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1. INTRODUCTION 

Let W@) = Wz)[O, l] = {fife Cn-l[O, 11, f+l) absolutely 
fen) E Lm[?), I]}. In this paper we consider the extremum problem 

continuous, 

SUP{1 V’“‘(O + &‘“-l’<nI:fE KY, IiflL ,< 1, Ilf’“’ l/m < a), (1.1) 

where 5 E [0, 11, 1 < k < II - I, and X, p real, are all fixed, and 11 . Ii?0 
denotes the usual L” norm on [0, I]. 

We prove that in the discussion of (l.l), it is sufficient to consider a specific 
class P’(U) of perfect splines P(x) of degree n which satisfy j/ P Ilrn = 1 and 
Ij Ptn) l~io = (T, and certain more restrictive requirements as stipulated in 
Theorem 5.1. We also consider in more detail a special case of (1.1) viz., 

suPw’(Ol:f~ w?‘, llfllm < 1,lIf’“‘llm < 01, (1.2) 

with < E [0, 11, 1 < k < n - 1, fixed. The extremum problem (1.2) may be 
regarded as a pointwise version of the Landau problem on the finite interval 
given by 

sup{/lf(‘“) Il&f~ fe?‘, IISII~ G 1, Ilf’“’ Ilo: < Q>. (1.3) 

(For a discussion of the Landau problem, see Schoenberg [17] and the 
references therein.) By construction of numerical differentiation formulas, 
we show that for each k, 1 < k < n - 1, fixed, every element of P(o) 
achieves the maximum in (1.2) for at least one 5 E [0, 11. 

Our results may also be viewed as an extension of the pointwise 
V. A. Markov inequalities for polynomials, to the appropriate Sobolev 
space (cf. the work of Gusev in [20, pp. 179-1971). 
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The organization of this paper runs as follows. Sections 2 and 3 are 
preliminary sections where we list some known but, unfortunately, not 
sufficiently well-known properties of perfect splines and generalized perfect 
splines. In Section 4, we show that in the consideration of the extremum 
problem (l.l), it is sufficient to consider perfect splines with at most a finite 
number of knots, the number depending on CJ, and which exhibit certain 
equioscillation properties. In Section 5, we prove the main result 
(Theorem 5.1). Section 6 is a discussion of exact numerical differentiation 
formulas on [0, I], and relates to (1.2). 

2. PRELIMINARIES: PERFECT SPLINES 

In this section, we list several properties of perfect splines which shall 
prove useful in the succeeding sections. 

DEFINITION 2.1. A perfect spline on [0, 1 ] of degree n with r knots {&}i=, , 
0 < 51 < ... < 5, < 1, is any function P(x) of the form 

n-1 
P(x) = c &Xi + c 

I 
xTL + 2 f: (-l)j(x - fj)yI 

i=O 1 ( (2.1) 
j=l 

where, as usual, x+” = xn if x 2 0, and zero otherwise. 
It is, at times, more convenient to write P(x) in the equivalent form 

P(x) = y UiXi + nc i (-l)j /lj” (x - [,;-I dt, 

i=O j=O ci 

where 5, = 0, 5T+1 = 1. 

(2.2) 

If c = 0, then we say that P(x) is a perfect spline of degree n with -1 
knots. 

In what follows, all perfect splines under consideration are of degree n, 
and we thus delete all reference to the degree of the perfect spline. 

PROPOSITION 2.1. Any nontrivial perfect spline with exactly r knots has 
at most n + r zeros, counting multiplicity. 

We count the multiplicity of a zero of a perfect spline in the following 
manner: 

If x0 is not a knot of P(x), then we count multiplicity in the usual manner, 
i.e., P(x) has a zero of multiplicity m at x0 iff P)(x,) = 0, i = 0, l,..., m - 1, 
and Fmn’(xo) + 0. If x0 is a knot of P(x), then P(x) has a zero of multiplicity m 
at x0, m < n - 1, iff P)(x,) = 0, i = 0, I,..., m - 1, and P’“)(xo) # 0. If 
P)(x,) = 0, i = 0, I,..., n - 1, then since P)(x,+) P)(x,-) < 0, we say 
that P(x) has a zero of multiplicity n at x0 . 
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The proof of Proposition 2.1 is a simple consequence of Rolle’s theorem, 
see Cavaretta [4] and Karlin [8]. 

The converse to Proposition 2.1 is contained in the following result. 

PROPOSITION 2.2. Given (xi>,“=:‘, 0 < x1 < ++. ,< x,+, < I, with xi < 
xi+?2 2 i = l,..., r. Then there exists a nontrivial perfect spline P(x), unique up 
to multiplication by a constant, with exactly r knots such that P(x,) = 0, 
i = l,..., n + r. Furthermore, tf{[i}iz, are the knots of P(x), then 

xi < ‘5 < xi+13 i = I,..., r. (2.3) 

Remark 2.1. If f E WC’ and xiel < xi = xifl = ... = xi+,,-r < xi+ , 
m < n, then by f(xj) = 0 for j = i ,..., i + m - 1, we mean f(“)(xi) = 0, 
1 = 0, l,..., m - 1. 

For a proof of Proposition 2.2, see Cavaretta [4] and Karlin [8]. 

THEOREM 2.1. If g E Wz’, and (x$‘Z{+~ are given, 0 < x1 < ... < 
x~+~+~ < 1, with xi < ~i+~ , i = I,..., r + 1, then there exists a perfect spline 
P(x) with at most r knots such that P(x,) = g(xi), i = l,..., n + r + 1. 
(In case of equality among the xi , see Remark 2.1.) Furthermore, for any 
perfect spline with at most r knots satisfying the above interpolating conditions, 

11 PC”) (lm < 11 g(n) :; I* - (2.4) 

Theorem 2.1 gives one of the essential extremizing properties of perfect 
splines. For a proof of the above theorem, see de Boor [I] and Karlin [8]. 

THEOREM 2.2. Let P(x) be any perfect spline with at most r knots and let 
(xi)~~~+’ be given, as above. Set CT* = II PCn) I;= . Then for each u > G* there 
exist two unique perfect splines Pi,(x) and-PO(x), each with exactly r f- 1 knots, 
satisfying 

1. P,(xJ = _PO(xi) = P(x,), i = I,..., n + r + 1, 
2. 11 Pin) lia = :;p 11% = (3, 
3. Fjk”‘(l) = rJ,_pd”‘(l) = -Lr. 

This theorem and applications thereof may be found in Micchelli and 
Miranker [16], Gaffney and Powell [5], and de Boor 121. The proof is essen- 
tially due to Krein [13, 141, see also Karlin and Studden [12, p. 2631. 

To fix our notation, the following definition shall hold throughout this 
paper. 

DEFINITION 2.2. We say that a function f 6 C[O, l] has 1 points of equi- 
oscillation if there exist {xi}jZ1 , 0 < x1 < ... < x1 < I, and E E {- 1, 1: 
such that f(xi)(- l)i E = 11 f 1/m , i = I ,..., I. 
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THEOREM 2.3. For each integer r 3 - 1, there exists a perfect spline P,(x), 
unique up to multiplication by - 1, with exactly r knots such that /( P, (Im = 1, 
and P,(x) equioscillates at n + r + 1 points in [0, 11. 

For a proof of this theorem, see Tihomirov [19], Karlin [9], and Cavaretta 
[4]. Note that P, = T, , the Chebyshev polynomial of degree n, and 
P-, = T,-l . 

Let ur = jl Pp’ Ilrn . Then, from Karlin [9], we have 

PROPOSITION 2.3. CT-~ = 0 < u,, < o1 < .a., and (TV f 00 as r ? GO. 

THEOREM 2.4. For (J E (u, , u,.+J there exists a perfect spline 2(x; CJ) with 
exactly r + 1 knots and n + r + 1 points of equioscillation such that 
I/ Z(*; u)llm = 1, and I/ Z’“‘(.; a& = u. Furthermore, tf P(x) is any perfect 
spline with the above properties, i.e., having at most r + 1 knots, at least 
n + r + 1 points of equioscillation, and /( P (1% = 1, (1 Pen) (jm = (T, then 
P(x) = *Z(x; u) or P(x) = fZ(1 - x; u). 

