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ABSTRACT 

This paper is concerned with a collection of ideas and problems in approximation 
theory which lead to some solved and unsolved problems in matrix theory. As an 
example, consider the problem of approximating the identity matrix by matrices of 
fixed rank where the norm is taken to be the maximum of the absolute value of the 
elements of the matrix. This problem is unsolved. 

1. INTRODUCTION 

Some of the easy-to-state and yet difficult problems of approximation 
theory are concerned with matrices. This paper is intended as a review of a 
collection of ideas and problems which arise in approximation theory and 
which lead to some interesting solved and unsolved problems in matrix 
theory. 

We start with the statement of the problems from an approximation 
theorist’s viewpoint. The linear algebraist is encouraged to bear with us, as 
we shall shortly specialize the problems concerned. 

One of the central problems of approximation theory and the one around 
which this paper turns is the question of the extent to which a given class of 
functions may be approximated by n-dimensional subspaces. This idea was 
introduced and formalized by Kolmogorov [ll] in 1936, when he defined the 
concept of n-widths. Specifically, let X be a normed linear space and % a 
subset of X. The n-width of % with respect to X, in the sense of Kohnogorov, 
is defined as 
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In other words, we first measure the distance of X,, to a given XE%, then 
determine the distance of X,, to ‘8 in terms of the supremum of the distance 
of X, to each x E ‘%, and finally attempt to minimize the above quantity by 
taking the infimum over all n-dimensional subspaces X,, of X. If there exists 
an n-dimensional subspace x for which &(8,X) is attained, i.e., 

then x is said to be optimal. 
We wish of course to determine the value d,, and find optimal subspaces. 

This problem is in general intractable. We must specialize to some extent if 
we expect to obtain any concrete results. 

A customary choice of the subset % of X is 

% = (Ax:llxllr <l}, 

where A is some compact linear map of Y into X, and Y is also a normed 
linear space. While this problem is solvable for certain choices of X, Y, and 
A, much yet remains to be done; see e.g. Tichomirov [28] and Micchelli and 
Pinkus [16]. 

Let .us further specialize by assuming that A is a real m X k matrix and X 
and Y are R” and R k, respectively, equipped with one of the l,, norms, 
1 < p < co, but not necessarily the same Z,, norm for both X and Y. Thus we 
are interested in 

d,,(A;Z,k;Z,“)= min max min IlAx-y]],. 
xl Ilrllp<l YE-&l 

(In this case the sup and inf are attained and are therefore replaced by max 
and min.) Again this is too difficult a general problem. The only case in 
which at present a solution is always obtainable is when p = q = 2. In this 
case &(A; Z,k; 12”) is the 12 + 1st singular value of A. 

THEOREM 1.1. Let A be a real mXk matrix. Let h,>--- >&,>O 
denote the m eigenvalues of the positive semidefinite matrix AA ‘, and let 
x1 , . . . , xm denote a corresponding set of orthorwrma 1 eigenvectors. Then 
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Furthermore if n <m, then an optimal subs-pace for d,, is span 2 xl,. . . , X” }. 

Proof. It is a standard duality result (essentially Holder’s inequality and 
equality therein) that 

min IlAx- yIIq = ,y~ (z,Ax), 
YE% 

l141s~< 1 

where 1/9+1/9’=1 andzlx means that (z,y)=O for all yEX,. Thus 

d,(A;Z,k;Z,“)= min max min [(Ax-yll, 
-%I II&~ 1 YE% 

= min max max (z, Ax) 
x, llxlle< 1 tlxz 

ll4l2< 1 

= rnp max max (Arz,x) 
al-% ll*ll2< 1 

ll~ll2 -G 1 

= rnt ,yy IIA ‘zlls 

IMIZ < 1 

= 

[ 

min max 
(AATz,z) 1’2 

Y’..... y”jP&;O (4 * , ,n 1 
That the last expression is the n + 1st eigenvalue of AA T is the content of the 
Courant-Fischer min-max theorem. The theorem follows. n 

The space 1, m is of course special. It is a Hilbert space, and among other 
properties of a Hilbert space, one of the characterizing properties is that the 
best approximation operator is a linear (projection) operator. On this basis, it 
is easily seen that 

&(A; Z,k; 1,“) = mm max IlAx- Pr(l,, 
rankP<n flxlla< 1 

where the minimum is taken over all m X k real matrices P whose rank is at 
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most n. In this form the results of the above Theorem 1.1 are known, since 
the theorem then simply says that the singular value decomposition provides 
a best rank n approximation to a given matrix in the induced (Z,k, I,“) norm; 
see e.g. Gohberg and Krein [4, p. 281. This same rank n matrix is optimal if 
we use the matrix (Frobenius) norm ]]A]]s= [Z~~,~~,~]U~~]~]‘/~ in place of 
the above induced operator norm. This result, which seems to be due to 
Eckart and Young [3], is just a matrix version of the corresponding result 
proven for integral operators by E. Schmidt [19]. 

The n-width, in the sense of Kolmogorov, is only the first in a series of 
n-widths which have been introduced over the past forty years. In the course 
of this article only four n-widths will be discussed. The reader who wishes to 
pursue these matters is referred to Tichomirov [28], Pietsch [18], and the 
references therein. One of the more interesting and important of these 
n-widths is what we shall here call the linear n-width. (It is sometimes 
referred to, especially by those in Banach space theory, as the approximation 
number.) We define it by 

where, as above, the minimum is taken over all m X k matrices of rank at 
most n. Since S,, is a measure of the best linear approximation from an 
n-dimensional subspace (the range of I’), it is obvious that d,, <S,,. (A 
nonobvious result is that S,, < Cfi d,, for some constant C, independent of 
n; see e.g. Ha [5], Hutton, Morrell, and Retherford [6], or Pietsch [18].) One 
is also interested in knowing if d, = S,,, i.e., if linear methods suffice. 

