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This paper presents analogs, for certain mixed boundary-value problems,
of the spectral and oscillatory propertics exhibited by classical Sturm—Liouville
systems. These mixed boundary-value problems have Green’s functions which
are sign consistent for all even and/or odd orders.

|. INTRODUCTION

This paper presents analogs, for certain mixed boundary-value problems,
of the spectral and oscillatory properties exhibited by classical Sturm-Liouville
systems. 'I'he usual analysis of the Sturm-Liouville eigenvalue problem is
based on special ad hoc methods. In contrast, Gantmacher and Krein [3; see
also references therein] showed that these fundamental spectral properties
are direct consequences of the total positivity of the Green’s function for the
problem. They further showed that the total positivity of the Green’s function
is itself the mathematical expression of certain basic physical properties of
vibrating mechanical systems, which are typically modeled by Sturm-Liouville
systems. Subsequent to the work in [3], extensive studies have revealed several
important classes of boundary-value problems with separated boundary condi-
tions whose Green’s functions are totally positive or sign regular. As in the
classical Sturm-ILiouville problem, these boundary-value problems exhibit a
rich oscillation theory. Some principal contributors in this area are Gantmacher
and Krein [3], Karlin [6-8], Karon [12], Krein [13], and Krein and Finkelstein
[14].
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Karlin and Lee [9] studied the sign-consistency properties for periodic
boundary-value problems. These results were later used by Lee [15, 16] to
develop the spectral properties of these periodic problems. The analysis in
[15, 16] extends easily to the case of antiperiodic boundary-value problems.
Recently, Karlin and Pinkus [10] (see also Melkman [18]) showed that an
important class of mixed boundary-value problems has Green’s functions
which are sign consistent for all even and/or odd orders. Special examples
of this correspond to the above-mentioned periodic and antiperiodic boundary-
value problems. In this paper, the spectral properties and oscillation theorems
associated with the mixed boundary-value problems are developed.

2. TERMINOLOGY AND PRELIMINARY RESULTS

For given w{x) > 0, x € [0, 1], and w; € C*[0, 1], 7 = 1,..., n, define

L=D, D, 2.1)

where

(D) = L [H0] G

dx Laoy(x)

Thus L is a differential form of Pélya type W (disconjugate) on [0, 1]. The
differential equation Lu = 0 has a basis of solutions

(%) = (),
) = (o) [ el dty,

aln
0

Wz 121 2
un(v) - wl(x)J w2(t1)f wa(tz) J wn(’n—l) dtn—l dtl ’

0 0
which constitute an extended complete T'chebycheff (ECT) system on [0, 1].
(see [11]). Evidently,

D71y (0) = w,(0)5,,;, 5,7 = L.,mn

where DV =D, - D,, j=1l,..,n, and D° = I, the identity operator. The
function

0’ \\/5,

¢n A;g S - T ty fp_a
¢ )fwl(x) _L wy(t) f wy(ts) [: wW,(t,q) dta_y = dty, £ < w,

\
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with 0 < &, € =0 [ 1s the fundamental solution for Lu == 0 determined by
zero initial data at zero, and the characteristic jump discontinuity

Dl (§ 05 &) - DT (61 £) - (€,

which corresponds to the requirement that the ordinary (7 -- 1)st derivative
of ¢.(x; €) exhibit a jump of 1/py(€) at & == &, where L, == py(a)(d"/dx™)

Let 4 be an m = » matrix and r - m, n. Then

PR I
| ( .1 ’ ':’
“hoees Iy
denotes the determinant of the matrix obtained from 4 by deleting the rows
and columns except for those labeled 7, ,..., 7, and j, ,...,j, , respectively. The
matrix .4 is said to be sign consistent of order v (SC)) if

(L yeeny L
e AT 0
G
for all 1 =/ < - <4, = m and | = j <~ =0 j, <In, where e, = 41

or ——1, dependent only upon r.
The following notation will be used. Given a matrix

C - A"LB“H'»'_'U

with both .4 and B n ~ n matrices, define

P W n.
CU el (2.4)
by
e fag(—1)y ", L=l Lo m,
A P o 1y ny joo=n- 1., 2n,
where p = Qor |.
The matrix C == 4, B is said to satisfy Postulate | with respect to p if

(i) 4 and B are n x n matrices, and
(i1) C'* has full rank and is 5C,, .

Let K(x, s) be a real-valued kernel defined on [ =« ], where [is a real interval,
and let

. B - . o e Ry - - y o -1
oo dxex s (ay X, vy <D T e e Lt
The function

. S X e X - o
I\[,.](X‘ S) B K ‘ ! ¢ ) det i ]\(‘\‘/ ' s]’)“w’,i—rl

VS] e 8,
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defined on [, x [, is called the compound kernel of order r induced by K. The
kernel K(x, s) is said to be SC, if ¢, Kp,1(x,s) = Oforx,s € J,, where e, == 41,
dependent only on 7.

Let f, ,..., f, be defined on J. Then

(fy A s A FXX) = det ) fi(n)lT g

for x € J,. Under suitably mild measurability and integrability assumptions,
in particular when f ,..., f, are bounded and continuous on ] and K(x,s)
is bounded and continuous on [ > ], the basic composition formula {7, p. 17]
vields

Kia(fi A A ) = Kfy a oo A KF, (2.5)

where

(KA = | Ko 5)f5) ds
(King)o) = [ K, 5) (s) ds,

for ¢ defined on J, and ds = ds; -~ ds, .

A family of real, continuous functions {f; ,..., f,} is a T'chebycheft (T) system
on Jif fi A -+ A f, maintains a fixed strict sign on [, , or equivalently, never
vanishes on J,. Linear combinations of fi,...,f, are called f-polynomials.
If f is a real continuous function on J, an isolated zero x, of f in the interior
of ] is called a nodal zero or node if f changes sign at x, . All other zeros, including
zeros at the endpoints of J, are called nonnodal zeros. We shall use this concept
for J = (0, 1), the open interval, and thus endpoints will not in fact concern
us. Let Z(f) denote the number of zeros of f in J where nonnodal zeros in
the interior of ] are counted twice and all other zeros are counted once. Let
N(f) denote the number of (distinct) nodes of fin J. If {f, ,..., f,} is a T-svstem
on J, then any f-polynomial satisfies Z(f) < » — 1.

