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INTERPOLATION BY SPLINES WITH MIXED BOUNDARY CONDITIONS

Samuel Karlin and Allan Pinkus

1. INTRODUCTION
A polynomial spline of degree n with knots {Ei}i '
0 < El < 4es < Er < 1, has the representation
n

N r
_ 1 _ n
(1) S(x) = iZO ;X + izl d, (x gi)+ '

where ci ’ di are real constants, and as usual,

EY

; X, = max{x,0} .
< We treat in this work the following problem. When is it
possible to uniquely interpolate arbitrary real data {yv}z
at the points X={xv; v=1,...,8 , 0<xv<l} by:l
spline S(x) , having the prescribed knots, that also
satisfies the mixed boundary conditions
n . n .
@ ) ay sy + 3 b, | s = e, + 1= 12,0000k,
j=0 =0
where e, are fixed given real numbers. In other words we
wish to ascertain criteria that assure the existence of
3 unique real coefficients {c;}g and {d;}i such that

n . r
s*(x) = ) c;‘_xl + z d;(x—ii)n obeys the boundary conditions
= i=0 i=1 +

(2) and fulfills the interpolation requirements S*(xv) =Y.

v
v =1,2,...,2 . The problem is tantamount to the analysis

of an appropriate system of linear equations. To guarantee
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the feasibility of unique interpolation for arbitrary data,
it is essential that & = n+r+l-k .

The above interpolation problem was resolved (see [31) in
considerable generality for the situation where the boundary
conditions involving the endpoints O and 1 are separated,
viz.,

t (3)
Bo: 1 2557 (0 =¢
(3) )=

B, :

n
[0}
o

f

= 1,...,p

(3)
by 877 (1) = £,

[
H
-
B
|

=1,...,9

Il 15

j=0

(ei and fi are given real constants, p+q = k).

The solution relies on the precise total positivity character
of the kernel ¢(x,E) = (x—E): and refinements thereof. The
results of [lot cit] are extended in this paper to handle the
case of mixed boundary conditions as those displayed in (2).
The formulation of the interpolation Theorem 1 below was
first discovered by Melkman. His analysis depends on various
elaborate ramifications of the Budan-Fourier Theorem on zeros
of functions, (Melkman [7], [8]).

We lay out in this note, following the analysis in [3], a
proof of Theorem 1. The corresponding interpolation problem
with periodic boundary conditions considered in [4] is sub-
sumed in the present formulation. With the aid of Theorem 1
we also describe some results on Green's functions for cer-
tain differential operators with mixed boundary conditions.

The requirements on the coefficients aij and bij
occurring in the mixed boundary conditions (2) essential to

ensure unique interpolation are embedded in Postulate J now

stated.
Pogtulate J :
i) k < min{2n+2,n+r+1} . Let D = Ildijll be_the
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k X 2n+2 matrix defined explicitly to be

aij(—l)j+n+r , i=1,...,k i 3 =0,1,...,n
@ dy5 = o .

bi,2n+l—j y, 1i=1,ie.,k 7 J=n+l,...,2n+l .
(Notice that the column indices of b,. have been reversed

1]
in the construction of D .)

(ii) b is SCk (sign consistent of order k , i.e.,

all k x k non-zero sub-determinants maintain the same sign)

and has rank k .

Where the boundary conditions are specialized as in (3)
involving linear constraints separately on the endpoints O
and 1 with k = p+q , we establish in Lemma 1, Section 3
that (ii) of Postulate J is equivalent to separate sign con-

sistency demands on the matrices A and B , viz.

(ii') The p x n matrix A = ||aij(—1)3|| ,
i=1,...,p: 3 =0,1,...,n) |is SCP having actual
(5 rank p and B = ||bij| (i=1,...,9; 3 =0,1,...,n)

is SCq of rank g .
(Notice that now the column indices of B appear in natural
order unlike the set-up in (4).) Postulate I in [3] is pre-
cisely statement (ii'}.
A number of other examples of boundary conditions ful-
filling Postulate J will be highlighted in Section 3. We are

now prepared to state the principal theorem of this paper.

