2n, then r n + 2/, and we may easily construct, by the use of
B-splines (see [2] or 5), a spline S 6e(Ck) such that $(t)>0, (:a, :). The
result then emanates from Proposition 3.2.

In what follows, we shall assume n -> 3. For the case n 2, the required spline
may be explicitly constructed.

Define, for e, 6 (0, 1),

Sl(t)

I I’U(1’ "’’’ n+r)r dya dye-l,
Ca,’", Ck, e, Yl, Yl, ", Ye-1, Ye-1,

eyl<...<=yt_l <=l

S2(t)

; f U(1, ".., n+r
C, , C yl, Yl, ",

O__<yl =<...=<y___< 1-$
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and

S(t) S(t) + S2(t).

From (3.5), Sl(t)>=O for t6(e, 1), while S2(t)->0 for t(0, 1-6).
Case I. There exists an s T such that s, k-s < n. Let e, 6 > 0 be chosen

arbitrarily small. By (3.6), if s<n-1, $1(/) 2>0 for t6(e, 1), while if s-n-1.
Sl(t) >0 for t (:1, 1). Similarly, if k-s <n 1, Sz(t) >0 for t (0, 1-6), and if
k-s n- 1, S2(t) >0 for t (0, Cr). Thus it follows that S(t) >0 for (e, 1-6)
for all e, 6 positive and small. Since tl > 0, tl < 1, the result follows.

Case II. 5(k) has a zero of degree n at 0 or 1. Assume 5(k) has a zero of
degree n at 1. Thus for s T, k -s n. Since we have already considered the case
k 2n, we assume k <2n, implying s <=n-1. Choose e, 6 >0, e small and
r_l< 1-6 <. If s<n-1, then Sl(t)>0 for t(e,r), while if s=n-1, then
Sl(t) >0, for t E (:1, ). However, S2(t)>0 for t(0, r-1), and the result then
follows from Proposition 3.2.

Case III. (k) has no zero of degree n at 0 or 1, but for all s T, either s n
or k-s=n.

From Corollary 3.2, it follows that since (k) has no zero of degree n at 0 or
1, there exist sl, sz T such that sl n, k Sl n, and sz < n, k sz n. Obvi-
ously, k -Sl

If k Sl sz < n 1, let , 6 > 0 be chosen small. Since s < n 1, Sl(t) > 0 for
t6(e,,), and since k-Sl<n-1, S2(t)>0 for tG(:l, 1-6). Thus S(t)>0 for
t(e, 1-6).

Assume k s sz n 1. By the above construction, S(t) 0 for (SOl, :).
We shall show that tl > : and t < s% proving the proposition.

LEMMA 3.1. Assume, as above, that k 2n 1 and n, n 1
andtl <.

Proof. Let ’ denote the subset of 5 satisfying S((O)=S(i(1)=O,
0, 1,. , n- 1. Since k 2n- 1, ’ is a subset of (k) Of dimension 21- 1 and
every S ’ vanishes identically on [0, Sl] U [s, 1]. For <e <s2, Sl(t) <0 for
t<e and Sl(t)>0 for t>e where S(t) is defined above. Thus S5(Ck) and
Sl(t) 0 for all (0, Sl] (.J [s, 1). Therefore the subset of 5(Ck) which vanishes at
some point x (0, :] (3 [s. 1) has dimension 21 1. However, since this subset still
contains ’, it must equal ’. Let (t) be as constructed in Theorem 2.1. If t :1,
then by the above analysis, ’ and thus (t) -= 0 for t _-< tl. This contradicts the
properties of and therefore tl > 1- Similarly, t/< s% The lemma is proven.

We are now ready to prove
THEOREM 3.3. Assume n + r k + 21 and da(t) is a positive measure with.

respect to the weak Chebyshev subspace 5(Ck) Of dimension 2l. Then da(t) has a
lower principal representation.

