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This paper presents analogs, for certain mixed boundary-value problems, 

of the spectral and oscillatory propertics exhibited by classical Sturm-Liouville 

systems. These mixed boundary-value problems have Green’s functions which 
are sign consistent for all even and/or odd orders. 

1. INTRODUCTION 

This paper presents analogs, for certain mixed boundary-value problems, 
of the spectral and oscillatory properties exhibited by classical Sturm-Liouville 
systems. ‘l’he usual analysis of the Sturm-Liouville eigenvalue problem is 

based on special ad hoc methods. In contrast, Gantmacher and Krein [3; see 
also references therein] showed that these fundamental spectral properties 
are direct consequences of the total positivity of the Green’s function for the 
problem. They further showed that the total positivity of the Green’s function 
is itself the mathematical espression of certain basic physical properties of 
vibrating mechanical systems, which are typically modeled by SturnPLiouville 
systems. Subsequent to the work in [3], extensive studies have revealed se\-cl-al 
important classes of boundary-value problems with separated boundary- condi- 
tions whose Green’s functions are totally positive or sign regular. As in the 
classical Sturm-I,iouville problem, these boundary-value problems exhibit a 
rich oscillation theorv. Some principal contributors in this area are Gantmacher 
and Krein [3], Karlin [6-81, Karen [12], Krein [13], and Krein and 1:inkrlstein 
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Karlin and Lee [9] studied the sign-consistency properties for periodic 
boundary-value problems. These results were later used by Lee [15, 161 to 
develop the spectral properties of these periodic problems. The analysis in 
[15, 161 extends easily to the case of antiperiodic boundary-value problems. 
Recently, Karlin and Pinkus [lo] (see also nlelkman [IS]) showed that an 
important class of mixed boundary-value problems has Green’s functions 
which are sign consistent for all even and/or odd orders. Special examples 
of this correspond to the above-mentioned periodic and antiperiodic boundary- 
value problems. In this paper, the spectral properties and oscillation theorems 
associated with the mixed boundary-value problems are developed. 

2. TERMINOLOGY AND PRELIMINARY RESULTS 

For given We > 0, Y E [0, 11, and wi E C”ei[O, 11, i = I,..., n, define 

where 
L = D, ..’ D, , (2.1) 

(Dju)(x) = & [%I, j = l,..., II. 

Thus L is a differential form of Polya type W (disconjugate) on [0, 11. The 
differential equation Lu = 0 has a basis of solutions 

%(4 = 44, 

u*(x) = ZUl(‘T) y mJ(t,) dt, ) 
0 (2.2) 

which constitute an extended complete Tchebycheff (XT) system on [0, 11. 
(see [I 11). Evidently, 

D+-lui(0) = ZQ(O)S,~ , i,j= 1 ,.‘.I n, 

where IY = Dj ... D, , j = I,..., 12, and Do = I, the identitv operator. The 
function 



with 0 5; s, [ -:. I is the fundamental solution for IA ~~~ 0 determined tr\ 
zero initial data at zero, and the characteristic jump discontinuity 

fP’<~,,(( ; 0 fP-lqs,,(~ ; E) %(O* 

which corresponds to the requirement that the ordinary (IL I)st derivative 
of +,(A!; E) exhibit a jump of 1 :p,,(Q at .r ~: 6, where I, =: p,(.~)(d’~ ‘~1.v~~) .... 

Let =Z be an m 11 matrix and I 111, N. ‘I’hen 

denotes the determinant of the nratriu obtained from .4 by deleting the I-ows 
and columns except for those labeled i, ,,.., i,. and j, ,,... j, , respectively. The 
matrix .-I is said to be s@ consistent r!f order Y (SC’,) if 

for all I ._ i, i ” ~c: i,. __ m and I ;, ‘. ... _ ;,, ; N, where tl. :.= fl 
or --1, dependent only upon r. 

The following notation will be used. Given a matris 

with both .-I and H II .’ n matrices, define 

(2.4) 

where p = 0 or I. 
The matrix C =~= =I, B ~ is said to satisfy Postulate J with respect to p if 

(i) A-1 and B are n x n matrices, and 

(ii) (J(u) has full rank and is SC,, 

Let K(N, S) be a real-valued kernel defined on J z’ J. where J is a real interval, 

and let 

The function 

h-1 ,dx* s) 
~ (.\‘, )..., ,‘,‘) 

.s , 
det ‘1 K(.Y, , .S,)il:‘,jm 1 

. , s /. 



defined on J,. :i: Jr is called the compound kernel of order r induced by K. The 
kernel K(.Y, s) is said to he SC,. if ~,Kl,l(x, s) ‘: 0 for x, s F J, , v-here E,. = IL I 1 
dependent only on r. 

I,et fi . . . . . . fr be defined on J. Then 

for x E jr . Under suitably mild measurability and integrability assumptions, 
in particular when fi ,...,fV are bounded and continuous on J and K(.v, s) 
is bounded and continuous on J Y J, the basic composition formula [7, p. 171 
yields 

where 

(Kf)(.v) = .r, K(s, S)f(S) ds, 

Wrd(x) = j-; ~rdx, s) g(s) 6 
r 

for g defined on JT and ds = dsl .. ds, . 
il family of real, continuous functions {fi ,..., f,.j is a Tchebycheff (T) system 

on J if fi A ... 
. . 

A fT maintains a fixed strict sign on J,. , or equivalently, never 
vanishes on /P . Linear combinations of fi ,..., fr are called f-polynomials. 
If f is a real continuous function on J, an isolated zero .T,, off in the interior 
of J is called a nodal zero or node iffchanges sign at x0 . All other zeros, including 
zeros at the endpoints of J, are called nonnodal zeros. We shall use this concept 
for J == (0, I), the open interval, and thus endpoints will not in fact concern 
us. Let Z(f) denote the number of zeros off in J where nonnodal zeros in 
the interior of J are counted twice and all other zeros are counted once. Let 
-V(f) denote the number of (distinct) nodes offin J. If [.f, ,...,,f,) is a T-system 
on J, then anyf-polynomial satisfies Z(f) :.I Y ~ I. 

