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A b s t r a c t .  Let  H be any complex inner  product  space with inner  product  
< .,.  > .  We say that f : C ---r G is Hermit ian positive definite on H if the matr ix 

(*) ( f ( <  z r , z  s >))rn, a=l  

is Hermit ian positive definite for all choice o f  z l ,  . . . ,  z n in H for all n.  It is strictly 
Hermit ian positive definite if the matrix ( , )  is also non-s ingular  for any choice  of  
distinct z 1, . . . ,  z n in H. In this article, we prove that if d im H _> 3, then  f is 
Hermitian positive definite on H if and only if  

(**) f(z) = ~ bk,tzk~ l, 
k,t=0 

where bkd _> 0 for all k , l  in 2g+, and the series converges for all z i nC .  We also 
prove that f o f  the form (**) is strictly Hermit ian positive definite on any H if and 
only if the set 

J = {(k,e)  : bk,t > O} 

is such that (0, O) E J ,  and every ari thmetic sequence  in 2g intersects the  values 
{k - ~ : (k,~) E J}  an infinite number  o f  t imes.  

1 I n t r o d u c t i o n  

A function (or kernel) K mapping the product space Z x Z into (7 is termed 

Hermitian positive definite if  

n 
(1.1) ~ crK(zr ,  zS)~s _> O, 

r , s : l  

for every choice of  z l , . . . ,  z n E Z, cl , .  �9 cn E C, and all n E iN. We say that the 

function K is positive definite if  K : X x X -4 ~ and 

n 

(1.2) E crK(x~'xS)c" )- 0, 
r,8=l 

for every choice of  X 1 , . . . ,  X n E X ,  e l ,  �9 �9 �9 , Cn E j~t~, and all n E M. These functions 

seem to have been first considered by Mercer [20] in connection with integral 
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equations. We use the term strict  if  strict inequalities occur  in (1.1) and (1.2) 

for every choice of  distinct z l , . . . ,  z n E Z or x l , . . . ,  x n e X,  as appropriate, and 

nonzero cl, �9 �9 �9 cn. 

Hermitian positive definite and positive definite functions have been much 

studied in various contexts and guises. One of  the first characterizations o f  sets 

of  Hermitian positive definite functions is Bochner ' s  Theorem;  see, e.g., [4], [9, 

Sect. 6.5] and [16, Chap. 10]. The function 

K ( x , y )  = f ( x  - y) , 

where X =//~ and f is continuous at 0, is Hermitian positive definite if  and only if 

f is o f  the form 

// f ( t )  = eitxdlz(x), 
oo  

where d# is a finite, nonnegative measure on/R.  (Essentially the same result holds 

for  X --- ht~n; see Bochner  [4].) 

In the theory of  radial basis functions, there has been much interest in charac- 

terizing positive definite functions of  the form 

K ( x , y )  -- f(ll x - YII), 

where II- 1t is some norm. There  is a large literature connected with such problems. 

Schoenberg [26] characterized such functions where It" I I is the Euclidean norm on 

X = ~'~. For the analogous problem with the ep norm I1 lip on z~ n, see [12] and the 

references therein. Schoenberg [27] also characterized positive definite functions 

of  the form 

K(x ,  y) = f ( l lx  - yll), 

where II �9 II is again the Euclidean norm o n / R  n but X = S n-1 is the unit sphere 

in /R n, n > 2. As there is a simple 1-1 correspondence between IIx - y l l  and 

the standard inner product < x, y > for all x, y E S n-~, it is more convenient  to 

consider 

K ( x , y )  = g(< x , y  > ) .  

Schoenberg proved that for  g E C[ -1 ,  1], the kernel K is positive definite if  and 

only if  g is of  the form 

o o  

(1.3) g(t) = ~ arP~( t ) ,  
r = O  

where ar > 0 for all r, )-'~=0a~PrX(1) < oo and the p X are the Gegenbauer  

(ultraspherical) polynomials with ), = (n - 2)/2. As these kernels are often used 
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for interpolation, there has been much effort put into determining exact conditions 

for when g(< .,. >) is strictly positive definite. It was recently proven by Chen, 

Menegatto and Sun [7] that for n > 3, a function of the form (1.3) is strictly positive 

definite if and only if the set 

{r : a~ > 0) 

contains an infinite number of even and an infinite number of  odd integers. 

