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Abstract. We discuss one approach to the problem of approximating functions
of many variables which is truly multivariate in character. This approach is based
on superpositions of functions with infinite families of smooth simple functions.

§1. Introduction and Motivation

There are numerous methods of approximating functions of many variables. For
example, we have the more classic methods using Polynomials, Fourier Series, or
Tensor Products, and more modern methods using Wavelets, Radial Basis Func-
tions, Multivariate Splines, or Ridge Functions. Many of these are natural gener-
alizations of methods developed for approximating univariate functions. However
functions of many variables are fundamentally different from functions of one vari-
able, and approximation techniques for such problems are much less developed and
understood. We will discuss in these few pages one approach to this problem which
is truly multivariate in character.

Hilbert’s 13th problem, although not formulated in the following terms, was
interpreted by some as conjecturing that not all functions of 3 variables could be
represented as superpositions (compositions) and sums of functions of two varaibles.
Surprisingly it turned that all functions could be so represented, and even more was
true. Kolmogorov and his student Arnold proved in a series of papers in the late
50’s that there exist fixed continuous one variable functions hij such that every
continuous function f of n variables on [0, 1]n could be represented in the form

f(x1, . . . , xn) =
2n+1
∑

i=1

gi

(

n
∑

j=1

hij(xj)
)

where one chooses the continuous one variable functions gi.
As with any such surprising and deep result, numerous questions and results

were spawned. One question asked had to do with smoothness properties of the hij .
Assuming f is in some class of smooth functions, can one choose smooth hij?
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Different answers in different frameworks were given. One answer due to Vi-
tushkin and Henkin (separately and together) was given in the mid 60’s (see [5] for
a survey of their results). Since the answer is in the negative, we only formulate it
for functions of two variables x and y in [0, 1]2.

Theorem A. For any m fixed continuous functions ψi(x, y), i = 1, . . . ,m, and
continuously differentiable functions φi(x, y), i = 1, . . . ,m, the set of functions

{

m
∑

i=1

ψi(x, y) gi

(

φi(x, y)
)

: gi continuous
}

is nowhere dense in the space of all functions continuous in [0, 1]2 with the topology
of uniform convergence.

“If” such a theorem were not true, i.e., if such a representation did in fact exist
with smooth φi, then multivariate approximation theory might well look different
today. If the ψi and φi were calculable (once and for all), then we could reduce many
multivariable problems to 1-variable problems. However, this is all idle speculation
as in the original Kolmogorov-Arnold result, the hij are not C1 and not at all
calculable.

The idea of using superpositions (or compositions) of functions with smooth,
nice, functions is a good idea. Let us try to formulate somewhat more precisely
what we have in mind.

To make things more concrete, we will deal with the space of continuous real-
valued functions defined on IRn, endowed with the topology of uniform convergence
on compact sets. (Note that we are not dealing with the topology of uniform
convergence on all of IRn.)

Let Φ be a family of continuous (smooth) functions φ : IRn → IR. Let us
consider the space

span{ g(φ(x)) : g ∈ C(IR) , φ ∈ Φ} ,

where x = (x1, . . . , xn) and the g are functions of one variable. Since representation
is, as we have seen, seldom possible using a finite number of smooth interior func-
tions, we will here deal with the related (but different) problem of approximation.

The question we will here discuss is that of density. That is when, for any
given f ∈ C(IRn), any compact set K ⊂ IRn, and ε > 0, we can find gi ∈ C(IR) and
φi ∈ Φ, i = 1, . . . ,m (m finite but free to be chosen) such that

max
x∈K

∣

∣f(x) −

m
∑

i=1

gi(φi(x))
∣

∣ < ε .

We will look at two general classes of functions Φ, and at the related question
of when we can also restrict the set of permissible g.
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§2. Translation

Let ϕ be any fixed C1 function defined on IRn. Consider

Mϕ = span{g
(

ϕ(x − a)
)

: g ∈ C(IR), a ∈ IRn} .