Proof. The proof of Theorem 3.3 follows Theorem 2.1 and Proposition 3.3.
Remark 3.2. If there exists an s T such that min {s, k- s}_-> r, then from

Corollary 3.1, (Ck) is a Chebyshev subspace on (0, 1). The existence and
uniqueness of the lower principal representation for 3(Ck) is immediate in this
case.
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We may now prove Theorem 3.1.
Proofo[ Theorem 3.1. From Theorem 3.3, there exists a quadrature formula

of the form

(3.8) f(t) dt= Y. A.0f(ti),
i=1

which is exact for all S 6 O(Cgk), where ai > 0, 1, , and 0 < tl <" < tt < 1.
From (2.10) and the subsequent analysis, any S ,9 may be expressed in the

form

[_ k

S(t) d- S(t)- Z ci(t)C,.(S)
=1

where d 0 and S 6e(Cgk). Substituting this relation with f= S into (3.8), we
obtain (3.4). The theorem is proven.

If the boundary conditions under consideration are separated (see Example
3.5), then the quadrature formula (3.8) and (3.4) are unique. The proof of this fact
is based upon Corollary 2.2 and the following proposition.

PROPOSITION 3.4. Assume n + r =p + q + 21, and that the boundary condi-
tions (3.1) are separated and satisfy (3.7). If f 6 C"[0, 1] and C(f)=0, i=
1,. , p + q k, then f [K], where [K] is the smallest linear subspace containing
K, the convexity cone generated by 51’(Cgk).

Proof. Anyf6 Cn[0, 1]maybe written asf=fl-f2, wheref)")(t)(-1) 0for
t(sq-l, sq), i= 1,...,r+l; /’= 1,2, and f.c"-l[0, 1], fC"(:_l, SC), i=
1,..-,r+l. Let gl(t)=fl(t)+S(t), where SSt’, such that C(ga)=0, i=
1,. ., k. Since Ci (f) 0, 1,. ., p + q, and f (fl + S) (f2 + S), we conclude
that C(f2 + S)= 0, 1,..., k. Let g2(/)= f2(t)+ S(t).

We shall prove that for any function g(t) which has the form

1 Io )+1(3.9) g(t)= S(t)+
(n1)- (t-x g")(x) dx,

where S 6 , and which satisfies gn(t)(--1)i >=0, (i-1, :i), 1," , r + 1, and
Ci(g) O, 1,..., k, then either g or -g lie in K. By Taylor’s theorem, both
g(t) and g2(t) are of the requisite form. From the properties of g(t), (3.9) may be
rewritten in the form

r,l (__1)
g(t) S(t)+ (t-x)7+llg<")(x) dx.

i= (n- 1)!

Let u,+r+l(t)= (t-b)-1, An application of Theorem 3.2 and (3.7) yields

(3.10)
C1, Ck,

n + r + 1] (_1)ir, =>0,
X21+1]
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for E (i_1, :i), 1,..’, r+ 1, where o-= +1 or -1, fixed. Now from (3.9),

Cl(Ul) Cl(Un+r) Cl(g)

c(u) C(U.+r) C (g)

Ul(X,) u.+(Xl) g(x,)

Ul(X21+l) Un+r(X21+l) g(x21+l)

i= (n- 1)! Ca,’" ", Ck, Xl, X2/+l’

From (3.10) it follows that the above determinant is nonnegative (or nonpositive)
for all 0<Xl_-<’"-<x2t+a < 1. Thus by (2.11), g (or -g) is in K. Since, by
assumption C(g)= 0, 1,..-, k, it follows that g g, and the proposition is
proven.

Thus we have also proven
THEOREM 3.4. For separated boundary conditions which satisfy (3.7), the

quadrature formula (3.4) is unique.
Remark 3.3. In the case of separated boundary conditions, it follows from

Corollary 2.3 and Theorem 3.2 that

2i+p--n < ti < :2i-1+p, 1,""", 1,

where the {t}=a are the nodes ofthe unique quadrature formula (3.4).
Remark 3.4. The analysis of this section also holds for spline functions with

knots of multiplicity at most n- 2 and for Chebyshevian spline functions (see [3]
and [6]).