Hermitian positive definite and positive definite functions also arise in the study 

of reproducing kernels; see, e.g., [1], [21] and [10, Chap. X]. Each reproducing 

kernel is a (Hermitian) positive definite function and vice versa. Strict (Hermitian) 

positive definiteness is also desired when considering the reproducing kernel, since 

it is equivalent to the linear independence of point functionals in the associated 

reproducing kernel space. 

A corollary (quite literally, a footnote) in [27] is the result that if for every 

positive definite matrix (a~,)~,,=l, all n E iN, the function f : ~ --+ ~ is such that 

(f(ars))rn, s=l 

is also positive definite, then f is necessarily of the form 

(1.4) f(t) = ~ bkt k, 
k=0 

where the bk _> 0 for all k and the series converges for all t E /R. That is, f is 

real entire and absolutely monotone on/R+.  The converse direction is a simple 

consequence of  the fact that the class of positive definite functions is a positive cone 

and the Schur Product Theorem and is an exercise in P61ya-Szeg6 [24, p. 101]. 

For other approaches and generalizations, see [25], [8], [2, p. 59] and [11]. The 

same problem for matrices of a fixed size, i.e., all n x n matrices for a fixed n, 

seems much more difficult; see, e.g., [14]. 

If H is a real inner product space of dimension m, then the set of matrices 

(< xr, x8 >)r~,8=1, all n, obtained by choosing arbitrary x r in H is exactly the set of 

all positive definite matrices of rank at most m. Thus, if dim H = c~, (1.4) provides 

the exact characterization of all functions f such that 

(1.5) f ( <  x , y  >) 

is positive definite. In [19], this result was significantly improved. They proved 

that if d imH > 2, then f :/R --+ ~ is positive definite on H (in the sense of  (1.5)) 

if and only if f is of  the form (1.4). If dim H = 1 then this result is not valid. In 
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[23] it was shown that assuming that f has the form (1.4), f (as given in (1.5)) is 

strictly positive definite on H if and only if  the set 

{k : bk > O} 

contains the index 0 plus an infinite number of  even integers and an infinite number 

of odd integers. 

In this paper, we generalize both of  these results to C. In [13], see also [2, 

p. 171] and [11], it was proven that if f : C --+ C and for all Hermitian positive 
a n definite matrices (ars)r~,s=l (and all n) the matrix ( f (  rs)),,~=l is Hermitian positive 

definite, then f is necessarily of  the form 

oo 

(1.6) f (z)  = ~ bk,tzk-2 e 
k,~=0 

where the bk,! > 0 for all k, e �9 2~+, and the series converges for all z �9 C. If  

H is a complex inner product space of  dimension m, then the set of  matrices 

(< z r, z" >)~,~=1, all n, obtained by choosing arbitrary z ~ in H is exactly the set of  

all positive definite matrices of  rank at most m. 

In Section 2, we prove that this characterization (1.6) remains valid for every 

complex inner product space H of  dimension at least 3. That is, if dim H _> 3 and 

the matrix 
Z s (/(< 

is Hermitian positive definite for all choices of z a , . . . ,  z '~ in H,  all n �9 ~W, then f is 

necessarily of the form (1.6). For m = 1, this result is not valid. We do not know 

what happens when m = 2. Our proof of this result uses a generalization of  the 

method of  proof in [11] and also uses the result of  [19] and an extension theorem 

for separately real analytic functions. 

In Section 3, we assume f is of  the form (1.6) and prove the following appealing 

characterization of  strictly Hermitian positive definite functions. Let 

J = {(k,~) : bk,e > 0}. 