As was previously mentioned, only for the case p = q =2 is there a 
complete solution. One other known case, which will not be dealt with in 
this paper (its proof may be found in Micchelli ‘and Pinkus [14]), is where 
p=q=oo andA is a totally positive (T.P.) matrix. A matrix is T.P. if all its 
minors are nonnegative. In this case the n-widths d, and S, are equal, and 
furthermore, there exist n column vectors of the matrix A whose span is an 
optimal subspace for d,,. This result is very much connected with the T.P. 
property of the matrix. If A is T.P. and p = q = 1, then d,, and S, are also 
equal and known. The statement of this result is slightly more complicated; 
see Micchelli and Pinkus [ 151. 

In general, there is very little else which may be said concerning 
n-widths of arbitrary matrices. Of course, the O-width is easily obtained as 

&,@$;I,“) = d,,(A;Z,k;Z;) = man?. 
xP 
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While the above result is trivial, there is a correspondingly simple statement 
for the (k - 1)-width whose proof is not trivial, namely 

We shall not prove this result here. Its proof may be found in Brown [2] and 
Micchelli and Pinkus [17]. For the particular cases dealt with here, the result 
will be reproven. 

In this paper we discuss the situation wherein A is a diagonal matrix. 
Since the matrix A is henceforth taken to be diagonal, we refer to A as D 
and without loss of generality, assume that D is an mX m diagonal matrix 
with diagonal entries (Dl, . . . , D,), and D, > D, > - * * > D,,, > 0. It is 
sufficient, by the symmetry of the Zp norm, to consider only diagonal matrices 
of the above form. 

What is initially surprising is that the n-widths d,(D; ZF; I,“) and 
S,(D; Zpm; I,“) are unknown for many p, q E [l, co]. As an example of a seem- 
ingly simple problem which is unsolved, let D = I, p = 1, and q = co. It is an 
easy matter to check that 

where Sit are the elements of I and P = ( pii)ri_ 1. Except for the cases n = 1 
and n = m - 1, the above quantities are not known. What is also interesting is 
that this problem has a different solution if pii E R, i, i = 1,. . . , m or if the pi,‘s 
are permitted to be in C. This latter result is rather surprising, since in the 
cases where d,, and S, are known, there is no difference in the result if we 
consider C” rather than R”. This example is discussed in some detail in Sec. 
5. 

Before discussing the organization of the paper, let us note various topics 
which have not been included in this work. Firstly, we have not considered 
this subject from the point of view of Banach space theory, nor have we 
discussed the case where D is an infinite diagonal matrix. Results of these 
types may be found in Ha [5], Hutton, Morrell, and Retherford [6], Pietsch 
[18], and Sofman [21]. Secondly, we have limited ourselves to a consideration 
of a very few of the n-width concepts, and in particular, to the more analytic 
ones. Results have been obtained concerning the Aleksandrov and Urysohn 
n-widths of finite diagonal matrices. These n-widths are more geometric and 
topological in nature, and it was felt that a discussion of these quantities was 
best deferred. The interested reader is here referred to Stesin [24, 251 and 
Tichomirov [ZS] . 
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The organization of this paper runs as follows. Section 2 is concerned 
with the introduction of the two remaining n-widths, namely the n-widths in 
the sense of Gel’fand ( g,) and of Bernstein (b,), and the relations among 
the four n-widths. In Sec. 3, we consider the n-widths d,,, &,, and g, for 
p > 9, show that they are all equal, obtain their common value, and identify 
an optimal subspace which here is simply the span of the first n columns of 
D. In Sec. 4 we discuss the case p <9, Only for p = 1, 9=2 is d, known 
explicitly for all n. Section 5 is concerned with a further consideration of the 
n-widths when D = I, the identity matrix. In particular, we return to the case 
p = 1, 9 = 00 and obtain some lower and upper bounds on d,(Z; 1;“; 1,“). 

2. PRELIMINARIES 

Let D=diag (D1,..., 0,) denote the real m X m diagonal matrix with 
diagonal entries D,, D,, . . . , D,,, where D, > D2 > * * * > D,,, > 0. As usual, for 
xER” we set 

i( ) 

2 lXipJ 1’p, 
llXllp = i=l 

l<p<oD 

This section deals with the relationships between the various n-widths. 
An attempt has been made to properly reference, where possible, the results 
of this section. Originally these results were of a general nature. They have 
here been specialized to our particular situation. 

Before introducing the additional n-widths, let us note that S,, possesses 
the following simple duality property. 

LEMMA 2.1 (Ismagilov [8]; Hutton, Morrell, and Retherford [S]). For 
p,qEP,~l, 

where 

1+1.=1+1=1. 
P P’ 9 9/ 
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Proof. Since D = D *, 

= min 
rankP<n ,,Z$iP21 /I ylIq,< 1 

max ((D-P)x,y) 

= min 
rankP<n 11 t$> 1 jlrf&,< 1 

max (~(D-p~)y) 

= rmyp<” llyy=<l II~D-PMI,~ 
G+ 

= &(D;Z~;Z;). n 

In Sec. 5, we shall give an example which shows that d,, does not exhibit 
the above duality property, i.e., there exist p, q E [l, oo] and diagonal D for 
which d,,(D; bm; I,“) #d,(D; lq?; F). The duality relationship which does how- 
ever exist is the motivation for this next definition. 

In the literature of n-widths, one additional n-width concept is invariably 
mentioned, and this is the n-width in the sense of Gel’fand. It is defined as 
follows. 

Let X be a normed linear space and 8 a subset of X. The n-width in the 
sense of Gel’fand is given by 

&(%X) = inf sup I141x, 
L" XElflL" 

where the infimum is taken over all subspaces L” of X of codimension at 
most n. In the particular case studied in this paper it may be shown that 

where X,, is any n-dimensional subspace of R m, and xl X,, means that 
(x, y) = 0 for all y E k. As indicated above, the following result is valid. 

LEMMA 2.2 (Ioffe and Tichomirov [I). For p,9 E[l, co] 

d,(D; I;; Z;) = g,(D; Z;; $T) 
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l+LL+L1. 
P P’ q q! 