4. Monosplines satisfying boundary conditions. In this section, we shall
study the Peano kernel of the quadrature formula of Theorem 3.1 and state our
version of the fundamental theorem of algebra for monosplines.

A monospline of degree n with knots {xi}=a, 0 < xl <" "< x < 1, is a
function of the form

xn
(4.1) M(x) --[. + aixi+ bi(x-xi)_-1

i=0 i=1

Let C(f), 1,. , k, be boundary conditions of the form (3.1) such that the
k 2n matrix C satisfies (3.3). Let

k

(4.2) O(f) Z ciCi(f)+ E Aif(ti),
i=1 i=1

be the quadrature formula constructed in Theorem 3.1, i.e., Iof(X) dx O(f) for
all f E 5. Recall that n + r k + 21. Every f e C"[0, 1] has the representation

n-1 t 1 (f(t) E f(i)(0)+Jo (t--X)_-lf(n)(X) dx.
i=0 (n- 1)t
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Define R (f) f(x) dx O(f). Then for f e C"[O, 1],

R(f) R,((t-x)_-l)f(")(x) dx.

This, of course, is the Peano representation of the remainder R (f). We define

(-1)--" Rt((t-x)_-l) M*(x),

and note that M*(x) is a monospline of degree n with the knots {t}=l. Thus for
all f C"[0, 1],

i=1 i=1

Since R((t-i)2-) 0, we conclude that M*(i) 0, 1,. ., r.
Let M(x) be any monospline of the form (4.1), and e C[0, 1]. Then

integration by parts yields

n-1

1)i+f(x) dx Y, (- f(i)(O)M(n-l-i)(o)
i=0

n-1

(4.4) + Y (-1)if")(1)M("-l-i)(1)
i=0

i=l(H--1)!bif(xi)+(--])nIO M(x)[(")(x) dx.

Thus from (4.3) and (4.4) we obtain
LEMMA 4.1. The monospline M*(x) defined above satisfies

k n-1

E iCi(f) E (-1)i+lf(i)(O)(M*)(n-l-i)(O)
i=1 i=O

(4.5)
n--1

+ E (-1)i[(i)(1)(M*)("-’-i)(1),
i=0

for all f e C" [0, 1 ].
Since the k 2n matrix C has rank k, we may construct a 2n 2n nonsingular

matrix whose first k rows agree with C. We shall also denote this enlarged matrix
by C. Define D (Cr)-1, and let

= ((--1)n+r+lg(O), (--1)n+r+2g’(O), (--1)rg(n-a)(O), g(n-1)(1),""", g(1))
and

((--1)"+rg("-l)(0),..., (--1)"+rg(0), (--1)"-1g(1), (--1)"-2g’(1),-’’, g{"-l)(1)).
Thus (, ) (the inner product of the vectors and lI) represents the right-hand
side of (4.5), and (Ci) C(f), i= 1,..., k.

LEMMA 4.2. For M*(x) as above,

(DM)i =0, =k+l,. ., 2n.
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Proof. The proof follows from Lemma 4.1 and the equation
2/,1

([, ll*)= (C[, DII*)= E (C-)i(Dl/I)i.
i=1

THEOREM 4.1. If n + r k + 2l and D (Cr)-1, where the matrix composed
of the first k rows of C satisfies (3.3), then given {sci}7=, 0<sc <...< , < 1, there
exists a monospline M(x) of degree n with knots such that

M(i)=0, 1,..., r,
(4.6)

(DII), 0, i= k + 1,..., 2n.

Furthermore, the knots of the monospline M(x are the nodes of the quadrature
formula (3.4), and M(x) is unique if and only if the corresponding quadrature
formula is unique.