That is, we fix one and only one function ϕ, and let

Φ = {ϕ(· − a)}

be the set of all translates of this function.

What can we say in this generality?

a) If ϕ is such that there exists c < d such that

{x : c ≤ ϕ(x) ≤ d}

is a bounded nonempty set, then Mϕ = C(IRn). (In this case, we can also fix a
particular g.) Thus we have density if, for example, ϕ(x) = ‖x‖ and the norm ‖ · ‖
is smooth (or some power of the norm is smooth). This condition is not necessary.

b) A necessary condition for density is that

span{ϕ(x − a) : a ∈ IRn}

must separate points. In other words, for x 6= y there must exist points a and b such
that ϕ(x− a) 6= ϕ(y− b). If ϕ is a polynomial then we do not have the separation
of points if ϕ is a polynomial of less than n variables. Aside from a linear change of
variables, this is the only case where the above set does not separate points. That
is, if ϕ is an algrebraic polynomial

span{ϕ(x − a) : a ∈ IRn}

separates points if and only if there does not exist a non-singular n × n matrix
C such that ϕ is independent of (Cx)n. Based on various cases which have been
studied in some detail, we would like to conjecture that if ϕ is a polynomial and

span{ϕ(x − a) : a ∈ IRn}

separates points, then Mϕ = C(IRn).

Two results permit us to easily restrict the size of the set of the approximants
without losing the density property. The first is specific, the second general.

c) If ϕ is a polynomial, then it is not necessary to consider all translates. In fact, if
A is any subset of IRn for which no non-trivial polynomial vanishes on A, then

span{g
(

ϕ(x − a)
)

: g ∈ C(IR), a ∈ IRn} = span{g
(

ϕ(x − a)
)

: g ∈ C(IR), a ∈ A} .
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Thus, in case ϕ is a polynomial, we can, for example, consider shifts only by elements
of ZZn, or alternatively by all elements of any set with interior.

d) We can always replace all g ∈ C(IR) in the above by all g ∈ B where B is any
dense subset of C(IR) (in the requisite topology). For example, we can let g run
over the set of all monomials. A more interesting example is the following:

Let σ ∈ C(IR). In the topology of uniform convergence on compact subsets of
IR, it may be shown that

C(IR) = span{σ(at+ b) : a, b ∈ IR}

if and only if σ is not a polynomial (see Leshno, Lin, Pinkus and Schocken [2]).

It follows quite easily from this result that for any set Φ, and any σ ∈ C(IR)
which is not a polynomial,

span{g
(

φ(x)
)

: g ∈ C(IR), φ ∈ Φ} = span{σ
(

aφ(x) + b
)

: a, b ∈ IR, φ ∈ Φ} .

Sometimes it is possible to further restrict this set in that we need not run
over all a, b ∈ IR. For example, if σ is what is called a sigmoidal function. That is,
σ ∈ C(IR) and

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1,

then we can replace a, b ∈ IR in the above by k, ` ∈ ZZ (see Chui, Li [1]). It also
always suffices to restrict a to any non-trivial interval.

Thus, for example, if σ is sigmoidal and ‖ · ‖ is the Euclidean norm on IRn,
then

C(IRn) = span{σ(k‖x− m‖ + `) : k, ` ∈ ZZ, m ∈ ZZn} .

e) One particular choice of ϕ is of special interest. Consider n = 2, and ϕ(x, y) =
x2 + y2. In other words, we are considering the space

Mϕ = span{g
(

(x− a)2 + (y − b)2)
)

: g ∈ C(IR), (a, b) ∈ IR2} .

(Such functions are Radial Functions.) Instead of considering translates (centering)
by all (a, b) ∈ IR2, let us consider translates only by (a, b) ∈ A, where A is some
subset of IR2.
From (c) we know that Mϕ = C(IR2) if no non-trivial polynomial vanishes on A.
However, this is far from necessary. Let us consider some simple sets A which are

zero sets of non-trivial polynomials.