Proof. The proof is based on the duality statement 

min Ilr- yIIq = ,yT (z,x) 
YE%3 

IlZllq,~ 1 

as well as on the fact that D is symmetric: 

= min max max (,a, Dx) 
xl Il~llp<l z1-G 

lbllq,< 1 

= ryixi max max (fi,x) 
zlx, IIx/lp < 1 

ll~llq~~ 1 

It is often the case that n-widths are evaluated by obtaining upper and 
lower bounds which are the same. Upper bounds are obtained by determin- 
ing the distance of the class from a judiciously chosen subspace. Lower 
bounds are not so easy to come by. Various techniques have been developed 
to deal with this problem. One such method is the evaluation of a lower 
bound known as the n-width in the sense of Bernstein, denoted by b,,, which 
is defined for diagonal matrices by 

where &+ i is any (n + 1)-dimensional subspace of Rm. Note that we 
maximize over such subspaces. The Bernstein n-width has the obvious 
property that b,(l;I,“;ZT)=l for any ~~[l,oo] and any n=O,l,...,m-1. 
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A natural ordering among the various n-widths is contained in the 
following proposition, 

PROPOSITION 2.1. For p,q E[l, co] 

Proof, The proof of the fact that S,(D; km; 1,“) >d,(D; I:; Zy) is a direct 
result of the definitions of 8, and 4. The proof of 6,(D; ZPm; I,“) >g_(D; r; Zy ) 
follows from the above result and Lemmas 2.1 and 2.2. It may also be proven 
directly. 

Let X,,, i be any (n + l)-dimensional (not n-dimensional) subspace of R “‘. 
Then 

> min max 
xl xl&, XExI+1 II~II,. 

Since X,, and X,,+r are of dimension n and n + 1, respectively, there exists an 
xEX,,,,, r#O, for which x1X,,. Thus, 

Since this is true for any (n + l)-dimensional subspace, we have g,(D; r; I,“) 
> b,(D; Z$ 1,“). 

Now, 

for any given (n + l)-dimensional subspace X,,+ i. We shah use the fact, 
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which will be proven below, that there exists an x E X, + i, x # 0, for which 
the best approximation to Dx from X, in 19” is the zero vector, i.e., 

On the assumption that this result is correct, 

Since this is valid for any X,, + i, we have d,,(D; I;; I,“) > b,( D; Zpm; I,“). 

The crux of the proof of the lemma is contained in the fact which we 
shall now prove and which is due to Krein, Krasnosel’ski, and Milman [12]. 
Let us assume for the moment that Q E (1, co). Then the best approximation 
to each Dx from X,, in Zy is unique. Let Ix E X, denote the element of best 
approximation to Dx in Z,“, i.e., 

ye& llB - Yllq = IIDX: - rkll,. 

It follows from the uniqueness that Ix is a continuous function of x. 
Furthermore, I is odd, i.e., I( - x) = - Ix. Restricting the map l? to X,, i n 
{x : II XII p = l}, we have a continuous odd map from the surface of an 
(n + 1)-sphere into an n-dimensional space. Thus by the Borsuk Antipoden- 
satz [l], there exists an xEX,,+,n {x: ]]~]]~=l} for which lYx=O. To obtain 
this same result for 4 = 1 and 4 = co, we slightly perturb the respective norms 
to obtain norms which are strictly convex. On these new norms we have the 
continuity of I’, so that the result then holds for these perturbed norms. We 
now limit back. H 

Aside from the above inequalities, there are certain situations in which 
equalities naturally occur. We formulate these equalities only between 6, 
and $, although we could also use Lemmas 2.1 and 2.2 to formulate the 
corresponding equalities for 6” and g,. 

S,(D;Z,“;Z,“) = &(D;r;ZIzm). 
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Pfoof. As noted in the introduction, this is the statement that the best 
approximation operator in a Hilbert space is a linear (projection) operator. n 

LEMMA 2.4 (Hutton, Morrell, and Retherford [6]). For 1<9 < co 

6,(D; II”; 19”) = d*(D; II”; 6). 

Proof. Let ei denote the jth unit vector in R”. Since { + ei}y_r are the 
extreme points of the unit ball in I;“, we have 

=min max min ]]Dje’ - y]],. 
x, j=l,...,m IyE& 

Let yi E X, denote a best approximation to Diei from X, in 6, i.e., 

Let P,, be the m X m matrix whose jth column vector is yi, i = 1,. . . , m. Thus 
rank P, < dim X,, G n. Furthermore, 

max IIlk - P,xll, = max 
II4ll < 1 j=l,...,m II(~-P,)eilI, 

It now easily follows that d,,(D; 1;“; 1,“) > 6,,(D; 1;“; I;), which, with Proposi- 
tion 2.1, proves the lemma. n 

The following interesting result can only hold in a matrix setting. 

LEMMA 2.5. For p,qE[l, ~1, 

b”(D;z,“;z,“)~d,_,_,(D-‘;z~;z~)=l, 

n=O,l,..., m-l, where l/p+l/p’=l/q+l/q’=l. 
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Proof. From Lemma 2.2, 

d,-,-l(D-l;z;;z~) = &&(D-‘;z,“;z,m) 
= min max IID -14l, 

XV-,-, x~x?-,-, 
11414 < 1 

= min max 
IMP -l 

&-n--l xl%-,-1 
x#O I I II~-‘4lp * 

Setting y = D - ‘x, and since D is invertible, this is 

= min 
&f--n--l Yl%Z”_, 

YfO 

WYII, -’ 
min - 

G-n-1 YlKn-n-1 II Yllp 
I 

COROLLARY 2.1. For p,q E 11, ml, 

d,(D;Z;;Z,“)d,_,_,(D-‘;Z;;ZT)> 1, 

and 

dn(D;Z~;Z~)d,_,_,(D-‘;Z,“;Z;) B 1. 

Proof. Proposition 2.1 and Lemmas 2.2 and 2.5. 

3. THE CASE p>q 

Undoubtedly the easiest determination of the n-widths introduced above 
is in the case p = q. Because the proof is so simple, we include it below as a 
separate result although we shall also obtain it as a particular case of the 
more general result for p > q. 
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THEOREM 3.1. For l< p < co, 

sn(D;y;m;y) = d,(D;Zy;z;) = gJD;Z,“;Z,“) 

= b,,(D;Z,“;Z,“) = D,,+l 

fbrTz=0,1,..., m - 1. Furthermore, an optimal subs-pace fm d,, is the span of 
the first n unit vectors, and P,, = diag(D,, . . . , D,,, 0,. . . ,0) is an optimal best 
rank n matrix. 