Proof. From the above analysis, every quadrature formula of the form (3.4)
gives rise to a monospline M(x) satisfying (4.6).

If M(x) satisfies (4.6), then (4.5) holds for f 9. Let

and

k

O(f) E ciCi(f)-E (n-1)!b,f(xi)
i=1 i=1

R(f) f(x) dx O(f).

From (4.4), R(f) =.0 for f 6 {1, t, , t"-l}, and since R((t-x)-1) M(x), the
theorem is proven.

The following two theorems represent a partial converse to Theorem 4.1. To
prove these theorems, we demand an additional assumption on the k x 2n matrix
C (see Remark 3.1).

(4.7) Assume the k x 2n matrix C satisfies (3.3) and all nonzero k x k minors
of C are of one sign.

THEOREM 4.2. If D is as above, where C satisfies (4.7), and if M(x) is a
monospline of degree n with ! knots for which (DM)i O, k + 1,. , 2n, then
M(x has at most r + 1 distinct zeros in (0, 1).

"l.r+2Proof. Assume M(x) has r + 2 distinct zeros {:j= in (0, 1). Then there exists
a quadrature formula

k

f(t) dt= cC(f)+ Y. Aif(ti)
i=1 i=1

which is exact for fe 6e* {1, t, n-1 (t n--:1)/ "’,(t-/2)/ }.Thek
2n matrix C satisfies (3.3) with respect to n, k, 21 and r. Since r and r + 2 are of the
same parity and C satisfies (4.7), it follows that 9*(k) is a weak Chebyshev
subspace of dimension 21 + 2, and

.f(t) dt= Y’. A.0f(ti),
i=1

for all f e 5*(Ck). This is impossible since we may construct, by smoothing (see
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Theorem 2.1), a nonnegative nontrivial S 6*(Ck) which vanishes at the nodes
{ti}=l. The theorem is proven.

TIaEOREM 4.3. Under the assumptions of Theorem 4.2, if the boundary
conditions represented by C are separated, then M(x) has at most r distinct zeros in
(o,

Proof. The proof is the same as that of Theorem 4.2, where we use (3.7) and
note that for separated boundary conditions, the parity of r plays no role. Thus the
addition of one more knot to 6(c) gives rise to a weak Chebyshev subspace of
dimension 21 + 1.

Remark 4.1. The bound given in Theorem 4.2 is sharp as the following
example indicates. Consider the case n 2 and r 1 with the knot : 1/2. Let 1
and k 1, with the boundary condition S(O)+S(1)=O which satisfies (4.7). The
quadrature formula

f(t) dt (f(O) +f(1))+f
)/. The associated monosplinex)/} and f(t)= (tholds for f e { 1 t, (t

M(x)=X2 x 2(2 6 3
x-

satisfies M(0)= M(1)= M’(0)+M’(1)= 0, and M()= M(])= 0.
Remark 4.2. As previously commented upon in Remark 3.4, Theorem 3.1

extends to spline functions with knots of multiplicity =<n-2. Thus Theorems
4.1-4.3 extend to the case of multiple zeros of order at most n- 2 for M(x).

Let 2,-k denote the set of boundary conditions (Dll)i=0,
k + 1,.-., 2n, where D (C’)-1, and the first k rows of C satisfy (3.3). Our
present goal is to present a more workable definition of 2,-k. To this end, define

n--1 n--1

(4.8) Gi(f) Eiif(i)(O)+ For(i)(1), i= 1,’.. ,2n-k,
1=0 i=o

and let G IIGOIl,-k"__- 1, where

evi(-1)+"+1, i=l,...,2n-k;]=0,1,..’,n-1,
(4.9) Gii

-E’,2n-]--l, 1," , 2n k; ] n,. ., 2n 1.

