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INVERSES OF INFINITE SIGN REGULAR MATRICES'

BY

C. DE BOOR, S. FRIEDLAND AND A. PINKUS

Abstract. Let A be an infinite sign regular (sr) matrix which can be viewed as a

bounded linear operator from lx to itself. It is proved here that if the range of A

contains the sequence (...,1,-1,1,-1,...), then A is onto. If A'' exists, then

DA~'D is also sr, where D is the diagonal matrix with diagonal entries alternately 1

and -1. In case A is totally positive (tp), then DA~]D is also tp under additional

assumptions on A.

0. Introduction. If the problem of spline interpolation is expressed in terms of

B-splines, then the question of existence of a bounded spline interpolant to bounded

data is seen to be equivalent to the question of whether a certain bounded band

matrix has all bounded sequences in its range. In [5], C A. Micchelli conjectured

that there exists a unique bounded spline interpolant (of a given order and a given

knot sequence) to any data sequence (t,, y,),<=z in the plane, with (t() strictly

increasing and (y) bounded, provided only that it is possible to interpolate the

particular data sequence (t;,(-l)'),ez by sucn a sP'ine- There is apparently nothing

special about the particular spline problem other than that it leads to a banded

totally positive matrix. Therefore one of us quoted this conjecture in [3, p. 319, Prob-

lem 4] as

"A bi-infinite banded totally positive matrix A is boundedly invert-

ible if and only if the linear system Ax = ((-1)') has a bounded

solution."2

Micchelli gave a simple argument for the case when A is a Toeplitz matrix.

Cavaretta, Dahmen, Micchelli and Smith [2] recently proved the conjecture in case A

is a block Toeplitz matrix. This is all the more remarkable since it is easy to see in

hindsight that the conjecture is faulty even in the original context of spline

interpolation. For example, interpolation by bounded broken lines with breakpoint

sequence Z at the sequence t = Z \ {0} is possible to any bounded ordinate sequence

y, but not uniquely so since the value of the interpolant at 0 is freely choosable. In

matrix terms, this corresponds to the matrix obtained from the bi-infinite identity

matrix by dropping one row. But, with the condition changed to " ... has a unique

bounded solution", the conjecture was proved in [1].
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The argument in [1] establishes that, under the given condition, A "has a main

diagonal", i.e., some diagonal of A has the property that all finite sections of A

having a portion of this diagonal as their main diagonal are invertible, with their

inverse bounded uniformly. A "' is obtained as the pointwise limit of these inverses.

Thus, the argument establishes more than Micchelli's conjecture. In reaction to a

presentation of these arguments, one of us suggested that there might be simpler

ways to establish the conjecture directly. In particular, it should be possible, because

of the checkerboard nature of inverses of totally positive matrices, to establish that A

is onto under the original condition, using minimal solutions of finite sections of the

given linear system Ay = v.

The present paper carries out this program in § 1. As it turns out, it is possible (i)

to drop any kind of structure assumption on A such as bandedness, and, less

surprising, (ii) the assumption of total positivity can be relaxed to sign regularity.

Having settled this matter, it then became of interest to see how much more

information about the inverse of a totally positive matrix could be obtained by this

approach. Specifically, assuming A~x to exist, and with D the diagonal matrix having

alternately 1 and -1 on its diagonal, could (i) the sign regularity of DA~XD be

established, (ii) DA~XD or its negative be shown to be totally positive if A is, (iii) A~x

be approached by inverses of finite sections of Al

As to the third question, we show, as a simple corollary to the development in §1,

that A'x can indeed be approached pointwise by inverses of certain submatrices of A

(involving consecutive columns of A but not necessarily consecutive rows), provided

the columns of A are already in c0 and not just bounded. We believe this assumption

to be unnecessary in case A is totally positive, in the sense that we believe the

columns of a totally positive /^-invertible matrix to be already in c0. But we have

not been able to prove this.3 In any case, while this result is far from establishing

that such A has a main diagonal, it does allow the conclusion that DA'XD or its

negative is totally positive in case A is.

As to the first two questions, we show in §2 by a completely different line of

reasoning that DA'XD must again be sign regular. From this, a surprisingly simple

argument proves the total positivity of DA~[D in case A is totally positive and

infinite but not bi-infinite.