Theorem 1. (cf. Melkman [7]). ©Let the knots {Ei}i '

0 < gl < ... < Er <1, be prescribed and fixed. Given
n+r+l-k
{xi}l » 0% KpSeee < *n+r+l-k <

+r+l-k
{yi}n r

intexpolation points 1,

and associated n+r+l real data, {ei}t and
1

1
then there exists a unique spline S(x) of degree n with
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r . . sy
knots {Ei}l satisfying the boundary conditions

n

6) ) a s(j)(0)+§ b..s (1) =e
i3 soo i3 i

i=1,...,k

L3

J=0

and intexpolation stipulations

S(xi) =y, ’ i=1,...,n+tr+l-k ,

provided Postulate J holds and then if and only if there

exists at least one collection of indices il < i2 < ... < is'

(0 < iv < n) and jl < j2 < ... < jk—s (n+l < ju £ 2n+l)

for some s , (0 € s € k) f£for which

1,2, tieeensnceees ,k .
D # 0 takes place , while the
il""'is’ jl""’jk—s

sets {xu} , {Ev} , {ia} , {3.} fulfill the conditions

B
X < § <x _ ’ v=1l,...,r
(7 V=5 v n+l-s+v (

_ < i - . e
2n+l Ix-s+1-y = Yyn+l4r-x ' Ho=1l,...k-r=s

L.

whenever the above inequalities are meaningful and

{ii}n-s+l comprise the complementary erdered set of indices
1

Eg_{il}s among the collection {0,1,...,n} .
1

Remark 1. The strictness impositions Xy < Xip1 !
i=1,...,ntr-k and Ei < Ei+l , i=1,...,r-1 may be much

ul,uz,---,uz

*
The notation D LU A

stands for the subdeter- ~
1772707

minant of the matrix D composed of row and column indices
My < Hy < eae < uz and kl < 12 < ... < Al . respectively.

308




V&4

SPLINE AND APPROXIMATION THEORY

relaxed (see [3, Theorem 1'] and [7]), such that effectively

a) no more than n+l consecutive x 's or £ 's coincide,
and

b) at most n+2 of the x 's and £ 's together assume

a given value.

In Section 2 we present the proof of the theorem while in
Section 3 we record a number of important examples of boundary
conditions subsumed by Postulate J. The implications of
Theorem 1 pertaining to the construction and properties of
Green's functions associated with mixed boundary value prob-
lems of certain n-th order linear differential operators is

discussed in Section 4.

2. PROOF OF THEOREM 1

i

For convenience we introduce the notation ui(x) = X and
o(x,8) = (x-E)z , DI = _QE . The boundary and interpolation
dx

conditions for homogeneous (zero) data lead to the following
set of linear equations in the n+r+l variables {ci}g and

a. ¥ , viz.,

i"y

b eicd oo omn, g
c.( a .D'u,(0)+b .D°u, (1)) +

i=o T j=0 " % Wit i

+) 4. [ b .D> ¢(1,E)]1=0 , w=1,2,...,k,

i=1 Y 3=0 W3 ¥ .

(8) E f

c.u, (x ) + d. ¢(x ,£€.) =0, v=1,2,...,n+tr+l-k.

joo 1 v j=1 Jj v 7]

Since we require to have the problem well-posed, necessarily
k € min(2n+2 ,n+r+l) . The matrix M of the system (8) can
be represented as a product of two matrices M = B-K , Where

~

D is the n+r+l X 3n+3+r-k matrix of the form
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gij (-1)’

i=1,...,k; j=O0,1,...,n

0

i=t,...

o

Tneret -k I

(I stands for the appropriate identity matrix) and K is

the 3n+3+r~k X ntr+l matrix of the form

o (0) o.. )

O-..omon g Y

0 T 0 " D" up(0)

uc_(x,) un{xy) ¢ix,  €) - qb(x'..f,)
“o'("mroi-k) S Un (xnerei-k) ¢(*n;r¢l-k.€,) te ¢("n¢rd-k.€r )
uo(1) un(1) ¢01,€0) -1, €,)

D" uo (1) - - 0 up(1) D"¢U1, &) --- D"Pl1,&)

We now proceed to calculate the determinant of M .