The following version of Jentzsch’s theorem will be used. 1r’e are concerned 
with the eigenvalue problem 

l+(x) == h .r, K(x, s) 4(s) d/L(s) (2.6) 

for the kernel K(.x, s) where d&x) :~= w(s) d r x\-ith w(s) :> 0 and continuous on j. 

THEOREM A. Assume the kernel K(s, s) in (2.6) is nonnegative und continuous 
on / :’ 1 and that K(x, s) > 0 for all (resp., almost all) points (x, s) in some 
neighborhood of the diagonal ((x, s): x E J). Then the kernel K(s, s) has a positice 
eigencalue A,, zchich is a simple root of the Fredholm determinant and zchich is 
strictly smaller in modulus than all other e<yencalues of k-(x, s). Furthermore, 



the corresponding eigenfunction may be chosen positive (req., positire almosf 
everywhere) on J. 

Remark 2.1. Jentzsch’s [4] original proof may be modified in a straight- 
forward manner to obtain Theorem A. The reasoning in [I] is, however, simpler. 

Remark 2.2. Jentzsch’s theorem (Theorem A) generalizes directly to 
kernels defined on the simplices Jr 1 r =: 2, 3,... . 

There is a fundamental relation, Schur’s theorem (Theorem B below) (see 
[21] or [3]), between the eigenvalue problem (2.6) for the kernel k-(x, s) and the 
corresponding eigenvalue prohlem 

@p(x) == 11 jJ Jql.l(X3 s) @(s) 44s) (2.7) 
r 

for the vth compound kernel K[,.](x, s), where &(s) - UP .‘. &(s,.). 

THEOREM B. Let K(s, s) be continuous on J >, J. Let A,, A, , A, ,... be the set 
( possibly empty) of eigenvalues qf k-(x, s) where each eigenaalue is listed according 
to its multiplicity as a root qf D(A), the Fredholm determinant of R(x, s). Then 

h,,Xjq ... Air ) O...i,-.i,- . . .._ i,, 

are the totality of eigenvalues of K[,.](x, s), and each such eigenvalue automatically 
occurs to its multiplicity as a root Of D,,.,(A), the Fredholm determinant of ii&l(x, s). 

Remark 2.3. The assumption that R(x, s) is continuous on / J can be 
substantially relaxed; however, the result as stated is adequate for our purposes. 

3. SIGN-CONSISTENT GREEN'S FVNCTIONS 

Karlin and Pinkus [IO] consider an important class of boundary-\-aluc 
problems with mixed boundary conditions. Examples of these boundary condi- 
tions include the separated boundary conditions commonly used in Sturm-- 
Liouville problems as well as periodic and antiperiodic boundary conditions. 
In this section we summarize the sign-consistency results of [lo] for certain 
Green’s functions and present some refinements necessary for our anal\-sis 
of the associated eigenvalue problem. Assume henceforth that n -I. - 

Consider the differential operator (I,, .#A) specified by a differential form 1, 
of P6lyd type W’ (see (2.1)) and a set of mixed boundarv conditions 
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Subsequently, ,“A will denote either the set of boundary conditions (3.1) or 
the set of functions in C”[O, I] satisfying these conditions. It is a well-known 
fact (see, e.g., [2, Chap. 71 or [20, Chap. 11) that the differential operator has a 
Green’s function G(N, s) iff 

where (uj)yz, are as given in (2.2). If A ?‘- 0, then 

if 1; ITi( ‘,j=l ! 1 Z’j[+~h(‘; S)]l~~=l ” 
G@., s) == ; det /( - ~ - - - - _ _ -~- - - - - _ _ - _. _ j (3.2) 

11 U1(X) ,..., U,,(X) i ~&; s) LMn+1) 

and an application of Sylvester’s determinant identity (cf. [7, p. 31) to (3.2) 
yields 

Let C = // ‘4, B /j be the n x 2n matrix defined by adjoining A to B where 
4 = 11 aij i,y,+r and B = 1~ bij lip,j=l are from (3.1) and define C(O), 0) as in 
Section 2. In addition, given indices 1 <jr < ... < js < II and 1 < k, < ... < 
k n-s < n let A/r, denote the number of indices in the set {jr ,..., js , k, ,..., k,-,} 
which are less than or equal to p. The next two results are reformulations of 
Theorems 2 and 3 in [lo] and follow from the proofs therein. 

PROPOSITION 3.1. A necessary condition for the diSferentia1 operator (L, @) 
to have u Green’s function is that there exist an integer s, 0 <, s < n, and indices 
1 <j, < ..* < js < n, 1 < k, < ... < k,~.,V <, n, such that 

do’ ( jl’ 
. . . . n 

I t.-.,j, , 271 -I 1 - k,-, ,..., 2n + 1 - k, 
+0 (3.4) 

and AZ II 2; CL, p = I,..., n. Furthermore, these conditions are also s@cient provided 
that C’O’ is SC . n 

The main result in [lo] necessary for this work is the following theorem. 

TmOREM 3.1. If the Green’s function G(.v, s) for (L, 9) exists and C(p) is 

SC, 1 then G(.z, s) is SC,,_, for 1 = I, 2 ,... . Furthermore GL~~-~,I(x, s) =/ 0 
z~thefollowing holds: There exists at least one set of indices 1 < j, < ... < js :< n, 
I <I k, < ... < k,,+ < n such that 
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and 

zuherecer these inequalities are meaningful. 

Remark 3.1. Kalafaty [5] obtains results bearing on Theorem 3. I. It is 
essentially shown in [5] that if C.‘(r’) is SC, then G(s, s) is SC,,-,, , I =m 1, 2,...; 
however, the precise conditions determining when Gtzl .1(x, s) ;’ 0 arc not 
treated. 

The next result is a conscquencc of Proposition 3. I and ‘I’heorcm 3.1. 

PROPOSITION 3.2. .-lssunw (L, 9) has a Green’s -function G(s, s), C”“) is 
SC,, and 

c(7i) ljl’l . ..) j,, , 211 ‘.‘* 
n 

I - k,m, ,..., 2n -) I - k, i := 0, (3.5) 

Proof. Since the Green’s function exists, (3.4) is valid for some 0 - .V II 
and M, $ TV for EL = I,..., n, by Proposition 3.1. If s # 0 or n, then the result 
follows from Theorem 3. I (a) and (b). A ssume this is not the case. Thus (3.4) 
is valid only for s : 0 or z =~~ n. Assume its v-alidity for s =:. 0. Since (3.5) 
must hold for some 1 :,.: s :., II - 1, it is easily shown that (3.5) is maintained 
for s = I. Appealing again to Theorem 3. I, the result follou-s. 