Proof. Since we have shown that S,, >d,, g, > b,, it suffices to prove that 

&(D;$Y,“) <Q,+l and b,(D;1,“;Z,“)>D,,+,. The proof of these facts is 
simple. Let 

i.e., P, is the m X m diagonal matrix with diagonal entries 

P 1 ,..., D,,O ,..., 0). Thus, 

=max 
X#O 

<Dn+lm= 
x#O 1’p 

=D?l+l’ 
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since D,,+l > . . . 2 D, > 0. To prove that b,,( D; $“; I,“) > D,,+ 1, it suffices to 
recall that b,(D;I,“;l,“)=[d,_,_,(D-‘;Z~;Z~)]-’ and to note that the 
above argument has also given us an upper bound on d,_, _ l(D - ‘; lp?; ZF). 
The inequality b, (D; km; I,“) > 0, + 1 may also be proven directly by noting 
that 

where D’=diag(D,,+,,...,D,+,,O ,..., 0) and D” is the (n+l)X(n+l) 
matrixoftheform D”=diag(D,+,,...,D,,+,). H 

The fact that P, =diag(D,, . . . , D,,,O,. . . ,O) is the optimal rank n ap- 
proximation to D is hardly surprising. After all, what else could be? In this 
next theorem we prove that if p >q, then P, remains optimal for S,, d,,, and 
g,. Unfortunately this result is no longer valid if p <q. 

THEOREM 3.2. Given l<q < p< co. Let l/r=l/q-l/p. Then 

An optimal subspace for d+, is span{ e i}l_ i, and P,, = diag(D,, , . . , D,, 0,. . . , 0) 

is an optimal rank n matrix. 

This is a fairly recent theorem proven independently by Stesin [25] and 
Pietsch [Ml. The proof given herein is that of Pietsch. Stesin’s proof uses the 
Aleksandrov n-widths and is rather laborious. 

In the proof of the theorem we use the following two lemmas. 

LEMMA 3.1. Let X,, be any n-dimensional subspace in R”‘, n <m. There 
exists an rE R”’ for which IIxllo, = 1, xl X,, and at most n components of x 
are not equal to 1 in absolute value. 

Proof. Let E={x: llxllrn < 1, x1X,,}. E is a closed, convex, nonempty 
set in R” and hence has extreme points. Let x* be an extreme point of E. 
Assume that x* does not satisfy the hypothesis of the lemma. Thus there exist 
n+l distinct integers {ik}zz: in {l,...,m} for which ](~*)~]<l, k=l,...,n 
+l. Let e* denote the ith unit vector in II”, and let G=span{e’l,...,e~+l}. 
There exists a g E G for which g I X,,, g#O. Thus for E sufficiently small, 
x* + eg E E, contradicting the extreme point property of x*. This proves the 
lemma. H 
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LEMMA 3.2. Let ~<s<T<c.Q, a,, a2 ,..., ak+l>O, and bi>bk+l>O, 
i=l ,...,k. Then 

Proof. Let ar=~i_l i j k bra and /Is=C~=Ib~ai. Since bi>&+,>O, j= 
1 ,..., k, and s<r, 

($-)“($-)‘. j-1 ,..., k, 

and thus 

i byai $ b;ai 
j=l 

< j=l - - 
b” kfl 

b’ . k+l 

Hence b{+J/?’ > b;+Ja’, and 

b” 
1+ k+l 

r/s 
-ak+l 

P” 1 [ > l++o,+, 

Therefore, 

1 [ b’ 
> l+xak+l . (Y’ 1 

= p (l+bks+l%+l/fls)l’s > p 
a (l+b,‘+,a,+,/d)“’ (y 

, 
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Proof of Theorem 3.2. To prove Theorem 3.2 we will first show that 

&,(D; Ip”; 1,“) < (XL,+ lDk’)“‘> and then since l/r=l/q-l/p=l/p’- 
l/q’ and by Lemma 2.2, it will suffice to prove that g,(D; 1;; 2,“) > 

(ZL,+,DJ”‘. 
As in Theorem 3.1, let P,, = diag( D,, . . . , D,, 0, . . . , 0). Then 

=max 
X#O 

( E lPkd9)1’9 
k=n+l 

l/p 

Since q <p, we obtain from Hiilder’s inequality 

(k :+1/Dkxki9)1’9 < ( k~+lD;)l’r( k%/kip)l’p. 

Thus 6,,(D;Z,“;Z,“) < (Z;_,+,D,l)“r. 
Now 

= min 
X” 

max 
XJ-KI 
X#O 

( $, I Dkxki9)i’9 

1’p 

pUt 5, = xkDk-9/(P-9) andnotetbatpq/(p-q)=r.SinceDk#O,k=l,...,m, 
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Applying Lemmas 3.1 and 3.2, we obtain 

for some l<i,<*.* <$,, _” < m. Since D, > * * . > D,,, > 0, g,(D; lpm; I,“) b 

(C y_ n + 1 DJ”‘. The theorem is proven. m 

4. THE CASE p <q 

The case p <q is not well understood. A lower bound on the n-width 
which may be obtained as a consequence of Proposition 2.1, Theorem 3.2, 
and Lemma 2.5 is the following. 

PREPOSITION 4.1. Forl<p<q<co, 

> b,,(D;l;;lJ’) = 

where l/r=l/q-l/p. (Note that r<O.) 

This lower bound is rarely attained by d, or g,. The one general case 
where it is attained is if n = m - 1. 