We show that f ( <  . ,-  >) is a strictly Hermitian positive definite function if and 

only if  (0, 0) �9 J and 

I { k -  e : (k,e) �9 J ,  k - e  = q(modp)}[ = c~ 

for all choices o f p  E $V and q E {0, 1 , . . .  ,p - 1}. The latter condition simply says 

that every arithmetic sequence in ,~ intersects the values {k - e : (k, ~) E J} an 
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infinite number  of  times. Our proof  of  this result utilizes the Sko lem-Mahle r -Lech  

Theorem from number  theory and a generalization thereof due to M. Laurent. 

The paper [30] contains some sufficient conditions for when a function of  the 

form (1.6) generates a strictly Hermitian positive definite function o f  a fixed order 

n on the complex unit sphere S ~176 of  g2. 

2 H e r m i t i a n  positive definite funct ions  

In this section, we prove the following. 

T h e o r e m  2.1.  Let H be a complex inner product space with dim H > 3. Then 

for  every choice o f z t , . . . ,  z n E H, the matrix 

Z s (f(< z r, >))rn, s=l 

is Hermitian positive definite i f  and only i f  f is of  the form 

O<3 

f ( z )  : 
k,g=O 

where bk,~ >_ O, all k, g E 2~ +, and the series converges for  all z E C. 

Let H,~ (C) denote the set of  all Hermitian positive definite matrices of  rank at 

most m, and 7-/m ( ~ )  the set of  all (real) positive definite matrices o f  rank at most  m. 

If  H is a complex inner product  space of  dimension m, then for any z a , . . . ,  z '~ E H, 

the matrix 

(< z 

is in 7-/,~(C). The converse direction also holds. That is, for every n and any 
n Hermitian positive definite matrix A = (ar~)r,~=l of  rank at most  m, there exist 

z l , . . . , z  n E H such that 

a r s  : <  z r , z  s > ~ r,s  : 1 , . . . , n .  

Thus characterizing all Hermitian positive definite functions on H is equivalent to 

characterizing those f : C --+ C for which 

(f(ars))rn, s=l 

is Hermitian positive definite for all possible Hermitian positive definite matrices 
a n A = ( ~)~,~=1 o f  rank at most dim H.  This same result holds over  the reals. We 

denote by ~rm ((7) the class of  all Hermitian positive definite functions on Hermitian 
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positive definite matrices of  rank at most m, and by -~m (~) the analogous set with 

respect to the reals. 

For m = 1, the claim of  Theorem 2.1 is not valid. For example, it is readily 

verified that 

/ Iz l% z # O  
Y(z) = [0 ,  z = o 

is in 5rl (C) for every a E ]R. It is possible that Theorem 2.1 is valid for  m = 2. 

This case remains open. 

It is convenient to divide the proof  of  Theorem 2.1 into a series o f  steps. 

Sufficiency is simple and known. We include a p roof  thereof  for completeness.  

This and the next lemma are also to be found in [ 11 ]. 

L e m m a  2.2.  Assume f ,  g E ~',n (C) and a, b >_ O. Then 

(i) af + bg 7re(C); 

(ii) f .g  E Jrm(C); 

(iii) the three functions 1, z,-5 are in :TIn(C); 

(iv) ] E :T'm(C); 

(V) ,~"m (C) is closed under pointwise convergence. 

P r o o f .  (i) follows from the fact that 7-loo(C), the set of  all Hermitian posi- 

tive definite matrices, is a positive cone. (v) is a consequence of  the closure of  

Noo(C). If  the n x n matrix A is in 7tm(C), then the n x n matrices f (A)  and 
a n g(A) (f(A) = ( f ( r s ) ) r ,8= l )  are in 7~oo(C). (ii) is a consequence of  the Schur 

Product  Theorem;  see, e.g., [15, p. 309]. That  is, for  A E Nm(G) the matrix 

f(A)g(A) = (f(ar,)g(ar,))~,~= 1 is in 7-loo(C). (iii) and (iv) essentially follow by 

definition. [] 

The  sufficiency part of  Theorem 2.1 immediately follows from Lemma 2.2. We 

now consider the necessity. 

L e m m a  2.3.  Let f E .Tin (C), and set 

f (z )  = u(z) + iv(z) 

where u(z) = Re f (z)  and v(z) = Im f(z).  Then for  z E C, 

(i) f (~)  -- f(z);  

(ii) u(~) = u(z); 
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(iii) v(2)=-v(z): 

(iv) u E flYm(C,); 

(v) fln~ = ulm C .7"m(//~). 