Remark 3.2. Assume that the Green’s function G(x, .Y) exists and C”‘) 
is SC,, . Ry Theorem 3.1, u~~~,,G~~~~ ,,J(x, s) z> 0, where ~~~~~ = *I, indc- 
pendent of x and s. In fact, from [lo, Remark 31, we see that 02L.m11 is also 
independent of 1. Explicitly, 

(T.L[- 1, = (---I) l~l?+n(~L-ll/Z a,(C(l~)) sgn(A), 

where a,(C(~~r) is the constant sign of the n x 1z minors of C(P). If C’(O) is SC,, , 
then this further reduces to ozl = +I. If both 00) and 0’) are SC, , then 
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4. EXISTENCE OF EIGENVAIXES 

Consider the eigenvalue problem 

(l~zcn~.J Lu =: hu, 0 -:: x ;; 1) II E ,/A, (4.1) 

where zc n,1(X) + 0 and is continuous on [0, 11, and % is specified as in (3.1). 
Assume (L, ~8) has a Green’s function G(s, s). Then (4.1) is equivalent to the 
eigenvalue problem 

u(.x) = : h 1‘l G(x, s) u(s) ZC,~+~(S) ds. 
“0 

(4.2) 

The boundary conditions &’ whose matrix is denoted by C == ,j A, R ! , 
as in Section 3, may be equivalent to a set of initial conditions. In this case 
the Green’s function always exists, is a \-olterra kernel, and hence has no 
eigenvalues. This situation is exceptional for boundary conditions satisfying 
Postulate J: If the Green’s function for (L, 9) exists and the boundary conditions 
satisfy Postulate J for p = 0 or 1, then G(s, S) has an infinite number of eigen- 
values provided B is not equivalent to a set of initial conditions. Thus we shall 
exclude below the case when LB is equivalent to a set of initial conditions. 
The following easily proved result is pertinent. 

PROPOSITION 4.1. A set of boundary conditions 3’ z&h matrix C = [[ A, B jj 
of rank n is equivalent to a set of initial conditions 22 A = 0 or B := 0. 

This result should be considered with Proposition 3.2. 
The main result of this section follows. 

THEOREM 4. I. Assume that the boundary conditions Y satisfy Postulate J 
for some p, are not equivalent to a set of initial conditions, and that (L, 3) has a 
Green’s function G(x, s). Then the eigenaalue problem (4.1) equivalently (4.2), 
has an infinite number of eigenvalues h, , h, , As ,... . Furthermore, if 1 h, 1 < 
j X, 1 < 1 X, / c< ..‘, where each eigenaalue is listed according to its multiplicity 
as a root of the Fredholm determinant of the kernel G(x, s), then the folloz&tg holds. 

I. If C(O) is SC, , then 

(1) O<(X,j~(hl/<jX,j~l(h:,j<‘..<iX,,:~~1h?,,,I<...; 

(2) h&,,+, > 0, 1 = 0, 1, 2 ,...; 
(3) also, &t is not real tlrf X,z+, = AZ1 . 

II. If C(l) is SC, , then 

(1) 0<6,h,</h,I~~IX,I<...<I~,,-,I~j;\,,I<..., where 
6, = sgn G(x, s) ZU,~~~(S); 

(2) A,&, > 0, 1 = 1, 2,...; 

(3) also, h,, is not real z$ X,,-, = AZ1 . 



198 IEF 4ND PINKUS 1 ,. 

Proof. Assume C(P) is SC, and ZL’,,.~ > 0. Thus uY+,,G12,- ,il(x, s) . 0 
for all (x, s) E Jzlmp X JzI-,, , J == [0, I], for some ‘5zL .y = _!_I independent 
of x and s. Since d is not equivalent to a set of initial conditions, the hypothesis 
of Proposition 3.2 is easily seen to hold and so u~~~~G~~~-,,I(x, x) , 0. 

Jentzsch’s theorem (Theorem A) implies that ‘s~~-~~~G~~~-~~~(x, s) has a positive 
simple eigenvalue, strictly smaller in modulus than all other eigenvalues of 

~,~-,%-,I(x, s>. S h c ur’s theorem (Theorem B) then implies that G(s, s) 
has at least (21 - p) eigenvalues, I == I,2 ,... . Thus G(x, s) has infinitely man! 
eigenvalues and again by Theorems A and B 

0 i U.‘& ,>A” ... A‘,,--,>+ 1 < / h,h, .‘. X,l-,-yAz(-)J :, 

for 1 = I, 2 ,... . Thus, / h,,_,_, < / h,,_, 1 and A21 .pX21mL1+ 1 ,% 0, where we 
have used the fact that u21-V~21--9, z =-I 1 (see Remark 3.2). Note that for p =m 0, 
crzL = $1 and thus &,X1 > 0. For p = 1, a,/\, ; 0. Thus both (1) and (2) 
of Cases I and II obtain. The fact that complex eigenvalues occur in conjugate 
pairs follows from the fact that the Fredholm determinant of G(x, s), 

Z)(A) I -t i, 9 J’ GITl(x, x) d/~(x), 
r-1 ‘. J, 

is an entire function with real coefficients. The proof is complete. (LYhen 
w,+~ < 0 replace h by --X and apply the results just proved.) 

The following examples illustrate the breadth of applicability of Theorem 4. I. 

EXAMPLES. (a) Periodic boundary conditions. For the periodic boundary 
conditions 

nh(O) =~= Zh( l), j x 0, l,..., n - I, 

', (-1)ni~~l+l I C-1) ~ 

C-1) 
17, ,i ;-2 

I 
(-1) ( 

I I 
II j’ 

i, (-1)” I (-I) “Tw2n 

It is easily verified that 0’) is SC, and of full rank while C(O) is not. Periodic 
boundary conditions are not equivalent to initial conditions, and as shown in 
[9, IO], (L, g) has a Green’s function iff JJ~=,(u~(~) ~~ ~~(0)) # 0. \Vith this 
assumption, Theorem 4.1, Case 11, is applicable. 

