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Let C(B) denote the space of real-valued continuous functions on B. At the con-
ference ``Harmonic Analysis and Approximations'' held at Nor Amberd in Armenia
in September, 1998, the following general problem was posed by Professor George
G. Lorentz: Find conditions on finite-dimensional subspaces U and V so that U�V
is a uniqueness set in the problem of best uniform approximation to elements of
C(B). In this paper we consider this problem. � 2000 Academic Press

1. INTRODUCTION

We first set some notation. For ease of exposition, assume B is a finite
union of connected compact components, none of which is a singleton, in
Rd for some d. Let C(B) denote the space of real-valued continuous func-
tions on B. Let Un and Vm be n and m-dimensional linear subspaces of
C(B), respectively. We further assume that Vm contains a function which is
strictly positive on B. Set

Un

Vm
={u

v
: u # Un , v # Vm , v>0= .

We are interested in the problem of when, to each f in C(B), we have at
most one best approximant from the set Un �Vm in the uniform norm on B.
This problem was posed by G. G. Lorentz in his talk at the conference
``Harmonic Analysis and Approximations'' at Nor Amberd in Armenia in
September, 1998.

Before stating our main results let us recall some facts concerning
``generalized rational approximation.'' In this setting it is not necessary that
a best approximant from Un�Vm to each f in C(B) exist. However, it is
always possible to characterize a best approximant if it does in fact exist.
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Theorem 1.1 (Cheney and Loeb [5], Cheney [4]). Let f # C(B). A
necessary and sufficient condition for an element r* to be a best approximant
to f from Un �Vm is that the zero function be a best approximant to f &r*
from the linear space Un+r*Vm given by

Un+r*Vm=[u+r*v : u # Un , v # Vm].

We are interested in the question of uniqueness of the best approximant,
if it exists. On approximating from linear spaces (of finite dimension) the
question of uniqueness, in the uniform norm, was considered by Haar [7].
He proved that for a k-dimensional approximating subspace Wk of C(B),
the best approximant (which always exists) to each element of C(B) is
unique iff there does not exist a nontrivial w # Wk which vanishes at k or
more distinct points in B. As is more or less standard, we call linear spaces
which have this property Haar spaces. (When B=[a, b] the term
Chebyshev space is more commonly used.)

Theorem 1.1 has the following consequence.

Proposition 1.2 (Cheney [3], Cheney [4]). If r* is a best approximant
to f # C(B) from Un �Vm and if Un+r*Vm is a Haar space, then r* is the
unique best approximant to f from Un �Vm .

Thus a necessary condition that Un �Vm be a uniqueness set, i.e., each
f # C(B) have at most one best approximant from Un �Vm , is that
Un+r*Vm be a Haar space for every r* # Un �Vm . The converse result need
not quite hold in this generality only because our approximating set has
the restriction that we only consider u�v where v is strictly of one sign on B.

Uniqueness of rational approximants is known in two cases. If Un and
Vm are algebraic polynomials of degree n&1 and m&1, respectively, and
B=[a, b], then uniqueness is due to Achieser [1] (see the more accessible
Achieser [2]). If Un and Vm are the analogous trigonometric polynomials
then uniqueness, within the class of 2?-periodic continuous functions, was
recently proved in Lorentz et al. [8, p. 217].

Before considering conditions under which Un+r*Vm is a Haar space
for every r* in Un �Vm , let us first note some facts concerning the subspaces
Un+r*Vm and some necessary properties which are implied by the
assumption that Un+r*Vm is a Haar space for every r* in Un�Vm .

Lemma 1.3. For each r* # Un �Vm ,

n�dim(Un+r*Vm)�n+m&1, (1.1)

and if Un and Vm are Haar spaces, and r*{0, then we also have

m�dim(Un+r*Vm).
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Proof. The lower bound in (1.1) is a consequence of the fact that
Un �Un+r*Vm for any r* # Un �Vm . The perhaps somewhat surprising
upper bound may be proven as follows. Let

Un=span[u1 , ..., un], Vm=span[v1 , ..., vm],

and r*=u*�v*, where u*=�n
i=1 ai*u i and v*=�m

i=1 bi*vi , v*>0 on B.
Then

Un+r*Vm=span[u1 , ..., un , r*v1 , ..., r*vm].

The above n+m functions which span Un+r*Vm are linearly dependent
since

:
n

i=1

ai*ui&r* \ :
m

i=1

bi*vi+=u*&\u*
v*+ v*=0.

Thus

dim(Un+r*Vm)�n+m&1.

Assume Un and Vm are Haar spaces. This implies (since B contains a con-
tinuum of points) that if u # Un , v # Vm , and uv=0, then u=0 or v=0.
From this property it follows that for r* # Un �Vm , r*{0,

m=dim(r*v1 , ..., r*vm)=dim(r*Vm)�dim(Un+r*Vm). K

Proposition 1.4. If Un+r*Vm is a Haar space for every r* # Un�Vm ,
then Un and Vm are themselves Haar spaces. The converse result holds if
n=1 or m=1.

Proof. We set r*=0 in Un+r*Vm and deduce that Un is a Haar space.
Assume Vm is not a Haar space. There then exists a v~ # Vm , v~ {0, that

vanishes at at least m distinct points of B. Given any n&1 points distinct
from the above m points, there exists a u* # Un , u*{0, which vanishes
thereon. Let v* # Vm be strictly positive on B, and set r*=u*�v*. Then

r*v~ # r*Vm �Un+r*Vm ,

and r*v~ {0 has at least n+m&1 distinct zeros. Since dim(Un+r*Vm)�
n+m&1, this contradicts the assumption that Un+r*Vm is a Haar space.