PROPOSITION 4.2. For l< p<q < co, 

where l/r= l/q- l/p. 
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Proof. As a consequence of Proposition 4.1, it remains to prove that 
s,_ ,(D; I;; 1,“) < (XT= lDk’)“‘. It is in fact possible, using Lemma 2.5, to 
prove the equality for d,,, _ 1 and & _ 1. However, we must also prove this fact 
in any case for 8, _ i. It is also possible to prove the proposition by drawing 
upon a general result of Brown [2], which in our case states that 

which in turn equals the Bernstein (m - l)-width and is (ET_ iD{)‘/‘. How- 
ever, we have no wish to reproduce Brown’s general result here and wilI 
instead explicitly construct the requisite rank m - 1 matrix P. 

Let x$ = LJ!/P, k = 1,. . . , m. Note that X* = (x:, . . . , xz) is a strictly positive 
vector and is such that equality is attained in the application of Holder’s 
inequality given by 

(recall that r < 0). 
For 1 < p < 00, choose any m - 1 linearly independent vectors { xi}yli 

which satisfy 

k~l(x~)p-l(x~) = 0, i = l,..., m- 1. 

If p= 00, then since ]]r*]lm=& we choose r*=e’, the ith unit vector, 
i=l,..., m - 1. In both cases the choice of the { x’}~~i’ is such that 

Note that {xl,...,~“‘-‘, x*} also forms a basis for R”. Let P* be the m X m 

matrix defined by 

p*xi = fii , i=l,..., m-l, and P*x* = 0. 

Since x* #O, P* is singular and thus rank P* <m - 1. 
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Each PER’” may be written in the form x=C~~i’&x’+ b*x*. Since 
(D- P*)x= b*Dx*, we may assume in what follows that b* ~0. Since 

lb*1 IIx*llp < b*r*+ x II 
m-1 

bid II 
i=l IIP 

= II+,, 

it follows that 

max ll(D-P”)4l, 
X#O l141p 

Ib*l IP*Il, 
Ib*l Ib*llp 

The proposition is proven. W 

If D is the identity matrix, then for all 1< p <q < 00, P* is simply the 
matrix whose diagonal entries are all (m - 1)/m and whose off diagonal 
entries are aII -l/m. 

COROLLARY 4.1. 
(2;t;DJ”‘, then 

If l< p<q < co, l/r=l/q-l/p, and D,,+z < 

&(D;Z;;Zr) = d,(D;Z;;Z;) = &(D;Z,“;Z,“) 

= b,,(D;Z,“;Z,“) = 

Proof. Again, on the basis of Proposition 4.1, it is only necessary that we 
prove the upper bound 6,(D; ZF; I,“) < (C;‘:D,l)‘/r. The idea of the proof is 
to use the P* of the previous proposition. 

Let P* be the (n+l)X(n+l) matrix constructed in Proposition 4.2, and 
let P, denote the mX m matrix whose first n+ 1 rows and columns agree 
with P* and which is zero elsewhere. Thus rank P,, < rank P* <n. Similarly, 
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let x* and {xi};_i be the x* and {x’}:, i of Proposition 4.2 with added zero 
terms. Any XER” may be written in the form 

x = b*r* + i bjx’ + 2 xkek. 
i=l k=n+Z 

If b*=O, then 

( it II(D-Pn)xllq _ k=n+Z 
14q’)1’9 n+1 

llxllp 
<D,,+z< ED; . 

( ) 

l/r 

k=l 

If b* # 0, then we may assume b* = 1, and as previously, 

r m 11/Q 

ll(D- 4,)xll, 
lIxllp 

< 

IIDx*ll9,+ 2 i&d9 ’ 
k=n+2 

Ilx*ll;+ k=~+2ixkip “’ 
n 1 

< [ ll’*i$( ;$ Di)9’r+ k~+21D&19 
\ 

r m 11/v 

l/9 

L. 
I Ilx*ll;+ k_~+21xklp 

n 

Since 1< p <9 < co, the above quantity is less than or equal to 

max ‘/:D,,, ,..., D,,,} = (I$D;)“‘. 

The corollary is proven. W 

The corollary is exact in that there exist p <9 for which d,,(D; hm; ZT) = 
(En,:;Dk’)“’ iff (E:“k”-;Dk’)“’ > D”+%. For an example of this, see the next 
theorem. 

The only case in which all the n-widths d,,(D; 1;; I,“) are known for p <9 
is when p = 1 and 9 =2. The result (Theorem 4.1) was originally announced 
but never published by S. A. Smolyak. The first published proof is due to 
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Sofman [20]. Hutton, MorreII, and Retherford [6] re-proved the result, 
unaware of the work of Sofman. The proof presented here is an amalgama- 
tion of these two proofs. When D = I, then the theorem may also be found in 
Stechkin [23] and Solomjak and Tichomirov [22]. 

THEOREM 4.1. 
, 

d,(D;Z;“;Z,“) = S,(D;Z;“;Z,“) = max 
n<k<m 

Note that no claim is made concerning the n-widths in the sense of 
Gel’fand. This is for the excellent reason that equality does not hold. We 
shah use the following lemmas in the proof of the theorem. 

LEMMA 4.1. For given Ai, j = 1,. . . , 

and 
m, satisfying O<A,<l, Z=l,..., m, 

ET_ lAi = n, there exist n orthonormul vectors xi E R “‘, i = 1,. . . , n, i.e., 
(xi,x’)=Sij,for which Ai=Ey_1[(~i)i12, i=l,...,m. 

Proof. The proof is by induction on m. If m = n, it suffices to take any 
set of orthonormal vectors in R m, since then Ai = EyC’_l](~i)i]2 = 1, i = 1,. . . ,m. 

Assume that m >n and that for any given {Ai}yLi’ satisfying 0 <Ai < 1, 

i=l ,. ..,m- 1, 2yc11Aj= n, there exist xi ERm-‘, i= l,.. .,n, orthonormal 
and such that ~=E?,J(x’:)~]~, i=l,..., m - 1. To advance the induction, let 
{ B1}T_ i be given satisfying the conditions of the lemma, and assume, without 
loss of generality, that B, = min. = I 1,, ,m Bj. Let { Aj}I;,-,’ be any sequence for 
which O<Bj<Aj<l, i=l,..., m-l, and X~~IIAi-n. Set &=O. By the 
induction hypothesis there exists a set of n orthonormal vectors { y ‘}l,, in 
R” for which (Y~)~=O, i=l,..., n, and such that ~=Z~,,](y’)J2, i= 
1 , . . . ,m. The idea of the proof is to move from the sequence (A,, . . . , 
A,,, _ Ir A,J to the sequence (B 1,. . . , B,,,), where at the Zth step we decrease A, 
to Br while increasing the previous value of &, i.e. CiP:(Ai-Bi), by the 
amount A, -B,, and where at each step we maintain an orthonormal set of n 
vectors which satisfy the lemma. 