P r o o f .  (i) I f  A E 7-/re(C), then ~rs = asr .  As f (A) E 7-/oo(C), w e  also have  

f (a~)  = f(ar~). Thus  

f('d~s) = f(asr) = f(ars) 

and f (~ )  = f (z)  for  all z E C. (ii) and (iii) are  consequences  o f  (i). To  p rove  (iv), 

we  note that f r o m  L e m m a  2.2 (iv), we have  f E )r,~(C). Thus  f r o m  L e m m a  2.2 (i), 

f + 7  
u -  2 Tm(c).  

To p rove  (v), note  that  f i r  = u [~  as a c o n s e q u e n c e  o f  (iii). N o w  u l ~  : / R  - ~ / R  

and u E .)~'m(C). Thus  u [ ~  E 5rm(/R). [] 

L e m m a  2 .4 .  Let f E 7m(C), m >_ 2. Then for any a, b E C, 

g(z) = f ( z  + 1) + f(lal2z + Ibl s) -4- [f(az + b) + f(~z + b)] 

is in .Tin-1 (C). 

P r o o f .  A s s u m e  A is an n x n mat r ix  in "]'~m--1 (C). Then  for  any  a C C, the 

2n x 2n mat r ix  
( A a A )  

aA [al2 A 

is a lso in ~-/m-l(C). 
Let  J denote  the n • n matr ix  all o f  w h o s e  entries are one.  T h e n  J E 7/a (C), 

and  the 2n x 2n ma t r ix  
J bJ ) 

-~j [bl2 j 

is a lso in 7-~ 1 (~'*) fo r  any  b E (7. Thus  

A + J  
SA + bJ 

aA + bJ ) 
lal2 A + Ibl2 J 

is in 7-/re(U). As f E ~'m(C),  it fo l lows  that  

f (A  + J) f (aA + b J) 
f(-gA + b J) f(iai2A + Ibi2J)] 
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is in 7/~(C). 
For any e w = (Cl , . . . , cn)  E C  n, set 

Thus 

(C T, -I-e T) ---- ( c 1 , . . . ,  an, -I"C1,. . . ,  Q-Cn) C:: C, 2n . 

\ f ( -aA  +-b J) f ( lal2A + IbleJ)] +e - " 

That is, 

e T [ f (A  + J) + f(lal2A + lbi2d) + [ f (aA + bJ) + f ( a A  + bJ)]] e > 0, 

which implies that 

g(z) = f ( z  + 1) + f(la{2z + Ibl 2) + [f(az + b) + f(-gz + b)] 

is in ~-m-1 ((7). 

Setting z = t E ~ ,  we obtain from Lemma 2,4 and Lemma 2.3 (v) that 

h(t) = u(t + 1) + u(lal2t + Ibl ~) + [~(at + b) + u(~t + ~)] 

is in ~-m-a (~) .  Furthermore, from Lemma 2.3 (ii), 

u(-at + ~) = u(at + b). 

Thus 

h(t) = u(t  + 1) + u(lal2t + Ibl 2) + 2u(at + b) 

is in .Tin-1 (~ )  for any a,b E C. 

We require the following result. 

T h e o r e m  2.5 ([19]). Assume f E .Tm(~),  m > 2. Then 

oo 

f ( t )  = E cktk 

El 

k=0 

with Ck > O fo r  all k, and the series converges f o r  all t E K~. 

There is a slight oversight in the proof in [19]. It is also necessary in their proof  

that f be bounded in a neighborhood of  the origin. It may be easily shown that this 

holds for f E )L'm (ff~) when m >_ 2. 

Thus, for m _> 3 and for all a, b E C, 

(2.1) h(t) = u(t  + 1) + u(lal2t + lbl 2) + 2u(at + b) 
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is in U2 (~R) and thus has a power series expansion, with nonnegative coefficients, 

which converges for all t. Since u(t) has this property, so does u(t + 1) and 

u(]al2t + ]bl2). Thus 

u(at + b) 

has a power series expansion in t, which converges for all t E ~ ,  for each fixed 

a, b E C. In this power series expansion, the coefficients need not be nonnegative. 