We will use the following notations and conventions.

We use lower case letters to denote elements of R7, i.e., real functions (or,

sequences) on some integer interval /, with v(i) the zth entry, or value at /', of the

sequence v. By S~(v) we mean the number of strong sign changes in the sequence u,

i.e.,

S~(v) := sup{r: there exist/, < ••■ <jr+]s.t. v(js)v(js+x) <0),

while

S+ (v) := sup{S~(w): w(i) = v(i) whenever v(i) ¥= 0}

See Added in proof.
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denotes the weak sign changes of t3. If 7 is a subset of /, then Vj denotes the

restriction of v to J while vsj is shorthand for the restriction of v to I \J, i.e., to the

complement of J in /. If J consists of just one point, J = {j} say, then we write y

instead of \{/}. Also, \v\(i) '■— \ v(i) | , all /, while, if also u E R', then

u*V-=   2 "(<>(/)•

Correspondingly, when also J is an integer interval, then A* denotes the transpose

of the matrix A E R/XJ and AK L denotes the restriction of A to the subset K X L of

I X J. Such a matrix A is sign regular ( = '■ sr) provided that for each k = 1,2, 3,...

all minors of A of order k have the same sign. If this sign is positive for all k, then A

is totally positive ( — '■ tp). We denote the minor of A obtained from rows p < • • • < q

and columns r < • ■ ■ < s by

p,...,q\
r,...,s

1. Existence of a bounded right inverse in some absolute norm. Let J be a finite,

infinite or bi-infinite integer interval and let 5 C RJ be a normed linear space of real

functions on J, i.e., a space of sequences. We assume that the norm is absolute, i.e.,

for every e G {-1,1}J, s \->(e(j)s(j)) is an isometry. We further assume that the

'unit' sequences eJ, j E J, given by eJ(i) '■= 8¡j, all /, j, form a basis for S, i.e., the

truncation projector PK given by

(r«y)(j)-={iyh  JlK\
[ 0, otherwiotherwise,

converges strongly to 1 as the finite interval K approaches J. Then the continuous

dual S* of S can be identified with the sequence space

fcW: U/H* := sup f*s/\\s\\ < oo   ,
ses '

and the norm on S* is again absolute. In particular, |/| * | í |< Il / II* Il s II, all/ G S*,

s G 5.

Let A G R,XJ for some finite, infinite or bi-infinite integer intervals / and J and

assume that A(i, •) G S, all /. Then we can identify A with the linear map

S* ̂ R':f\-*Af.

We are interested in understanding the range of this map under the assumption that

A is sr.

Theorem 1. Let I, J be finite, infinite or bi-infinite integer intervals, and let S CRJ

be a normed linear space with absolute norm and with (ej)jGJ as a basis. If A G R/xy

is sr, has its rows in S, and carries some x E S* to the strictly alternating sequence

u '■ — Ax, then the range of A contains the Banach space

I': ||tj||„:= sup|o(/)/«(i)|<oo).

More explicitly, for every v E Su there exists yv E S* so that Ayv — v and II y„ II* «>



62 C. DE BOOR, S. FRIEDLAND AND A. PINKUS

Proof. We first consider the case that / is finite. Since S'(u) — \ I | — 1, we claim

that A has full rank | /1 and is therefore onto. Indeed, by induction, we may assume

that A has rank at least | /1 — 1. If now rank A —\I\ — 1, then there would be, up to

scalar multiples, a unique z E R' \ {0} for which z*A =0. Then the sign regularity

of A would imply that z must alternate, i.e., z(i)z(i + 1) *£ 0, all i. Therefore

0 = z*Ax = z*u, and strict alternation of iz would then imply that z = 0, a con-

tradiction.

It follows that every v E R7 gives rise to a linear functional Fv defined on the

finite-dimensional linear space R '■ = span(A(i, -)),e/ by tne rule

2 a¡A(i, -)i-»o*t3.
iei

In view of the Hahn-Banach Theorem, we can therefore conclude the existence of

yv G S* with Ayv = v and llyjl* < IMIJIxIl* once we prove that ||FJ| =£

WvWJxW*.
It is sufficient to consider only finite J, for an infinite J can always be approached

by finite intervals K, and

A(i, ■) - lim PKA(i, ■),    alii,

by assumption. Therefore, for all sufficiently large intervals K, the rule 1a¡PKA(i, •)

h> a*v defines a linear functional FVK on RK : = PK[R] and lim^y || FVK \\ = || Fv ||.