The following version of Jentzsch’s theorem will be used. We are concerned
with the eigenvalue problem

Bx) = | K 9)$(5) i) (2.6)
for the kernel K(x, 5) where du(s) == z(s) ds with w(s) > 0 and continuous on .

THeorREM A, Assume the kernel K(x, s) in (2.6) is nonnegative and continuous
on | | and that K(x,s) > O for all (resp., almost all) points (x,s) in some
neighborhood of the diagonal {(x, x): x € J}. Then the kernel K(x, s} has a positive
eigenvalue \, which is a simple root of the Fredholm determinant and which Is
strictly smaller in modulus than all other eigenvalues of K(x,s). Furthermore,
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the corresponding eigenfunction may be chosen positive (resp., positive almost
everywhere) on J.

Remark 2.1, Jentzsch’s [4] original proof may be modified in a straight-
forward manner to obtain Theorem A. The reasoning in [1] is, however, simpler.

Remark 2.2.  Jentzsch’s theorem (Theorem A) generalizes directly to
kernels defined on the simplices J,, r = 2, 3,....

There is a fundamental relation, Schur’s theorem (Theorem B below) (see
[21] or [3]), between the eigenvalue problem (2.6) for the kernel K(x, 5) and the
corresponding eigenvalue problem

P(x) = A ! Ki(x, 8) D(s) du(s) (2.7)

for the rth compound kernel K, (x,s), where du(s) == du(s;) -~ du(s,).

TueOREM B. Let K(x,s) be continuous on | > ]. Let Ay, Ay, A, ,... be the set

( possibly empty) of eigenvalues of K(x, s) where each eigenvalue is listed according
to its multiplicity as a root of ID(X), the Fredholm determinant of K(x, s). Then

/\il/\iz'“/\i,rv S A P

are the totality of eigenvalues of K, \(x,s), and each such eigenvalue automatically

occurs to its multiplicity as a root of Dp(7), the Fredholm determinant of Kiq(x, s).

Remark 2.3. 'The assumption that K(x, s) is continuous on | [ can be
substantially relaxed; however, the result as stated is adequate for our purposes.

3. Si16N-CONSISTENT GREEN'S FUNCTIONS

Karlin and Pinkus [10] consider an important class of boundary-value
problems with mixed boundary conditions. Examples of these boundary condi-
tions include the separated boundary conditions commonly used in Sturm-
Liouville problems as well as periodic and antiperiodic boundary conditions.
In this section we summarize the sign-consistency results of [10] for certain
Green’s functions and present some refinements necessary for our analysis
of the associated cigenvalue problem. Assume henceforth that # = .

Consider the differential operator (L, #) specified by a differential form £,
of Pélya type W (see (2.1)) and a set of mixed boundary conditions

Udw) =Y auD 'u(0) Y 0D (1) 0, i 1,200 (3)
J=1

i1
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Subsequently, 4 will denote either the set of boundary conditions (3.1), or
the set of functions in C7[0, 1] satisfying these conditions. It is a well-known
fact (see, e.g., [2, Chap. 7] or [20, Chap. 1]) that the differential operator has a
Green’s function G(x, s) iff

T

A gl JOVRNR
4 = aetl U

\I 0N
U )i =1 7 Uy

where {u,}7 | are as given in (2.2). If 4 54 0, then
1 i‘: ‘H L’yi(uj)\‘;"l,jzl ‘ ! L‘Ti[qsn('; S)]M?zl ";
G(x, 5) = i det |< ————————— - ; (3.2)
”‘ ul(x)"") un(x) qsn(x; S) !(n+1)><(n+])
and an application of Sylvester’s determinant identity (cf. {7, p. 3]) to (3.2)
yields

Al Uiy iz \l i U5 s)Mli0= |
; 1 (3.3)

() % (nt)

Gralx, s) — QlT det

[ a5 si)ll7 521

|| ai(e)iE2h

forx,se J., J =[0,1].

Let C = || 4, B} be the n X 2n matrix defined by adjoining 4 to B where
A =lla;i?;_, and B = | b;|I7;_; are from (3.1) and define C®, CYV as in
Section 2. In addition, given indices | < j; < - < j, <nand1 < k < -+ <
ky,_, < nlet M, denote the number of indices in the set {7, ,..., j; ) Ry ey Ru_s}
which are less than or equal to p. The next two results are reformulations of
Theorems 2 and 3 in [10] and follow from the proofs therein.

ProrosITION 3.1. A necessary comdition for the differential operator (L, %)
to have a Green's function is that there exist an integer s, 0 < s < n, and indices
l <y < <jo<n, 1 < ky < < by, < n, such that

o (L ny o,
¢ (]1 s Jos 2 A1 — kR, oy, 2n 41— kl) =0 3.4

and M, = n, p = 1,..., n. Furthermore, these conditions are also sufficient provided
thar C'9 15 SC,, .

The main result in [10] necessary for this work is the following theorem.

Tueorem 3.1, If the Green's function G(x,5) for (L, #) exists and C'P is
8C,, then G(x,s) is SCyy_, for 1 ==1,2,.... Furthermore Gpy_,\(%X,s) = 0
1ff the following holds: There exists at least one set of indices 1 < j;, << -+ <j, < n,
| < ky < < k,_y < n such that

C(p)(l, n):,,flo

Frvemdoy 2m AU k2 1 — Ky
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and

(a) if min{s, n--si - 21— p, then

M, - Q2l—-p) w20 p 1, n,
while
(b) if min{s, n - s << 2/ — p, then

N <8, < ‘\.uﬁn R o= ],,2] /’9

[ “

wherever these inequalities are meaningful.

Remark 3.1. Kalafaty [5] obtains results bearing on Theorem 3.1. It is
essentially shown in [35] that if €™ is SC,, then G(x, s) is SCyy_,,, { == [, 2,..;
however, the precise conditions determining when Gy (%, s) # 0 are not
treated.