It is convenient to consider u as a map f rom/R 2 to/R, rather than from C to ~ .  

Thus, if  w = wl + iw~ E C, we set w = (wl, w2) E / ~  and write 

U ( w )  = 

However, we also write 

U(at + b) = u(at + b) 

as we consider t E ~ as a parameter. 

P r o p o s i t i o n  2.6. Let U be as above and ra >_ 3. 

(i) For each a, b E 1R 2, we have 

o o  

(2.2) U(at + b) = E ck(a, b)t k, 
k=0 

where the power  series converges for  all t E IR. 

(ii) U E C(-~2). 

Off) For each M > O, there exists a sequence o f  positive numbers (bk(M))~~176 

such that for  each k, and all a, b E IR 2 satisfying ]a[, Ibl <_ M, we have 

[ck(a,b) I _< bk(m) and lirnsup ~ =  0. 
k--~oo 

P r o o f .  (i) is just a restatement of  the consequence of  Theorem 2.5. We prove 

(ii) as follows. Let  h be as in (2.1). Since h E F2(/R), it follows that 

oo 

h(t) = E cktk, 
k=O 

where ck > 0 and the series converges for all t E/R.  Thus h is also increasing and 

nonnegative on /R+.  We therefore have h(t) - h(O) >_ 0 for all t E ~ + ,  which can 

be rewritten as 

u(t + 1) - u(1) + u(lal2t + Ibl 2) - u(Ibl 2) _> 21u(at + b) - u(b)l. 
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Fix b E C. As u l~  E C(/R), for each e > 0, there exists 6 > 0 such that if  t E /R 

satisfies Itl < 5 and a E C, lal _< 1, then 

lu(t + 1) - u(1)l < e 

and 

Thus, 

lu(lal2t + Ibl 2) - u(Ibl2)l ~ lu(t + Ibl 2) - u(Ibl=)l < e .  

lu(at + b) - u(b)l < e 

for all a E C satisfying [a[ < 1 and t E [0, 5). This proves (ii). 

From the above, 

u(t + 1) + u(lalh + Ibl 2) • 2u(at + b) 

has a power  expansion with nonnegative coefficients, as do u(t+ 1) and u(laf2t+ fbl2). 
Furthermore, if 

oo  

u(lalh + Ibl 2) = ~ dk(lal 2, Ibl2)t k 
k = O  

and lal, Ibl _< M, then as is easily verified 

Thus 

for each k. As 

is entire, we have 

0 < dk(lal 2, Ibl 2) <_ dk(M2,M2). 

Ick(a, b) I _< dk(1, 1) + dk(M 2, M 2) 

o o  

Z dk(M2' M2)tk 
k----0 

l imsup ~/dk(M2,M 2) = 0 
k---+oo 

for each M. This proves (iii). [] 

As a consequence of  Proposition 2.6, we have the following result. 

T h e o r e m  2.7.  Assume U satisfies the conditions of  Proposition 2.6. Then U 
is the restriction to ~2 of  an entire function fir on C ~. 

To verify Theorem 2.7, we  need less than we have shown in Proposit ion 2.6. 

In (i) o f  Proposition 2.6, we proved that U(w) has a convergent power  series 

expansion on every straight line in ~2.  It suffices, in the proof  of  Theorem 2.7, 

for this property to hold only on lines parallel to the axes. From that and the other  
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results proved in Proposition 2.6, Theorem 2.7 follows as a consequence of  a result 

in Bernstein [3, p. 101]. It also follows f rom results in Browder [5], Cameron-  

Storvick [6] and Siciak [29]; see the review article by Nguyen [22]. Theorem 2.7 

implies that the series expansion for U converges appropriately. That is, 

U((x ,y ) )=u(x  + i y ) =  ~ ak,exky e, 
k ,~=0  

where the power series converges absolutely for all (x, y) E/R 2. 

We now continue as in [11]. 