Assume Un and Vm are Haar spaces and n=1 or m=1. If r*=0, then
Un+r*Vm=Un is a Haar space. For r*{0 it follows from Lemma 1.3 that

max[n, m]=dim[Un+r*Vm].
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If m=1, then Un+r*V1=Un is a Haar space. If n=1 (and r*{0) then r*
is strictly of one sign on B (U1 is a Haar space) and U1+r*Vm=r*Vm is
also a Haar space. K

The converse result need not hold in general. That is, it may be that Un

and Vm are Haar spaces, while Un+r*Vm is not a Haar space for some r*
in Un�Vm , n, m�2. An example thereof may be found in Cheney [4,
p. 169].

Set

Un Vm=[uv : u # Un , v # Vm].

(By uv we mean simple multiplication, i.e., (uv)(x)=u(x) v(x).) Under
relatively mild assumptions on Un and Vm it may easily be shown that

dim(UnVm)�n+m&1.

We will prove that if dim(UnVm)=n+m&1 and Un , Vm are Haar spaces,
then

Un+r*Vm

is a Haar space for every r* in Un �Vm . This is one of the main result of this
paper.

Theorem 1.5. If Un and Vm are Haar spaces in C(B) and

dim(UnVm)=n+m&1

then Un �Vm is a uniqueness set (and UnVm is a Haar space).

This condition implying uniqueness (and also existence) is neither for-
tuitous nor unexpected. Consider r*=u*�v* # Un �Vm . Then

u+r*v=
uv*+u*v

v*
.

By assumption v* does not vanish on B. Thus the zero sets of u+r*v and
uv*+u*v are identical and the latter function is contained in UnVm . Since
we are interested in conditions implying that Un+r*Vm is a Haar space,
and since dim(Un+r*Vm)�n+m&1, it is thus natural to consider when
Un Vm is a Haar space of dimension n+m&1.

Note that sums of the form uv*+u*v are a manifold within Un Vm . The
two restrictions are that v* be strictly of one sign on B, and that we only
permit the sum of two products (rather than min[n, m] products which are
in general necessary to span Un Vm).
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The demand that dim(Un Vm)=n+m&1 is very stringent. Theorem 1.5
is a consequence of the following. Assume that Un and Vm have the
property that

B=supp[g] (1.2)

for every nonzero g in Un or Vm (supp[g]=[x : g(x){0]). This property
holds in particular if Un and Vm are Haar spaces.

Theorem 1.6. Let Un and Vm be n- and m-dimensional subspaces of
C(B), n, m�2. Assume that (1.2) holds. Then dim(UnVm)�n+m&1.
Furthermore dim(UnVm)=n+m&1 if and only if there exist w1 , w2 # C(B)
and a function h defined on B such that

Un=span[w1 hi&1 : i=1, ..., n] (1.3)

Vm=span[w2 hi&1 : i=1, ..., m] (1.4)

Remark. In the statement of Theorem 1.6 we do not demand that h be
continuous. We will show, by example, that h need not be continuous and
sometimes cannot possibly be continuous. However as w1hi&1 # Un /C(B),
for i=1, ..., n, and w2 hi&1 # Vm /C(B), for i=1, ..., m, the function h must
be continuous at those points where either w1 or w2 is nonzero.

Theorem 1.6, where Un=Vm , was proven by Granovsky [6]. In fact he
had fewer restrictions on both B and Un . His motivation for considering
this problem came from questions in mathematical statistics connected with
regression functions and the theory of experimental design.

2. PROOF OF THEOREM 1.6

If (1.3) and (1.4) hold, then dim(UnVm)=n+m&1. It is the converse
direction which we must labour to prove. Since that proof is somewhat
lengthy, we will divide it into a series of steps.

Before embarking on these steps, let us note that Theorem 1.6 is not
valid without some conditions on Un and Vm . For example, assume U3=
V3=span[1, x, |x|] on [&1, 1]. Then dim(U3U3)=5 and yet U3 is not of
the desired form. Similarly if Un contains n functions with disjoint support,
then dim(Un Un)=n. (Note that in both examples there exist nonzero
u1 , u2 # Un for which u1u2=0, see Granovsky [6].)

In the proof of Theorem 1.6 we follow, with some modifications, the
basic form of the proof as given in Granovsky [6].

Let us assume that n�m�2. We start by choosing distinct points
x1 , ..., xn in B for which

dim Un | [x1 , ..., xn]=n (2.1)
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and such that

dim Vm |[x11
, ..., xim

]=m (2.2)

for every choice of distinct [i1 , ..., im]�[1, ..., n]. That such a choice of
[x1 , ..., xn] exists follows from our assumption concerning the form of B,
Un and Vm .

Let pi # Un , i=1, ..., n, satisfy

pi (xk)=$ ik , i, k=1, ..., n. (2.3)

Such pi exist and form a basis for Un as a consequence of (2.1). Let qj # Vm ,
j=1, ..., m, satisfy

qj (xk)=$ jk , j, k=1, ..., m. (2.4)

From (2.2) such qj exist and form a basis for Vm . Furthermore from (2.2),

qj (xk){0, j=1, ..., m, k=m+1, ..., n. (2.5)

Lemma 2.1. The n+m&1 functions p1q1 , p2 q2 , ..., pmqm , p2q1 , ..., pnq1

are linearly independent.

Proof. Assume

:
m

j=1

;j pjqj+\ :
n

i=2

:i p i+ q1=0. (2.6)

Evaluate the left-hand side of (2.6) at the points xk , k=1, ..., m, to obtain
(using (2.3) and (2.4))

;k=0, k=1, ..., m.

Thus (2.6) reduces to

\ :
n

i=2

:i pi+ q1=0.

From our assumption (1.2) on B, Un , and Vm , if uv=0, u # Un , v # Vm ,
then u=0 or v=0. Thus either q1=0 (which is simply not true), or

:
n

i=2

:i pi=0.