(b) Antiperiodic boundary conditions. For the antiperiodic boundary 
conditions 

nju(O) == -ZYu(l), j _- 0, ] ,..., n - 1, 

C’(o) is SC, and of rank 7~ while C”’ is not. Furthermore, it is easily shown 

that the assumptions of Theorem 4. I hold (see [9, IO]) so that Case I is applicable. 
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(c) Separated boundary conditions. Let C = Jo A, B ~I specify separated 
boundary conditions. Then 0”’ has the form 

i -- l,..., r, j = I,..., n; 
i = Y + l,...) II, j -== n $ l)...) 2n; 
otherwise. 

A simple linear-dependence argument implies that the only possible nonzero 
subdeterminants of G’(P) are 

C’P’ ( . 1, ..*, l1 ,..., j, 2n i , 1 - k,-, ,..., 2N -1 1 - n i k, 

= (-1) r(P+n) (- 1)’ pL-r)(?l-r-l) :! 2 (jll;:::;;j B (;,.;;,l;:j, 

where 1 zzjr < ... <jr<n, 1 <k, < ... < k,,+, < n, and d = /I aij( -1)i &++ , 
B = jl 6.. !I ,i 13 ~;(n-r)xn * Clearly C(g) is SC, for both p = 0 and p = 1 and of full 
rank iff d is SC, of full rank and B is SC,-, of full rank. Furthermore, the 
separated boundary conditions are not equivalent to initial conditions iff 
O<r<n. 

Separated boundary conditions satisfying these stipulations occur frequently 
in mechanical oscillation problems and Sturm-Liouville problems (see [3, 71). 
Assuming that 2 is SC, and B is SC,_, it follows from Proposition 3.1 that 
(L, B) has a Green’s function iff there exist indices 1 <jr < ... <jr < n 
and 1 SZ k, < . ..<k.-,<nsuchthat 

A (,‘::::-;,i & 0, B (;l + “K.’ “) + 0, 
1 ,..., n--T, 

and f&Z,, 33 CL, p = I,..., n. If these conditions are met both Case I and Case II 
of Theorem 4.1 apply. Thus, 

where or = sgn G(x, s) zo,,_r(s). 

(d) Consider the eigenvalue problem 

-ez (& e--2a (& e;)) u = Au, 

(4.3) 
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The differential equation simplifies to ---U” ~: u == AU while 

pi” ‘)( -I)“k’ 0 0 ~~-1 I’ 

(.m])J’ (.--I)‘, ~- 1 e 1 

0”) is not SC, but C’(r) is. Furthermore the Green’s function exists. The eigen- 
values for (4.3) are 

1, 1 -7 4?7”, 1 47?,...) 1 -~ 47&I’, I 4a%‘,... . 

Thus equality can hold in A,[-, .‘. A,, for each I in Theorem 4.1, Gase II. 
Replacing the periodic boundary conditions by antiperiodic boundary conditions 
provides a similar example for &se 1. 

(e) Consider the eigenvalue problem 

21” Au, 

Here 

(4.4) 

C’(O) is SC, , while C ‘(I) is not. The characteristic equation determining the 
eigenvalues of (4.4) is 

1 ~0s /\’ ‘2 - ,]I P sin A* :2 : - 0. (4.5) 
Hence 

The first equation yields eigenvalues 

l’,n I= (2n ~- 1)” 772, 

with eigenfunctions, 

n == 0, 1) 2 )...) 

en(x) = -(2n + 1)~ cos(2n -/ 1) TX + sin(2n -.- 1) 71.2”. (4.6) 

The second equation, hljz tan(h*12/2) = 1, has only real zeros because it is the 
characteristic equation for the self-adjoint eigenvalue problem on [0, J-1 

-9)” = hq2, 

$(O) = 0, 

qq$) t fj@-) = 0. 
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The zeros pO, pr , t+ ,... of h’l2 tan(h rif;2) ~2 I satisf! 

291r < (p.n)‘.)2 < (2n -c l)%, I1 = 0, 1 ) 2, . ..) 

0 < (pn)‘J ~ 2nn * 0 as 72 t cc, 

and corresponding cigenfunctions are 

(4.7) 

The totality of eigenvalues of (4.4) is 

which shows that equality need nev-cr hold for Theorem 4.1, Case I, cven 
when only C’(“) is SC,, . 

Under the hypotheses of Theorem 4.1 stronger results are obtained when 
both Co) and Co) are SC as is clear from Example (c) (separated boundary 
conditions). JVe now pro;; the rather surprising result that if both C(O) and 
0’) are SC, of rank n, then the boundary conditions are, in fact, equivalent 
to separated boundary conditions. 

PROPOSITIOK 4.2. If the matrix C is of rank n and both C’(O) and C’(‘) are 

SC,, then the boundary conditions .?8 are equivalent to separcrted boundary 
conditions. 

Remark 4.1. By the term “equivalent to separated boundary conditions” 
wc mean that the boundary conditions may be rewritten as separated boundary 
conditions. For example, the boundary- conditions u(0) =- 0, U(O) :- ~(1) := 0 
can be rewritten as u(0) == 0, u(1) = 0. 

\Ve prove Proposition 4.2 via two lemmas. 

LEMMA 4.1. If the conditions Of Proposition 4., 3 hold, then theve is esnctly 
one .T, 0 K s :< n, such that 

+ ..‘) 11 )+o 
.I~ ,..., j,- , k, ,..., k,,-, 

(4.8) 

for some choices of indices ( ji]Fzl and (kJ~=:~ satisfying 1 s< jr < ... < j, < 
n < k, < ..’ < k,,+, < 211. 

Proof. Since C has rank n there exist at least one s, 0 ~2 s 3: 11, and 
corresponding indices for which (4.8) holds. 

Assume that there exist an s’ > s and indices (j,‘) j’l, , {ki’):$ ordered as 
above such that 

c( l, .,,‘,‘;, ,, 1, 
j,‘,... 3s 1 ). ) n-a’ 

) :LO. (4.9) 
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Let C, denote the Ith column vector of the matrix C. I m=: l,..., 2~. Then (4.8) 
and (4.9) impl! 