The next result is a consequence of Proposition 3.1 and Theorem 3.1.

Proposition 3.2, Assume (L, #) has a Green’s function G(x,s), C js
SC,, , and

e 1 = ”) 0, (3.9)

Jr sy Jas 20 b — Ry, 20 - 1 — Ry

-8

for some | <ls <l n— 1, and some choice |j}y, (kR)7° as above. Then

G[ka](xy X) # 0.

Proof. Since the Green’s function exists, (3.4) 1s valid for some 0 = ¢ - n
and M, = p for p = 1,..., n, by Proposition 3.1. If s :4 0 or n, then the result
follows from Theorem 3.1(a) and (b). Assume this is not the case. Thus (3.4)
is valid only for s == 0 or ¢ == n. Assume its validity for s == Q. Since (3.5)
must hold for some 1 =0 s <0 n — 1, it is easily shown that (3.5) is maintained
for s = 1. Appealing again to Theorem 3.1, the result follows.

Remark 3.2. Assume that the Green’s function G(x,s) exists and O
is SC, . By Theorem 3.1, o,_, Gy (X, 8) = 0, where ay_, = +1, inde-
pendent of x and s. In fact, from [10, Remark 3], we see that o, ,, is also
independent of /. Explicitly,

Ty = (—1)2na=12 6 (C0) sgn(4),

where 0,(C?) is the constant sign of the # X n minors of C', If C® is 5C,, ,
then this further reduces to o,, = -+1. If both C'® and CV are SC,, , then

Top_p == (__ l)np o.n(C(I))) O-n(C(O)).
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4. EXISTENCE OF LEIGENVALUES

Consider the eigenvalue problem
(1ewyq) Lu == Au, 0<x<1, ue, 4.1)

where @, ,(x) ¥ 0 and is continuous on [0, 1], and # is specified as in (3.1).
Assume (L, %) has a Green’s function G{x, s). Then (4.1) is equivalent to the
eigenvalue problem

u(x) == A ‘01 G(x, ) u(s) w, y(s) ds. 4.2)

The boundary conditions # whose matrix 1s denoted by C = |4, B,
as in Section 3, may be equivalent to a set of initial conditions. In this case
the Green’s function always exists, is a Volterra kernel, and hence has no
eigenvalues. This situation is exceptional for boundary conditions satisfying
Postulate J: 1f the Green’s function for (L, #) exists and the boundary conditions
satisfy Postulate J for p = 0 or [, then G(, s) has an infinite number of eigen-
values provided & is not equivalent to a set of initial conditions. Thus we shall
exclude below the case when # is equivalent to a set of initial conditions.
The following easily proved result is pertinent.

ProrosiTiON 4.1. A set of boundary conditions # with matrix C = | A, Bj|
of rank n is equivalent to a set of initial conditions iff A = Q0 or B = 0.

This result should be considered with Proposition 3.2.
The main result of this section follows.

TrroREM 4.1.  _dssume that the boundary conditions % saisfv Postulate |
Jor some p, are not equivalent to a set of initial conditions, and that (L, #) has a
Green’s function G(x,s). Then the eigenvalue problem (4.1), equivalently (4.2),
has an infinite number of eigenvalues Ay, Ay, Ay ,.... Furthermore, if || <<
[A ] <Ay ] << oo, where each eigenvalue is listed according to its multiplicity
as a root of the Fredholm determinant of the kernel G(x, s), then the following holds.

I. If C© 45 8C,, then
D 0< X! <M< NI < <A< R | <
(2) Aty >0,1=0,1,2,..
(3) also, Ay is not real iff Mgy = Aoy .

II. IfCWisSC, , then

(1) 0 <oy <HA =X ] <o <Ay | <Ay <oy where
&, = sgn G(x, 5) w,,.4(s);

@) Aty >0, 1=1,2,.

(3) also, Ay, is not real iff Ay | = Ay .
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Proof. Assume C? is 5C, and w,,; > 0. Thus o4_,Gp_,4(x,8) 7 0
for all (x,8)€ Jo,.p X Jorop, J = [0, 1], for some o,,_, = -I-1 independent
of x and s. Since # is not equivalent to a set of initial conditions, the hypothesis
of Proposition 3.2 is easily seen to hold and so ¢, ,Gpy (%, %) > 0.

Jentzsch’s theorem (Theorem A) implies that 6,,_,Gy;_ (X, s) has a positive
simple eigenvalue, strictly smaller in modulus than all other eigenvalues of
91— »Gla1—p1(X, 8). Schur’s theorem (Theorem B) then implies that G(x,s)
has at least (2! — p) eigenvalues, [ == [, 2,... . Thus G(x, s) has infinitely many
eigenvalues and again by Theorems A and B

0 < oMo Ao 1 < AQAL T Ao peedarp s

for [/ = 1,2,.... Thus, Ay, < |Ay_p! and Ay A g > 0, where we
have used the fact that o4,_,05,_,.5 == | (see Remark 3.2). Note that for p = 0,
6y = +1 and thus A\, > 0. For p = 1, o34y > 0. Thus both (1) and (2)
of Cases I and IT obtain. The fact that complex eigenvalues occur in conjugate
pairs follows from the fact that the Fredholm determinant of G(x, s),

poy 1 Y S Gt x) it

r=1

r!

is an entire function with real coefiicients. The proof is complete. (When
w,,; < 0 replace A by —A and apply the results just proved.)
The following examples illustrate the breadth of applicability of Theorem 4.1.