Proposition 2.8. Let f E 2-m (C), m ___ 3, and v -- Im f. Then 
oo 

v(z + iv) = ~ ck,ex~y l, 
k , / = 0  

where the power series converges absolutely for all (x, y) E 1R 2. 

P r o o f .  From L e m m a  2.2 (ii) and (iii), we have zf(z)  E :7:m(C). Thus from 

Theorem 2.7, its real part 

xu(x + iy) - yv(x + iy) 

has a power series expansion, which in turn implies that 

oo 

yv(x + iy) = ~ dk,exky e, 
k , l = O  

with the power series converging absolutely. Setting Y = O, we obtain 

oo 

0 = ~ dk,ox k . 
k , ~ = 0  

Thus dk,o = 0 for all k and 

oo 

v(x + iy) = Z dk,t+lxkYl' 
k,t----O 

where the power series converges absolutely. [] 

We can now finally prove Theorem 2.1. 

Proof of  T h e o r e m  2.1. As f E 5rm(C), m > 3, we have from Theorem 2.7 

and Proposition 2.8 that 

oo 

f(x + iv) = ~_, ~k,txky l 
k , l=O 
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and the power series converges absolutely for all (x, y) E ~2 .  Substituting x = 

(z + ~)/2 and y = (z - ~)/2, we obtain 

o o  

k,t=O 

and this power series also converges absolutely for all z E C.  It remains to prove 

that bk,e > 0 for all (k, e) E 2~_. For e > 0 and z l , . . . ,  z,~ E C, the matrix 

A = (ez~-28)~,~=1 

is Hermitian positive definite of  rank 1. Thus 

c,f(ezr-es)-G >_ 0 
r , s=l  

for all c l , . . . ,  cn E C. Substituting for f ,  we obtain 

bk, iek+t ,  k--k--t  e-  b k , e e k + t  k--t  ~ O.  CrZr Z s ZrZsCs : CrZ r Z r 

k,l=O r , s = l  k , s  ' r = l  ' 

This inequality must hold for all choices o f n  E zVV, e > 0, and Z l , . . . ,  z,~, c l , . . . ,  c,~ E 

C. Given ( i , j )  E 2g~_, it is possible to choose n and z l , . . .  , z ,~,cl , . . .  ,cn E C such 

that 
n 

CrZrZ  r = 0 
r = l  

for all (k, g) E 2g~_ satisfying k + l _< i + j except that 

Z r o. 
r = l  

Letting e $ 0 then proves bi,j >_ O. [] 

3 Strictly Hermit ian positive definite functions 

In this section, we always assume that f is of  the form 

(3.1) 
o o  

f ( z )  = ~ bk,tZk-2 l, 
k,s 

where the bk,t > 0 for all k, ~ in 2g+, and the series converges for all z E C. We 

prove the following result. 
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T h e o r e m  3.1.  Assume f is of  the form (3.1). Set 

J = {(k,e) : bk,e > 0}. 

Then f is strictly Hermitian positive definite on H if  and only if(O, O) C J and for 

eachp E ~V andq E {0, 1 , . . . , p -  1}, 

I { k - / :  (k,e) E J ,  k - s  

The conditions of  Theorem 3.1 are independent of  H.  We first show that it 

suffices in the proof  of  Theorem 3.1 to consider only the standard inner product on 

C. In this, we follow the analysis in [23]. 

P r o p o s i t i o n  3.2.  Theorem 3.1 is valid i f  and only if it holds fo r  the standard 

inner product on C, namely 

< Z~W > =  ZW: 

for  z, w E C. 

The main tool used in the proof  of  Proposition 3.2 is Proposit ion 3.3, which 

appears in [23] in the real case, and is essentially based on an exercise in [24, 

p. 287]. 

P r o p o s i t i o n  3.3.  Let H be a complex inner product space, and z l , . . . ,  z n any 

n distinct points in H. There then exist distinct Z l , . . . ,  Zn E C and a Hermitian 
m n positive definite matrix ( rs)r,s=l such that 

< z r , z  s > : Z r - Z s  + m r s .  

P r o o f .  Set 

ars  = <  z r ~ z  s > ~ r, 8 =  1 , . . . , n .  