((‘j,,,’ i :7:=-l c span(C;l ,..., Cj\ , c’,1 )...) C’,,,, ,:. 

Since s’ s, and [Cj J].:,:= , n, is a lincarlv independent set. there exists an 

and, hence, the matrix with column vectors 

Ki(SL 3 q,, ? (c,2);-i:i, ( ” 

must be nonsingular for some & E : l,...’ n - ~1. Ordering 
it follows that there exist indices 

and renumbering, 

C(1) ( ,l, .'.' 
,I, ,..., j,q, I, ,..., 1,. ,J ' (F1)" "O' ijl1: . . . . js';';, ,..., .n-s 

c”’ tjll: . . . . j,.;“‘i, 9, a > (-l)“” c’o’ (ill: . . . . j,+;-‘il F ? 
vvith all determinants nonzero by (4.8) and (4.10). This SLOWS that C’O’ and C”’ 

(4.10) 

cannot both be SC,,L and proves the lemma. 

L~hrr~1.4 4.2. If (4.8) holds for exactly one s, 0 s < n, then the 

conditions 44 determined by C = 9, B // nre equivalent to separated 
conditions. 

boundary 
boundary 

Proof. Let [j,)i=r and [k,~~-~ he ordered indices such that (4.8) holds. 
Since the interchange of rows and the addition of linear combinations of one 
row to another in C in no way affect the boundary conditions @, we may assume 
that the matrix which gives rise to the determinant in (4.8) is the identity, 
i.e., C,,i =_ pi (; :: I ,..., .Y) and C,,i == e,. i (I’ = I,..., II ~ s), where e; is the 
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standard ith coordinate basis vector in n-space. Let j $.[j, ,...,j,,j, 1 :< j .< II. 
Then 

and if pi + 0 for some i, the uniqueness of s is contradicted. ‘Thus, pi = 0. 
i=l , . . . ) 1L - s, 

s 

and hence clj = 0 for 1 = s -;- I,..., 11. Similarly if k 6 (k, ,,.., k,,+,}, n T 1 >z 
K < 2n, the first s components of C, are zero. Hence the boundary conditions .ti 
are equivalent to boundary conditions specified by a matrix of the form 

with A, s x n of rank s and B, (n - s) x n of rank n - s; i.e., g is equivalent 
to separated boundary conditions. 

Rewuzrk 4.2. Assume C = 11 A, B I/ is such that C(J’) is SC,. Let c = 
/I -A, B 11 and c = j/ A, -B 11. Then c(q) and &) are SC, where p f q, 
p, q E (0, l}. Furthermore, if C = jj I, B !I, then C(J’) is SC, iff (-1)PB is totally 
positive, i.e., SC, for all k = l,..., n with Ed = 1, k = 1, ., n. If C = [I A, I I,, 
set a = I/ di* /I, Bij = Uij(-1) i+j. Then C’(P) is SC, iff (-l)PA is totally positive. 

5. OSCILLATION PROPERTIES OF EIGENFUNCTIONS 

Throughout this section, we shall assume that the hypotheses of Theorem 4. I 
hold for the eigenvalue problem (4.1). Let 

be the eigenvalues of (4.1) enumerated as in Theorem 4.1, and let 

uo , Ul > %2 >..a (5.1) 

be a corresponding sequence of independent eigenfunctions and/or generalized 
eigenfunctions. Suppose h, is a simple eigenvalue and u1 is a corresponding 
eigenfunction. If & is real, choose uI real. If A, is nonreal, then A, is also a simple 
eigenvalue, and f, is chosen for its eigenfunction. If h, is not simple, it must 
be real with multiplicity 2, say X, = X,,, . Either uL and ul+r are both eigen- 



functions (chosen real) for A, A, t r 01., if a generalized eigenfunction occurs, 
11, and u, 1 may he chosen real satisfying 

A, (I1 G(s, s) l+(s) ‘i(‘,, .,(s) ds ilL(.\.L 
* 0 

h, i’ G(x, s) Ill 1(s) ‘ZC,, ,(s) f/S 

(5.2) 

U,(A) ~’ 11, .&“) 
* 0 

(see [15, p. 597, Eq. (1.9)]). Throughout this section the sequence (5.1) is 
assumed to satisfy the preceding conditions. 

THEOREM 5.1. Let the hypotheses qf Theorem 4.1 hold. Thex there is a (complex) 
constant CL_,, such that 

on JilP,, , J” = (0, I). Furthermore, if & ,, is nonreal, let ztjmi, == Ke (uzjm,,) 
and v2;&I,-1 = Im (uzjm,,), zuhile if A,, is real, let v,, m= u,, . Then 

\ ‘,I . c, ,..., VZ&,, -1 {7’ i 

is a T-system on (0, I) satisfyin‘g the boundary conditions 9. 

Proof. By Schur’s theorem, the eigenvalue of Gtal-~nj(x, s) of minimum 
modulus is hOA, ... h,,P,m, . By Jentzsch’s theorem this eigenvalue is real, 
simple, of sign O~~~.~, , and has a real eigenfunction which does not vanish on 
JltPP Since 

where Gt,, mUj denotes the integral operator with kernel Gt21-l,j(x, s), and 
ug A .” A I+-*, ~1 -~ -+ 0 because uO ,..., u.,, +t are linearly independent, it 
follows that 

CT,,-.(U,) A 24, A .” A U,{ ,, ,) _ I 0 (5.3) 

on Jll-, for some constant 8,, ,, . ,4 short calculation using (5.3) yields 

6,- ,a( V” A ‘Z$ A “. A v21-,-I) :- 0, 

where Orl ~,, = ( -2i)? B,, 1’ and I is the number of pairs of complex conjugate 
eigenvalues in ‘\ I, ,, ,..., A,, .,,~ rj. Consequently {v. , z’r ,..., 2’22 ,,~ ,) is a T-system 
and the theorem is proved. 