Examprrs. (a) Periodic boundary conditions. For the periodic boundary
conditions

Diu(0) = Diu(l), J=01,.,n—1,

-l(_1)1L+—1)+‘1 (_“1)‘

(4_1)11,4 pi2 (__1)

(_l)p I _l) “nxon
It is easily verified that CV is SC, and of full rank while C'® is not. Periodic
boundary conditions are not equivalent to initial conditions, and as shown in
[9, 10], (L, #) has a Green’s function iff [T;_; (w,(1) — w,(0)) # 0. With this
assumption, Theorem 4.1, Case 11, is applicable.

|
i
1 I
i i
! |
i

1 !
l :
| z

|
Cn "
i

(b) Antiperiodic boundary conditions. For the antiperiodic boundary
conditions

Du0) = —Diu(l),  j=0,1..,n—1,

C® is SC, and of rank »n while C? is not. Furthermore, it is easily shown
that the assumptions of Theorem 4.1 hold (see [9, 10]) so that Case I is applicable.
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(c) Separated boundary conditions. Let C =| A, B|' specify separated
boundary conditions. Then C® has the form

j+n+p A . ;o .
) aﬁ(—l) , 7= 1,0, 0, j=1,.,n
Cij §.2m i1 t =7 4 Lu,n j=n-+1,.2n
.0, otherwise.

A simple linear-dependence argument implies that the only possible nonzero
subdeterminants of C® are

1 n
(r} ’ ’
¢ (]1 yerJra 20 =1 — k20 1 — kl)

=y e d (e R ()

where 1 s;]'1 < <jT <nl< kl << kn—r <n, and 4 = H aij("l)j ern ’
B = | b li(a_)xn - Clearly C*? is SC,, for both p = 0 and p = 1 and of full
rank iff 4 is SC, of full rank and B is SC,_, of full rank. Furthermore, the
separated boundary conditions are not equivalent to initial conditions iff
0<r<n

Separated boundary conditions satisfying these stipulations occur frequently
in mechanical oscillation problems and Sturm-Liouville problems (see [3, 7]).
Assuming that 4 is SC, and B is SC,,_, it follows from Proposition 3.1 that
(L, #) has a Green’s function iff there exist indices 1 < j, < - <j, < n
and 1 < & << -+ << k,_, < n such that

4 (f1 ]r) =0, B (;ej knj) #0,

and M, = u, p = 1,..., n. If these conditions are met both Case I and Case II
of Theorem 4.1 apply. Thus,

0 < oAy <oy <oy < o

where o, = sgn G(x, 5) w0, ((s).

(d) Consider the eigenvalue problem

—e* (% e (;; e’)) u = Au,

4.3
w(0) = u(l),  &/(0) = u'(1). 43)

503/27/2-4
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The differential equation simplifies to —" -i- 4 = Au while

Ctm G Y 0 0 L
' —le ’

D =y 1

C 15 not SC, but C is. Furthermore the Green's function exists. The eigen-
values for (4.3) are

L1 —4m2 1 da? | = dend, | - Ao,

Thus equality can hold in A,_, +Z Ay, for each / in Theorem 4.1, Case 11
Replacing the periodic boundary conditions by antiperiodic boundary conditions
provides a similar example for Case 1.

(¢) Consider the eigenvalue problem

"

—u" . Au,

(4.4)
() Fu(l) 0, w(0) Fu(l) =0,
Here
L0 (=17 0

15
(ry — I
€U =lo =iy 1 0"

C® s SC,, while C% is not. The characteristic equation determining the
eigenvalues of (4.4) is

1 i-cos Al — Al/2gin AY/2 =2 (). (45)
Hence
)\1/2 /\\1/2 )\1/2
e AR V] ..
cos 3 (cos 3 Al/2 gin 5 ) == (),
AL/2 AL/2
COs —5— - -0 or AL/2 tan == 1.

The first equation vields eigenvalues
v, = (2n - 1)2 72 n==01,2,..,
with eigenfunctions,
(&) = —(2n + D)m cos(2n -+ 1) mx - sin(2n - 1) 7. (4.6)

The second equation, A'/2 tan(A1/2/2) = 1, has only real zeros because it is the
characteristic equation for the self-adjoint eigenvalue problem on [0, }]
_(P” = /\‘P)
?(0) =0,
?'(H) +o(3) = 0.
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The zeros juy, py , fo 5o of A2 tan(A1/22) == 1 satisfy

2nm < () << (20 -+ D), n=2012,..,
0 < (p)t* — 20w — 0 as nh oo,

and corresponding eigenfunctions are
t,(¥) = ()2 cos(pey)! By -3 sin{u, )t /2. (4.7)
The totality of eigenvalues of (4.4) is
0 <y <wp <pg vy <0 Dpg <y <

which shows that equality need never hold for Theorem 4.1, Case I, even
when only C is SC, .

Under the hypotheses of Theorem 4.1 stronger results are obtained when
both C® and CW are SC,,, as is clear from Example (c) (separated boundary
conditions). We now prove the rather surprising result that if both C® and
CW are SC,, of rank #, then the boundary conditions are, in fact, equivalent
to separated boundary conditions.

ProposrTion 4.2, If the matrix C is of rank n and both C© and CV are
SC,,, then the boundarv conditions % are equivalent to separated boundary
conditions.

Remark 4.1. By the term ‘“‘equivalent to separated boundary conditions”
we mean that the boundary conditions may be rewritten as separated boundary
conditions. For example, the boundary conditions #(0) == 0, #(0) — u(1) == 0
can be rewritten as #(0) = 0, u(1) = 0.

We prove Proposition 4.2 via two lemmas.

Lemma 4.1, If the conditions of Proposition 4.2 hold, then there is exactly
one s, 0 < s < n, such that

~ ‘, ceny 1] ,
C (]1 ""’js , k] . k,,,s) 7 0 (48)

-

for some choices of indices {j};_y and {k}[ 7 satisfying 1 <Ij < - <j, <
n <<k < - <<k, <2n

Proof. Since C has rank n there exist at least onc 5, 0 <{s <In, and
corresponding indices for which (4.8) holds.