A proof of the above result and a thorough discussion of this class of 
perfect splines is to be found in Karlin [9]. These perfect splines Z(x; u) 
are called Zolotarev perfect splines and Z(x; u) may be uniquely determined 
by the normalization 

(i) Z(1; 0) = 1, 
(ii) Z(“)(l ; u) = u. 

We define Z(x; u) for u = Us as P?(x). 

3. PRELIMINARIES: GENERALIZED PERFECT SPLINES 

Due to difficulties which arise in working with perefct splines, we introduce 
a particular notion of a generalized perfect spline and record its various 
properties. The use of generalized perfect splines has previously appeared 
in various contexts, cf. Karlin [8-lo] and de Boor [l]. 

Rather than considering the Sobolev space WE), i.e., functions f(x) on 
[0, l] of the form 

n-1 

f(x) = ,g &xi + - (n -! 1F s o1 (x - t)“;’ h(t) 4 

where h(t) = f’“)(t) E L”[O, I], we define the functions 

%(X; 6) = (2rr$,2 s 

z 
--m e-(z-@/2r$ dq, i = 0,l )...) 12 - 1, 

(3.1) m 
K(X, t; c> = (271Ljl,2 -oc- e-(r-n)2/2f(~ - t>:-1 drl, s 
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for E > 0, and consider the space 

n-1 

W~‘(XJ = 
/ 
fif(x) = 1 aiui(x; l > + (n ; l)r j’ KG, c 4 h(t) 4 

i=O . 0 

where h E L”[O, I] . 
1 

For ease of notation, we set (Nf)(x) = h(x), x E [0, I]. For E = 0, this 
reduces to Nf(x) = f(“)(x). The advantages in dealing with Wz’(X,) rather 
than WC) will become obvious from this and the succeeding section. 

It is important to note that q(x; E) -+ xi, i = 0, l,..., n - 1, and 
K(x, t; c) ---f (x - t)T-‘, as E 4 0, uniformly on [0, l] (and [0, l] x [0, 11). 

In general, when dealing with an extended complete Chebyshev system 
{u~(x)>~:~, one replaces the natural derivatives d”/dx” by DI, ... D, , where D1 
is a first-order differential operator obtained from a factorization of {uI(x)}r:t; 
cf. Karlin [7, Chap. lo]. However ui(x; E) is a manic polynomial of degree i, 
and thus the natural derivatives d”/dxk, 1 < k < n - 1, are maintained 
in our case. We now restate the results of Section 2 for generlaized perfect 
splines. The proofs of these results are either contained in the references of 
the previous section or are variants of the proofs found therein. 

DEFINITION 3.1. We say that P(x; E) is a generalized perfect spline 
(G.P.S.) with Y knots, if there exists {.$i}r=I, to = 0 < 4, < ... < 5, < 1 = 
L 2 such that 

P(x; E) = nfl aiui(x; l ) + c i (-l)i jf;+l K(x, t; E) dt. 
i=O i=O (3.2) 

As in Section 2, we have dropped all reference to the degree of the G.P.S. 
For ease of notation, we shall also suppress the E throughout this and the 
next sections in the case where no ambiguity arises. 

PROPOSITION 3.1. Any nontrivial G.P.S. with exactly r knots has at most 
n + r zeros, counting multiplicity. 

PROPOSITION 3.2. Given {xi}~~~, 0 < x1 < ... < x,+, < 1, then there 
exists a nontrivial G.P.S. P(x), unique up to a multiplicative constant, with 
exactly r knots such that P(x,) = 0, i = l,..., n + r. 

An important difference between perfect splines and generalized perfect 
splines is that no restriction of the form Xi < x~+~ , i = l,..., r, is made for 
generalized perfect splines. 
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THEOREM 3.1. Zf f E Wz’(X,), and {x~}~~~+~ are given, 0 < x1 < .*. < 
x,+,+~ < 1, then there exists a unique G.P.S. P(x), with at most r knots, such 
that P(x,) = f(xJ, i = l,..., n + r + 1. Furthermore, /I N(P)iI, < // N(f)li= . 

Note that uniqueness obtains here but not in Theorem 2.1. 
It is important to note that we may replace some of the Hermite data 

given in Theorem 3.1 by even block data. This fact is of crucial importance 
in the next section. We shall make use of the following variant of Theorem 3.1. 

THEOREM 3.1(a). Zf f E Wz)(XJ, and {xi}~‘~+‘, .$ and k are given, 
0 < x1 < “. < x,+,~~ .< 1, 5~ [0, 11, 1 < k < n - I, then there exists a 
unique G.P.S. P(x) with at most r knots such that P(x,) = f(xJ, i = I,..., n f 
r - 1, and P(k)([) = f(k)(4), Pa-l)(f) = f’“-l)([). Furthermore, j N(P)lI, < 
II Nf)ilm . 

The interpolatory conditions are meant as stated except when, for some i 
and some m 2 k, x,-~ < xi = ... = xi++r = 5 < x~+~, in which case 
we demand that PCz)(xi) = f”)(xi) for i = 0, I,..., m + 1. 

THEOREM 3.2. Let P(x) be any G.P.S. with at most r knots, and let 
{x&?{+l, 0 < x1 < .‘. < x,+,+~ < 1 be given. Set (r* = /I N(P)Il, . Thenfor 
each CJ > u*, there exist two unique G.P.S.‘s p,(x) and P,,(x), each with 
exactly r + 1 knots, satisfying 

I. Po(xi) = _pU(x,) = P(x,), i = I,..., n + r $ 1, 

2. II N(~c,Il, = II W’o>lk = 0, 
3. N(p,Jl)) = u, N(_P,(l)) = -u. 

We state the following extension of Theorem 3.2, similar to Theorem 3.1(a). 

THEOREM 3.2(a). Let P(x) be any G.P.S. with at most r knots, and let 
{xi};y, 0 < x1 < ..’ ~xx,+,~,~I,~~[O,l],andk,l~k,<n-l,be 
given. Assume /I N(P)Il, = a*. Then for each D > (T*, there exist two unique 
G.P.S.‘s P,(x) and PO(x), each with exactly r + 1 knots, satisfying 

1. Fu(xi) = pc(xi) = P(x,), i = l,...,n + r - 1, 
2. Pf’(() = J’Jj’([) = P’j’(.$), j = k - 1, k, 
3. I/ N~,)ll, = II W’ok = 0, 
4. N(PJl)) = u, N(_P,(l)) = --cr. 

THEOREM 3.3. For each integer r 3 0, there exists a G.P.S. P,(x), unique 
up to multiplication by - 1, with exactly r knots such that I/ P, jja = I, and 
P,(x) equioscillates between 1 and -1 at exactly n + r + 1 points in [0, 11. 

Set u, = II N(P,)l’, . 
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PROPOSITION 3.3. udl = 0 < u. < u1 < ..a < uv < es- and a, f co as 
Y T 00. 

THEOREM 3.4. For a E (a,. , CJ,+~), there exist two G.P.S.‘s &(x; a), 
i = 1, 2, unique up to multiplication by - 1, with exactly r + 1 knots and 
n + rpoints ofequioscillation such that 11 Z,(.; a&, = 1 and11 NZ,(.; u)llm = u, 
i = 1, 2. Let {~~~jjn=:7+~, 0 < xii < ... < x:+,.+~ < 1 denote the points of 
equioscillation of Zi(x; u), i = 1, 2. Then, Z,(x; u) and Z,(x; u) are d&en- 
tiated by the fact that 

(N-W; ~>)G(x~+,+~ ; 4) = u, while (JKO; ~>)(.G(x~+,+~ ; 0)) = -0’. 

4. PERFECT SPLINES ARE SUFFICIENT 

Set WJX% ;u) = {f:fs ~2WMfllm < 1,llW)ll~ < ~1. 
We are interested in the problem 

sup ~Ew(‘z,(x I V’“‘(5) + I-@“-“(E>I (4.1) 
m 6.C 

) 

for some 5 E [0, I], 1 < k < n - 1, fixed, and A, p real numbers. 
We first show that in the study of (4.1) it is sufficient to consider generalized 

perfect splines with at most a finite number (this number is dependent on u) 
of knots. 

THEOREM 4.1. If u E [ur , u~+~), then for any f 6 Wg’(XC ; u), there exists 
a G.P.S. P(x) with at most r + 4 knots such that P E WF)(XC ; a), and 
P’j’(& = f(j)([), j = k - 1, k. 