The real sequence ~,r , z’r , u2 ,... (see Theorem 5.1) of real and imaginary 
parts of the eigenfunctions ug , 11~ , u, ,... belonging to the Green’s function 
G(x, s) exhibits oscillation properties analogous to those of the classical Sturm- 
Liouville eigenvalue problem. These properties emanate from the fact that 



3IIXED BOUNDARY-VALUE PROBLEMS 205 

(c~)~~;*~’ is a T-svstem on (0, 1) for I = 1, 2,..., and from certain orthogonality 
properties of z’a , Z; ,... . 

Let G*(x, s) = G(s, x) be the Green’s function for the adjoint problem 
to (4.1). Then G*(.r, s) has precisely the same eigenvalues (to multiplicity) 
as G(x, s), and the generalized eigenfunctions of G*(x, s), say {ul*};P, which 
we choose according to the same conventions set forth at the beginning of this 
section for {zll>~, must satisfy 

Let {ojw}F be obtained from (z+*>r just as {zj}r was obtained from (z+~~. Since 
G*(x, s) clearly has th e same sign-consistency properties as G(x, s), the argument 
of Theorem 5.1 establishes that {q,*, q* ,..., v&-&, I = 1,2 ,..., is a T-system 
on (0, 1) satisfying the boundary conditions adjoint to 3. Also, (5.4) and the 
fact that nonreal eigenvalues occur in conjugate pairs yield the orthogonality 
relation: 

If j h, 1 f 1 h,,, , then 

1’ q(s) z+,“(s) w,&) ds = 0, 
JO 

where q(s) [resp., v,,~*(s)] is t h e real or the imaginary part of an eigenfunction 
of G(x, s) [resp., G*(s, s)] belonging to h, [resp., X,,,]. 

THEOREM 5.2. Assume that the hypotheses of Theorem 4.1 hold. Then the 
following obtain. 

Case 1. If C(O) is SC, , then 

(a) for each 0 < k < 21 -- 1 the zeros of 

satisfy 
2[k/2] s. X(v) < Z(v) < 21 - 1; 

consequently, 021--3 and z1.21-1 have either (21 - 2) or (21 - 1) nodes in (0, I), and 
no other zeros, and 

(b) the nodes of v11--2 and v21--1 strictly interlace. 

Case II. If C’(l) is SC, , then 

(a) for each 0 < k < 21 the zeros of 

?I 
7,’ = c npj cc aj’! ;- 0, aj real 

j.:,, ! 
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satisfy 
2[(k - 1)/2] I -’ X(T) - Z(v) <. ~ 21; 

consequently v21-1 and vzl have either (21 1) or 21 7Locles in (0, 1) and no other 
zeros. Also v0 has no zeros in (0, I), and 

(b) the nodes of vzfel and vII strictly interlace. 

Remark 5. I. In case G(x, s) has real spectrum, in particular if the cigen- 
value problem is self-adjoint, %j = uj for j = 0, 1, 2,... and Theorem 5.2 
describes the oscillation properties of the eigenfunctions of G(s, s). See also 
Theorem 5.3 below. 

Proof. We shall prove only Case I. The proof of Case II follows in an 
entirely analogous manner. Recall that N and Z count zeros in (0, 1). 

The inequality Z(v) gC 21 - 1 holds because {vs , v1 ,..., ~a~-~} is a T-system 
(Theorem 5.1) on (0, 1). The inequality for N(v) follows from the orthogonality 
relation (5.5): Suppose that v = Ciiil ajvj (C aj2 ;, 0, aj real) has nodes 

O<&< *** < tr < 1, Y = N(v). 

1. If Y is odd, Y = 2m - 1 say, form a nontrivial v*-polynomial 

2n--1 
v*(x) == 2 b,vj*(x) 

j&l 

which has nodal zeros (sign changes) at f1 ,..., t2,,-i. Since {vs*,..., v2*,-r} is 
a T-system, v* has no other zeros in (0, 1). By construction 

I‘ 
1 

v(s) v*(s) w,+&) ds # 0. 
0 

However, if k > T = 2m - 1, then since / Xarn-i j < 1 X,, 1 (Theorem 4.1) 
the orthogonality conditions (5.5) imply that the above integral is zero, a con- 
tradiction. Thus, k < Y = N(v). 

2. If Y is even, Y = 2m say, form the a*-polynomial 

2m+1 

v*(n)(,) = c pq.*(*) 

j=O 

which has nodal zeros at [r’, t1 ,..., Ezm (0 < [r’ < [J and satisfies 
c;:;l 1 by) 1 = 1. v*tn) has no additional zeros in (0, 1) by the Tchebycheff 
property of {vo*,..., v2*m+r}. Let [I;“’ JO as n T co. A simple compactness argument 
implies the existence of a v*-polynomial 

2m+1 2TTll 

v*(x) = c bjvj*(X), 1 /bl=l, 
3=0 j=O 
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which has nodal zeros at t1 ,..., e21,1 . Since any sign change of v” in (0, 1) 
is the limit of zeros of the v*(“)’ s as n ---f co through an appropriate subsequence, 
and Z(z)“) < 2~1, it follows that z’* has only the zeros E, ,..., tzrn in (0, 1). 
As above, a contradiction follows if 2172 --j- I = Y --j-- 1 < h. Thus, k ~- 1 < :\‘(a). 

Thus if N(E) is odd, N(a) 3; K, while if N(z)) is cren, X(z) .: k - 1. This 
is equivalent to N(a) 2 2[4/2]. Tl re remaining part of Case I(a) follows from 
the first part and the fact that Z(U) - S( z is always a nonnegathe ee’elz integer. ) 

The proof of Case I(b) is set forth as a sequence of lemmas. The arguments 
follow those used by Gantmacher and Krein [3, pp. 215-2171 with suitable 
modifications required by our weaker hypotheses. As an immediate consequence 
of Case I(a), we have, since Z(v) - -V(z) is always even. 

LEMMA 5.1. The zeros of the v-polynomial 

v = uv2~&2 -; bv,,-, (a2 + b2 > 0) 

satisfy 
21-2<N(v)<Z(v)<21-1. 

Hence, v has only nodal zeros in (0, 1). 

In what follows, let (b denote either vsl-a or v21--1 while z/ denotes vzIP1 or 

74-2 * 

LEMMA 5.2. Let 0 < f1 < .a* < 6,. < 1, Y = N(+), be the nodes of 4 
in (0, 1). Then the function 

h = #id 

is strictly monotone on Ii = (ti , ti+l), i = 0, l,..., r; [a = 0, fr,.r = 1. 