Assume that there exist an s’ > s and indices {735, {k;/)/=5" ordered as
above such that

1 n \
ct.) .77, , = 0, 4.9
(]1 oo Jur s R e ,Zﬂ." (4.9)
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Let €, denote the Ith column vector of the matrix C, 7 == 1,.., 2n. Then (4.8)
and (4.9) imply

~ ,,m/ i 1 1 . « N
(O e span{Cy ey €5, Cy vy Cp

i

Since s° s, and {C; 3%, s a linearly independent set, there exists an
T =

my € {1,..., &'} such that

U e y
C»,-m“ ¢ span{C; ,..., C;
and, hence, the matrix with column vectors

18 f§C 8
{Cijia, € {Crbitini,

Jhw 0
my

must be nonsingular for some i, € {l,...,n — s}. Ordering and renumbering,
it follows that there exist indices

Do fy o ey m <Ry < < Ry 2n

such that

!
C ’ ’ 7 0. .
(«]Al ,”'sjs‘vl ’ El yreey knAs-l') 0 (4 10)

Then for /, == 3n -— | —ky_oqy.;y 1 == l,...,n -— s, and [, =3n-+1—hk,  ;,
i=1,..,n--5—1, we have

1 n 1 "
C(l) . 3 ) y . "‘l s C(O) ] » ) y ’
(\]1 7-.-,].\',[1)-.., Ile .s') ( ) (]1,_,,’]5,11 gurry lnAS)
i n 1 n .
C(l) . 4 i ) " = (—1 si1 C(o) . s ) ’ ! ’
(]1 e Jatts 11 et ln—uﬁ"l’ ( ) (j] vy Js41 s ll yerny lvnv-s——l.’

with all determinants nonzero by (4.8) and (4.10). 'This shows that C*® and C*V
cannot both be SC,, and proves the lemma.

LimmMa 4.2, If (4.8) holds for exactly one s, 0 -7 s < n, then the boundary
conditions # determined by C - A, Bl are equivalent to separated boundary
conditions.

Proof. Let {j}i_, and {k}}7{ be ordered indices such that (4.8) holds.
Since the interchange of rows and the addition of linear combinations of one
row to another in C in no way affect the boundary conditions %, we may assume
that the matrix which gives rise to the determinant in (4.8) is the identity,
fe, C; ==e¢ (i==1..95) and €, ==e.; (i=1T..n —5), where ¢; is the

V.
i
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standard ith coordinate basis vector in n-space. Let j&{j, ,..,/,), 1 <<j << n
Then

& n—3s

C; =3 oGy, - 2 BiCi,
i=1

i=1

and if B; + O for some 7, the uniqueness of s is contradicted. Thus, 8; = 0,
1= 1,...,n—3s,

8 8
C; = Z a,Cy = Z e, ,
i-1 i=1

and hence ¢;; = 0 for [ = s - 1,..., n. Similarly if k¢ {k ..., ko, n + 1 <
k < 2n, the first s components of C), are zero. Hence the boundary conditions %
are equivalent to boundary conditions specified by a matrix of the form

0

1\
with 4, s X n of rank s and B; (n — s} X n of rank n — s; i.e., # is equivalent
to separated boundary conditions.

Remark 4.2. Assume C =| 4, B|| is such that C% is SC,. Let C =
| —A4, B and C =|| 4, —B/||. Then C@ and C are SC, where P # q,
p, € {0, 1}. Furthermore, if C = || I, B]|, then C® is SC, iff (—1)”B is totally
positive, i.e.,, SC, forall k = l,..,nwithe, =1, k=1, ,n. If C = A4,1|,
set 4 =| dﬁ I, @i == ag(—1)H. Then C is SC,, iff (—1)74 is totally positive.

| B,

5. OscCILLATION PROPERTIES OF EIGENFUNCTIONS

Throughout this section, we shall assume that the hypotheses of Theorem 4.1
hold for the eigenvalue problem (4.1). Let

Aoy ALy Ag e
be the eigenvalues of (4.1) enumerated as in Theorem 4.1, and let
Uy, Uy, Uy .. 5.1

be a corresponding sequence of independent eigenfunctions and/or generalized
eigenfunctions. Suppose A; is a simple eigenvalue and #; is a corresponding
eigenfunction. If A, is real, choose u; real. If A, is nonreal, then A, is also a simple
eigenvalue, and #; is chosen for its eigenfunction. If }; is not simple, it must
be real with multiplicity 2, say A, = A,,, . Either #; and u,,, are both eigen-
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functions (chosen real) for A, == A, or, if a generalized eigenfunction occurs,
#; and #, | may be chosen real satisfving

~1
A ‘ G(x, 8) wy(s) 20, 4 (s) ds = w,{x),
}

) (5.2)
MG, ) () e, () ds — wfs) ()
v
(see [15, p. 597, Eq. (1.9)]). Throughout this section the sequence (5.1) is
assumed to satisfy the preceding conditions.

THEOREM 5.1. Let the hypotheses of Theorem 4.1 hold. Then there is a (complex)
constant &.,_, such that

Go g Aty Ao Ay, ) - 0

on J5 ., J°==(0,1). Furthermore, if Xy; , is nonreal, let vy;_, = Re (uy;_,)
and vy;_,.q = Im (uy;_,), while if A, is real, let v, = u, . Then

for o
10 Ty e, Uarpaf

is a 'T-system on (0, 1) satisfying the boundarv conditions 4.

Proof. By Schur’s theorem, the eigenvalue of Gy ,i(x,s) of minimum
modulus is Agd; -+ Ay, ;. By Jentzsch’s theorem this eigenvalue is real,
simple, of sign o,,_,, and has a real eigenfunction which does not vanish on
Jo_p - Since

.
AAr Ay 1 Grar ottto A 0 Aty ) BE UG A A Uy,

where Giy, ) denotes the integral operator with kernel Giy,_,i(%,s), and
Ug A AUy, = 0 because uy,., 4y, , are linearly independent, it
follows that

Gor g AUy A Nty ) 22 0 (5.3)

on J3,_, for some constant &,, ,. A short calculation using (5.3) yields
Gora(Vo A Ty A " ATy ) = 0,

where &;, , == (—20)" &4, , and r is the number of pairs of complex conjugate
eigenvalues in {A,,..., Ay, _,_,}. Consequently {vy, vy ,..., vy, is a T-system
and the theorem is proved.