We shall not consider the case where u = 0. In this and the succeeding 
sections, if r = -1, then we understand u E [u-~ , u,,) to mean u E (u-~ , u,J. 

In the proof of Theorem 4.1, we make use of the following simple lemma. 

LEMMA 4.1. If P(x) is a G.P.S. with r + 4 knots, f E Wz’(XJ, and there 
exist {x~}~~@, 0 < x, < ... < xlz-LT+B < 1, and 5 E [0, l] such that 

(1) P(x,) = f(xi), i = l,..., n + r + 2, 
(2) P(j)(f) = f(j)(f), j = k - 1, k, and 

(3) /I W)Ilm > II Wf)lla 2 
then P(x) - f(x) has no additional zeros in [0, 11. 

Proof. If P(x) - f(x) has an additional zero, counting multiplicity, then 
by Theorem 3.1(a), 11 N(P)llm < II N(f& . But this contradicts (3). The 
lemma is proved. 
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Proof of Theorem 4.1. Let Z = (5 = (5, ,..., <n+r+3): & > 0, CT:{‘” ci = l}. 
Let x,(r) = 0, xi(<) = & cj, i = I ,..., IZ + r + 3, (x,+,+,(<) = l), and 
assume f E Wz’(zE ; u). From Theorem 3.1(a), there exists, for each c E Z, 
a unique G.P.S. P(x; 5) with at most r + 3 knots such that 

(1) &xi(C); t-1 = f(x&)), i = I,..., n + r + 2. 

(2) P’j)((; C) = f(j)((), j = k - I, k 

and furthermore, 11 N(p(.; r))lim < 11 N(f& < u. Choose 6 > 0, sufficiently 
small, such that 0 + 6 < or+l . From Theorem 3.2(a), there exists a unique 
G.P.S. P&; c) with exactly r + 4 knots satisfying (I), (2), and 

(3) II Wd-; C>>lL = 0 + 6, and NPdI; Z;)> = u + 6. 

Define 

and R&J = M(c) - m&J, i = I,..., 12 + r + 3. Note that R&J is a con- 
tinuous function of < o Z. 

It is our aim to prove the existence of a <* E Z for which jl P6(.; <*)il, < 1. 
The proof of this fact is divided into three cases. 

Case 1. There exists a c* E Z such that C~~~‘” R,(c*) = 0, and lr* = 0 
for some i = l,..., n + r + 3. 

Since CyT{+” R,(r*) = 0, M(<*) = mi(c*) for all i = I,..., n - r + 3. 
Now, for some i,, , <$ = 0, implying mi,(C*> = I P&cfoG*); <*>I = 
If(xi,(G*))l < 1. Thus II Pd.; C*h = MC*) = m&*) G I. 

Case 2. There exists a c* E Z such that ~~~~“” R,(<*) = 0, and ii* > 0, 
i = l,..., n+r+3. 

Since MC<*) = II Pd.; t;*)llm, if M(c*) < I, then we are finished. Assume 
M(<*) = c > 1. Then in each interval (x,-l(<*), x~(<*)), there exists a point 
zi , i = I,..., n + r + 3, such that / P,(zi ; <*)I = c. From Lemma 4.1, since 
llfllm < 1, it follows that P,(zi ; c*) P,(z~+~ ; <*) < 0, i = l,..., n f r + 2. 
Thus P,(x; c*) equioscillates at n + r + 3 points between c and -c. From 
Theorem 3.3, there exists the G.P.S. P,+l(x) with r + 1 knots and n + r + 2 
points of equioscillation between 1 and - 1. Since c > 1, P,(x; <*) - P,+l(x) 
has at least n + r + 2 sign changes in [0, 11. As a result of Theorem 3.1, 

- 11 iVP,+, Ilm < Ij NP,(.; <*)llm = IJ + 6. But this is a contradiction. 
tizs, < 1. 

Case 3. For all < E Z, z:i”=:‘,’ R&) > 0. 
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Consider the mapping 

5’1 = Rica/y R,(t;), i=l ,..., n + r + 3. 
j=l 

Since R&) is a continuous function of < E Z, there exists, by the Brouwer 
fixed-point theorem, a t;* E Z such that 

c*i = Ri(S*)lny Rj(<*), i=l ,..., n + r + 3. (4.2) 
i=l 

Since M(c*) = maxi mi(t;*), there exists an i,, such that R&*) = 0 
(M(<*) = mi,(<*)). From (4.2), c,*, = 0 and thus 

II Pd.; T*)llm = M(r*) = m&*) = I PB(x&*); <*)I 

= I m,G*))I < 1. 

Thus, for each u E [a,, r~?+~), f E W~‘(Y~ ; 0) and 6 > 0, small, there 
exists a G.P.S. P&X) with exactly r + 4 knots such that P:‘(f) = f(j)(<), 
j = k - 1, k, II P, Ilm < 1, and (I NP, Ilm = u + 6. Let 6 J 0. Since the class 
of G.P.S.‘s with at most r + 4 knots in IVz)(X6 ; u + 6) is closed and 
compact, it follows that there exists a G.P.S. P(x) with at most r + 4 knots 
such that II P /Im < 1, 11 NP Ilrn = u, and P(j)(t) = f(i)@, j = k - 1, k. 
The theorem is proved. 

Remark 4.1. By a more careful analysis, it is possible to prove that we 
can, in fact, reduce the admissible class of generalized perfect splines to those 
with at most r + 3 knots. 

Remark 4.2. If f E Wg)(XE ; a), then we may perturb f(x) by any 
g(x) = Cyzf aiui(x; E) so as to increase /If (Im while keeping [I Nf /Ia un- 
changed. It therefore follows that f E lVz)(Xc ; u) which solves (4.1) must 
satisfy j/f Ilm = 1. 

PROPOSITION 4.1. The supremum in (4.1) is attained. 

Proof. This follows by a standard compactness argument which is 
obviated by Theorem 4.1. 

DEFINITION 4.1. Let P(x) be a G.P.S. with exactly I knots and exactly 
IZ + I - 1 points of equioscillation {x~}~~--‘, 0 < x, < **a K x,+rel < 1. 
We say that P(x) has opposite orientation if P(x,+~-,) NP(1) < 0. (This is 
equivalent to P(xJ NP(O)(- 1)” < 0.) 
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Let S,(U) denote the class of generalized perfect splines in Wz)(YE ; a) 
which maximize (4.1) for some r, k, X, and p as prescribed. 

The following theorem uses a perturbation technique wihch is a variant 
of that used in Karlin [IO, pp. 470-4721. 

THEOREM 4.2. For every P E Y’,(u), we have 11 P [lrn = 1 and // NP jjm = CJ. 
Moreover, if P E 9Jcr) has I knots, then P has at least n + I- I points of 
equioscillation, and if P has exactly n + I - 1 points of equioscillution, then P 
has opposite orientation. 

Proof. If P E Y’,(u), then 11 P Iii0 = 1 by Remark 4.2. Assume that P(x) 
has 1 knots and m points of equioscillation {xi}zl , 0 < x1 < I+. < x, < 1, 
where, without loss of generality, we assume P(x,) = (-l)i+“, i = l,..., m. 
Choose yi E (xi , x~+~), i = I,..., m - 1, such that, in [yi , yi+J, 
P(x)(- l)i+” < 1, i = 0, 1 ,..., m - 1, where y0 = 0, y, = 1. 

The idea of the proof is to construct, where the conditions of the theorem 
are not met, a G.P.S. es(x) with at most 1 knots for which Q!)(t) = P(j)([), 
j = k - 1, k, and such that I/ Q6 Il11 < 1, 11 NQ6 /im d u. This would, by 
Remark 4.2, contradict the maximizing property of P(x). 

Note that while we have restricted our attention to [0, 11, the generalized 
perfect splines are themselves well delined for any x on the real line with the 
retention of the appropriate results of Section 3. 

We construct es(x) as follows: es(x) is the G.P.S. which satisfies 

(1) QdyO = P(yJ, i = I,..., m - 1, 
(2) Qf’([) = P(j)@), j = k - 1, k, 

(3) Qs(xm) = P(x,) - 6 = 1 - 6, for 6 > 0, small. 