(i) If A is only a finite number of points, then by Theorem A, Mϕ 6= C(IR2).
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(ii) If A is only a straight line (or any subinterval thereof), then Mϕ 6= C(IR2).
However, Mϕ is dense in the space of all continuous functions defined on the half-
space defined by the straight line. Thus, for example,

span{g
(

(x− a)2 + y2)
)

: g ∈ C(IR), a ∈ IR} = C(D)

where D = {(x, y) : y ≥ 0}. In other words, one gets all even functions about the
real axis.

(iii) If A is a set of straight lines in IR2, then

span{g
(

(x− a)2 + (y − b)2)
)

: g ∈ C(IR), (a, b) ∈ A} 6= C(IR2)

if and only if all these lines have a common intersection point, and the angles
between each of the lines is a rational multiple of π.

(iv) If A is an ellipse or parabola, then

span{g
(

(x− a)2 + (y − b)2)
)

: g ∈ C(IR), (a, b) ∈ A} = C(IR2) .

It would be interesting to determine necessary and sufficient conditions on the
set A so that density holds.

§3. “Ridge” functions

Let us look at another simple set Φ. Let h1(x), . . . , hm(x) be anym fixed continuous
functions from IRn to IR. Let Φ = span{h1, . . . , hm}. In other words, consider

M = span{g
(

m
∑

i=1

aihi(x)
)

: a = (a1, . . . , am) ∈ IRm, g ∈ C(IR)} .

When is M dense in C(IRn)?

a) The answer is quite simple, and since the proof is short and elegant, we give it
here.

Proposition B. M = C(IRn) if and only if H(x) = (h1(x), . . . , hm(x)) separates
points. That is, for x,y ∈ IRn, x 6= y, there exists i ∈ {1, . . . ,m} such that
hi(x) 6= hi(y).

Proof: Consider the linear span of the set

(

m
∑

i=1

aihi(x)
)k
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as we vary over all a ∈ IRm and k = 0, 1, 2, . . .. This is an algebra generated by

h`1
1 (x) · · ·h`m

m (x)

where the `i are non-negative integers. Furthermore this algebra contains the con-
stant function and separates points. Thus the density follows from the Stone–
Weierstrass Theorem.

b) Similar to a result of the previous section, assuming we have density in the above
problem, it is not necessary to run over all vectors a ∈ IRm. It always suffices to run
over all a ∈ A, where A is any subset of IRm for which no non-trivial homogeneous

polynomial vanishes on A. In general this sufficient condition on A is not necessary.

A Ridge Function, in its simplest sense, is a function of the form

f(x) = g(a · x)

where a ∈ IRn\{0} is fixed (a direction), and a ·x =
∑n

i=1
aixi. That is, m = n and

hi(x) = xi in the previous example. (We will also consider a simple generalization
thereof, namely

f(x) = g(Ax)

where A is a k × n matrix and g : IRk → IR.)
Ridge functions are constant on the hyperplanes a · x = c and thus are partic-

ularly simple functions. Ridge functions are used, with varying degrees of success,
in different fields. In Partial Differential Equations they are called Plane Waves.
(In general, linear combinations of ridge functions occur in the study of hyperbolic
p.d.e.’s with constant coefficients.) In Statistics they are used in the theory of
Projection Pursuit and Projection Regression. They are used in the theory of Com-
puterized Tomography (the name Ridge Function was coined by Logan, Shepp [4] in
one of the seminal papers on tomography). In Neural Networks they are used. (More
specifically in a model in Neural Networks concerned with Multilayer Feedforward

Neural Networks with Input, Hidden and Output layers.) Finally, approximation
theorists are interested in using Ridge Functions as a method of approximating
complicated (multivariate) functions by simple functions (linear combinations of
Ridge Functions).