The real sequence vy, 2, 9,,... (see Theorem 5.1) of real and imaginary
parts of the eigenfunctions uy, #, . 4, ,... belonging to the Green’s function
G(x, 5s) exhibits oscillation properties analogous to those of the classical Sturm-~
Liouville eigenvalue problem. These properties emanate from the fact that
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{z;357 " is a T-system on (0, 1) for I = 1, 2,..., and from certain orthogonality
properties of 7y, 2y ,... .

Let G*(x,s) = G(s, x) be the Green’s function for the adjoint problem
to (4.1). Then G*(x,s) has precisely the same eigenvalues (to multiplicity)
as G(x, s), and the generalized eigenfunctions of G*(x, s), say {u,*}y, which
we choose according to the same conventions set forth at the beginning of this
section for {u;}y, must satisfy

"1 u(s) U7 (5) wpag() ds =0 if N o= A, (5.4)
Y0

Let {2,%}7 be obtained from {u;*}y just as {z;}; was obtained from {u,}y". Since
G*(, s5) clearly has the same sign-consistency properties as G(x, ), the argument
of Theorem 5.1 establishes that {¢y*, v,*,..., v5_, 4}, [ = 1, 2,..., is a T-system
on (0, 1) satisfying the boundary conditions adjoint to #. Also, (5.4) and the
fact that nonreal eigenvalues occur in conjugate pairs yield the orthogonality
relation:

If " )‘l ‘l = i)‘7lz H then

1
[ 25) o (©) wals) ds = 0, (5.5)
0

where v,(s) [resp., v,,*(s)] is the real or the imaginary part of an eigenfunction
of G(x, 5) [resp., G*(~, 5)] belonging to A, [resp., A,].

THeOREM 5.2. Assume that the hypotheses of Theorem 4.1 hold. Then the
Sfollowing obtain.
Case I. If C® 5 SC,, then

(a) for each 0 <\ k < 21 — 1 the zeros of

21-1

v =Y av, (Z a? > 0,q real)
=k

satisfy
2[R[2] < N(v) < Z(v) < 20— 1;

consequently, vy,_o and vy 5 have either (21 — 2) or (21 — 1) nodes in (0, 1), and
no other zeros, and

(b) the nodes of vy,_, and vy,_y strictly interlace.
Case 11. If CW 45 SC,, , then
(a) for each 0 < k << 2! the zeros of

v o= i a;v; (Z a? = 0, a; real)
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satisfy

2[(k — 1)/2] — | < Nz} =0 Z(2) <L 2
consequently vy, and vy, have ether (21 -~ 1) or 2 nodes in (0, 1) and no other
zeros. Also vy has no zeros in (0, 1), and

(b) the nodes of vy;_y and vy, strictly interlace.

Remark 5.1. In case G(x,5) has real spectrum, in particular if the eigen-
value problem is self-adjoint, ©; = u; for j = 0, 1, 2,... and Theorem 5.2
describes the oscillation propertics of the eigenfunctions of G(x,s). See also

Theorem 5.3 below.
Proof. We shall prove only Case I. The proof of Case 1I follows in an

entirely analogous manner. Recall that N and Z count zeros in (0, 1).

The inequality Z(z) < 2 — 1 holds because {vy, 74 ,..., 51} is a T-system
(Theorem 5.1) on (0, 1). The inequality for N(z) follows from the orthogonality
relation (5.5): Suppose that v = Zf:f a;v; (3 a? > 0, a; real) has nodes

0 < & < <Cé, <1, r = N(v).

1. Ifrisodd, v = 2m — 1 say, form a nontrivial v*-polynomial

2m—1

oW = L b

which has nodal zeros (sign changes) at &, ,..., &,,_; . Since {v,*,..., v, ;) is
a T'-system, v* has no other zeros in (0, 1). By construction

fwwmmmww¢u

However, if & > r =2m — 1, then since | Ay, ;| << |2y, | (Theorem 4.1)
the orthogonality conditions (5.5) imply that the above integral is zero, a con-
tradiction. Thus, 2 < r = N(v).

2. If r is even, r = 2m say, form the v*-polynomial
n) o m, *
2*(x) = ) b0 ()
=0

which has nodal zeros at &M, ¢ ,..., & (0 < £ < &) and satisfies
SO ™ | == 1. ¥ has no additional zeros in (0, 1) by the Tchebycheff
property of {v,*,..., v3,.1}. Let £ | Oasn 1 0. A simple compactness argument
implies the existence of a ¢*-polynomial

2m+1 2m-+1

v¥(x) = Z bv;*(x), Z 1b;]1 =1,
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which has nodal zeros at ¢ ,..., &, . Since any sign change of v* mn (0, 1)
is the limit of zeros of the v*""s as n — oo through an appropriate subsequence,
and Z(v*) < 2m, it follows that ©* has only the zeros & ..., &, in (0, 1).
As above, a contradiction follows if 2m - 1 = r -+ 1 << k. Thus, % — 1 < N(v).

Thus if N(z) is odd, N(v) == k, while if N(z) is even, N(¢) === & — 1. This
is equivalent to N(z) > 2[k/2]. The remaining part of Case I(a) follows from
the first part and the fact that Z(v) — N(v) is always a nonnegative even integer.

The proof of Case I(b) is set forth as a sequence of lemmas. The arguments
follow those used by Gantmacher and Krein [3, pp. 215-217] with suitable
modifications required by our weaker hypotheses. As an immediate consequence
of Case I(a), we have, since Z(v) — N(v) is always even.

LemMa 5.1.  The zeros of the v-polynomial

T = AUy .y + by (a® 4 8* > 0)

satisfy
20 -2 < Nv) < Z(v) <21 — 1.

Hence, v kas only nodal zeros tn (0, 1).

In what follows, let ¢ denote either v,_, or v,,_, while ¢ denotes vy, ; or

Yotz -
LemMma 5.2, Let 0 < § < <& <1, r=N(¢), be the nodes of ¢
tn (0, 1). Then the function
h = Ji¢

ts strictly monotone on I, = (¢;,€,,1), 1 =0, 1,...,1; £, =0, &, = 1.