As the p2 , ..., pn are linearly independent, this implies that :2= } } } =
:n=0. K
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From Lemma 2.1 it follows that dim(UnVm)�n+m&1. Since

Un Vm=span[ pkql : k=1, ..., n, l=1, ..., m]

Lemma 2.1 further implies that dim(UnVm)=n+m&1 if and only if each
pk ql is a linear combination of the n+m&1 functions in the statement of
Lemma 2.1, i.e., piqj satisfying i= j or j=1. We assume in what follows in
this section that dim(UnVm)=n+m&1.

Lemma 2.2. For each k, l, s, satisfying k{l, k=1, ..., n, l, s=1, ..., m,
there exist constants :s

k, l , ;s
k, l for which

pk ql=(: s
k, lpk+;s

k, l pl) qs . (2.7)

Proof. It suffices to prove (2.7) for s=1. (The choice of q1 here and in
Lemma 2.1 is arbitrary and it may be replaced by qs for any s=1, ..., m.)

From Lemma 2.1 we have (since dim(UnVm)=n+m&1),

pk ql=\ :
n

i=2

# i
k, l pi+ q1+ :

m

j=1

_ j
k, l pjq j , (2.8)

for some constants # i
k, l and _ j

k, l .
Assume k{l. We will first evaluate (2.8) at xr , r=1, ..., m. Since k{l,

pk(xr) ql(xr)=0, r=1, ..., m

and

pi (xr) q1(xr)=0, r=1, ..., m,

for each i=2, ..., n. Furthermore

pj (xr) q j (xr)=$rj , r, j=1, ..., m.

Thus from (2.8) it follows that

_r
k, l=0, r=1, ..., m,

and (2.8) reduces to

pk ql=\ :
n

i=2

# i
k, l pi+ q1 . (2.9)

We now evaluate (2.9) at xr , r=m+1, ..., n. By construction

pk(xr) ql(xr)=$kr ql(xr),
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and from (2.5), ql(xr){0 for r=m+1, ..., n. Similarly

\ :
n

i=2

# i
k, l pi+ (xr)=#r

k, l ,

(while q1(xr){0). Thus for k{r, r=m+1, ..., n, we have

#r
k, l=0.

We may therefore rewrite (2.9) as

pk ql=\ :
m

i=2

# i
k, l pi+ q1 , (2.10)

for k{l, and k, l=1, ..., m, and

pkql=\ :
m

i=2

# i
k, l pi+#k

k, l pk + q1 , (2.11)

if k=m+1, ..., n. (Note that if m=2, then (2.10) and (2.11) are of the
desired form.)

Choose s # [1, ..., m], s{l. We can replace ql by qs in (2.10) and (2.11)
to obtain

pk qs=\ :
m

i=2

# i
k, s pi+ q1 , (2.12)

for k{s, and k=1, ..., m, and

pkqs=\ :
m

i=2

# i
k, s pi+#k

k, s pk+ q1 , (2.13)

if k=m+1, ..., n.
Multiplying (2.10) by qs and (2.12) by ql , it follows that for k, l, s

distinct in [1, ..., m]

\ :
m

i=2

# i
k, l pi + q1qs=\ :

m

i=2

# i
k, s pi+ q1 ql .

From our assumption (1.2) this implies

\ :
m

i=2

# i
k, l pi + qs=\ :

m

i=2

# i
k, s pi+ ql . (2.14)
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Evaluate (2.14) at xs . As qs(xs)=1 and ql(xs)=0, we obtain

:
m

i=2

# i
k, l pi (xs)=0.

Since pi (xs)=$ is , this implies that # s
k, l=0. This is valid for every s distinct

from k and l in [1, ..., m]. This proves (2.7).
We now assume that k # [m+1, ..., n]. We multiply (2.11) by qs and

(2.13) by ql , s{l, and parallel the above analysis to again obtain (2.7). K

Lemma 2.3. Fix k, l in (2.7). The coefficients (:s
k, l , ;s

k, l), s=1, ..., m,
are pairwise linearly independent, i.e., (:s

k, l , ;s
k, l){#(: r

k, l , ;r
k, l) for any con-

stant # and distinct s, r in [1, ..., m].

Proof. Assume to the contrary that

(:s
k, l , ;s

k, l)=#(:r
k, l , ;r

k, l)

for some # and s{r. Then from (2.7)

pk ql=#(:r
k, l pk+;r

k, l pl) qs=(:r
k, l pk+;r

k, l pl) qr .

This implies that either

#qs&qr=0

or

:r
k, l pk+;r

k, l pl=0.

The first option is invalid since the qk are linearly independent. The second
equation together with (2.7) implies that pkql=0, which again is
impossible. K

We will fix the k, l in (2.7). For convenience in what follows assume k,
l # [1, ..., m], k{l, and set

Zkl=[x : pk(x) ql(x)=0].

Note that by our assumption (1.2) B"Zkl =B. From (2.7) it follows that if
x � Zkl , then in addition to pk(x), ql(x) not vanishing we also have
qs(x){0 and (: s

k, l pk+;s
k, l pl)(x){0 for each s=1, ..., m. On B"Zkl , set

h(x)=
pl(x)
pk(x)

, (2.15)

2s(x)=: s
k, l+;s

k, lh(x), s=1, ..., m, (2.16)
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and

w2(x)=
ql(x)

>m
s=1 2s(x)

. (2.17)

From (2.7) we have

qs(x)=
ql(x)
2s(x)

. (2.18)

Each of these quantities is well defined and continuous on B"Zkl . In fact
neither 2s(x) nor w2(x) vanish on B"Zkl .

Lemma 2.4. We have

Vm=span[w2hi&1 : i=1, ..., m].