Case 1. NP(I) >Oandm <n+l- 1. 

(4) Since n + I - m - 1 > 0, choose n + I - m - 1 points in (- 1,0) 
and let Q*(x) interpolate P(x) at these points. 

We have imposed exactly y1 + I + 1 conditions upon Q,(x). Thus es(x) 
is uniquely defined with at most I knots satisfying (l)-(4). Since P(x) and es(x) 
both have at most I knots, but are not identical by condition (3), it follows 
from Theorem 3. I (a) that P(x) - Q&(x) h as no additional zeros in (- co, a). 
Also, es(x) is a continuous function of 6 and, as 6 J 0, QB(x) + P(x) 
uniformly on [0, 11. Therefore 11 Q8 /I < jl PI/, = 1, and NQs(l) . NP(l) > 0 
for 6 > 0, small. By assumption, NP(1) > 0, and by construction Q*(x) < 
P(x) for all x 3 1. Thus NP(1) 3 NQs(l) > 0, implying u > j/ NP /L > 
II NQs Ilm . 

Case 2. NP(I) < 0 and m < n + I- 2. 
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Conditions (l)-(3) of Case 1 specify m + 2 constraints on Q(x). To 
construct es(x) as in Case 1, we must specify n + I + 1 conditions. Thus we 
have n + 1 - m - 1 remaining “degrees of freedom.” Since n + I - 
m - 1 > 0, we set Qs(2) = P(2). The remaining IZ + 1 - m - 2 conditions, 
if any, are are specified as in condition (4) of Case 1. As above, es(x) --f P(X) 
as 6 4 0, and Ij Qs lIm < /I P ljoo = 1 for S > 0, small, since P(x) - es(x) 
has no additional zeros in (-cc, co). Since P(2) = Q8(2), es(x) > P(x) 
for x > 2. Recall that NP(l) < 0, and NQ,(l) . NP(1) > 0 for 6 sufficiently 
small. The analysis now follows that of Case 1. 

It remains to prove that for P E 9,(a), 11 NP l13o = 0. This fact may be 
proved via the analysis of Case 1 or 2. We do not enter into the details. 
The theorem is proved. 

We now wish to return to a consideration of ordinary perfect splines, i.e., 
to the study of 

$q ) I VW) + PPW (4.3) 
m CJ 

for some 5, k, p, and h as stipulated earlier, where W:)(u) = {fife IV:‘, 
llfllc ,< 1, IIP /la G 4. 

If P(x; E), for each E > 0, is a generalized perfect spline (see (3.1)) such 
that /I P(*; •)ii~ = 1, /I NP(*; E)II~ = G, and P(x; E) has I knots and m > 0 
points of equioscillation then as E J 0, by an appropriate choice of sub- 
sequences, we obtain in the limit an ordinary perfect spline P(x) for which 
/I P j11o = 1 /I P(“) Ilrn = (3, and P(x) has at most 1 knots and at least m points 9 
of equioscillation. (For a more detailed proof of the limiting behaviour, see 
Karlin [S, 91. Suffice it to say that since the convergence is uniform on [0, 11, 
we cannot lose points of equioscillation, nor can we gain knots.) 

Theorems 4.1 and 4.2 lead to the following two results. 

THEOREM 4.3. Zf CT E [uT, CT r+l), then for each f E W:‘(u), there exists a 
perfect spline P E Wz)(u) with at most r + 4 knots andsuch that // P(“) Ilm = u, 
P(j)([) = f’?‘(f), j = k - 1, k. 

THEOREM 4.4. It is suficient in the study of (4.3) to consider perfect splines 
P(x) for which I/ P Ilrn = 1, (I P@) &,, = u and which further satisfy the con- 
ditions that if P(x) has 1 knots, then P(x) has at least n + I - 1 points of 
equioscillation, and if P(x) has exactly n + I - 1 points of equioscillation, 
then P(x) has opposite orientation, i.e., P(“)(l) P(x,+~-& < 0, where (x~}:$-“, 
0 ,< x1 < ... < x n+l--l < 1 are the points of equioscilltaion of P(x) on [0, 11. 

Remark 4.3. We do not claim that every function f E W?‘(u) maximizing 
(4.3) for some E, k, h, and p is necessarily a perfect spline. 

640/23/1-4 
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5. THE MAIN THEOREM 

We define, for each ~7 E (0, co), a class of perfect splines 9”(u) such that 
any P E 9(u) satisfies jl P /Jm = 1 and I/ Pfn) /JE = u, and for which 

(A) If CJ = Us, r > 0, then for any P E I, either 

(1) W> = Pr(x>, or 
(2) P(x) has r + 1 knots, n + r points of equioscillation, and 

opposite orientation. 

(Recall that P,(x) is the perfect spline, unique up to multiplication by - 1, 
with r knots and n + r + 1 points of equioscillation which satisfies 11 P 11% = 1, 
II P) l/m = UT .> 

09 If u E Co,, (T~+~), r > -1, then for any P E 9’(u), one of the 
following holds: 

(1) P(x) is a Zolotarev perfect spline 2(x; u), 
(2) P(x) has r + 1 knots, n + r points of equioscillation, and 

opposite orientation, 
(3) P(x) has r + 2 knots, n + r + 1 points of equioscillation, and 

opposite orientation. 

On the basis of Theorems 4.3 and 4.4, we shall prove the following result. 

THEOREM 5.1. If u > 0, then on considering 

for 5~ [0, 11, 1 < k < n - 1, h, p real, all jixed, it is su$icient to consider 
the class of perfect splines 9’(u). 

The proof of Theorem 5.1 readily follows from the following proposition. 

PROPOSITION 5.1. If P(x) is a perfect spline satisfying I/ P Ijm = 1, with 
exactly r + 1 knots, n + r points of equioscillation, and opposite orientation, 
then 

CT-1 < /I P(n) I/m < u r+1* 

An important tool in the proof of Proposition 5.1 and in the subsequent 
section is a simple version of the Budan-Fourier theorem for splines. For the 
statement of the theorem, we need the following definitions. 
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DEFINITION 5.1. Let x = (x, ,..., x1) be a real vector of I components. 
Then 

(i) S-(x) denotes the number of actual sign changes in the sequence 
Xl ,-.., x1 with zero terms omitted. 

(ii) S+(x) counts the maximum number of sign changes in the sequence 
x1 ,..., x1 , where zero terms are assigned values $1 and - 1, arbitrarily. 

For example, 

S--(-l, 0, 1, --I, 0, -1) = 2, s+(-l,O, 1, -l,O, -1) = 4. 

DEFINITION 5.2. If f E C[a, b], f(x) + 0 in any subinterval (c, d), of 
[a, b], then zf(a, b) counts the number of zeros of f(x) in (a, b) with the 
convention that if f(x) = 0, but f does not change sign at x, then the zero 
offat x is counted twice. 

DEFINITION 5.3. A step function g(x) on (a, b) with a finite number of 
jumps can always be written in the form 

where 5, = a < f, < ..* < t1 < b. 

For such a function, we define 

&b,(g) = s- 
t 

a,, a0 + a1 Ye.., i ai). 
i=O 

i.e., S,,,,(g) counts the number of strict sign changes of g(x) on (a, b). 
On the basis of the above definitions, we may now state a version of the 

Budan-Fourier theorem for splines. 

THEOREM 5.2 (de Boor and Schoenberg [3], Melkman [15]). If s(x) is a 
polynomial spline function of exact degree n on [a, b] (i.e., s(%)(x) # 0 for some 
x E (a, b)), withfinitely many (active) knots in (a, b), all simple, and ifs(x) 1 0 
on any subinterval of (a, b), then, 

.%(a, b) < S~,~,(S(~)) + S-(s(a), s’(u),..., ~‘“‘(a+)> 
- S+@(b), s’(b) ,..., s’“‘(b-)). 