Proof. From Lemma 5.1, % cannot be constant on any interval of positive
length. Thus, if % is not strictly monotone on I;, A has a relative extremum
at some point x; of I,. However, this would imply that the v-polynomial
(x) — h(x;)$(x) has a nonnodal zero at x;, contradicting Lemma 5.1. Thus
£ is strictly monotone.

Lemma 5.3. h(x) has a zerotneack I, , i = 1,...,r — 1.
Proof. Since A(x) is monotone in each I, 7 = 0, 1,..., 7, the limits

lim A(x) =1~  and lim A(x) = I;*

z>Ey P

both exist as extended real numbers for 7 = 1,..., 7. We shall show that none
of the {{;*}]_; and {/;7}]_, is finite.
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Neither /,” nor /£+ is finite when ¢, is not u zero of . We are concerned
with one of the following four cases which may occur only if €; is a zero of .
(1) g Exactly one of the /;” and 1," is finite,
(ii) Both /7 and 1, are finite and unequal.
(i) I == Il-'L (finite) and % is monotone near ¢, .
(iv) I =- 17 (finite) and 4 is monotone in opposite senses for x < &

and x >~ ¢; but near &;.

We show that (i)-(iv) are incompatible with Lemma 5.1. If (i) or (ii) holds
choose ¢ in the open interval determined by 7, and ¥, while if (i11) holds

set ¢ == 1, == 1", Then the o-polynomial @ =: ¢ - ¢ has a nonnodal zero
at &, as is easily seen from the fact that $(£,) == (&) == 0 and ¢ changes
sign at &, .

To contradict (iv), assume A < ¢ = [;7 = /;” in I, and I;. Consider the
polynomial ¢, == 4 —- (¢ —- €)p, ¢ >> 0. The polynomial v = § - ¢ has at
least (2{ — 2) nodes in (0, 1) one of whichis at £, . Since ¢, == ¢ ' e, fore => 0
sufficiently small, o, must maintain at least (2/ — 3) nodes in (0, I) bounded
away from ¢;. However, by construction it is easily seen that for e > 0,
sufficiently small, ¢, has two “new” nodes (one less than £, and one greater
than £,) as well as the node at ;. Thus for € = 0, sufficently small, 2, has at
least 2/ nodes, a contradiction.

LevMa 54, The nodes of vy o and vy strictly interlace in (0, 1).

Proof. 1f N(vg_y) # N(ty.s) then since | N(vy o) — N(vy,) == 1, the
result is an immediate consequence of Lemma 5.3. Assume N(9,,_,) == N(vy,_)
and / > 1. If v,,_, and %,;_, have a common node &, then if % is an adjacent
node of vy, (such a node exists because [ > 1), vy, must have a node {
between ¢ and % by Lemma 5.3. But »,, ; must then have a node between {
and ¢, contradicting the definition of %. Thus the lemma holds for I > 1.
Assume [ == | so that N(z,), N(vy) = 1. If 74 and v, have a common node ¢,
then & = v,/v, has equal, infinite (see the proof of Lemma 5.3) left and right
limits at £ Thus there exists a constant ¢ such that v, — cv; has three nodes,
a contradiction.

This completes the proof of Theorem 5.2.

Exampres. (a) Consider the eigenvalue problem

—u” == Au,
1#(0) + u(l) =0,
w'(0) — (1) = 0.



MIXED BOUNDARY-VALUE PROBLEMS 209

These boundary conditions are antiperiodic and the problem has eigenvalues
Ap = (20 4+ 1)%7% n =0, 1, 2,..., each with multiplicity 2 and corresponding
eigenfunctions cos(2n -- I)mx and sin(2n - 1)ma. The interlacing properties
guaranteed by Theorem 5.2, Case 1, are easily verified in this case.

(b) Consider the eigenvalue problem
~u” U= Al
u(0) — u(1) = 0,
1'(0) — 1u'(1) = 0.
Then (see Example (d), Sect. 4)

—r 0 0 1

(7)::‘( —
CO=1 =120 3w

and so C® is SC, but C is not. The cigenvalues of this problem are A, =
1 447 (n -+ 1)/2]%, n=0,1,2,... The eigenvalue A, == 1 has an eigen-
function #y(x) = 1 and the double eigenvalue Ay, == A,, ;, # = 1, has an
eigenfunction and a generalized eigenfunction given, respectively, by

Upy_y(x) = cos 2mnx,
Upn(®) = (x -- 1) sin 2mnx.

The interlacing properties of Theorem 5.2, Case 1I, are easily confirmed.
This example also shows that generalized eigenfunctions can occur in Theorem

5.2,

(¢) In eigenvalue problem (4.4), C'® is SC, while C®" is not. The eigen-
functions given in (4.6) and (4.7), when properly ordered, must have interlacing
zeros as in Theorem 5.2, Case I. In this case, Theorem 5.2 seems to be the
easiest way to verify the interlacing of the nodes.

For completeness, we include the following consequence of Theorems 4.1,
5.1, and 5.2 which pertains to the case of separated boundary conditions
(Proposition 4.2) (see [6, 12, 13]).

THEOREM 5.3.  Assume that the hypotheses of Theorem 4.1 hold for both
p =20 and p = 1. Then the ejgenvalues of G(x,s) are all real and simple, and
the eigenfunctions {u,}y satisfy:

(D) {ug,uy ..., wy ts a T-system on (0, 1) satisfying the boundary conditions %
for each 1 =0,1,2,....
(2) For 0 < k < I, the zeros of

U == Z a;u; (Z a* > 0, a real)

satisfy
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(3) The eigenfunction u, has exactly | nodes in (0, 1) and no other zeros
there, and the nodes of u; and w, , strictly interlace in (0, 1).

6. CoMPOSITE DIFFERENTIAL OPERATORS

Many important differential operators are naturally expressed as compositions
of Jower-order operators. The applicability of the results of Sections 3-5 to
such a composite operator may be inferred by an examination of its factors,
as is shown in Theorem 6.1. Theorem 6.2 refines the results of Theorem 6.1
in the important special case where the differential form is self-adjoint.