Proof. We first restrict ourselves to B"Zkl . If v # Vm , then since the
[qs]m

s=1 span Vm and from (2.17) and (2.18)

v(x)= :
m

s=1

asqs(x)= :
m

s=1

as
ql(x)
2s(x)

=
ql(x)

>m
s=1 2s(x)

:
m

s=1

:s \ `
m

r=1
r{s

2r(x)+
=w2(x) :

m

s=1

as \ `
s

r=1
r{s

2r(x)+ ,

for x # B"Zkl . The expression

`
m

r=1
r{s

2r(x)= `
m

r=1
r{s

(: r
k, l+;r

k, l h(x))

is a polynomial of degree at most m&1 in h. Thus on B"Zkl

v=w2 :
m

i=1

#ihi&1.

It is easily shown, using Lemma 2.3, that

span { `
m

r=1
r{s

2r(x) : s=1, ..., m==span[hi&1 : i=1, ..., m].
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Thus the w2hi&1, i=1, ..., m, span Vm on B"Zkl . These functions are
linearly independent on B"Zkl since otherwise there exists a nontrivial ele-
ment of Vm which identically vanishes on B"Zkl . This contradicts (1.2).

Since each w2hi&1 # Vm and Vm /C(B), it follows from our assump-
tion (1.2) that each of these functions can be uniquely extended from B"Zkl

to B as elements in C(B). This proves the lemma. K

The function w2 is well defined on all of B. It is, after all, a function in
C(B) and Vm . This is not true of h, which is a ratio of two functions in
C(B) (and Vm). The function h is continuous at every point where w2 does
not vanish, which includes B"Zkl , but it need not be continuous on all of
B. Nonetheless, since w2h i&1 is continuous on all of B, this restricts the
permissible types of discontinuities of h.

What we have done for Vm we can also do for Un .

Lemma 2.5. For each k, l, s, satisfying k{l, k, l=1, ..., m, s=1, ..., n,
there exist constants #s

k, l , _s
k, l for which

pk ql= ps(#s
k, lqk+_s

k, lql). (2.19)

Furthermore the coefficients (#s
k, l , _s

k, l), s=1, ..., n, are pairwise linearly
independent.

Proof. Rather than parallel our previous analysis we will show how
(2.19) follows from (2.7).

We recall that (2.7) has the form

pk ql=(: s
k, l pk+;s

k, l pl) qs ,

for k{l, k=1, ..., n, l, s=1, ..., m. We can rewrite this as

;s
k, l plqs= pk(ql&:s

k, lqs).

Note that ;l
k, l=0 and thus ;s

k, l {0 for s{l. As such we have

pl qs= pk(#k
l, sql+_k

l, sqs)

for all k, l, s satisfying k=1, ..., n, k{l, and s{l. For k=l, set #k
l, s=0

and _k
l, s=1. We now simply rename l, s, and k as k, l, and s, respectively,

to obtain (2.19).
Paralleling the proof of Lemma 2.3, it follows that the (#s

k, l , _s
k, l) are

pairwise linearly independent, s=1, ..., n. K
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As previously, on B"Zkl (recall that we chose k, l # [1, ..., m], k{l) set

H(x)=
qk(x)
ql(x)

,

7s(x)=#s
k, lH(x)+_s

k, l , s=1, ..., n,

and

W1(x)=
pk(x)

>n
s=1 7s(x)

.

From (2.19) we have

ps(x)=
pk(x)
7s(x)

.

Note that from (2.19) and the definition of Zkl , each of these quantities is
well defined and continuous on B"Zkl . Analogously to Lemma 2.4, we
obtain

Lemma 2.6. We have

Un=span[W1H i&1 : i=1, ..., n].

Both Un and Vm , individually, have the desired form. But in one case we
have multiplier H and in the other case multiplier h. Our claim in
Theorem 1.6 is that they are equal, or to be more precise, that they can be
chosen to be equal. This we now prove.

We recall that h= pl �pk and H=qk �ql . Take (2.7) with s=k, i.e.,

pk ql=(:k
k, l pk+;k

k, l pl) qk .

Divide by pkql (we restrict ourselves to B"Zk, l) to obtain

1=(:k
k, l+;k

k, lh) H,

which implies

H=
1

:k
k, l+;k

k, l h \=
1

2k+ . (2.20)

Note that ;k
k, l {0. Our desired result will follow from Lemma 2.7, which

we state in a rather general form, as we will use it again.
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Lemma 2.7. Let

Wk=span[mgi&1 : i=1, ..., k] (2.21)

be a k-dimensional subspace of C(B), k�2. Assume B=span[w] for every
w # Wk , w{0. Let a, b, c, d # R, ad&bc{0. Define the functions

G=
ag+b
cg+d

, M=
m(cg+d )k&1

(ad&bc)k&1 . (2.22)

Then

Wk=span[MGi&1 : i=1, ..., k]. (2.23)

Furthermore, if Wk can be written in the forms (2.21) and (2.23) for some
choices of m, M, g, and G, then (2.22) holds for some constants a, b, c, d
satisfying ad&bc{0. That is, the m and g of Wk are unique up to the above
linear fractional transformation.

Proof. From G=(ag+b)�(cg+d ) it follows that g=(dG&b)�
(&cG+a) and

mgi&1=m \ dG&b
&cG+a+

i&1

=
m

(&cG+a)k&1 (dG&b) i&1 (&cG+a)k&1

=
m(cg+d )k&1

(ad&bc)k&1 (dG&b) i&1 (&cG+a)k&i

=M(dG&b) i&1 (&cG+a)k&i.

Each (dG&b) i&1 (&cG+a)k&i, i=1, ..., k, is a polynomial in G of degree
at most k&1. Thus

Wk=span[mgi&1 : i=1, ..., k]�span[MG i&1 : i=1, ..., k].