Proof. From Lemma 5.1, h cannot be constant on any interval of positive 
length. Thus, if h is not strictly monotone on Ii, h has a relative extremum 
at some point xi of Ii. However, this would imply that the v-polynomial 

VW - 44 4C-4 h as a nonnodal zero at xi , contradicting Lemma 5.1. Thus 
h is strictly monotone. 

LEMMA 5.3. h(x) has a zero in each Ii , i = l,..., Y - 1. 

Proof. Since h(x) is monotone in each Ii , i = 0, I,..., Y, the limits 

lim h(x) = lid and lim h(x) = li+ 
X4, x-G+- 

both exist as extended real numbers for i = l,..., r. We shall show that none 
of the {Zi+}L1 and {Zi-}~El is finite. 



Neither l,- nor Ii” is finite when ti is not a zero of $. i5.e are concerned 
with one of the following four cases which mal- occur onlv if ti is ;I zertr of $. 

(i)iEsactly one of the I,-- and I,+ is hnitc. 

(ii) Roth li- and lji are finite and unequal. 

(iii) lj- :-= liL (finite) and 12 is monotone near 5, . 

(iv) li‘- : Iii (finite) and h is monotone in opposite senses for s -;I ti 
and x .- ’ Ei but near li . 

\Ve show that (i)--(k) are incompatible with Lemma 5.1. If (i) or (ii) holds 
choose c in the open interval determined by li- and I,+, while if (iii) holds 
set c :- I,- .~: lit. Then the z<-polynomial 2’ L-: u’, c$ has a nonnodal zero 
at ti , as is easily seen from the fact that +(fi) =~~ $([,) = 0 and $ changes 
sign at 5, . 

To contradict (iv), assume h -.< c :-~- lir = lie in I,. 1 and I1 . C’onsider the 
polynomial ~3~ == $J (c ~- c)r$, E : ’ 0. The polynomial 2; =- 4 --- c$ has at 
least (21 -~ 2) nodes in (0, 1) one of which is at ti . Since F, =I z EC+, for E ;- 0 
sufficiently small, 7;, must maintain at least (21 - 3) nodes in (0, 1) bounded 
away from ci . However, by construction it is easily seen that for l > 0, 
sufficiently small, e, has two “new” nodes (one less than 6; and one greater 
than t,) as well as the node at 6; . Thus for t _,I 0, sufficently small, z’, has at 
least 21 nodes, a contradiction. 

Proof. If N(zlelm,) -,- AV(q,,l_,) then since I N(z,,_,) - K(z~~~-~J := 1, the 
result is an immediate consequence of Lemma 5.3. Assume N(u~~~J ::- -V(Z’~~~~J 
and 1 > 1. If z’~~-? and z+ 1 have a common node 5, then if 7 is an adjacent 
node of z’?~-~ (such a node exists because 1 .> I), v21-z must have a node 5 
between 6 and 7 by Lemma 5.3. But %121-1 must then have a node between 5 
and 8, contradicting the definition of 7. Thus the lemma holds for 1 > 1. 
Assume 1 = I so that X(z+J, N(z’~) c.. 1. If z’” and z’~ have a common node 5, 
then h = v,,/zI~ has equal, infinite (see the proof of Lemma 5.3) left and right 
limits at t. Thus there exists a constant c such that z’” - cal has three nodes, 
a contradiction. 

This completes the proof of Theorem 5.2. 

E~AMPI~S. (a) Consider the eigenvalue problem 

N 
--u :: Au, 

u(0) -+- U(1) = 0, 

u’(0) u’(l) -: 0. 
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These boundary conditions are antiperiodic and the problem has eigenvalues 
All =- (2n $ l)%G, n = 0, 1, 2 ,,.., each with multiplicity 2 and corresponding 

eigenfunctions cos(2n -I- 1)~ and sin(2n + 1)nx. The interlacing properties 
guaranteed by Theorem 5.2, case I, are easily verified in this case. 

(b) Consider the eigenvalue problem 

urr -.~ u = Au, 

u(0) - u( 1) zz= 0, 

u’(0) - &i( 1) == 0. 

Then (see Example (d), Sect. 4) 

and so C’(r) is SC, but C (Or 
1 +- 45T2[(?2 -t- 1)/2]“, 

is not. The cigenvalues of this problem are A, = 
n = 0, 1, 2 ,... . The eigem:alue A, = 1 has an eigen- 

function uo(x) = 1 and the double eigenvalue A,, = Ame1 , 11 > 1, has an 
eigenfunction and a generalized eigenfunction given, respectively, by 

u,,&) = cos 2nn.q 

z+Jx) = (x -i- 1) sin 27rxnx. 

‘I‘he interlacing properties of Theorem 5.2, Case II, are easily confirmed. 
This example also shows that generalized eigenfunctions can occur in Theorem 
5.2. 

(c) In eigenvalue problem (4.4) C(O) is SC, while C’(r) is not. The eigen- 
functions given in (4.6) and (4.7) when properly ordered, must have interlacing 
zeros as in Theorem 5.2, Case I. In this case, Theorem 5.2 seems to be the 
easiest way to verify the interlacing of the nodes. 

For completeness, we include the following consequence of Theorems 4.1, 
5.1, and 5.2 which pertains to the case of separated boundary conditions 
(Proposition 4.2) (see [6, 12, 131). 

THEOREM 5.3. Assume that the hypotheses of Theorem 4.1 hold for both 
p = = 0 and p = 1. Then the eigenvalues of G(x, s) are all real and simple, and 
the eigenfunctions {u2}z satisfy: 

(1) bo , % ,..‘I uL} is a ‘I’-qjstern on (0, 1) satisfying the boundary conditions SS’ 
for each 2 = 0, I,2 ,... . 

(2) For 0 < k < 1, the zeros of 

2 

u --: x a,uj 
ix 

ajz 3 I 0, aj real 
j-L i 



210 LEE ATiLI PINKUS 

(3) The eigenfunction uI has exactly 1 nodes in (0, 1) and no other zy”PUJS 

there, and the nodes of u, and uE 1 strictly interlace in (0, 1). 