Next, we establish the following auxiliary

Claim. For any s G S with II ill = 1, there exists K in J so that A¡ K is invertible

and, for all v E R7, \(A, K)~xv\* \s\^ IMI J|x||*.

For its proof (which incorporates a suggestion by Rong-qing Jia for the improve-

ment of an earlier argument), let w be an element of minimal support from the set

C:= {yES*:Ay = u,\y\*\s\*i\x\*\s\}.

Such a w exists since J is finite and since x E C, hence C is not empty.

We claim that K ■ = supp w contains no more than | /1 points and prove this by

an argument familiar from linear programming. Indeed, if K were to contain a set L

with | L | = | /1 +1, then we could find z E S* \ {0} with Az = 0 and supp z C L.

From this, we could produce an element wc ■ — w — ez E C with | supp we \ <

| supp iv | as follows. First, Awe = u for all e. Further, as long as

w(j)Mj) - «(/)] >o; forall>G L>

i.e., for all e in an open interval containing 0 (since L C supp w), we have

\w*I*M= 21w(j) -ez(j)\\s(J)\ = \w\*\s\ ~ea

with a :— 2 sign[w( j)]z(j)\s(j)\ . Therefore, assuming without loss of generality

that a > 0 with w(j)z(j) > 0 for some/, the choice e = min{w(/)/z(/): w(j)z(j)

> 0} would work.
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With this, |.ir|<|/| and then, since A, KwK = u,, our earlier argument implies

that A, K is invertible and, in particular, | K | = | /1 . But now,

\(AhKy'v\*\s\= 2   2(Al,Kr\k,i)v(i)
keK ¿e/

-i/

s(k) |

•r. 2 2\(A/,Ky1(k,i)\\u(i)\\s(k)\
keKier

and

2 2lU,.*)~'(*.0ll«(0IK*)l = 2
keKiel keK

2(A,,K)-\k,i)u(i)
¡el

\s(Jc)\

by the sign regularity of A (which gives that (A, K)~x must be checkerboard), the

alternation of u, and the fact that w E C. This proves the claim.

In particular, choosing now s as an extremal for Fv, i.e., so that s G R, \\s\\ = 1,

Fvs = || Fv ||, we conclude from the claim that

ll^ll = K* = ((^/.jf)"'")*^ HollJIxH*.

This establishes the existence of yv E S* with Ayv — v and IIyv\\* < || t31| u\\xII* for

finite /. From this, we obtain the result for nonfinite / by considering all finite

integer intervals L contained in /. For each such L, we can find yf G S* with

Ayt = vl and H .Vif II* * IIü/. II «llxll* < Ilt3||„||x||*. Therefore, for some increasing

sequence (L) converging to /, the corresponding sequence (yKL) converges weak* to

somey, G 5*. But then also IIyjI* *£ ||u||J|xH* and

(Ayv)(i) =y:A(i, ■) = lim {yvLYALJ(i, ■)

-
= Um    t;(/), iGL\= „(/).    D

/--/ I undefined,     i É L .

As a special case, consider the sr matrix ,4 G R7xy to carry lx(J) to lx(I). Its

rows must then be in lx(J), a sequence space with absolute norm and (ej) as a basis.

At the same time, Su — lx(I) provided u alternates uniformly, i.e., u(i)u(i + 1) < 0,

all i, and inf | u(i) |> 0. We therefore have the following

Corollary I. If I and J are finite, infinite or bi-infinite integer intervals and the sr

matrix A E R7X/ carries lx(J) to lx(I) in such a way that, for some x E lx(J),

u : = Ax uniformly alternates, then A is onto.

Remark. This corollary establishes the full generalization of Micchelli's conjec-

ture. The theorem even shows that the solution y of Ay = v may be chosen bounded

in terms of v, i.e., \\y\\x < k\\v\\x with k '■— sup, y| x(/)///(/) | independent of v,

and also demonstrates all this without the assumption that A is 1-1.