The required transformation is the following: Given any vector r E R m, 
let x[ t; Z] E R “‘, where 

1 Cx)i9 i#Z,m 

(x[ CZ])i = (x),cost+(x),sint, i=Z 

-((x)lsint+(x),cost, i=m. 
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Note that this transformation applied to any set x1,. . . ,xn of ortbonormal 
vectors in R” preserves their orthonormality. Furthermore, if we set 

AjW = i$l I( Yi[t;q)i12¶ j=l ,...,m, 

then for all t, Ai(t) = Ai( j#Z, m, Ey_,,Ai(t)=n, and O”A,(t)<l, j= 
,...,m. Thus A,(t)+A,,,(t)=A,(O)+A,,,(O) for any t and A,(m/2)=&(0), 

:&r/2) = A,(O). 
The result now follows by the intermediate value theorem, where we 

make use of the fact that Z?, = min. I_l,,,,,mBj, which implies that as we go 

from {Ar}pr to {Bj}p’,, the minimality property of the last term of the 
sequence is always preserved. The lemma is proven. n 

LEMMA 4.2. If (k - n)/Cf_1Di-2 > Df+l for some k, k >n, then fm all 
1 >k, 

k-n > l-n 

i Di-2 i Di-2 * 
i=l i=l 

Proof. (k- n)/Ef_lDi-2 > Df+l is equivalent to the fact that (k- 

4/D:+, 3 Ef=,Di- 2. Multiplying each side by I - k and using the fact that 
Dk+l> .a. >D,,,>O, we obtain 

(k-n),c$+l Dim2 > (Z-k) 5 Dim2, 
i=l 

which is equivalent to 

1 k 

(k-n)izIDi-2 > (Z-n) 2 Die2. 
i=l 

The lemma follows. 

LEMMA 4.3. For n <k Cm, 

k-n <e--2 
k-n 

i$l Di-2 k+l 

‘ff k 
< k+l-n 

k+l * 

izl Di-2 
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Proof. The proof of this lemma follows very much the same reasoning as 
the proof of Lemma 4.2. Since we take I = k + 1 in Lemma 4.2, all statements 
in the proof are “if and only if’ statements. W 

Proof of Theorem 4.1. As a result of either Lemma 2.3 or 2.4, 
S,,(D; Z;“;Z,“) = d,,(D; Zr;Z,“). Let X, be any n-dimensional subspace of R”, 
and let x1 , . . . , xn be an orthonormal basis for X,. Set 

where ei is the jth unit vector. Since { k ei}r_r are the extreme points of the 
unit ball in I?, 

d,(D;Z;“;Z~) = n$n i yy 
=. ,m 

Pj(X”). 

The orthonormality of the xi implies that 

= 1(4e1,Dje1)li ,gl I(Djei,xi)[2]1’2 
i 

I 

l/2 
. 

Set 4 =Z;,rl(~‘)~j”. Le mma 4.1 implies that varying over all fl-dimen- 
sional subspaces is exactly the same as varying over all { +}T_ r satisfying the 
hypotheses of Lemma 4.1. Thus, 

d,,(D;Z;“;Z,“j = min max Dj[ 1-Aj]1’2 
O<h<l j-l,...,m 

zp,Af=?l 

= min 
O<C,<l 

max DjCj’/2. 
j=l....,m 

rq_pz,=m-n 
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Let k be the smallest integer, 7t + 1 <k Gm, such that (k - n)/E:, 1Di-2 
>Dt+l. Let D,,,+l= 0, so that such a k necessarily exists. Put 

k-n 

Di” 
cT=k , i = 1,. . . , k, 

izl Di-2 

and C;=l, j=k+l,..., m. 
Obviously, Cy > 0 and ET_ 1q = m - n. To show that { CT}y_“-l is admissi- 

ble, we must prove that CT < 1. Since D, > * * * > Dkr it suffices to prove that 
C,+ < 1. Now, C,* < 1 if and only if (k - n)Dkm2 < Ci_1Di-2, which, in turn, is 
seen to be equivalent to 

k-l-n <D2 
k-l 

izlD1-’ k’ 

This latter inequality is valid by the choice of k (and trivially SO if 

k = n + l), so that { C;}T_;-l is admissible. 
Since D CT+‘/2 = [(k - n)/Ef,1Di-2]‘/2 for j = 1,. . . , k, and Dk < 

[(k - n)/Z:,f,~~- 1 2 ‘j2, it follows that d,,(D; 2;“; I,“) < [(k - n)/E~_,Di-2]‘/2. 
To prove the lower bound, assume the existence of an n-dimensional 

subspace X,, for which p/(X,,) < [(k- n)/E:,1Di-2]1/2 for all i= l,...,m. 
Since Zy_ ,p,“( X,)/ Di2 = m - n and 0 Q p,?(X,,)/ D,” < 1, we have 

k P#J 
k-n< x- < $ (k-nvz-P-2 = k _ n. 

j-1 D1” f-1 Di” 

From this contradiction, it follows that 4(D; IT; 12”) = [(k- n)/Zf,,Di-2]1/2. 
It remains to prove that 

This fact is an immediate application of Lemmas 4.2 and 4.3. The theorem is 
proven.. n 
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5. D=I 

In the case where we choose D to be the identity matrix I, things are 
somewhat simpler. We restate the previous results in this setting and then 
deal with certain extensions. 