The following lemma is used in the proof of Proposition 5.1 and in 
Section 6. 
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LEMMA 5.1. As.sume P(x) is a perfect spline with r + 1 knots {rli}Ttl, 
0 < 71 < -.. < %+1 < I, n + r points of equioscillation {xi}rd;‘, 0 < 
Xl < ... <x n+T ,( 1, and opposite orientation. Then 

xi < 7i < &+n-I > i = I,..., r + 1. (5.2) 

Proof. P’(x) vanishes at x2 ,..., x,+,-~. Furthermore, if x1 > 0, then 
P’(xl) = 0, while if x1 = 0, then since P(x) has opposite orientation, there 
exists a y1 < 0 such that P’( yJ = 0. Similarly, if x,+, < 1, P’(x,+,) = 0, 
while if x,+, = 1, there exists a y n+r b 1 such that P’(Y,+~) = 0. From 
Proposition 2.2 applied to the perfect spline P’(x) of degree n - 1, and since 
0 < Tl> %+1 < 1, it follows that 

xi < qi -=I Xi+n-1, i = I,..., r + 1. 

Proof of Proposition 5.1. The proof is divided into four cases. 

Case 1 

Assume I/ P(“) I/ = CI < Us+ = // P’I1’ II . 
Roth P(x) and Y,-,(X) exhibit n + rkAi;ts of equioscillation on [0, 11. Let 

(xi}:=:’ and (yi}~~~, 0 < x1 < *.. < x,+, < 1, 0 = y1 < ..m < yn+r = 1, 
denote the points of equioscillation of P(x) and P,-,(x) on [0, 11, respectively. 
Assume, without loss of generality, that P(x,) = P,Jyi), i = l,..., n + r. 
Since u < cr-r , P(x) - Prpl(x) cannot vanish identically on any subinterval 
of [0, 11, and therefore P(x) - P,-l(x) has at least II + r zeros on [0, 11. 
Thus Pen)(x) - Pi?\ has at least r sign changes on [0, 11. But P,Jx) has 
r - 1 knots and o’r--l > o. Therefore Pen)(x) - Pj?i(x) has at most r - 1 
sign changes on [0, I], a contradiction. 

Case 2 

Assume 11 PcR) llic = IJ > 0 - r+1 'I pj:: llcc . - I 

Choose E > 0, sufficiently small, such that (1 - E)O > u~+~ . Thus 
(1 - 6) Pen)(x) & P$\(x) has exactly r + 1 sign changes on [0, I], whose 
orientation is totally determined by Pen)(x). Since P,+,(x) has n + r + 2 
points of equioscillation and II(l - E)P/I~ = 1 - E < II P,,, L, (1 - E) P(x) i: 
P,+,(x) has at least n + r + 1 sign changes in (0, l), and thus (1 - E) P(“)(x) 4 
PL’$(x) has at least r + 1 sign changes on (0, 1). By the previous 
remarks, (I - G) Pen)(x) f Pj$(x) has exactly r + 1 sign changes. However, 
the orientation of the sign changes in this second method is determined by 
-&P,+,(x). A contradiction. 

Case 3 

Assume /j P(“) /Jm = uT--l = // Pi?: jlm . 
Since we must consider the possibility of P(x) - P,-l(x) vanishing on 
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some subinterval of [0, 11, the analysis is slightly more complicated than that 
of Cases 1 and 2. Let {Q}:+: , 0 < Q < ... < Q+~ < I, and {xi}:=:‘, 
0 < x1 < ... < x,+, , < 1, denote the knots and points of equioscillation 
of P(x), respectively, and let {S,>izi , 0 < 5, < ... < ErV1 < 1, and (yi}Fz{, 
0 = y, < y, < *-* < y,,, = 1 denote the knots and points of equioscil- 
lation of P,-l(x), respectively. Since Pi-r(y,) = 0, i = 2 ,..., 12 + r - 1, 
it follows from Proposition 2.2 that yi+l < Ei < yi+%, i = I,..., r - 1. 
Assume, without loss of generality, that P(x,+,) = P,_l(y,+,). 

Since P(x) has opposite orientation, Pi?\(O) Pen)(O) < 0 and Pi11:(1) 
P(“)(l) < 0, and therefore P(x) - P,-l(x) cannot vanish identically on [0, E] 
or on [I - E, I] for E > 0, small. We wish to prove that P(x) - P,-r(x) 
never vanishes identically on any subinterval of [0, 11. Assume the converse. 

Subcase 3.1. There exists a Ei such that P(x) - P,-l(x) does not vanish 
identically on any subinterval of [0, ei], but P(x) - P,-l(x) -= 0 on 
(fi, & + E), E > 0, small. 

Since yi, 1 < ,$i , P(x) - Prpl(x) has at least i zeros in [0, ti), and thus at 
least i - 1 in (0, .$J. (We are counting zeros as in the definition of 2.) 
Furthermore, S&,(P(n) - PJ”i) < i - 1, and P(“)([i) - P$l([i) = 0, I = 
0, I,..., n - 1. We now apply Theorem 5.2 to obtain a contradiction. 

Subcase 3.2. There exists an Q such that P(x) - I’,-t(x) does not vanish 
identically on any subinterval of [0, qi], but P(x) - PTpl(x) = 0 on 
(qi, Q + c), E > 0, small, and vi # fi ,j = l,..., r - 1. 

Thus 5j < Ti < [,+I for some j = 0, l,..., r - 1, where .$,, = 0, t, = 1. 
If j = 0 or i = 1, then P@)(x) - P~Z~!(X) has no sign change on (0, Q). 
However, y1 = 0 < x1 < q1 < qi (see (5.2)). Thus P(x) - P,-l(x) has at 
least one zero in [0, rj). A contradiction immediately follows from 
Theorem 5.2. Thus tj < Q < &+, for some j = l,..., r - 1, and i > 1. 
Now, S&i,(P(n) - P;“:) -C , min{j, i - l}, and since xi < vi from (5.2) 
P(x) - Pl.-l(x) has at least i - 1 zeros in [0, qi), and at least i - 2 in (0, Q). 
An application of Theorem 5.2 now yields i - 1 < min{j, i - l}. Therefore 
j 3 i - 1, and yi < tie1 < ti < Q . However, since yi , xi < Q , P(x) - 
P,-,(x) has at least i zeros in [O, Q) (and i - 1 zeros in (0, Q)). A contra- 
diction ensues. 

Since P(x) - PrMl(x) cannot vanish identically in any subinterval of [0, I], 
and P(x) and P,-l(x) both equioscillate at n + r points with the same 
orientation, (i.e., P(Xi) = PrVl(yi), i = l,..., IZ + r), the analysis of Case 1 
is applicable. Case 3 is proved. 

Case 4 

Assume 11 Ptn) Ijm = (J,+~ = I/ P$ /Im . 
Orient P(x) and P,+,(x) so that Pen)(l) = Pi$(l). Since P(x) and P,+l(x) 
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both have r + 1 knots, S;,,,,(P(“) - P$) < r. Furthermore, P,+,(l) # P(l), 
and PV+,(0) # P(0) due to the opposite orientation of P(x). Thus P(X) - 
P,+,(X) cannot vanish identically in [0, ~1 or [I - E, I], for E > 0, small. 
If P(x) - P,+r(x) does not vanish identically on any subinterval of [0, I], 
then since P,+l(x) has n $ r + 2 points of equioscillation, P(x) - P,,.l(x) 
has at least IZ + r + 1 zeros on [0, 11, hence on (0, l), and application of 
Theorem 5.2 immediately leads to a contradiction. As above, we prove that 
the hypothesis that P(X) - P,+,(x) vanishes on some subinterval of [0, I] 
is untenable. 

We assume, as previously, that {~,>~~~ and {xi}~~~ are the knots and points 
of equioscillation of P(x), respectively. Let {e$‘: and (Jo&?“+’ denote the 
ordered set of knots and points of equioscillation, respectively, of P+r(x). 

Subcase 4.1. There exists a fi such that P(x) - P,+,(x) does not vanish 
identically on any subinterval of [0, ti], but P(X) - P,+,(x) L== 0 on 
(ti , ei + E), E > 0, small. 

A contradiction follows as in Subcase 3.1. 

Subcase 4.2. There exists an qi such that P(X) - P,+r(x) does not vanish 
identically on any subinterval of [0, ~~1, but P(x) - P,+,(X) r=. 0 on 
(TV, vi + E), E > 0, small, and ?li # & ,j = l,..., r t- 1. 