Since Wk is of dimension k this implies equality, i.e., (2.23) holds.
Assume Wk can be written in the form (2.21) and (2.23) for some choices

of m, M, g, and G. Since M, MG # C(B) we mus have (from (2.21))

G=
MG
M

#
Wk

Wk
=

�k
i=1 :i gi&1

�k
i=1 ;i g i&1 (2.24)

on B"Z, where Z is the union of the zero sets of M and m. On this set the
continuous functions g and G take on a continuum of values (since, for
example, the zero set of m(c& g) # Wk is, by assumption, small for every
constant c). As such we may regard the rightmost expression in (2.24) as
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a rational function in g. We can factor out its common divisors and write
it in the form

G=
: >s

i=1 (g&#i)
> t

j=1 (g&$j)

for s, t�k&1, where #i {$j , i=1, ..., s, j=1, ..., t, and : # R. We wish to
prove that s, t�1. If k=2 we are finished. As such, assume k>2. Then

Gk&1=
MGk&1

M
#

Wk

Wk

and

Gk&1=
:k&1 > s

i=1 (g&#i)
k&1

>t
j=1 (g&$j)

k&1 . (2.25)

Since g takes on a continuum of values and the rational function (2.25) is
in irreducible form, it follows that this ratio is an element of Wk�Wk if and
only if s, t�1.

Thus

G=
ag+b
cg+d

for some constants a, b, c, d. If ad&bc=0, then G is a constant function
and (2.23) cannot hold. As such we must have ad&bc{0.

We now consider M. Since

M # Wk=span[mg i&1 : i=1, ..., k],

we have

M=m \ :
k

i=1

:i gi&1+ .

Similarly

MGk&1=m \ :
k

i=1

: i g i&1+\ag+b
cg+d+

k&1

# Wk

and so is also of the form

m \ :
k

i=1

;i gi&1+ .
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Thus

\ag+b
cg+d+

k&1

=
�k

i=1 ;i g i&1

�k
i=1 :i g i&1 .

Since the left-hand side is irreducible in g, this implies that

:
k

i=1

:i gi&1=:(cg+d )k&1

for some constant :, :{0. Thus

M=m:(cg+d)k&1. K

To conclude the proof of Theorem 1.6 we now simply apply Lemma 2.7
to (2.20).

Remark. Assume

Wk=span[mgi&1 : i=1, ..., k]

as in the statement of Lemma 2.7. We know that g is continuous where m
does not vanish. What happens at the zeros of m? If m(x*)=0 then
necessarily (mgi&1)(x*)=0, i=1, ..., k&1. It is, however, possible that
(mgk&1)(x*){0, in which case limx � x* | g(x*)|=�.

Before returning to the question of uniqueness in rational approxima-
tion, let us consider the following question. Given a k-dimensional sub-
space Wk of C(B), how can we decide if Wk is of the form

Wk=span[mgi&1 : i=1, ..., k]

for some m and g. (We assume B=supp[w] for every w # Wk , w{0.) It
follows from Theorem 1.6 that Wk has this form if and only if
dim(Wk Wk)=2k&1. In the proof of Theorem 1.6 we made use of the
functions pi and qj . Here they are the same. It then follows from the proof
of Theorem 1.6 (see (2.15)�(2.18)) that we can take g=q1 �q2 and
m=q1�(>k

s=1 2s)=q2 } } } qk �qk&2
1 . As such we have:

Proposition 2.8. Let Wk be a k-dimensional subspace of C(B), and let
B=supp[w] for every w # Wk , w{0. Let x1 , ..., xk be distinct points in B
for which

dim Wk | [x1 , ..., xk]=k
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and let qi # Wk satisfy qi (x j)=$ ij , i, j=1, ..., k. Then

Wk=span[mgi&1 : i=1, ..., k]

for some m and g if and only if

q3 } } } qk

qk&i&1
1 q i&2

2

# Wk , i=1, ..., k.

Finally we note that Theorem 1.6 can be generalized to a product of any
finite number of finite-dimensional subspaces.

Corollary 2.9. Let U j be an n j-dimensional subspace of C(B),
j=1, ..., r. Assume that the properties of B and the U j hold as in
Theorem 1.6. Then dim(U1 } } } U r)�n1+ } } } +nr&(r&1). Furthermore
dim(U1 } } } U r)=n1+ } } } +nr&(r&1) if and only if there exist wj # C(B)
and a function h defined on B such that

U j=span[wjhi&1 : i=1, ..., nj], j=1, ..., r.

3. PROOF OF THEOREM 1.5

In this section we return to a consideration of the problem of uniqueness
in approximation from Un �Vm . We prove Theorem 1.5. But we will in fact
prove more than what is stated in Theorem 1.5.

We assume that Un and Vm are Haar spaces of dimension n and m,
respectively, n, m�2, in C(B). (The cases where n=1 or m=1 are covered
by Proposition 1.4.) Since B is compact and C(B) contains a Haar space of
dimension >1, it follows from Mairhuber's Theorem (see Mairhuber [9])
that B is topologically imbeddable in S 1 (the circle in R2) and if n is even,
this imbedding is into a strict subset of S 1. Our B is somewhat more
specific. As such, topological imbeddability is equivalent to the existence of
a homeomorphism (continuous one-to-one map) between the appropriate
sets. This means that we may consider B as either a finite union of closed,
disjoint intervals (none of which are singletons by our initial assumption)
in R, or as S1, in which case both n and m are odd.

We first prove strengthened versions of Theorem 1.6.

Theorem 3.1. Let B be a finite union of closed, disjoint intervals of R
(none of which are singletons). Assume Un and Vm are n- and m-dimensional
Haar spaces in C(B), respectively, n, m�2, and dim(UnVm)=n+m&1.
Then we can write Un and Vm in the form
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Un =span[w1hi&1 : i=1, ..., n] (3.1)

Vm=span[w2hi&1 : i=1, ..., m], (3.2)

where

(a) w1 , w2 , h # C(B).

(b) w1 , w2 never vanish on B.

(c) h is 1�1 on B.