THEOREM 5.1. Assume 1 < p, q < 00. Then 

(4 for p>q 

6,(1;1,“;Z,“)=d,(Z; I,“;Z~)=g,(Z;Z,“;Z,“)=(m-n)“9-1~P, 

jii)) yz$:y’= d,(Z; If”; 12”) = ((m - fl)/m)‘? 
. . . 
ill or 

6,_l(z;z~;z~)=d,_~(I;z~;z~)=g,_~(z;z,”;z~)=m-~~‘~-l’9~ 

(iv) for P <q 

6,(Z;E,“;Z,“)>d,(Z;1,“;Z,“),g,(Z;l,”;Z,”)~(n+l)~(1’P-1’9’. 

We also have 

PROPOSITION 5.1. For 1 <q < CO 

6,(Z; I;“; zy) = d,(Z; I;“; 1,“) = (m-l)“9 
l/(9-1) l-l/9 * [1+(-l> ] 

Proof. The equality between 6, and d, is a result of Lemma 2.4. Let 
e=(l,l,..., l).Then _ 

d,(Z;Z;“;Z,“) < max rn$ ]Jei-tie]],. 
j=l,...,m 

Since Jlei-,e()9=(11-(y19+(m-l)1~(9)“9, it follows that 
optimal (Y is a=[l+(n?-1) 1/(9-1)]-1, from which we obtain 

d,(Z;Z;“;Z,“) < 
(m- 1)‘19 

1/(9--l) l-l/9 * 
[l+(m-1) ] 

for q > 1, the 
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Let y = ( yi, . . . , y,,J be any vector in R”, and let us assume, without loss 
of generality, that 1 yi(=mir+,,,.,,,] yi(. If yi=O, then 

mjnIle’-ayll,=l> 
(m-l)“9 

l/(9--1) l-l/9 * 
[1+(m-1) ] 

Thus we may assume that yi #O. Now, 

m$rj]e1-oly]j9 =min ]I--cry,]9+)a)g~ ]yJ9 
I 1 

i/9 

i=2 

> m~n[jl-ay,]9+J~]9(m-1)]y1]9]1’9 

= mjn[]l-p]9+(*-1)]/3]9]1’9 

(m- 1)“9 

= [l+(m_l)‘/(9-l)]‘-r/9’ 

Thus qz; 1;“; 1,“) > (m - 1)1’9/[1+ (m - 1)“(9-‘)]‘-“9. n 

Note that the above result is very much simpler in the cases q = 2 and 
9 = co. For 9 = 00, we obtain d,( I; I?; 1,“) = i. It may in fact be shown that 

d,(D;Z;“;Z,“) = *. 
1 2 

In this same vein, we have 

PROPOSITION 5.2 (Hutton, Morrell, and Retherford [6]). For 1< p < co, 

d,( I; z;; 1:) = 2-‘/p. 

Proof. From Theorem S.l(iv), we have 4(Z; Z,“;Z,“) >2-“P. Let e= 
(1, 1, . . . , 1). Now, 

m;n 11% - aelI, = 
maxx, -minx, 

2 * 



MATRICES AND n-WIDTHS 271 

=mal’ maxx, -minxi] 

*zo 2 

[ 1 is1 I”ilP 1/P 
=max- 

X#O 1 

maxz, -minxi 

[I maxXi:,(P+ ]minw,(P]“P 

= 2-‘/p n 

Note that no mention is made of the linear n-width &(I; km; I,“). The 
value 2-l/P is a lower bound for S,(Z;lpm;Z,“) and not a very good lower 
bound, since by Lemma 2.1, 6,(Z; bm; I,“) = 6,,(Z; 2;“; 6) and from Proposition 
5.1, 

s,(z;z,“;z,“)= 
(_ 1)1-‘/P 

[l+(m-l)P-l]l’p’ 

As was noted in the introduction, we have considered, until now, the lp” 
and 1; norms on R”. If we consider these norms on C”, then the results so 
far obtained remain unchanged. This fortunate situation is no longer valid if 
p = 1, q = co, as will be seen at the end of this section, and it is therefore 
necessary that we differentiate between these two choices. Since we shall 
only be dealing with d,, and S,,, we shall write anR, d,” or S,“, d,” to denote 
that the underlying space is R” or C”, respectively. 

A considerable effort has been devoted to the determination of upper 
bounds for dE(Z; 1;“; I,“) and d,R(Z; 1,“; I,“) as both n and m increase. These 
upper bounds are used to obtain exact asymptotic estimates of the n-width of 
the Sobolev spaces WJO, I] in Lq[O, I]. The main work in this area was done 
by Kashin [lo] (see also Maiorov [13]), who proved 

THEOREM 5.2 (Kashin [lo]). There exist constants C, and C,, indepn- 
dentofnandm,suchthutforaZZl<n<m<oo, 

d,R(Z; 1;“; Z,m) < ~(1+lz)““, 

d,R(Z;Z,“;Z,m) < s(l+h;,“‘“. 
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We cannot, in the limited space available, consider reproducing the proof 
of the above results. The idea of the proof of (say) the second inequality is to 
construct an m x n matrix A such that if ai denotes the ith row of A, 
i=l ,...,m, then 

(1) every n rows of A are linearly independent; 
(2) for every n+l rows ail,...,ab+l for which 

aC+1 = akaik, 
k=l 

a=(q,..., aJ satisfies 

Il42+ 1 
II4l 

< ~(I+ln~~“. 

If one can construct such a matrix, one then takes as X, the span of the 
column vectors of A. It is then not difficult to obtain the desired result. The 
problem thus reduces to constructing a matrix A with the above properties. 
The proof of the existence of such an A is probabilistic rather than construc- 
tive in character and is rather complicated. 

The case m =2n has held particular attraction to many. Szarek [27] for 
example re-proved, by different means, Kashin’s result where m =2n, 
thereby obtaining dt(Z; 122”; I?) <C/6 . Szarek’s interest in this result 
comes from Banach space theory. From the duality of Lemma 2.2, the above 
result implies the existence of an n-dimensional subspace X,, of Zl’” such that 
for any x E K,, 

(The right hand inequality is simple. It is the left hand inequality which is of 
interest.) In fact Szarek shows that the orthogonal complement of X,, also has 
this same property. 