As a second special case, consider the sr matrix A G R7X/ to have all its rows in

5 = c0(J), another sequence space with absolute norm and (ej) as a basis. Then

llyll* = llyll, := 2 |y(/) | = |y | * \s \ with s(j)— 1, all/. The claim established
during the proof of Theorem 1 therefore assures us that we can choose, for each
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finite interval Lin I, a subset KoiJ with | K \ — \ L | so that

foralluGR7,       \\(ALJ(y,vL\\x^\\v\\Jx\\x.

Next we extend (AL K)'x to CL E RJXI by taking its values to be zero off K X L.

For each i E I, e' is in Su. The above argument therefore shows that HC^e'll, *£

Ilx||,||e'II„ = llxll,/| «(/) | . We can therefore choose a sequence (L) and a corre-

sponding sequence (K) so that, for each /, CLe' converges weak* to somey' G lx(J).

This means that for all a E c0(J), limL^¡ a*CLe' = a*y' and so in particular

for allr,        (Ayi)(r)= lim A(CLe')(r) = Um J e'(r)'    < G L I = <>'(/•).
£-»/ L-+i [0, i ÉL)

This shows that the matrix C given by C(j, i) '■= y'(j), all (/, i) E J X I, is the

pointwise limit of the sequence (CL). It is a right inverse of A and it satisfies

\\C(-,i)\\x^\\x\\x/\u(i)\,    all/.

This proves

Corollary 2. Let I and J be finite, infinite or bi-infinite integer intervals. If

A E R,XJ is sr, has its rows in c0(J), and carries some x E lx(J) to the strictly

alternating sequence u '■— Ax, then there exist a sequence (L) of index intervals

converging to I and a corresponding sequence (K) of index sets so that (AL K)~x exists

and converges pointwise to a matrix C E R/x/ which carries Su to lx(I) and satisfies

AC = 1 (as maps, hence as matrices).

2. The inverse of a sr matrix. In this section, we assume that the sr matrix

A E R,XJ is also 1-1, as a map on lx, in addition to having a uniformly alternating

sequence in its range. We then know that A is 1-1 and onto, hence invertible, with

A'x again (representable as) a matrix, from RJX/, which carries /„(/) onto lx(J).

Let now D1 E RIXI be the diagonal matrix whose diagonal entries are alternately

1 and -1. Specifically,

(D'y)(i) = (-)'y(i),    all i E I, ally E R7

if / is an interval (as we assume). It is well known that, for finite I and J, the matrix

DJA'xDr is again sr. In addition, if A is tp, then DJA~XD' or its negative is also tp.

We prove the first statement for arbitrary / and J, and prove the second statement

under the additional assumption that the columns of A are in c0 or else that I equals

J and is not ¿/-infinite, i.e., has a first or last entry.

Proposition 1. If A E R'XJ maps lx(J) to lx(I) and is 1-1 and onto, and maps

c0(J) to c0(I), then A tp implies that DJA~XD' or its negative is tp.

Proof. We know from Corollary 2 to Theorem 1 that, under the given assump-

tions, A~x is the pointwise limit of certain matrices (CL)* as the index interval L

converges to /. The matrix CL equals (AK L)'x = (AL K*)~x on K X L and vanishes

off K X L. Here L is an interval, but K is only an index set, K = {kx,.. .,kr), say,

with kx < ■ ■ • < kr. For such K, we define the diagonal matrix DK by

{DKy)(k,) = (-)'y(k,),       i = l,...,r, ally G RK
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Then DL(AK L)'XDK is tp since AK L is. Now every / in / must eventually be in all

K's since in the contrary case the z'th row of (CL)* would be zero for infinitely

many L, hence A~x(i, ■) — 0, which is nonsense. Thus, for any finite intervals M and

Af, (A-X)MN is the pointwise limit of (AK L)~¿ N as L -* /, with £M¡NDM(AKL)-^NDN

tp for some eM N G (-1,1}. This implies that em N is independent of M and N, and

so DM(A~X)M NDN or its negative is tp. But since M and N are arbitrary finite

intervals, this implies that DJA~xDr or its negative is tp.    D

We believe the assumption that A map c0(J) to c0(I) to be unnecessary for the

conclusion that DJA'XD' or its negative is tp. More precisely, we conjecture4 that a

lx-invertible tp matrix A E RIXJ must map c0(J) to c0(I). Without this assumption,

we have no way of approximating A~x by inverses of certain finite submatrices of A,

and will have to prove by some other means that DJA~XDI is sr in case A is sr.