Thus [j < ?li < [j+r for some j = 0, l,..., r + 1, where 6, = 0, t,+, = 1. 
Ifj = 0, then 0 < vi < 5, , and since Pen)(O) = Pj:i(O), it is necessary that 
i 3 2 (i be even) in order that P(x) - Pr+l(x) = 0 on (vi , vi + e). However, 
0 < x, < xg < 772 < Q implying that P(X) - P,+l(x) has at least one 
zero in [0, yi), while SG,,~,(P cn) - P$ = 0. A contradiction follows from 
Theorem 5.2. For j > 0, SG,,~,(P(~) - Pit:) < min{j, i - 11, unless j = 
i - 1, in which case the bound is j - I = i - 2. Since xi ( qi and 
yj+, < & < vi , P(x) - P,+,(x) has at least max{j, i - I} zeros in [0, vi). 
An application of Theorem 5.2 implies j = i - 1. A contradiction now 
follows from the above remarks. 

The proposition is proved. 

Proof of Theorem 5.1. On the basis of Theorems 4.3 and 4.4, it is sufficient 
to consider perfect splines with a finite number of knots, which are of norm 1, 
and whose nth derivative is of norm 0. Certainly 2(x; u), the Zolotarev 
perfect spline, satisfies the condition of Theorem 4.4 (if 0 = u, , then 
2(x; a,) = P,(x)). If P(x) is any perfect spline with I knots and at least n + 1 
points of equioscillation, then P(x) = 2(x; y) for some y. However, 
/I Z(“)(x; r)iim = y. so that if P(x) # Z(x; a), P(x) has 1 knots, n + I - 1 
points of equioscillation, and opposite orientation. From Proposition 5.1, 
g’1--2 < 1) P(“) /ICC < uL . The theorem now follows. 

Q.E.D. 
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6. NUMERICAL DIFFERENTIATION FORMULAS 

In Section 5, we proved that in the study of 

(6.1) 

where 1 < k < IZ - 1, 5 E [0, 11, and X, II, real, all fixed, it is sufficient to 
restrict ourselves to a consideration of the class of perfect splines P(U). 

In this section, we study in greater detail a special case of (6.1), namely, 

(6.2) 

where 1 < k < 12 - 1 and 6 E [0, 11, fixed. 
From this study it will follow that for each k, 1 < k < n - 1, and each 

P E P(u), there exists a least one point 5 E [0, l] such that P maximizes (6.2). 
A numerical differentiation formula is any equation of the form 

f’“‘@ = fl MYi) + jol K(t)f’yt) dt, 

which is valid for all f E W, . (N Given the formula (6.3), it then follows that 

I f’“‘(5>1 < llfllm i I ai I + 1I.P) l/m 1’ I K(t)! dt. (6.4) 
i=l 0 

Given PEP(D) and k, 1 < k < n - 1, we shall find LJ E [0, 11, {ai}&, 
and K(t) satisfying (6.3) for which equality holds in (6.4) for P, implying 
that P maximizes (6.2) for k and .$, as above. (For a discussion of numerical 
differentiation formulas on [0, 11, see Kallioniemi [6].) 

PROPOSITION 6.1. Let P(x) be a perfect spline with r + 1 knots, (Q);:: , 
0 < r), < ..* < T,+~ < 1, exactly n + r points of equioscillation {Xi>:::, 
0 < x1 < ‘*. < x n+T < 1, and opposite orientation. Then there exists a 
nontrivial spline s(x), unique up to multiplication by a constant, of degree n - 1 
with the r + 1 knots {va>;+: which vanishes at the {xi}~~~, i.e., 

n-1 rt1 

s(x) = c bixi + 1 cd(x - llJ-l, 
i=O i=l 

and s(xi) = 0, i = l,..., n + r, s(x) f 0. 
Furthermore, S(~)(X) is not identically zero on any subinterval (a, 6) of 

[0, 11, I = 0, l,..., n - 1. 
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Proof. From (5.2) we have xi < yi < X~++~ , i = I,..., r + 1. These are 
explicitly the conditions (see Schoenberg and Whitney [18]) necessary to 
insure the existence of the nontrivial S(X) as in the statement of the propo- 
sition, uniquely determined up to a multiplicative constant, and such that 
s(x) = 0 iff x = xi, i = l,..., IZ + r. Thus, s(x) changes sign at the {xi}~Z~, 
and also, ~@-l)(x) + 0 on [0, 11. From Theorem 5.2, 

n + r < S&)(S(~~~)) + S-($(O),..., Jne2)(0), s(“-‘j(O)) 

- s+@(l),..., s(“-2)(l), @-1)(l)) 

<r+l+n--l=n+r. 

Therefore equality holds throughout, implying that S(X) is a polynomial of 
exact degree n - 1 in each interval (qiml , $, i = l,..., r + 2, where v. = 0, 
q7+2 = 1, and h ence S(~)(X) does not vanish identically on any subinterval 
(a, b) of [O, I], I = 0, I).. .) n - 1. Q.E.D. 

By Proposition 6.1, s(“)(x) has exactly IZ + r - k simple zeros and vanishes 
nowhere else on [0, 11, k = l,..., n - 2, while s(“-~)(x) has r + 1 sign 
changes at (~J~~~. Let L&) denote the matrix 

1 1 
Xl Xl 

i-1 i-1 
Xl Xl 

Xlk Xlk 

xk+l xk+l 1 1 

n-1 n-1 
Xl Xl 

(-% - 71x1 (-% - 71x1 

(Xl - %+x-l (Xl - %+x-l 

Since 

. . 

. . 

. . 

. . . 

. . . 

. . . 

1 
X RfT 

n-l 
%l+, 

(&+v - 71x1 

0 
0 

0 

(k :i,! 5 
l! 

(n - I)! 
Qz - J - k)! 5n-1--P 

(n - l)! 
(n- 1 -k)! (5 - rll)Y 

(bo ,..., b-1 , cl ,..., c,+d 4&f.) = (sh),..., s(x,+J, s’“‘(5)) 

= (0 )..., 0, dk)(f)), 
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it follows that det Lk([) = 0 at the points 5 for which s(“)(t) = 0. Thus, 
for k = 1, 2,..., n - 2, there exist at least rz + r - k points ($“‘}~~~-” for 
which det Lk([jk)) = 0, i = l,..., n + r - k. (It may, in fact, be shown that 
L&J) changes sign at (~j”)}~~{-” and vanishes nowhere else in [0, 11.) 

Since any f E WF’ may be written in the form 

n-1 

f(x) = C dixi + (n J ,)! s,’ (x - t)Y1fCn)(t) dt, 
i=O 

the existence of a numerical quadrature formula of the form 

(see (6.3)) which is valid for all f~ Wz’, where 1 < k < n - 1, 5 E [0, 11, 
O<Yl< ... < yp < 1, is equivalent to the existence of numbers {ai}; , 
such that 

gl aiyiz = 0, I = 0, I,..., k - 1, 

(6.5) 

& aiyi’ = & (‘-‘, 1 = k ,..., n - 1, 

and 

K(t) = &ct) = 
(n - l)! 

(n _ 1 _ k)! (( - t)T-l-” - ig ai(yi - t)f-‘1. (6.6) 

Let P(X) be the perfect spline considered in Proposition 6.1. 

PROPOSITION 6.2. For each 5 c [0, 11, there exists a numerical dlyerentiation 
formula of the form 

n+r 
fY0 = C adOff + (n y lj, J’ &WfYt) dt 

i=l . 0 
(6.7) 

such thatK,(Ti) = 0, i = l,..., r, where {xi}~~~ and {Q}~=~ are as in Proposition 
6.1. 
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ProoJ The proof of Proposition 6.2 is equivalent to solving the linear 
system 

1 
x1 

k-l 
Xl 

Xl 
k 

kfl 
Xl 

n-1 
Xl 

Xl - 7)x1 

Xl - ?1X-' 

. . . 

. . . 

. . . 

. . . Xk+l 
?LfT 

n-1 . . . 
-G+, 

. . . 
(x?a+T - ~lx-’ . 

. . . 
(xn+T - 77x1 an+, (1 Q -- 

= 

0 
0 

0 

(k yl)! 5 
I! (6.8) 

This can be achieved since the nonsingularity of the above matrix is equivalent 
t0 Xi < 7jg < Xi+n , i = I,..., Y. For P(x) as above, xi < vi < X~+%-~ < x~+~, 
i = I,..., r, and the result follows. Q.E.D. 