Note that we are claiming that it is possible to choose h without any
singularity. This is not possible if B=S 1.

Theorem 3.2. Assume Un and Vm are n- and m-dimensional Haar spaces
in C(S1), respectively, n, m odd, n, m�2, and dim(UnVm)=n+m&1. Then
we can write Un and Vm in the form

Un =span[w1hi&1 : i=1, ..., n] (3.3)

Vm=span[w2hi&1 : i=1, ..., m], (3.4)

where

(a) w1 , w2 # C(S1).

(b) There exists one point x* # S1 such that w1(x*)=w2(x*)=0, and
w1 , w2 are strictly positive at all other points of S1.

(c) h is continuous and strictly increasing on S1"[x*], and the range
of h is all of R; i.e., limx � x*& h(x)=�, limx � x*+ h(x)=&�.

Furthermore, up to multiplication by constants and the choice of x*,
properties (a), (b), and (c) hold for all w1 , w2 and h satisfying (3.3) and
(3.4).

Remark. Our abuse of mathematical precision in (c) should be under-
stood thus. Let

S1=[e i% : % # R]

and x*=ei%*. The function h(e i%) is continuous and strictly increasing as a
function of % on (%*, %*+2?), and its range thereon is all of R.

Proof of Theorem 3.1. Based on Theorem 1.6 and the Haar space
property, we first prove some preliminary facts which will also be used in
the proof of Theorem 3.2.

Assume w1(x*)=0. Since Un is a Haar space there must exist some
u # Un for which u(x*){0. This implies, see the remark near the end of
Section 2, that (w1h i&1)(x*)=0, i=1, ..., n&1, and (w1 hn&1)(x*){0.
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Thus limx � x* |h(x*)|=�, which in turn implies that w2(x*)=0. Hence w1

and w2 share the same zero set.
Now assume w1(x*)=w1(x~ )=0 for some x*{x~ . But then (w1hi&1)(x*)

=(w1h i&1)(x~ )=0, i=1, ..., n&1, which implies that

dim Un | [x*, x~ ]=1.

This contradicts the Haar space property of Un . Thus w1 and w2 have at
most one zero, and if it exists, it is a common zero.

Let x1 , ..., xn be n distinct points in B, not including x* the zero of w1 ,
if such a point exists. Then from the Haar space property of Un ,

0{det((w1hi&1)(xj))n
i, j=1 .

We can easily calculate the above Vandermonde type determinant. It
equals

_`
n

j=1

w1(xj)& `
1� j<k�n

(h(xk)&h(xj)).

Thus h is 1�1 on B.
Now let us assume that B is a finite union of closed disjoint intervals of

R (none of which is a singleton). h is continuous on the set where w1 (or
w2) does not vanish. Thus if w1 does not vanish on B, then h is both con-
tinuous and 1�1 on B and Theorem 3.1 is proved. Assume there exists an
x* # B such that w1(x*)=w2(x*)=0. We claim that the range of h cannot
be all of R. Since h is continuous and 1�1 on B"[x*] it follows that on
each disjoint closed interval of B, the range of h is a finite closed interval,
except on the interval containing x*. On that interval the range of h will
be (&�, a], or [b, �), or (&�, a] _ [b, �) for some a<b. These inter-
vals (ranges) must all be disjoint (since h is 1�1) and thus cannot cover all
of R.

Choose d � range h and set

H(x)=
1

h(x)&d
, x # B.

From Lemma 2.7, it follows that there exist W1 , W2 such that

Un =span[W1H i&1 : i=1, ..., n]

Vm=span[W2H i&1 : i=1, ..., m].

At no point x~ # B does limx � x~ |H(x)|=�. Thus W1 and W2 do not vanish
on B and (a), (b), and (c) necessarily hold. K
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Proof of Theorem 3.2. From the proof of Theorem 3.1 we have that w1 ,
w2 # C(S 1) have at most one (common) zero on S1. If no such zero exists,
then h is 1�1 and continuous on S1. This is impossible since h(0)=h(2?).
Thus there must exist a point x* # S1 at which w1(x*)=w2(x*)=0.
However, since there is only one such point in S1, w1 , w2 cannot change
sign at this point; i.e., we may assume that both w1 and w2 are strictly
positive at all other points. As h is 1�1 and continuous on S 1"[x*] and
limx � x* |h(x*)|=�, property (c) must hold for h or &h.

The above properties hold (up to multiplication by a constant and the
choice of x*) for any w1 , w2 and h satisfying (3.3) and (3.4). This proves
Theorem 3.2. Note that we may, replacing h by

H(x)=
1

h(x)&d
,

select the point x* # S1 by an appropriate choice of d # R. K

Remark. Theorems 3.1 and 3.2 embody the cases where B is a compact
set. However, this is not the only possible setting. For example, let B=
[0, 2?) and let Un , Vm /C[0, 2?] be n- and m-dimensional Haar sub-
spaces on [0, 2?), respectively, satisfying u(0)=cu(2?) for all u # Un , and
v(0)=dv(2?) for all v # Vm , c, d # R"[0]. Assume dim(UnVm)=n+m&1.
What can we say about Un and Vm? (If c=d=1, then we refer to
Theorem 3.2.) It follows from the Haar space property that if c>0, then n
is odd, while if c<0, then n is even. From Theorem 1.6, Un and Vm have
the form

Un =span[w1hi&1 : i=1, ..., n]

Vm=span[w2hi&1 : i=1, ..., m].

From an analysis similar to that in the above proofs of Theorems 3.1 and
3.2 one can prove that w1 , w2 # C[0, 2?], w1(0)=cw1(2?), w2(0)=
dw2(2?), and there exists exactly one point x* # [0, 2?) for which w1(x*)=
w2(x*)=0 (this point may be chosen). If x* # (0, 2?), then w1 , resp. w2 ,
does not change sign at x* if c>0, resp. d>0, and does change sign at x*
if c<0, resp. d<0. h is continuous on [0, 2?)"[x*] and may be chosen to
be strictly increasing on [0, 2?)"[x*]. h also satisfies h(0)=h(2?), and the
range of h is all of R.