Let 2,,-k denote the set of boundary conditions G(M)= O, 1,. ., 2n- k,
where G satisfies (3.3) with m -r; i.e.,

(i) max {0, n r} _-< 2n k -<_ 2n,
(ii) there exist {il," ", i,]l,.-’,]2,_k_} -{0, 1,..., 2n-- 1}, satisfying

M_+ r >-_ , ,=r+l,..., n, and

(4 10) G(1’ "’" 2n-k) 0,
i,’" ", i,, jl,’" ", J2---,

(iii) for all {il, ",i, ]1,’", ]2,-a-} satisfying (ii),

(1, ..., 2n-k)G
il,"" ", i,,j,’’"

is of one sign.



MOMENT THEORY 225

Then we have
PROPOSITION 4.1. 2n-k (-2n-k"
Proof.

n--1 n--1

(DII), Z D,flV/("-->(0)(-I)+’+ E D,a+,(-II"-J-M(>(11
=0 =0

n-1

Di,n__(-1)r+j+l[M(J)(O)(-l)n+j+]

n-1

+ E D,,2--(-ll[M(-i-X)(l)],
j=0

Let

i=k+l,...,2n.

fDi+k,n_i_l(--1)r+i+l 1 2n-k’j 0, 1 n- 1

D,+k,3,,_1_I(--1)"+i, 1,’’’, 2n-k; ]= n, 2n- 1.

]ll]= satisfies (4 10)Then Proposition 4.1 is valid if we can prove thatH ’2n-k2n-1
if and only if C satisfies (3.3).

Let ""VMm=a denote the complementary set of indices to {n-i- I} in
{0, I ,n i}, and," lt=a denote the complementary set of indices to

2n-k-s{3n-j-I= in {n, ,2n- I}.
e following two lemmas prove Proposition 4. I.
LEMMA 4.3. With the abooe definitions,

i, , ], ]__ "tn-s, jl, ,jk+s-n

Proof.

41 ..., 2n-k)i, ", is, j," ",

-i-l,".,n-i-l, 3n-]-l,..., 3n-]__- 1
(-1)

=D
-i-l,...,n-i-l,3n-]__-l,...,3n-]-I

(-1)’+

-1 EI+E2+E3
ln-sjl +s

where

81=(rW1)s+n(2n-k-s)+ im +
m=l

s(s- 1) (2n-k-s)(2n-k-s- 1)
E2---T4 2

and

2n(2n + 1) k(k+l) + s(n 1) + (3n 1)(2n k s)- . i,,
m=l

2n-k-s
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Utilizing the fact that n + r-k 21, it follows that (--1.)el+e2+e3- 1. The lemma is
proven.

LEMMA 4.4. {il, ", is, jl, j2n-k-s} satisfies M_ + r >= u, u
r + l ...,n, if and only if {i’1, ", ln--s, ]1, ", j,+s-n} satisfies M-I + 21 >- u,
u=21+l,...,n.

Proof. Due to the symmetry of the analysis we prove only one direction.
Assume {i,. -, is, j1," ",/’2,-k-s} is such that M, +r-</z for some /
r,..., n-1. Note that since M,-l=2n-k, and 2n-k+r=n +21>-n, tx <
n 1. Let iv, 2n -ft 1 =< tz < i+1, 2n -f-i 1. Thus M, + r
3‘+(2n-k-s-+l)+r<=l, i.e., 3‘-s-+l+n+2l-tx<=O. Now n-iv-l,
jt-n >=n-tz- 1 > n-i+- 1, j-l-n, and therefore

2n 1 "’tn--s+,, 1,1, In-t_s+3,_l, 2n- 1- "--]+k+s_2n+tz>n-- -2 > Jfl +k +s-2n+t+

and for {i’1 ,i-,,, ,j,/-/,

M._._2 + 21 21 +(n -/z -s + 3’- 1)+(n -/3 -/x)
=(3‘-s-fl + l +n +21-tx)+(n-1-2)<--n-1-2,

since 3‘-s-/3 + 1 + n + 21-/x =< 0. The lemma is proven.
Utilizing Proposition 4.1, Theorems 4.1-4.3 may be restated in terms of the

boundary conditions (4.8), where G satisfies (4.10).
Remark 4.3. Note that from the proof of Proposition 4.1, it is easily seen that

the boundary forms (4.8) are separated if and only if the corresponding boundary
forms (3.1) are also separated. Thus Theorem 4.1 in conjunction with Proposition
4.1 extends the results in [3].