For certain choices of [, we can make Ke vanish at q,+1 , too. We have 

WI) = de 

1 . . . 1 0 
x1 ... x n+r 0 

Xl 
k 

n-1 
Xl 

. . . 

. . . 

k! 

,(x1 - 71r1 ... t&L+, - w (*(n~~~), (5 - d:-1-k 

D, (6.9) 
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where D is the reciprocal of the determinant of the matrix given in (6.8). 
Therefore, &(v?+~) = D det Lk([) and, for 1 < k < n - 2, there exists 
{[i”)];=:‘-” such that det Lk(,$lk)) = 0, i = l,..., n + r - k. Set [* = ti”’ for 
some i = l,..., IZ + r - k, and let ai = uf , i = l,..., n + r, K,,(t) =: 
K(t). Thus, K(Q) = 0, i = l,..., r + 1. 

PROPOSITION 6.3. For {a,*>, K(t) as above, 

(1) ~“(-l)~r < 0, i = l,..., n + r, where y = +l or - 1 jixed, and 

(2) K(r)(-l)i 6 - 0 for yipI < t < Q , i = l,..., r + 2, where q,, = 0, 
T,.+~ = 1, and6 = +l or -1,jixed. 

Proof. Due to the possibility of degeneracies arising, various cases need 
be considered. Let us first note that from (6.9) and since x1 < f* < x,+, , 
the support of K(t) is necessarily contained in (x1, x,+,), i.e., P)(x,) = 
K@)(x,,_,.) = 0, i = 0, 1 ,..., n - 2, while K(“-l)(x,-) = K+l)(x,+,+) = 0. 

Case 1 

K(t) z 0 on any subinterval of (x1 , x,+,). 

Subcase 1.1. [* # xj , j = 2 ,..., n + r - 1. 
By the Budan-Fourier theorem (Theorem 5.2), 

because S-({KCi)(x,+)}~:~) = 0, and S+({K(i)(x,+,-)}r:t) = II - 1. Since 
5’ # Xj 1 ,j = 2,..., n + r, x1 < 47 < xnfr, and IP([*+) = IP(E*-), 
i = 0, I,..., n-l,i#n-l-k, 

for 1 < k < n - 2. Thus, 

rT 1 < Z,(x, , x~+~+J < S- (z 4, ~4,..., G+~) - n + 3 

<n+r-2-n+3=r+l. 

Therefore equality holds throughout implying that K(t) changes sign 
at vi , i = l,..., r + 1 and vanishes nowhere else in (x1, x~+~), and 
S-(CyLl u: ,..., a,*,,) = n + r - 2. This latter fact, together with 
CrTI’ a: = 0, implies ui*ui*,, < 0, i = l,..., n + r - 1. 

Subcase 1.2. [* = xi , for some j = 2 ,..., n + r - 1. 
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Note that if k = 1, then t* # xj for any j = 2,..., y1 + r + 1 from the 
construction of s(x) in Proposition 6.1. If 1 < k < n - 2 and [* = xj , 
then once again applying Theorem 5.2, it follows that K(t) has no additional 
zeros other than its sign changes at {Q}:::, and 

S- (f at ,..., y a:) = j - 2, 
i=2 i=j 

i 

n+r 
S- 1 a,*,...,az+;, =n+r-j-l, 

i=j+1 1 

while S-({K(“)(X~+)}~:~) - S+({Kci)(x,-)>~:~) = 3. The latter equality implies 
that (Cyz aF)(ZrJTc, a,*) < 0. It follows that afaz+, < 0, i = l,..., y1 + 
r- 1. 

Case 2 

K(t) E 0 on some subinterval of (x1 , x,+,). 

(a) Assume that there exist i1 , iz , 1 < i, < iz < n + r, such that 
K(t) + 0 on any subinterval of (xi, , xiZ), and K(t) = 0 for t E (xi, - E, xi,) 
and t E (xi, , xi, + E) for some E > 0, E sufficiently small. 

Subcase 2.1. t* $ [xi1 , xi,]. 
By Theorem 5.2, ZK(xil , xi,) < (iz - il - 1) - (n - I) = i, - i, - n. 

Moreover, xi, < Q, and T+++~ < xi, , by (5.2). Thus, z,(xjl , xi,) > 
iZ - i1 - yt + 2, a contradiction. 

Subcase 2.2. 4* = xi, or f* = xi, . 
We follow the previous analysis to obtain zK(xil , Xi,) < i, - i, - n -t 1. 

But as above, Z,(Xi, , xi,) > iZ - il - y1 + 2. A contradiction. 
(b) Assume that K(t) vanishes identically on (xc, <*), 4* #= x, , 

j = l,..., n + r, while K(t) + 0 on any subinterval of (t*, xi,). Adapting 
the previous analysis, one is again led to a contradiciton. 

Thus the support of K(t) is necessarily a connected interval (xi, , xi,), and 
,$* E (xi, , xi,). We now reapply the analysis of Case 1, where we make-use of 
the result (5.2), namely, xi, < Q, and ~~,-~+i < xi, . Note that for iZ < 
II + r, aj* = 0, j = i, + l,..., n + r, while if i1 > 1, then a: = 0, 
j = l,..., i1 - 1, and CyzZL a? = 0. 

It follows that a,*aj!+l < 0, j = il ,..., i, - 1, and K(t) changes sign in 
(xi, , xi,) at rli, ,..., T~,++~ and vanihses nowhere else in (xi, , xiZ), implying 
as well that 
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This proves Proposition 6.3. 

and rli2-n+z b xi 2’ (6.10) 
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THEOREM 6.1. Let P(x) be a perfect spline with r + 1 knots, n + r points 
of equioscillation, and opposite orientation. Let [* = (I”’ for some i = 
l,..., n + r - k, and 1 < k < n - 2, as in Proposition 6.3. Then for any 

fE WZ’, llf /ia G II P IL , and (jfCn) Ilm < II Pin) I! al, we have lf’“‘([*)I < 
1 P’“‘(<*)i. 

Proof. n+r 
f’“‘(5*> = c a$ f(Xi> + (n -! I)! s o1 K,,(t) f’“‘(t) dt, 

i=l 

where {at};+’ and K,,(t) satisfy the conditions of Proposition 6.3. Thus, 

n+r 
I f(“G*>I d Ilf Ilm C I 4 I 

i=l 

+ (n 2 l), IIP /Iz I1 I G(t)! dt. 
0 

NOW CyJl aTP(xi) = E /I P I/= Cy=:’ I a; 1, where E = + 1 or - 1, fixed, and 
ji K,,(t) P’“‘(t) dt = X II PC”) I!= J-i I ICE*(t)] dt, where X = +1 or -1, fixed. 
To prove the theorem, it is necessary that we show that E = h. 

Assume that supp I&(t) = (xi, , xi,). For t = xi, - 6, 6 > 0, small, 
K,,(t) = -at(xi, - t)F-‘, and therefore 

sgn K,,(t) = -sgn ai*, for t E (Xi, - 6, Xi,). (6.11) 

Assume P(x,)(-~)~+“+~ > 0, i = I,..., IZ + r. Thus, sgn P(x,,> = (-l)i~+n-kr. 
Since P(x) has opposite orientation, P(n)(t)(-l)i+r > 0 for Q < t < qi+r , 
i = 0, l,..., r + 1, where 7. = 0, T,+~ = 1. From (6.10), ~,++r < xi, < 
qiz--n12 . Hence, for t E (xi, - 6, xi?), P(“)(t)(- l)i~-“+T+l > 0. Tt therefore 
follows from (6.11) that E = X. The theorem is proved. 

.Y(a) contains perfect splines of the above form as well as Zolotarev 
perfect splines. For (T E (a, , u~+~), the Zolotarev spline has r + 1 knots and 
n + r + 1 points of equioscillation. Any other perfect spline P(x) satisfying 
these properties is such that P(x) = fZ(x; U) or P(x) = *Z(l - x; U) 
(see Theorem 2.4). Let us assume the normalization Z(1; a) = 1 and 
ZCn’(l; CJ) = u, which uniquely determines 2(x; u). Let 0 < x1 < ... < 
&L&r < X?w+l = 1 denote the points of equioscillation of Z(x; 0) and let 
(vi},‘lr: 2 0 < 71 < “’ < v,+~ < 1 denote its knots. Then, as in (5.2), 
Xi < 7/i < Xi+n-1 ) i = l,..,, r + 1. If we discard the point x,+,+r = 1, 
then we see that we are in the situation where the previous analysis is 
applicable. 