Remark. From Theorems 3.1 and 3.2 it easily follows that if u # Un and
v # Vm have a common zero, then it can be factored out. (In the situation
of Theorem 3.2 we can always assume that the common zero of u and v is
not the common zero of w1 and w2 as this latter zero may be freely selected.)
That is, if u(x~ )=v(x~ )=0, then h&h(x~ ) divides both u and v (and the
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numerator and denominator remain within Un and Vm , respectively). This
implies, see for example Cheney [4, Chap. 5, Sect. 2], that Un �Vm is an
existence set for C(B). By that we mean that to every f # C(B) there exists
a best approximant from Un �Vm . This should be emphasized. In the Intro-
duction (see Theorem 1.1 and Proposition 1.2) we always considered r* a
best approximant from Un�Vm . We purposely did not consider the
possibility that a best approximation exists from the (correct) closure of
Un �Vm , but not from Un �Vm itself. This cannot occur here. The above form
of Un and Vm implies that every best approximant to any f # C(B) from the
(correct) closure of Un �Vm can in fact be written as an element of Un �Vm

(as long as in the situation of Theorem 3.2 we consider a form where the
common zero of u and v is not the common zero of w1 and w2).

Proof of Theorem 1.5. We will prove that for each r* # Un �Vm , the sub-
space Un+r*Vm /C(B) is a Haar space. From Proposition 1.2 this proves
the uniqueness property of Un �Vm . We divide the proof into the two cases
delineated by Theorems 3.1 and 3.2.

We first assume that the conditions of Theorem 3.1 hold; i.e., B is not
homeomorphic to S1, and Un and Vm are as given in (3.1) and (3.2). This
is the simpler case and we essentially follow the proof given in Cheney [4,
Chap. 5, Sect. 3].

If u=w1(�k
i=1 ai hi&1), ak {0, then we say u has degree k&1 and set

�u=k&1. Thus, for example, �(w1)=0. We do the same for v # Vm . (Set
�0=&� and by convention assume that if r*=u*�v*=0, then �u*=&�
and �v*=0.)

We shall prove that with this notation, and for any r*=u*�v* # Un �Vm

in irreducible form (no common factors of h), Un+r*Vm is a Haar space
of dimension

max[n+�v*, m+�u].

The case r*=0 is trivial and as such we assume r*{0. We first prove
the dimension formula. We have

dim(Un+r*Vm)=dim(Un)+dim(r*Vm)&dim(Un & r*Vm),

where dim(Un)=n, dim(r*Vm)=m. We must thus calculate dim(Un &

r*Vm). Let u*=w1(�k
i=1 a i*hi&1), ak* {0, and v*=w2(�l

i=1 bi*hi&1),
b*l {0, with no common factors. Thus k=�u*+1 and l=�v*+1. Now

r*Vm ={u*
v*

v : v # Vm=
={w1(�k

i=1 ai*hi&1)
(�l

i=1 b i*hi&1) \ :
m

i=1

cihi&1+ : c1 , ..., cm # R= .
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As u* and v* have no common factors, in order for u*v�v*, v # Vm , to be
an element of Un it is necessary (and sufficient) that v factor in the form

v=v* \ :
s

i=1

dihi&1+
with arbitrary d1 , ..., ds # R and with certain restrictions on s. What are
these restrictions? A simple counting shows that in order for v # Vm we
need s�m&�v*, while in order that u*v�v* # Un we need s�n&�u*. Thus

dim(Un & r*Vm)=min[m&�v*, n&�u*]

and

dim(Un+r*Vm)=n+m&min[m&�v*, n&�u*]

=max[n+�v*, m+�u*].

It remains to prove that Un+r*Vm is a Haar space. This follows from
the form of Un+r*Vm . For any u # Un , v # Vm , the zero set of u+r*v is
identical to that of uv*+u*v, since we have assumed that v* does not
vanish on B. Now

uv*+u*v

=w1w2 _\ :
n

i=1

cihi&1+\ :
l

i=1

bi*h i&1++\ :
k

i=1

ai*h i&1+\ :
m

i=1

dihi&1+&
=w1w2 _ :

s

i=1

: ihi&1&
where s�max[n+�v*, m+�u*]=dim(Un+r*Vm). Since w1 , w2 do not
vanish on B, and h is 1�1 thereon, no nonzero function of the above form
has more than s&1 distinct zeros in B. Thus Un+r*Vm is a Haar space.

We now assume that the conditions of Theorem 3.2 hold; i.e., B is
homeomorphic to S1, and Un and Vm are as given in (3.3) and (3.4). This
is the more interesting case.

As previously, we assume that r*=u*�v*{0 is in irreducible form (no
common factors of h) and we will prove that Un+r*Vm is a Haar space.
Again we assume that v* does not vanish on B. Previously this was well
understood, and presented no problem. However as w1 and w2 vanish at
some point, and |h| tends to infinity at this same point, we should explain
what is meant here. We simply assume that u*�v* is well defined (and thus
finite) at each point of B. This imposes certain conditions.
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Assume w1(x*)=w2(x*)=0 and u*�v* does not vanish at x*. Let

u*=w1 \ :
k

i=1

ai*hi&1+ , ak* {0

and

v*=w2 \ :
l

i=1

bi*hi&1+ , b*l {0.

Then

lim
x � x*

u*(x)
v*(x)

= lim
x � x*

w1(x) ak*hk&1(x)
w2(x) b*l hl&1(x)

=
ak*
b*l

lim
x � x*

w1(x)
w2(x)

hk&l(x).