Since the z l , . . . ,  z n are distinct points in H,  the Hermitian positive definite matrix 

n A = (ars )r , s=l  

has no two identical rows (or columns). For  assume there are two identical rows 

indexed by i and j .  Then 

a i i =  a i j  = a j i  : a j j~  

which implies that 

But then 

< Zi ,Z i > ~ <  Zi~Z j > = <  Z3:Z j > . 

[[ < z~,z j > z i -  < z i , z  i > zJ[I = 0 
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and thus z i = zJ, contradicting our  assumption. 

As A is an n x n Hermitian positive definite matrix, it may be decomposed  as 

A = cT-c ,  

- -  I n  " I t  where C = t~CkrJk=:r=:~m ,, i s a n m x n m a t r i x ,  C =(Ckr)k=lr=l andrankA = m .  Thus  

m 

ars  = ~_~ Ckr'Cks , r ,  ,5 = 1 , . . . ,  ?2. 

k=l 

Since no two rows of  A are identical, it follows that no two columns o f  C are 

identical. Hence there exists a v C C m, ]lvll = 1, for  which 

v C = z  

with z = (zl , .  �9 z,~), where the z : , . . . ,  zn are all distinct. 

Let  V be any m x m unitary matrix ( v T v  = I)  whose  first row is v. Let  U be 

the m x m matrix whose first row is v and all of  whose other entries are zero. Then 

A = c T - c  -~ c T v T v c  = c T u T - u c +  c T ( v  - u ) T ( v  - U ) C ,  

since u T  ( v - U )  = (V - u ) T - u  = O. From the above,  it fol lows that ( c T  uTu--C)rs = 

zr-gs and M = CT ( v  - u ) T  ( v  - U)C is Hermitian positive definite. This proves  

the proposit ion.  [] 

We now prove Proposit ion 3.2. 

P r o o f  o f  P r o p o s i t i o n  3 .2 .  Let  H be any complex  inner product space, and 

l e t z  E H, Ilzll  = 1. Then for z ,w  EC,  

f ( <  zz ,  wz  >) = f ( z ~ ) .  

This immedia te ly  implies that i f  f is not a strictly Hermit ian positive definite 

function on C, then it is not a strictly Hermitian posit ive definite function on any 

complex  inner product  space H .  

The  converse  direction is a consequence of  Proposi t ion 3.3. Assume f is a 

strictly Hermit ian  positive definite function on C. Let  z l , . . . ,  z n be distinct points 

in H .  By  Proposit ion 3.3, there exist distinct Z l , . . . , z n  E C and a Hermit ian 

posit ive definite matrix (mrs)rns=l such that 

< z r , z  s > = Z r - Z s + m r s .  

r /~  17, ) . -  A s  ( ~8)r,8=: is a Hermit ian posit ive definite matrix,  for  any nonzero cl ,,  c,~ 

Cr < z r ,  > "Cs -~ erZr-Zs'Cs + Crmrs-Cs >_~ r �9 

r ,s= l r,s----1 r,s= l r,s= l 
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Similarly, it is well-known that 

n ~2 

r , s = l  r,s=l 

This is a consequence of  inequalities between the Schur (Hadamard) product of 

two Hermitian positive definite matrices; see, e.g., [ 15, p. 310]. Thus, for f of  the 

form (3.1), 

c~f(< z~,z ~ >)cs = E bk,e Cr < Z ~', >k< ZS,Z ," ~j 
r,s:l k , g = O  r,s=l 

oo n ~ 

>- Z b ,e Z % =  rf(zr&)e . 
k , ~ = 0  r , s = l  r , s = l  

As the z~ , . . . ,  zn are distinct, the Cl , . . . ,  cn are nonzero and f is a strictly Hermitian 

positive definite function onC, it follows that the above quantity is strictly positive. 

Thus f is a strictly Hermitian positive definite function on H. [] 

We therefore assume in what follows that H = C. Let Z l , . . . ,  Zn be n distinct 

points in C and Cl , . . . ,  cn E C\{0}. We want conditions implying 

~-~ c~f(z~s)~ > o. 
r,s=l 

From (3.1) we have 

, icl  , ,, ,I  czz, Cr Zr-Zs "Cs = k,~ Zr-Zs k -2rZs ~ "Cs = k,~ k--~ . 