If u = u,+1 ) then Z(x; u,+r) = P,+,(x). P,,l(x) has n + r + 2 points of 
equioscillation, one at zero and one at one, and r + 1 knots. In order to 
apply the previous analysis, we delete the points of equioscillation at 0 and 1. 
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Note that the point (or points if u = u~+~) of equioscillation which are 
deleted are chosen in order that the perfect spline have opposite orientation 
with respect to the remaining points of equioscillation. 

Thus it follows that 

THEOREM 6.2. For each CJ > 0 and k, I < k < n - 2 and for each 
P E 9(o), there exists at least one point 6 E (0, 1) such that max 1 fu)(E)I, over 
f E W:‘(o), is attained by P(x). 

The maximization problem (6.2) where t = 0 or 1, i.e., an endpoint, 
has been considered by Karlin [I 11. If u = up , then P,(x) maximizes i f(“)(l)j 
(and If(“)(O)l) for all k = l,..., n - 1. If uy < u < u~+~, then Z(x; u) with 
the above normalization maximizes 1 f(“)(l)1 for k = I,..., n ~ 1. At the 
endpoint zero Z(1 - x; u) is, of course, a maximizing function. There are 
various methods of proof of this result. We refer the reader to Karlin [I I] 
for a proof which is also given via a numerical differentiation formula. 

In the above analysis, we did not consider the case k = n - 1. This was, 
in the main, due to various technical difficulties brought about by the lack of 
continuity of .sIn-l)(x) and I&(t) for k = n - 1. Below, we reconsider the 
relevant portions of the preceding analysis in order to prove 

THEOREM 6.3. Let P E 9’(u). Then, for any f 6 W?)(u), IlIe have 
jf(“-l)(~)j < / PCn-l)(v)l where q is any knot of P(x). 

We shall only consider the case where P(x) is a perfect spline with r + 1 
knots, n + r points of equioscillation, and opposite orientation. As indicated 
above, the analysis remains valid for the Zolotarev perfect splines with the 
previously considered modifications. 

From Proposition 6.1, s(“-l) (x) is a nonzero constant on each (vi, Q+J, 
i = 0, I,..., r+ l,whereq, = O,T~+~ = I, and {Q}::=‘: are the knots of P(x), 
and s’“~~)(~~-) s(‘l-l)(r),+) < 0, i = I,..., r + 1. Let L(c) denote the 
(n + r + 1) x (n + r + 1) matrix 

1 . . . 1 0 
Xl 

. . . x ?L+r 0 

n-a 
Xl 

n-2 . . . 
X?L+, 0 

n-1 
Xl 

n-1 . . . 
xn+r (n - l)! 

(-G - 77Kl ... (x,+, - 7X’ (n - 1)!(5 - Q)“, 

(XI - rlr+X-l *** (x,+, - rlr+K1 (n - l)!O - ++X, 

where (xirizI I”+’ are the points of equioscillation of P(x). Since xi < qi < 
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Xi++1 ) i = I)...) r + 1, the (n + r) x (n + r) principal submatrix of L(t) 
obtained by deleting the last row and column is nonsingular. Moreover, 

(6, ,..., h-1 , cl,..., c,+d Gf) = 6-L 0, ~(n-lY~N. 

Thus, if s’“-~)(() # 0, then det L(t) # 0. It then follows, since s(“-~)(T~-) 
;‘“-“(qj+) < 0, j = l,..., r + 1, that det L(vj-) . det L(vj+) < 0, j = 

,***, Y + 1. Fixj, 1 < j < r + 1, and let ii = vi , i = l,..., j - 1, ci = Q+~, 
. . z = J,..., r. Construct the numerical differentiation formula 

n+r 
f(n-l)h) = c aif + (,7 1 z=1 1), j1 ~0)f(~)(0 df . 0 

such that K(<i) = 0, i = l,..., r, where {xi}~~~ and {[J& are as stipulated 
above. This construction is equivalent to solving the linear system 

1 . . . 1 - 

Xl -yn+, 

n-2 
Xl 

n-2 . . . X n+P 

n-1 
Xl 

n-1 . . . 
&+r 

(x1 - 5,);~-’ ... (x,+r - cl,:-’ 

.@I - 5,y ... C&r - 5,Y-’ 
- 

a -I 
1 

- 

0 - 

0 

0 

(n - l)! 

(n - l)!(Q - ix 

(6.12) 

Since xi < 7ji < X~+~-~ , it follows that xi < ii < x~+~ for i = I,..., r and 
these are explicitly the conditions necessary to insure the nonsingularity of 
the above matrix. Now, 

K(t) = de1 

I . . . 1 0 

-y1 . . . -yn+r 0 

n-2 
Xl 

n-2 . . . 
X7&+?” 0 

$1 . . . x”n;‘T (n - l)! 

(x1 - 5X’ ..- h+, - 5X’ (n - l)!(rli - LX 

(x1 - iJ:-l ... (x,+, - 5X1 (n - l)!(~~ - tJ9 

(xl - t)T--’ --- (x,+, - t)“;l (n - l)!(~? - t): 

E, 
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where E is the reciprocal of the determinant of the matrix given in (6.12). Thus 
K(t) = (n - l)!(~ - t)! - CyZl ai(xi - t)“;l satisfies K(&) = 0, i = l,..., r, 
and K(Q+) K(r],--) < 0. 

We wish to prove that Q(-I>i y > 0, i = I,..., n + Y, where y = +l or 
-1, fixed, and K(t)(--l)i 6 b 0 for qiA1 < t < Q , i = l,..., Y + 2, where 
T,, = 0, 7r+2 = 1, and 6 = + 1 or - 1, fixed. As in the proof of Proposition 
6.3, the analysis is divided into various cases. We shall herein consider only 
the analog of Case 1, Subcase 1.1 of Proposition 6.3. The remaining cases 
follow in a similar manner. Hence, let us assume that K(t) $ 0 on any 
subinterval of (x, , x,+,) and qj # xi , i = 2 ,..., n + r - 1. 

By Theorem 5.2, 

~K(x, , qj> < S- (z: a?,..., $12) 
+ S-(zqx,),..., K’“-1)(x,+)) - S+(K(Q-),..., K’“-y~j-)) 

and 

( 

m+r 
ZK(r)j, x,+,) < S- C ai* ,..., a:+,, + Sp(K(vj+),..., K(“-l)(77j+)) 

i=z 
- ~+(Jqx,+A,..., K(IZ-YX,+T->>, 

for some Z, 2 < I < 12 + Y. Thus 

n+T 
r,<z,(~,r),)+~~(rl~,~~+~) <Se 1 d,...,d+, 

( 
-(n-l> 

i=2 1 

+ Wq~jS),..., K’“-y7)j+)) - s+(K(rj-),..., K’“-l’(?p)), 

implying 

1 < s-(K(qj+),..., K’“-l’(~j+)) - s+(K(Tji-),..., IOn-l’(?j-)). 

Since IV)(~~--) = K(i)(r/3+), i = I,..., n - 1, 

WNrljf),..., K’“-yr],+)) - s+(K(7p),..., P-y~j-)) < 1. 

Equality in the above equations implies K(Q+) K(Q-) < 0, K(t) changes 
sign at ci, i = l,..., r and nowhere else in (x1, a) u (qj, x,+,), and 
LZ,*CZ,‘_~ < 0, i = l,..., y1 + r - 1. 

The remaining analysis is totally analogous to that given for the case 
1 <k<n--2. 

Remark 6.1. Note that the results of this section are independent of 
Sections 3 and 4, and Theorem 5.1. 
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Remark 6.2. The results of this paper extend, mutatis mutandis, to the 
class of functions 

where L is an nth-order differential operator of P6lya type W (totally 
disconjugate) on [0, 11, {u~(x)}~:~ is a basis of solutions of Lf = 0, and K(x, t) 
is the fundamental solution for Lf = 0 obtained by zero initial data at zero, 
see Karlin [8-l 11. The restriction (/ fCn) lls < u is here replaced by /I Lfllrn < u. 
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