Invoking the Cauchy-Binet formula ({1, p.1]),

(9) det DK =

1<, <. <8

1

Observe that

/Y «eoy ntrtl
(10) D(

n+r+l

21,...,2

2

n+r+l”

'3

Regenay
x K 1 n+xr+l
l, ...,ntr+l

D
£3n+3+r-k 2

are all included among the indices

1 ,...,n+r+l
X

l""'2n+r+l

) = 0 unless columns n+2,...,2n+2+r-k

n+r+l
{zi}

i=1

I

and the expansion by minors based on the last rows yields
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l, ... ,n+r+l

(11) D = (o1) (K79) (odrel-k)
21"°"2n+r+l ‘
1 ’ cae , k
D*
i

e rigrdpeene i,

where D* is the contracted k x 2n+2 matrix of the form

1y J
aij( 1) bij
12 D¥* = . . . .
(12) i=l,...,k;3=0,1,...,n} i=1,...,k;j=0,1,...,n
Lopeaersd
To evaluate the determinants K 1 ntr+l we use
l,..., ntr+l

the fact that rows n+2,...,2n+2+r-k are included (otherwise
the contribution to (9) is zero owing to the comment of (10))
and then apply the Laplace expansion by minors to obtain

(13) K 21""'ln+r+l

l1,..., ntr+l

B K(il,iz,...,is,n+2,...,2n+2+r-k,j1,...,jk_S )

1, e e s e e e s ;, n+r+l
s s{s-1) X X 3j 3j

?ees 7 17 7 vee g _

“(rapt)en 2 K*( 1 n-:-l+r k71 x s)
'L .
L=1 11""’ln—s+l'gl""'gr
,1,n-s+l . . .

where {12}2=1 appearing in (13) is the complementary set

of indices to {i }° in {0,1,...,n} , and K*(..!) is

L7 8=1
the Fredholm determinant based on the kernel K(z,w) defined

explicitly as

311




SAMUEL KARLIN AND ALLAN PINKUS

K*(xv,lu) =u, (xv)

u
K*(xv,Em) = ¢(xv’£m)
(i)
(14) K*(jq’im) = u, o (0
m
G (3)
K*(ja,Em) = ¢ (l,Em) v (¢ (x,£) refers to

differentiation in the
variable x ).

(The kernel K* of (14) possesses a plethora of total posi-
tivity properties elaborated in [1] and [3] and features in
several contexts connected to boundary value prcblems of
ordinary differential operators of n-th order.) The above

reductions lead to the formula

k s
(15) detM = ) 3 Cn o @ptl
s=0 0<i <...<i ¢n =1
1 s
OS]1<.“<jk_SSn
< (_l)s(s—l)/z-k(k—s)(n+r+l—k)

1, .o , k
X D*
S S IR TRTS N

y K*(xl"" Frtr+l-k’I1 ’Jk—s>

) L
ll""’ln-s+l'gl'°"’5r

From [3, Theorem 1],

X oreee X _Ij r"'lj_
(16) K*(::' n+r+l-k -1 ks) s 0 .

. l'
llr--- lln_s+llgll--~l€r

From the hypothesis of Postulate J we know that all the deter-

i, e r k

minants of ID( ) maintain a single

PP NS IRTETES N
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sign. Moreover, by reversing the last k-s columns, we have

. 1, cos r k
(17) D

ill--- lisljll---ljk_s

(k-s) (k-s-1)
2

1, eet , k
x D
N N s o

It is useful to substitute into (15) using (17) yielding

k
(18) det M = )

s=0 0gi. <...<i ¢n
1 s

€3.%e0 <] <
o“jl I
1, vee s k
X D
il,...,is,2n+1—jk_s,...,2n+l—jl

T B R 1 SO [ T i 1)]
. . L°
1i,...,1' ,El,...,ir =1

n-s+1

(_l)s(n+r) +

(k—s)(k-s-l)_+s(s—l)

s (n+r) + 5 >

x (-1)
Observe that

+ (k=-s) (n+r+l=k).

(k-s)(k-s-l)_+s(s—1)

s (n+r) + + (k=-8) (n+r+1-k)
2 2
(-1)
(19)
s{s-1)+ Ei%fllnrk(n+r+1-k) Ei%fll + k(n+r)

= (-1) = (-1)
is of one sign independent of s , when k , n and r are
held fixed. Thus in view of (19), the sign consistency pos-
tulate imposed on D and the fact of (16), we see that
all terms in the sum (18) are of the same sign and con-
sequently the determinant of M is non-zero provided some

term is non-zero. The exact specifications on the variables
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and indices where the detexminants of type (16) are positive
are recorded in [3, Theorem 1]. It is therefore essential

that D have a non-zero subdeterminant that meshes properly
with these criteria. The conditions of our theorem are made

to order to satisfy this requirement. The proof of Theorem 1

is complete.