6. COMPOSITE UIFFEREXTIAL OPERATORS 

Ilany important differential operators are naturally expressed as compositions 
of lower-order operators. The applicability of the results of Sections 3-5 to 
such a composite operator may be inferred by an examination of its factors, 
as is shown in Theorem 6.1. Theorem 6.2 refines the results of Theorem 6.1 
in the important special case where the differential form is self-adjoint. 

Let (L, &?) be an nth-order differential form of P6lya type W with boundary 
conditions specified by the matrix C = /i 3, B /I, as in the previous sections. 
Moreover, we shall also assume that wj E Cl’ -i)‘+l-j[O, 11, j = l,..., n. 

Likewise, let (L-1, 3’) be an mth-order differential form where 

L’- = Dn,+ . . . D,+, CD?- u)(x) r- & [$I, j = I,..., m, 

and q+(x) > 0, x E [0, 11, wj’ E C’“-l-j[O, I], with associated boundary condi- 
tions determined by the matrix 

of rank m. 
Let N = L+L, and a+.?$ be the set of boundary conditions 

El a,jD’-‘u(O) + i bijD’-‘u(1) = 0, i = l,..., a, 
j,l 

zl d-d n+j-lu(0) + f b;-t_,,jD”+i-‘u(l) =- 0, i = n + l,..., n + m, 
3-I 

specified by the matrix 

(n+m)xzh+m) 9 

where Dn+j = Dj+, j = l,..., m, and Dj = Dj ... D, , j = I,..., n + m. 

THEOREM 6.1. Assume C’(n) and C+(p) satisfy Postulate J for the same p 
and that either 9 OY 9?i- is not equivalent to a set of initial conditions. If (N, g+@) 
has a Green’s function, then the conclusion of Theorems 4.1, 5.1, and 5.2 obtain 
for the eigenvalue problem 
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zuhere w(x) is continuous and nonvanishing on [0, 11. Also, (:\r, ,3--s) has a Green’s 
function H(x, s) z# both (L, 3?) and (L+, .%9-) have Green’s functions, say G(x, s) 
and G’(s, s), respectively, in zohich case 

H(x, s) =- f1 G(.x, f) G(t) s) dt. 
‘” 

Proof. The proof is a result of the application of the basic composition 
formula [7, p. 171. From (6.1). 

GLWJ(X, t) G&c-&, s) dt. 

Since G(s, s) and G’(x, s) are SCz,_,, , 1 = 1, 2 ,..., so is H(x, s). The fact that 
Hf,,-,1(x, x) -/- 0 follows in a similar fashion. 

Remark 6.1. It should be noted that one can also prove directly that under 
the above assumptions, E(p) is SC,_, and of rank n - tn. 

An important case of Theorem 6.1 is the case when L- = L* and .%- = &*, 
the adjoint differential form and boundary conditions to L and ,%Y, respectively. 
Let C = 1~ A, B /j denote the boundary conditions associated with (L, .%!I), 
and let C, = 1: A, , B, 1: denote the adjoint boundary conditions associated 
with (L*, W). \Vhile the analysis is rather lengthy, an explicit form of C, 
may be exhibited and, as is shown in [17] (see also [19]), if C(o) is SC, and of 
rank n, then Cy) is SC, and of rank K From Theorem 6.1 we obtain the 
following. 

THEOREM 6.2. Assume (L, 39) has n Green’s function G(x, s), and C’(P) 
satisfies Postulate J. Then the self-adjoint diferential operator (L*L$*g) 
has cz Green’s function H(x, s) zohich is SC,rP, for 1 = I, 2,... Thus the conclusions 
of Theorem 4.1, 5.1, and 5.2 apply and since H(x, s) is symmetric and positive 
dejinite, the spectrum of the associated e<genvalue problem is positive, 

7. EXTENSIONS 

The spectral results for the eigenvalue problem (4.1) developed in Sections 4 
and 5 can be cast in a more general setting as described below. No proofs 
will be given because the reasoning used in Sections 4 and 5 can be applied 
with inessential changes. 

Let J = (0, 1) and K(x, s) be a real, continuous kernel on 1 x 1 for which 
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wherep :== 0 or 1, ~a~-,, :.= ~.~ 1 or I dependent only on 21 p, and 1 - 1, 2,... . 
Consider the eigenvalue problem 

6C.v) ,\ .‘; K(s, s) ct,(.s) d/L(s) (7.1) 

for the kernel 6(x, s), where dp(s) w(s) A and 7: is iI positive, continuous 
weight function on /. 

‘Ihomv 7.1. A4ssume (7. I) holds for p 7 0 OY 1. Y’/wr~ the eigemalue problem 
(7.2) has an infinite sequence of eigenvalues A,, , A, , A, ,... . JIooreocer, $ A,, 
] A, / -< , A, ; -:I . . . . zL>here each eigenaalue is listed according to its multiplicity 
as a soot of the Fredholm determinant of K(s, s), theta the follouing holds. 

Parts (2) and (3) of Cases I and II yield the following interesting result, 
guaranteeing that the spectrum of the kernel k-(x, s) is real. 

COROLLARY 7.1. Ij ix Theorem 7.1, Case I, ~~~~~~ :% -: 0 for 1 == 0, I, 2 ,... 
(i.e., if successive compounds in (7. I) alternate in sign), then K(x, s) has only real 
spectrum. Likewise [f E.,( ml~L’,-m, s: 0 .for 1 =:: I, 2 ,.__ in Theorem 7.1, (‘0s~’ II, 
then K(x, s) has only real spectrum. 

On the basis of Theorem 7.1 and the reasoning of Section 5, WC can establish 
the analogs of Theorems 5.1 and 5.2 for the kernel K(x, s). Let (u,.j; lx the 
set of eigenfunctions of K(x, s) corresponding to (Xi},” and chosen as in Section 5. 
Let {vi}: be the real sequence constructed from the real and imaginary parts 
of the eigenfunction {ujjr as in Theorem 5.1. Then 

is a ‘P-system on (0, 1) for I ~- I, 2,..., and when p r- 0 (resp., /, : 1) the 
conclusions of ‘I’heorem 5.2, Case I (resp,, Case II), hold for the sequence ;~q,jT. 
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