Theorem 2. Let I, J be finite, infinite or bi-infinite intervals. If A E RIXJ is sr and

invertible as a map from lx(J) to lx(I), then DJA~XD' is also sr.

Proof. In outline, the proof is as follows. By well-known results, it is sufficient to

prove that DJA~XD' is variation diminishing, i.e.,

S'(DJA-xD'z) < S~(z),    allz,

and this is equivalent to the assertion that u — Ax implies S~(DJx) =s S'(Dru).

This, in turn, follows by a smoothing argument from the assertion that

u = Ax and u, x nowhere zero       implies       S+ (DJx) < S+ (DTu),

and, finally, this last statement follows, as we will show, from the assertion that

u = Ax and u nowhere zero       implies        x vanishes at most S+ {D'u) times.

We begin the detailed argument with a proof of this last assertion and for this

start with the following

Lemma I. If B E R'xj is 1-1, then B, Jxj is still 1-1 but not onto.

Proof. Since B is 1-1, the sequence B( ■, j) cannot be in the range of B!Jxj, hence

B, Jsj is not onto. On the other hand, if Br Jxjx = B, Jxjy, then, extending x and y to

all of J by setting them equal to 0 at / gives Bx = By, hence x—y.    D

Corollary. If u '■ = Ax uniformly alternates, then x vanishes nowhere.

Proof. If x were to vanish at/, then the sr matrix A, Jsj would carry the bounded

sequence xs¡ to the uniformly alternating sequence u and Corollary 1 to Theorem 1

would give that A¡ ^ is onto, while A is 1-1 by assumption, hence A,Jsj is not onto

by the lemma.    D

Next, we strengthen this corollary as follows.

Proposition 2. Suppose u = Ax satisfies inf, | u(i) |> 0 and S+(D'u) = k, while

xL — 0 for some L with \L\— k. Let K '■— {i E I: u(i)u(i + 1) > 0}. Then, the

matrix C '• — AxKxL is again sr, 1-1 and onto.

4 See Added in proof.
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Proof. Since u never vanishes and S+(D'u) — k, therefore |iV|=/c and the

subsequence u^K of tz alternates uniformly. In addition, CxsL = uxK and C is sr.

Therefore C is onto by Corollary 1 to Theorem 1.

To prove that C is 1-1, let Cz — 0 for some z G lx(\L), and extend z to z E lx(J)

by zL = 0. Set y := Az. Thenyx/f = 0.

Since C is onto, we can find, for each/ G L, a bounded solution xj to the problem

xjL = 0, AxJ = AeJ off K, with eJ(i) '■= 8,,, all /, /, as before. Set

F:RL^lx(I):a^ 2 «,(«' ~'ty.
j<EL

Then Fa — a on L while ^/a = 2>6La7 (^4ey — /lx-7) vanishes off K. Therefore,

A Fa = 0 on zV implies A Fa — 0 and so, A being 1-1, we get Fa = 0 and, in

particular, a = (Fa)¿ = 0. This shows that RL -» R*: a t-> (/IFa)^ is 1-1, hence onto

since | L \ — \ K | .

It follows that we can choose a so that A Fa — y on K. But then z' '■= z — Fa

satisfies

Az'=y-AFa=\y-y     °n K }= 0
f 1 0 - 0     of f K J

and so, ^4 being 1-1, we have z' = 0; therefore 0 = z'L — 0 — a, i.e., a — 0 and so,

finally, z = zsL = (z- Fa)sL = z'sL = 0.    D

Remark. The argument just given shows the following general fact: If the linear

map B is 1-1 and can be partitioned as

Bw      B\2
D DB2X      B22

B

in such a way that Bxx is onto while B22 is square of finite order k, then BX] is also

1-1.

Corollary. If u = Ax E lx(I) with inf, | «(/) |> 0 and S+(D'u) — k, then x has

at most k zero entries.