3. EXAMPLES OF BOUNDARY CONDITIONS SATISFYING POSTULATE J

Example (a): Consider the case of the separated boundary

conditiong considered in [3], of the form

n

(20)
‘Z‘ (3)
b,. S (1) = B, ' l=1:---rq ’
. ij i
J=0
where
. pn gan
- e _
(21) A = ||aij( 1) ”10 and B Hbij”lo

are SCP (sign consistent of order p ) and SCq ; res-—
pectively, each with full rank.
Lemma 1. Assume p+q < min{2n+2,n+r+1l} and A, B are SCP'

ch , respectively, with full rank. Then Postulate J is

satisfied.

Proof. Let k = ptq . Comparison with (4) reveals that

D = Ildijll is the k X 2n+2 matrix of the form
j+n+ ) )
a..(—l)J nrE i = ,...,p ; J=0,1,...yn
1]
= i = cee ;3 J = n+l,...,2n+l
dij bi—p,2n+1-j 1 p+l, 9 5 ] n+l, 2N
0 , €lsewhere.
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1, e k
We claim that D =0 unless s =p
 RARRRE S E T
(and accordingly k-s = q). Suppose s > p , then the first
s columns of this specific determinant involve vectors of
length p < s with possibly non-zero elements, while the
remaining entries in these rows are zero. Hence we have
linear dependence of these columns. The analogous result
holds for p > s by examining the first p rows of the sub-
matrix at hand. Thus only p =s is to be considered. Then
1, .o ,k) 1,...,p (l,...,q)
D = A¥ B* ’
11,...,lp,jl,...,]q ll""’lp 31,...,jq

where A* = ||a,  *[|P " , B* = ||b--*||p ", and
1] 1]

)j+n+r

a,.* = aij(-l , i=1,...,p; j=0,1,...,n

1]
ij* = bi,n-j r i=1,...,9; j=0,1,...,.n .
But,

1,..., p fY e P
A*( = (_l)p(n+r) A and
il,...,iP il,...,i

p

l,..., g Hi%?lL 1, ... , 4
B - 1 B ) .

n-jq,...,n-j1

jl,...,jq

By assumption A and B are scP and ch y Yrespectively,
with full rank. The desired conclusion is now evident and
the lemma is proven.

The lemma shows that in the case of separated boundary
conditions, we may rid ourselves of the summation on s
occurring in (15). 1In this case, Postulate J can be stated

without involving n and r .
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Example (b) : For periodic boundary conditions s(l)(o)
(i)
S

(1) , i=0,1,...,n, we have k =n+l , and D
reduces to

("’ 0--—0 0 --- 0 -
o -0 0...a4 o0
o O-=-(" -“---0 o

This matrix is SC .1 if and only if r is odd (see [2,

p.76]) for all n .

Example (c): Anti-periodic boundary conditions are delimited

as

sW iy =Wy , i=0,1,...0n

It is immediately checked that the corresponding D is SCn+
if and only if r 1is even.

Example (d): Partial periodicity. Consider boundary condi-

; n
tions S(l)(o) = S(l 2)(1) , i=0,1,...,n-2 , for some

fixed % . The associated D is the n-2+1 x 2n+2 matrix

(-1) 0---0 -1 0---0
A i I S/ | !
BN j l . ) 1
-t | 1 S 1 1
-n 0-.-0 90---9
l n-hi
N — .
ned

This matrix is Scn-2+l if and only if r-¢ is odd.

The restrictions (7) of our main theorem reduce in the

case of examples (b) and (c) to the condition
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x < < x
V-8 gv n+l-s+v '

s =0,1,...,n+*l . This is equivalent to the assumption given

v=1l,...,r , for some

in [4]. 1In example (c), these same conditions must hold for

some s =0,1,...,n=4+1 .