5. An example and a further application of moment theory. In this section
we discuss an interesting example of Theorem 4.1, as well as present another
application of Theorem 2.1.

We begin by recalling that the nth Bernoulli polynomial, B, (x), is determined
by the relations

Bo(x) 1, B’(x) nB_(x),

B(x)=(-1)Bn(1-x)

Bn(O) 0

n=l,2,...,

n=3,5,....

The periodic extension of period one of the Bernoulli polynomial which we
denote by B, is, according to (5.1), a monospline of degree n with knots at the
integers. B, (x) is the Peano kernel for the Euler-Maclaurin quadrature formula

(5.2)

n 1 1
f(x dx f(O) +f(1) +’’’ +f(N- l) + f(N)

B2,(O) (f(z,_l)(o)_f(z,_l)(N))+ Z (2v)0<2un

(-1)" Iou+----. B,, (x )f(’ (x dx.
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When n is even, n 2m, we may rewrite (5.2) in the form

fo 1 1
f(x) dx - f(O) +f(1) +... +f(N- 1) +-f(N)

B.(0)[/(:_1)(0)_f(:._,(1)](5.3) +
v=i (2R)

+
(m

M(xIm(x ax,

where M(x)=B(x)-B(0). M has a double zero at every integer. Further-
more, it satisfies the boundary conditions

--(0) --(N) 0, i {0, 1, 3,..., 2m 3},

which are adjoint to the boundary terms appearing in (5.3). us we see that the
Euler-Maclaurin quadrature formula (5.3) is exact for all spline functions of
degree 2m 1 with double knots at 1, 2, , N- 1. us it is of double precision.
In the notation of orem 4.1, n 2m, N- 1, k 2m and r 2(N- 1).

Similarly, the odd degree Bernoulli monospline M(x)=B_(x) is the
Peano kernel of the (odd degree) Euler-Maclaurin quadrature formula

(x) dx (0) +(1) +... +(N- 1) + (N)

m-(0[(-(0--(](5.4) +vZ1 (2V)’

-(m- M(x[(m-(xl x.

In this case, Mhas a simple zero at each integer and half integer. Also,Msatisfies

am--(0) m--0(N) 0, i {0, 1, 3,..., 2m 3}.

us (5.4) is of double precision and corresponds to Theorem 4.1 with n 2m 1,
l=N-1, k =2m and r=2N-1.
efollowing theorem was suggested to us by A. A. Melkman who indicated

a method of proof similar to that used in [6].
THEOREM 5.1. Letdata y,..., y++ andpointsx <x <.-. <x++ be

given. Suppose that the divided differences [y, , y+ othe data over the points
&, , x+, 1, , 2r + 1, strictly alternates in sign and n 2. en there exists
a monospline M(x) o degree n with r knots and a nonzero constant such that

M(& ly, 1, , n + 2r + 1.

Furthermore, i 2r n, then M(x) is unique.
Pro@ Assume without loss of generality that x 0 and x++ 1. Con-

sider the space o of spline functions of the form

2r+l

s(t) cB(x, x+; O,
i=1
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-,2r+lwhere i=1 ci[yi, , yi+,] 0, and B(x,. , x+n; t) is (the B-spline) defined to
be the nth divided difference of (x t)_-1 at x x, , xi+,,. It is well known that
any subset of B-splines form a weak Chebyshev system (cf. [2]). Since the divided
difference of the data strictly alternates, we conclude that 6Co is a weak Chebyshev
subspace of dimension 2r. To prove this fact, let us set B(x, , xi/,; t) ui(t),