Proof. Let xL = 0 for some L with \L\= k. Setting again

K:= {iEl:u(i)u(i+ 1)>0},

we know from Proposition 2 that C :=' AxK^L is 1-1, while it obviously carries xxL

to the uniformly alternating sequence uxK and is sr. Therefore, by the corollary to

Lemma 1, x does not vanish off L.    D

Lemma 2. Ifu = ^x vw//z inf, | «(/) | > 0 a/z¿ S+(D'u) = /c, /ten S+(DJx) *z k.

Proof. We first show that we may assume that x vanishes nowhere. For, if this is

not the case, then we replace each zero entry of x by e or -e in such a way that the

resulting sequence x£ satisfies S+(DJxc) = S+(DJx). This changes u — Ax to

ue := AxE = u + v with llull^ *£ Mil | e | . But since inf, | u(i) |> 0, we can choose

e > 0 so small that again inf, | ue(i) |> 0, while S+(D'ue) = S+(D'u).

Next we produce a sr 1-1 onto matrix C and a sequence z with as many zeros as

DJx has sign changes and with Cz = u. For this, consider the matrix EAa) which
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differs from the identity only in that it has an a in position (/ + 1, /). This matrix is

tp for nonnegative a and carries the sequence z to itself except that the (/ + l)st

entry is changed to z(i + 1) + az(i). Consequently, E¡(a) is invertible, with E¡(-a)

its inverse.

Now let r, := x(i + l)/x(i). If x(/)x(/ + 1) > 0, then r, > 0 and y := £,(-/•,)x

equals x except for a zero in entry / + 1. Hence, if /, < ■ ■ ■ < /„ are all in

K :- {/ G /: x(/)x(/ + 1) > 0}, then the matrix B :~ £,,(-/■„) • • • E^-r^) carries x

to a sequence which vanishes at i, + 1,..., in + 1, while

B-x = E,n(rJ ■ ■ ■ E,^)

is tp, 1-1 and onto; hence AB'X is again sr, 1-1 and onto. Since AB~x(Bx) = u, we

now conclude from the corollary to Proposition 2 that n *£ k. This proves the lemma

in view of the fact that S+(DJx) = j AT | , since x vanishes nowhere.    D

Lemma 3. If Ax = u, then S~(DJx) =s S'(D'u).

Proof. There is nothing to prove unless S~(Dfu) < oo. In that case, we choose

sign[//(/)] G {-1,1} in such a way that S+(D7(sign[ «(•)])) = S'(D'u) and then set

ef.\ ._     eslgnL"(0J     if |«(i')|<e,
u \l)-— i  / \

[u(i) otherwise.

Then S+(D!ue) = S~(D'u) and so, using the boundedness of A~x,

S(DJx) < limS+ (DJ(A~xue)) < S+ (D'ue) = S~(D'u),

by Lemma 2.    D

With this, the proof of Theorem 2 is apparent. For we now conclude from Lemma

3 that S~(DJA~xD'z) < S~(z), all z, and therefore every finite submatrix of DJA~XD'

is variation-diminishing. Hence, by Karlin [4, p. 222], DJA~XD' is sr.    D

Corollary. If I — J is only infinite (and not bi-infinite), then A tp implies DA~XD

tp.

Proof. Assume without loss that / = {1,2,3,...} and consider the matrix B E

R^^withzY^ {0} U land

B : =

Since A is tp and invertible, so is B, with

*-' =

1     0
0    A

1       0
0    A~x

Further, both DKBXDK and D'AXD' are sr, by Theorem 2. For k = 0,1,2,..., let

Ek denote the common sign of the k X k minors of DKB~XDK, hence of D'A~XD'.

Then, for any k,

\ 0,... ,k j \l,...,k

and, since these minors are nonzero, we conclude that sk+x — ek, all k, therefore

e, = e0 = 1, all k.    D
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Added in Proof. In March, 1981, Rong-qing Jia communicated to us a proof of

our conjecture that a sr matrix carrying lx to lx and invertible must carry c0 to c0.

This opened the way to an argument (based on Corollary 2 to Theorem 1) showing

that an invertible tp matrix has one (and only one) main diagonal. These results and

others are the subject of the paper on "Structure of invertible (bi)infinite totally

positive matrices", by C. de Boor, R.-q. Jia and A. Pinkus, MRC TSR #2311

(1981), to appear in Linear Algebra Applications.
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