Example (e): Let the mixed boundary conditions have the form
L ) %
I a8 + ] b.s
j=o0 ™ j=o

(J)(l) =& i=1,...,p

¥ &) T (3)
Y a.sV@+ ] obosV@ o=, i=ptl,.. k.
j=g+1 I j=g+1 *

jenar
a; (-1} Pi,2n+1-j
i=1,..., P ; 0 0 i=1,...,p;
=0,4,...,¢ j=2n-l+t,...,2n+1
D=
jenasr
aj;(-1) bi,2net-j
0 i=psl, .. ks | 1=pel, oLk 0
jelel, .., jea+t, ... ,2n-8

Then D is SC and has full rank k if and only if the

k
matrices E = ||ei.‘|P 29+1 , and F = l|fi~|Ik 2n-22
37 4=1 §=0 3 i=pt1 §=1
are SCp R SCk_P and of full rank, respectively, where
j+n+r . .
(-l)J aij , i=1l,...,p; 1 =0,1,...,%
s . = k— . .
+J (~1) pbi 2041 i=1,cee,p; j=841,...,20+1
r
and
j+L4n+r . .
(-1) IS, sag 0 B = PHLecok 3= 1,00l
r
1 ) i ] 241 2n-24%
bi,2n+l—(j+£) y, i=p+l,...,k ; j = n-84+1,...,2n-2%.

317




SAMUEL KARLIN AND ALLAN PINKUS

Remark 2. The results of this work also extend to the case

of generalized Chebycheffian splines in the usual manner, and

to extended complete Chebyshev systems.

i\

4. TOTAL POSITIVITY PROPERTIES OF GREEN'S FUNCTION
FOR MIXED BOUNDARY CONDITIONS

Consider the n+l st order differential operator

Ln+1f = Dn N DlDo:f composed from the first order differen-

tial operators

£(x)
dx w,(x) '
i

(Dif)(X) = i=0,1,...,n ,

acting on f ¢ ctl [0,1] , where wi(x) >0, xe¢l[0,1],

and w (0 ¢ ™ [0,11, i=0,1,...n . $(x,8) is the

fundamental solution of Ln+1f = 0 whose explicit represen- -
tation is

0 x<§g& , ?
¢(x,8) = x t t o1

x2E&E .

%m%ﬁwﬁéﬁuﬁmé w (t )dt ..at .

A base of n+l linearly independent solutions of Ln+ £f=0

1
are

¢(x,0) = uy(x) , D, ; ...D;D[¢(x,00] = u,(x) , i=1,....n.

It is well known (e.g., see [1]) that under the above

assumptions {ui(x)}l;=0 is an ECT-system on [0,1] satis-

fying u;k)(o) =0, i1=1,see,n, k=0,1,...,i~1 , and

®

DJui(O) = 8w (0, 4,3 =0,1,...m

Ey

Djui(x) =0 , j>i, i,5=0,1,....n

0 ' :
where D° =I , D’ = Dy_y =++ DG+ 3= L,e.om .
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A Chebycheffian spline, for which the analysis of the

previous sections hold, with knots {Ei}r is a function of
1

n b
the form S(x) = ] a.u (x) + Y c; ¢(x,E) . In this
i=0 i=1

setting, the mixed boundary conditions take the form (see

f21)

n . n .
J J = i =
) a; s D’S(0) + _Z bys D' S() =e; , i=1l,..k .

j=0 3=0
We are concerned with the Green's function associated with

the differential operator L = L

1 coupled with the mixed

homogeneous boundary conditions
n . n .
(22) ¥ aijDJf(O) + ) bijDJf(l) =0, i=1,...,n+l

3=0 3=0
for f e Cn+1[0,l] .

We further stipulate that the only solution of Lf =0
satisfying (22) is the trivial solution (see Theorem 2 below).
This fact guarantees the existence of a Green's function
G(x,E) with the property that Lf = v , for suitable v ,
can be uniquely solved with £ satisfying (22), the solution
admitting the integral representation

1
£(x) = [ G(x,E)v(E)AE .
0

Sign-regularity properties of G(x,f) were studied in [3]
(supplementing Karon [5], see also Krein [6]) for the
situation of separated boundary condition, while in [4] the
analogous problem for periodic and anti-periodic boundary
conditions was considered. In what follows, we indicate a
general framework under which the previous works may be sub-
sumed following the analysis of Theorem 1.