1, , 2r + 1, and [y, , y/,] z, 1, , 2r + 1, and consider the func-
tions vi(t)= Ui(t)--(Zi/Z2r+l)U2r+l(O i= 1,’.., 2r. Note that

., 2r)Z2r+l
tl, t2r

u(t) Ul(t2r)

u2r+(ta) u2,+(t2) z2+1

2r+l 41,...,i_1, i+1,...,2r+1)Z (-1)’+2+z
i= tl t2r.

Now

+1)1,..., i-1, i+1,...,2r
t, t2r

=> 0,

and z(-1)r>0, 0
-2.-- 1, fixed. Thus {v(t)}Zrl is a weak Chebyshev system of

dimension 2r on (0, 1) which spans the set 9o
Since z(-1)0- >0, 1,..., 2r+ 1, we may always find positive numbers

c, , c+1 such that V2+1 czi 2r+1 c[yi, , y+, 0. Thus the functionz-i /4=1

S(t) =1 cB(x,..., x/,,; t) is strictly positive on (0, 1), and from Theorem
2.1, there exist points 0<SOl <. < < 1, and/x >0, 1, , r, such that

(5.5) f(t) dt=
i=1

for all f 50. It easily follows that there is a constant , for which

B(xj, xj+,; t) dt iB(xi, xi+,; i) + A[yi, ., yi+,,],
i=1

for j= 1, , 2r+l.
Let

M(x) nl IOajx +
j=0

(x t)?+-1 dt- tzi(x sci)--1,
i=1

where ao, al," , a,-1 are chosen so that M(xi) Ayi, j 1, , n. Now

M(xp X]+n)-- B(x], x]+ t) dt- p.iB(xi,’’’, xi+, :)
i=1

/’= 1,. .,2r+1.
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Since M(xj)=Ayj, ]=l,...,n, it then follows that M(xj)=Ayi, ]=
1, , n + 2r + 1. Note that if A 0, then M(x) has n + 2r + 1 zeros, an impossibil-
ity (Theorem 4.3). Thus A # 0 and M(x) is the desired monospline.

In [11], it is proven that the functions 1, t, , tn-i are each contained in the
smallest linear subspace containing the convexity cone generated by 0. Since
uniqueness of the monospline M(x) is equivalent to the uniqueness of the
quadrature formula (5.5), we conclude from Corollary 2.2 that M is unique when
2r _-< n. This completes the proof of the theorem.

Remark 5.1. In the statement of Theorem 5.1, we assumed zi(-1)ir>0,
1, , 2r + 1. This was done to insure that 6’0 is a weak Chebyshev subspace of

dimension 2r which contains a positive function. In order that 6e0 be a weak
Chebyshev subspace of dimension 2r, it is sufficient that zi(-1)r=>0, i=
1, , 2r + 1, and at least one of the zi is nonzero. Assuming that this is the case
and if the sets {i" z > 0} and {i" z < 0} are both nonempty, then we may constrluct,
as in the proof of Theorem 5.1, an element of 00 which is strictly positive on (0, 1).
If one of the above two sets is empty, but the other does not contain either 1 or
2r + 1, and if n => 3, then we may still construct a positive function in 6e0. These
conditions suffice for Theorem 5.1 to hold.

In particular, if we choose y 6.,+2r, 1, , n + 2r + 1, we obtain
COROLLARY 5.1. Given any points sl <" < s,,+2r, there exists a monospline

M(x) of degree n with r knots such that

M(si) O, i=l,...,n+2r.

This is the fundamental theorem of algebra for monosplines as it appears in
[6] and [13]. This result is also a special case of Theorem 4.1 with k 2n. The
uniqueness as well as the converse, i.e., M(x) has no more than n + 2r zeros, are
also results of Theorems 4.1 and 4.3.
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