From (3.3) and (3.4), limx � x* w1(x) hn&1(x) and limx � x* w2(x) hm&1(x)
both exist and are non-zero. Thus

lim
x � x*

w1(x)
w2(x)

hn&m(x)

exists and is nonzero. As we assume that

lim
x � x*

u*(x)
v*(x)

exists and is nonzero, we must have k&l=n&m. If u*�v* vanishes at x*,
then we obtain k&l�n&m. In either case m+k�n+l, i.e., m+�u*�
n+�v*.

In addition,

v*=w2 \ :
l

i=1

bi*hi&1+=w2; `
l&1

j=1

(h&#j) (3.5)

for some ;{0. As the range of h is all of R, it follows that if #j is real, then
v* has a zero in B at some point x~ , other than x*, where h(x~ )=#j . For
u*�v* to be well-defined and finite at x~ it is therefore necessary that
u*(x~ )=0. But then (h&#j) is a common factor of u* and v* contradicting
our assumption that they have no common factors. (We also contradict
our assumption that v* does not vanish on B.) This implies that each #j in
(3.5) is in C"R. As the bi* are real, these nonreal roots of v* come in
complex conjugate pairs. Thus

v*=w2 ; `
s

j=1

(h&$ j)(h&$� j)
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for $j � R. Therefore l&1=2s, i.e., �v*=l&1=2s (is necessarily even)
and hence n+�v* is odd.

With the above facts we can now parallel the previous proof and show
that Un+r*Vm is a Haar space of dimension n+�v*. K

4. TRIGONOMETRIC POLYNOMIALS

Let

Tn=span[1, sin x, cos x, ..., sin nx, cos nx].

Tn is a periodic Haar space of dimension 2n+1 on [0, 2?). It is the
prototype of a Haar space on B, where B is homeomorphic to S1. Tn

(together with Tm) satisfy the assumptions of Theorem 3.2. If w(x)=
1&cos x and h(x)=sin x�(1&cos x), then it may be easily calculated that

Tn=span[wnhi&1 : i=1, ..., 2n+1]. (4.1)

This is a non-standard (but useful) basis for Tn . It may also be rewritten as
follows. Recall that 1&cos x=2 sin2(x�2) and sin x=2 sin(x�2) cos(x�2).
Thus

h(x)=
sin x

1&cos x
=

cos(x�2)
sin(x�2)

and up to a constant

wnhi&1=(sin(x�2))2n&i+1 (cos(x�2)) i&1, i=1, ..., 2n+1,

i.e.,

Tn=span[(sin(x�2))2n&i (cos(x�2))i : i=0, 1, ..., 2n].

For t # Tp"Tp&1 , let �� t=2p. (Set �� 0=&�, �� 1=0.). This differs from
the �t as defined in the proof of Theorem 1.5, and it is this difference which
we now discuss. In Lorentz et al. [8, p. 217] it is proven that for
r*=u*�v* # Tn �Tm

dim(Tn+r*Tm)=max[2n+1+�� v*, 2m+1+�� u*].

On the other hand we have proved that

dim(Tn+r*Tm)=2n+1+�v*,
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(and 2n+1+�v*�2m+1+�u*). It must be that these two quantities are
the same. But why?

One explanation is the following. Assume that we have chosen the basis

Tn=span[wnhi&1 : i=1, ..., 2n+1],

where the w and h are as in (4.1). We further assume, without great loss
of generality, that r*(0){0 (here x*=0).

Let

u*=wn \ :
k

i=1

ai*h i&1+ , ak* {0

v*=wm \ :
l

i=1

bi*hi&1+ , b*l {0.

It was shown in the proof of Theorem 1.5 that k&l=2n&2m, and
�v*=l&1=2s. Thus �u*=k&1=2q and 2n+1+�v*=2m+1+�u*. (If
r*(0)=0, then we obtain 2n+1+�v*�2m+1+�u*.)

Every t # Tp may be written in the form

t=w p :
2p+1

i=1

ci*hi&1. (4.2)

Moreover since t # Tn for every n>p, it may also be written in the form

t=wn :
2n+1

i=1

c*i, nh i&1, (4.3)

for some unique choice of c*i, n . How are the forms (4.2) and (4.3) related?
It is easily checked that

1=
w
2

(1+h2).

Thus from the uniqueness of the coefficients in (4.2) and (4.3) we must
have (as a function of h)

:
2n+1

i=1

c*i, n hi&1=\ :
2p+1

i=1

ci*h i&1+\1+h2

2 +
n& p

for each n>p. This is how (4.2) and (4.3) are related.
We now return to u* and v*. By assumption u* and v* have no common

factors of h. From the above analysis it therefore follows that either �u*=
�� u* and �v*��� v*, or �u*��� u* and �v*=�� v*. (The only other option is

52 ALLAN PINKUS



that �u*>�� u* and �v*>�� v* in which case both u* and v* contain com-
mon positive powers of (1+h2).) Furthermore we recall that 2n+1+�v*
=2m+1+�u*. Thus

max[2n+1+�� v*, 2m+1+�� u*]=2n+1+�v*.

If r*(0)=0, then the same final result holds.

Remark. The space

Cn=span[1, cos x, ..., cos nx]

has the form

Cn=span[wh i&1 : i=1, ..., n+1],

where w=1 and h=cos x. It is a Haar space of dimension n+1 on [0, ?].
The space

Sn=span[sin x, ..., sin nx]

also has the form

Sn=span[whi&1 : i=1, ..., n].

Here w=sin x and h=cos x. It is a Haar space of dimension n on (0, ?).
Note that since Cn and Sm share a common h we have dim(CnSm)=n+m.
It follows (most easily using the above bases) that CnSm=Sn+m . Similarly
CnCm=Cn+m , while Sn Sm=(sin x) Sn+m&1 ; i.e.,

Sn Sm=span[sin x } sin kx : k=1, ..., n+m&1].
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