As was previously mentioned, the n-width d,(Z;Z,“;Z,“) is of interest in 
and of itself, since it is easily shown that 

4(Z;Z;“;Zz) = 6,(Z;Z;";Z,") = min ma rankP<n i,j=l,...,m I$ - nj19 

where Z = ( &lii)yi = i and P = ( p,Jyi_ i, P a real or complex rn~ m rank n 
matrix, depending on the space. The first to consider this case was Ismagilov 
[8], who showed by explicit construction that d:(Z; IF; Zz) <C/6 for 
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some constant C, independent of n. Kashin [9] then showed that if n <m <nX 
for some constant X, then there exists a constant C, for which dt(Z; ly; I,“) < 
C,/fi . It should be noted that it is easy to prove that dz(Z; 1;“; I,“) < 
d,R(Z; I;“; I:). 

One of the simpler upper bounds is the following. This result was proven 

with the assistance of R. Loewy. 

PROPOSITION 5.3. Let n be such that there exists a k x k Hadumurd 
matrix (i.e., a kX k matrix H all of whose entries are % 1, and such that 

HH*=kZ) where n<kkn+fi. Then 

d,R(Z;Z,2”;Z~)=S,R(Z;Z,2”;1~)~ &. 

Proof. Let H denote the k X k Hadamard matrix. Let A denote an n X n 
matrix obtained from H by deleting any k - n rows and columns. Let 

where Z is the n X n identity matrix. Thus B is a 2n X n matrix. Consider 

P=~BB*, 
L 

1+G 

Obviously rank P < n. Furthermore, since 

n - ‘/2A 

1 z ’ 

it follows that pji = 6 /(l + G ) for all i=l ,...,2n, and (~+~l<l/(l 
+ Vn ) for all i#i if at least one of the i,i is greater than n. We claim that 

) pii1 d l/(1 + 6 ) for all i #i. 

Since A is obtained from H by deleting k - n rows and columns, and 
since HH * = kZ, 

((AAT)ijJ < k - n for any i #i. 
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Thus for i#i, i,i=l,..., n, 
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fi k-n 
(Pij( < ~- = 

1+G n 

where we have used the fact that k < n + 6 . 
Hence 

which proves the proposition. n 

Thus we are reduced to considering the existence of k for which k x k 
Hadamard matrices may be constructed. It is simple to prove that if k is the 
order of a Hadamard matrix, then k = 1, 2, or a multiple of 4 (see Street and 
Wallis [26]). It is a well-known conjecture that the above condition is 
sufficient for the existence of Hadamard matrices. The conjecture is known 
to be valid to k = 264. Hadamard matrices are obtainable if k = 2”’ for some 
m, or k = 4m = p + 1, where p is a prime. If the above conjecture is valid, 
then Proposition 5.3 would hold for all n, except n = 5, by the above proof. 
To prove the case n = 5, let A be the 5 X 5 matrix whose diagonal entries are 
all 1 and whose off diagonal entries are all - 1. 

The result S,“(Z; 11”“; Zz) < l/(1 + 6 ) for n = 2” was proved by K&g in 
his Habilitutionsschrifi. 

Almost no results had been obtained concerning lower bounds for 

d,(Z;Z;“;Z,“). From the fact that cZ,,(Z; I;“; I,“) = d(m- fl)/m , it is easy to 
show that a(Z; 1;“; I,“) z G /m. We have as well, from Proposition 
4.1, the lower bound c(Z; 2;“; 1,“) > l/(n + 1). A sharper lower bound is the 
following. 

PROPOSITION 5.4. Forall l<n<m<oo, 

d,c( I; 1;“; 1,” ) = ts,“( I; 1;“; zz ) > 
1 

l+ V(m-l)n/(m-n) 

Proof. Let P be any matrix of rank at most n, and let Q = Z - P. Since P 
has the eigenvalue zero with geometric multiplicity at least m - n, the matrix 
Q possesses the eigenvalue 1 with geometric multiplicity at least m - n. Let 
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1 u . . . ..u m--n be linearly independent eigenfunctions of the eigenvalue 1 of 
Q. Thus for any wEspan(u’) Um-“}=[ul ,..., Urn-“], we have 

g qiiwi = wi, 
i=l 

where Q- (qiJ’i=l. Let maxi,ilqiil = d. Now, 

andsince II-q,,(>l-d, (qijl<d, wehave 

which implies 

(1 -d)lwJ < (m- 1)1’2d i$ (wJ2 

1 j#i 

> 

l/2 

Thus 

[(1-d)2+(?n-l)d2]“2~wi~ 

(m - 1)“2d 
’ jgI lwi12 1’2 ( 1 

for all i=l,... ,m, which in turn implies that 

[(1-d)2+(m-l)d2J1’2 llwll 

(m - 1)“2d < IlwllI * 

Therefore, 

max 
IIWII, ( (m- $4 

loE[u’,...,um-“1 IlwIl2 [(1-d)2+(7n-l)d2]1’2’ 
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We now minimize both sides of the inequality over all possible m-n 
dimensional subspaces of C”. Since the right hand side of the inequality is 
monotone in d, we obtain 

&(I; 1,“; 12) < 
(m- 1)1’2d* 

[(1-d*)2+(m-l)d*2]1’2 

where d* = d,C(I; 11”; 2,“). Since g,(Z; 1,“; I,“) = d,,(Z; 1;“; 12”) = v(m - n)/m , 

we have 

(m-n)1’2 ( 

mv 
[(l-d*)2,(myl)d*2+1]1’2 ’ 

This quickly reduces to 

[d*]2m(n-1) +2d*(m-n) - (m-n) > 0, 

which implies that 

d,c(I;Z;“;Z,“) = d* > n 

Note that this lower bound is exact for n= 1 and n = m- 1. The first 
nontrivial (i.e., 1 <n <m - 1) case occurs when m -4 and n =2. By the above 
proposition 

This lower bound is attained by the rank 2 matrix 

p=- 
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However, if we consider #(I; 1:; Ii), it is possible to prove that the upper 

bound given in Proposition 5.3, i.e. l/(1 + 2), is sharp. 

The author is indebted to Messrs. C. de Boor, R. Loewy, and A. Mellcmun 
for their many valuable suggestions. 
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