Let (L, #) be an nth-order differential form of Pélya type W with boundary
conditions specified by the matrix C == | 4, B||, as in the previous sections.
Moreover, we shall also assume that w; e C#741-9[0, 1], j = I,..., n.

Likewise, let (L, 2+) be an mth-order differential form where

d i ulx .
L= Dy Dy (D) — [ = e

and w;7(x) > 0, x € [0, 1], w,m € C+1-9[0, 1], with associated boundary condi-
tions determined by the matrix

Cr =14 Bt ll<2m
of rank m,
Let N = L*L, and #*% be the set of boundary conditions

S ayDu(0) 4+ Y bD (1) =0, i = L,n,
j=1 j=1

™

a; D" TU0) + Y b, D" (1) =0, i=n+ le,n+om,
j=1

1

3

specified by the matrix

B
0

0
B+

(n+m)x2{n+m) »

where D, ,; = D;*, 7= 1l,...,m,and D! = D; - D,, j = 1,...,n + m.
THEOREM 6.1. Assume C and CH? satisfy Postulate ] for the same p

and that either B or H+ is not equivalent to a set of initial conditions. If (N, B+%)

has a Green’s function, then the conclusion of Theorems 4.1, 5.1, and 5.2 obtain
for the eigenvalue problem

(1/w) Nu = M, ueB+A#,
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where w(x) is continuous and nonvanishing on [0, 1]. Also, (N, #+24) has a Green's
Sfunction H(x, s) iff both (L, #) and (L*, #~) have Green's functions, say G(x, s)
and G*(x, 5), respectively, in which case

-1
H(x, 5) = ’ Glx, 1) GH(t, s) dt. (6.1)
0
Proof. 'The proof is a result of the application of the basic composition
formula [7, p. 17]. From (6.1),

H[Zl-m]("& S) - JJ G[‘ZPM(X! t) G??l—]l](t’ S) dt.

21-p

Since G(x, s) and G*(x, s) are 5C,y,_,, [ = 1, 2,..., so is H(x,s). The fact that

Hipyy (%, %) # 0 follows in a similar fashion.

Remark 6.1. It should be noted that one can also prove directly that under
the above assumptions, E® is SC,,.,, and of rank n — m.

An important case of Theorem 6.1 is the case when L+ = L* and #+ — #*,
the adjoint differential form and boundary conditions to L and 4, respectively.
Let C = A, B| denote the boundary conditions associated with (L, %),
and let C, = [ 4, , B,]l denote the adjoint boundary conditions associated
with (L*, #*). While the analysis is rather lengthy, an explicit form of C,
may be exhibited and, as is shown in [17] (see also [19]), if C*» is SC,, and of
rank 7, then C' is SC, and of rank #. From Theorem 6.1 we obtain the
following.

Tueorem 6.2.  Assume (L, #) has a Green's function G(x,s), and CW®
satisfies Postulate J. Then the self-adjoint differential operator (L*L,%*%)
has a Green’s function H(x, s) which is SC,,_, for | = 1, 2,... . Thus the conclusions
of Theorem 4.1, 5.1, and 5.2 apply and since H(x, s) is symmetric and positive
definite, the spectrum of the associated eigenvalue problem is positive.

7. EXTENSIONS

The spectral results for the eigenvalue problem (4.1) developed in Sections 4
and 5 can be cast in a more general setting as described below. No proofs
will be given because the reasoning used in Sections 4 and 5 can be applied
with inessential changes.

Let J = (0, 1) and K{(x, 5) be a real, continuous kernel on [ > J for which

o Kin(x8) >0 for X, € oy,

(7.1)

Gzlfz)K[‘ll—p](Xa X) >0 for xe ]21—1) s
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wherep = Qor |, ey_, == -1 or —-| dependentonlyon 2/ -~ p,and -2 1,2,....
Consider the eigenvalue problem

S(x) A ‘]’J K(x, 9) $(5) dus) (7.2)

for the kernel K(x,s), where du(s) - - w(s) ds and v is a positive, continuous
weight function on J.

THEOREM 7.1.  _Assume (7.1) hoids for p == Q or 1. Then the eigenvalue problem
(7.2) has an infinite sequence of eigenvalues Ay, A, , A, ,... . Moreover, if A, -
IAL ] X (A | L, where each elgenvalue is listed according to its multiplicity
as a root of the Fredholm determinant of K(x, s), then the following holds.

I Ifp =20, then

(D) O <A s AL < Ay v Ay DAy s Ay D
(2)  em€ariorgdoy > 0 for [ 20,1, 2,... where ¢g - —1;
(3) also, Xy, is nonreal iff Ay, == Ay

H. Ifp == 1, then
(D 0 ey =<0 Ay s A < <0 Ay g Ay <
(2) ewacarito ity >0, Lo 1,200
(3) also, Ay, is nonreal iff Ayy_y == Ay .

Parts (2) and (3) of Cases I and 1I yield the following interesting result,
guaranteeing that the spectrum of the kernel K(x, s) is real.

CoroLLary 7.1. If in Theorem 7.1, Case 1, eyeyn <0 for 1 = 0,1, 2,...
(t.e., if successive compounds in (7.1) alternate in sign), then K(x, s) has only real
spectrum. Likewise if ey i€y <2 O for 1==1,2,... tn Theorem 7.1, Case 11,
then K(x, s) has only real spectrum.

On the basis of Theorem 7.1 and the reasoning of Section 5, we can establish
the analogs of Theorems 5.1 and 5.2 for the kernel K(x, s). Let {xj; be the
set of eigenfunctions of K(x, s) corresponding to {A;}¢’ and chosen as in Section 5.
Let {z;}¥ be the real sequence constructed from the real and imaginary parts

of the eigenfunction {u;}y as in Theorem 5.1. Then
{vy, v Ugt_ w1}
0 Y1y Y21—p—1J

is a T-system on (0, 1) for /== [,2,..., and when p == 0 (resp., p - 1) the
o

conclusions of Theorem 5.2, Case I (resp., Case II), hold for the sequence |z,j.
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