There is, unfortunately, not very much known about approximating using Ridge
Functions. We mention here some of the results connected with the density problem.

c) What are necessary and sufficient conditions on a set A ⊆ IRn such that

MA = span{g(a · x) : a ∈ A, g ∈ C(IR)}

is dense in C(IRn)?
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For n = 2 it is known that it is both necessary and sufficient that A contains an
infinite number of pairwise linearly independent points. (Note that if a ∈ A, then
we add nothing to MA if we adjoin αa to A.) This result has been proved in the
literature at least 3–4 times. The earliest reference we have found is to an article by
Vostrecov, Kreines [6] (early 60’s), where they in fact proved the following result.

Theorem C. MA = C(IRn) if and only if no non-trivial homogeneous polynomial
vanishes on A.

This result seems to have not been noticed, as very partial results were later reproved
by others.

d) Let A be a subset of all k × n real matrices, 1 ≤ k < n, fixed. Set

MA = span{g(Ax) : A ∈ A, g ∈ C(IRk)} .

Necessary and sufficient conditions for when MA = C(IRn) are as follows (see Lin,
Pinkus [3]):

For each A ∈ A, let L(A) denote the linear subspace spanned by the rows of A.
(If L(A) = L(B), then

span{g(Ax) : g ∈ C(IRk)} = span{g(Bx) : g ∈ C(IRk)} .)

Set
L(A) =

⋃

A∈A

L(A) .

(If k = 1, L(A) is a line through the origin.)

Theorem D. MA is dense in C(IRn) if and only if L(A) is not contained in the
zero set of any non-trivial polynomial. (Or homogeneous polynomial, since L(A) is
homogeneous.)

Here are some facts connected with this result.

1. If L(A) is not contained in the zero set of some non-trivial polynomial, then
not only is MA dense in C(IRn), but in fact more is true. Namely, the polynomials
are explicitly contained in the set MA. (As finite linear combinations of g(Ax), g
polynomial, A ∈ A.)

2. If there exists a non-trivial polynomial p which vanishes on L(A), then we can
prove that for any φ ∈ C∞

0 , the function ψ = p(D)φ satisfies

∫

g(Ax)ψ(x) dx = 0
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for all g ∈ C(IRk) and for all A ∈ A. (Here p(D) = p( ∂
∂x1

, . . . , ∂
∂xn

).) Thus we
explicitly construct simple linear functionals which annihilate MA. The density
result therefore holds for any space where the Weierstrass Theorem holds, and the
above is also a linear functional, for some φ ∈ C∞

0 .

3. If A = A1

⋃

A2, then MA is dense in C(IRn) if and only if MAi
is dense in

C(IRn) for i = 1 and/or i = 2.

4. Of course, if A contains only a finite number of points (elements), then MA is
not dense in C(IRn).

5. If k = n − 1, then MA is dense in C(IRn) if A contains an infinite number
of pairwise “distinct” matrices A of full rank n − 1. (Distinct here means that
L(A) 6= L(B).)

Finally we note some related result. (See Lin, Pinkus [3].)

e) What is MA in general?

MA = span{g(Ax) : A ∈ A, g ∈ C(IRk)}

= span{q(x) : q polynomial, p(D)q = 0 for every

polynomial which vanishes on L(A)}.

This is related to the theory of Polynomial Ideals. (The set of polynomials which
vanish on L(A) is a Polynomial Ideal (of a fairly simple form).) As such we could
actually replace “p(D)q = 0 for every .....” by a finite number of such p.

f) “Variable” Directions.

Assume we are given a fixed positive integer r. For A = {A1, . . . , Ar}, where the
Ai are some k × n matrices, we have that MA is not dense in C(IRn). What if we
keep r fixed, but vary the “directions” A1, . . . , Ar (as well as the gi)? That is, what
if we approximate from the highly nonlinear set

{
r

∑

i=1

gi(Aix) : gi ∈ C(IRk), Ai k × n matrix} ?

Unfortunately, one can prove that density does not hold for any r (on any compact
set with interior).
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