We introduce the sequence of vectors
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i
c( ) _ (

=(i) _ 1 n_n n
u = (ui(O),-D ui(O),---,(-l) D ui(O),ui(l),.--,D ui(l)) '

a, ,-a, ,...,(-D%, ,b, ,...,b. ) , i=1,...,n+l
io il in"7i0 in

i=0,1,...,n ,
and the vector function Ekg) = (¢(0,£),Di¢(0,£),...,D2¢(O,£),
¢(l,€),Di¢(l,5),...,D2¢(l,£)) , where Di signifies that

the differential operation D* is performed with respect to

the variable x . (Note that Dz¢(0,£) =0, uw=20,1,...,n.)

An explicit expression of the Green's function is

(C(”,;(O)) o (C(I)':(n)) (c“),a(e))
6(x,8) s ——— ' '
T @A | (™0 (™ g (™" Fen
ug(x) ... up(x) ¢(x, &)

where A is the n+l X n+l minor of the above determinant
extracted by deleting the last row and column, The quantity
(C(i),ﬁxj)) stands for the inner product of the indicated
vectors. The existence of G(x,£) is equivalent to A # O .
Application of Sylvester determinant identity (see [1,

p- 3]) produces

xl,...,xr D
G T .
Eyreeik, ( I
i=

where
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€W O e e gen e Fe
(C(nu)’G(O)) (C("'”,G(")) (c(nol),(;(ei)) L (C(nd)'(;(er))
L LA ICTTE (R IR TS
uo(xr) C unlxe) ¢lx, &) L. $(xpn &)
. () n+l 2n+l
Let C_ = ||5.Q Il , where
P i3 75 5=0
j+n+p . ]
- = PP + H = ,1,...
B T e N I
ij o .
Pi, 20415 ri=1,...,n41 ; j = n+l,...,2041 ,

and p=0 or 1.

Theorem 2. Assume 60 is sC_ ,, 2nd of full rank. The

differential operator L coupled with boundary conditions of

the form (22) possesses a Green's function iff A #¥ 0 or,

equivalently, iff there exist sets of indices {iu}s and
u=1
, ht+l-s . . . .
eee < < < <...< <
3,} (0 =i < igsn, 0573, Jpt1es &0
u=1
such that for some s =0,1,...,n
~ 1 - , N+l
CO #0
11,...,1s ’ 2n+l—jn+l_s,...,2n+l—j1
+1-
and ju < iL , u=1,...,n+l-s , where {i'}" 1-8  are

u=1
complementary indices to {iu}i=l in {0,1,...,n} .

Proof. Expanding A as in the proof of Theorem 1 produces

321




SAMUEL KARLIN AND ALLAN PINKUS

n+l s
A= ] s [ 1w (@]
s=0 05£i,<...<i €n v=1 v
1 s
£3.<ee <3 <
0 J1 Jn+1-s
~ l 2 e ’ n+l

X CO
11, cee ,:LS y 2n+l--jn_'_1_s reoa ,2n+l-;|l
. . s(s-1) (n+1-s) (n-s)
Jrreeesd - + + sn

y K*( 1 ?+1 s)(_l) 2 2
P ] s -
tyreesrdnii-s

s(sz-l) + (n+1—sz) (n-s) + sn n(n2+l)
Since (-1) = (-1) '
S J roee rj
~. . * 1 n+l-s
C nl W, (01 >0, C, is sc ., ,and K (_' L ) 5 0
Vv 170 tnel-s

where strict positivity prevails iff ju < iu '
u=1l,...,ntl-s , the result follows.

Theorem 3, Where the Green's function exists (see Theorem 2)
C and of full rank, then G(x,8) is

and Cp is Scn+l

sC , 2 =1,2..., and for each £ , there exist
2%-p —_—— —_———
N T (I e I E L
i=1 i=1
X 7eee ;X
-
0 <& < .u. <E <1, such that G[ © 22p ) 2 0.
1 24~p — & £
1'°°°"=28-p

Proof. Expanding D , it follows that

xl""’le-p _ 1 n-i‘-l
G =
£ £ 24-p 5=0
17" "P20-p [ &0 wn(gi)]A

i=1
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s
x z [ W, (01
0<i.<...<i gn v=1 V)
1 s
<3 e o<
0‘:’l< In+1-sS
. 1, oo , n+l
x C
P\ . . . .
11,...,15,2n+l jn+1_s,...,2n+l 31
X peeesX Jareeeys]
. K*( 1’ ! 22—9'31' "In+i-s )
Y ]
AR RS Y ALY
- +]1- -
.S_g_s.z_L).. +(22’_p) (n+l-s) +(i_l‘__s_5)£_s_)_+ sn+ps
x (-1) .
2%-p s .
Since A#0, [ T w(¢)l>0,[01 w, (>0, C
i=1 *O* v=l v P
N * .
is SCn+l , K is TP , and
s(s-1) + (22-p) (n+l-s) + iﬂil:éliﬂ:él.+ sntps =
2 2
(-1)
Ei%;il + p{n+l)
= (~1) , independent of s and & , it
follows that G{(x,£) is SCZQI_p y, 2=1,2,... with a fixed

predictable sign.
29-p

i=1

28-p

To establish the existence of {xi} and {gi}

i=1

KogeearX

1 29-p

guaranteeing G( ) # 0 , we note that A # 0

El""'E’Z,Q,-p
(in both the cases p=0 and p =1) implies the exis-
tence of an s ¢ {0,1,...,n+1} , {i S , and {j }n+1-s
L) W=l
such that ju S i; y w=1,...,nt+l=s . Returning to
Theorem 1, conditions (7) reveal that there then exists an s

such that the second part of the condition (7) is satisfied.
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22-p

. 28~
Choosing {xi} ' {Ei} p to satisfy the remaining

i=1 i=1
interlacing conditions, the result follows.

Remark 3. From Theorem 1, explicit conditions under which

xl,...,xu_p

G # 0 can be readily recorded.
Ell"' Igzz_p
S
The sign for (;( 1 2%-p ) is calculated to be
gl""’522—p
+
m.___z__l_)_ +p(n+l) . .
§(-1) [e(CP)] , where 6 =sgn A , and e(CP)

is the sign associated with ép . In the case p =0 , this

reduces to +1 .

Example (a). Separated boundary conditions. The results are

explicitly stated in [3]. Both C, and C; are sC ., and
of full rank.

Example (b). Periodic boundary conditions. DI£(0) = DIE(L) ,

i =0,1,...,n . G(x,&) is 2 =1,2,... iff

SC22_1 ’
G(x,t) exists. Direct calculation shows that

n
A= 1 [wi(O)-wi(l)] . The assumption of A # O is thus

i=0
equivalent to wi(O) # wi(l) , i=0,1,...,n . (In [4],
x
w, (x) = exp( f yi(t)dt). There the condition is consistent
t 0
1
with ours as f yi(t)dt #0, i=0,1,...,n .)
0

Example (c). Anti periodic boundary conditions.

plg(0) = -p’£(1) , § =0,1,...,n . G(x,£) is sc,, + and
n

A= T [w,(0) +w,(1)]>0.
. 1 1
i=0

324

.1‘51‘

<’

L5



(€3

o

SPLINE AND APPROXIMATION THEORY

REFERENCES

Karlin, S. Total Positivity, Vol. I, Stanford Univ. Press,
stanford, Calif. 1968.

Karlin, S. Best quadrature formulas and splines. J.
Approx. Theory 4: 59-90. 1971.

Karlin, S. Total positivity, interpolation by splines,
and Green's functions of differential operators. J.
Approx. Theory 4: 91-112. 1971.

Karlin S. and J.W. Lee. Periodic Boundary-Value Problems
with cyclic totally positive Green's functions and
applications to periodic spline theory. J. Diff.
Egns. 8: 374-3%6. 1970.

Karon, J. The sign-regularity properties of a class of
Green's functions for ordinary differential equations.
J. Diff. Eqns. 6: 484-502. 1969.

Krein, M. Sur les fonctions de Green nonsymetriques
oscillatoires des operateurs differentiels ordinaires.
C.R. Acad. Sci. URSS 15: 643-646. 1939.

Melkman, A.A. Interpolation by splines satisfying mixed
boundary conditions. Isr. J. Math. 19: 369-38l. 1974.

Melkman, A.A. The Budan Fourier theorem for splines. -
Isr. J. Math., 19: 256-263. 1974.

325