" k  l - -O " k , s  = r , s = 1  , : , -  

Now bk,! ~ O and [ ~-~--1 crz~-~l 2 ~- O. Thus f is a strictly Hermitian positive 

definite function if  and only if for all choices of  n, distinct points Z l , . . . ,  zn in C 

and nonzero values C l , . . . ,  c,~, we always have 

n 

(3.2) E c~zk-5~ ~ 0 
r = l  

for some (k, ~) E J .  

One direction in the proof of  Theorem 3.1 is elementary. 

P r o p o s i t i o n  3.4. I f  f is a strictly Hermitian positive definite function, then 

(0, O) E J and for  each p E iN, q E {0, 1 , . . .  , p -  1}, we have 

I { k - e  : (k,/~) E J , k - g = q ( m o d p ) } l  : oo. 
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P r o o f .  To prove that (0, 0) E J,  we simply take n = 1, zl = 0 and el  # 0 in 

(3.2). As f is a strictly Hermitian positive definite function, 

r o 

for some (k, e) E J.  But 

cl z~-2~ = 0  

for all (k,e) E 2~_\{(0,0)},  which implies that we must have (0,0) E J. 

Let  us now assume that there exists a p E ~ and q E {0, 1 , . . .  ,p - 1} for which 

I { k - e  : ( k , e )  e J , k - e = q ( m o d p ) } l  = N < e~.  

Thus if  (k, e) E J and k - s = q (mod p), then 

k - ~ = q + a m p ,  m = l , . . . , N ,  

for  s o m e  a l , . . .  ,aN E ~ .  

Choose  01 , . . . ,  0N+~ in [0, 27r) such that the p (N + 1) points 

Z r , t = e  i(O€ , r = l , . . . , N + l ; t = O ,  1 , . , . , p - 1 ,  

are all distinct. 

There  exist c l , . . . ,  cN+l, not all zero, such that 

N + I  

(3.3) ~ Cr eiO'(q+a'p) = 0, m = 1 , . . . ,  N .  
r = l  

.2~r  
Since e*--~-, t = 0, 1 , . . .  ,p - 1, are distinct, the p x p matrix 

/ i2~t , \ p - 1  
e p 

) t,s=O 

is nonsingular  and there exist d o , . . . ,  dp_~, not all zero, such that 

p--1 
E i2~t s (3.4) dte-V-" = 0 ,  s = O , 1 , . . . , p - 1 ; s C q .  
t=0 

We claim that 
p--1 N + I  

E E d  o tCrZr,tZr, t 
t=0 r = l  

for all (k, e) E J.  As the zr,t are distinct and the dtcr are not all zero, this would 

imply that f is not a strictly Hermitian positive definite function. 
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Now 
p--1 N + I  p - 1  N + I  

t =0  r = l  t=0  r = l  

I f  (k,g) �9 J and k - g = q (modp) ,  then k - g = q + amp; and f rom (3.3), the 

right-hand factor is zero. I f  (k, g) �9 J and k - g r q (modp),  then k - g = s (modp) ,  

s �9 { 0 , 1 , . . . , p -  1}\{q}. Thus 

k - g = s + m p  

for some s �9 {0, 1 , . . .  ,p  - 1}\{q} and m �9 2~, and 

ei~-~(k-e) e i ~ e i 2 7 r t r n  i 2"** 

From (3.4), the lef t-hand factor is zero. This proves the proposit ion.  [] 

It is the converse direction which is less elementary. We prove  the following 

result, which comple tes  the proof  of  T h e o r e m  3.1. 

T h e o r e m 3 . 5 .  L e t J  C_ 292+ b e s u c h t h a t f o r e a c h p  E J~Vandq E {0, 1 , . . .  , p - l } ,  

we have  

I { k - g  : (k,e) �9 J, k - g = q ( m o d p ) } l  = c o .  

Then f o r  all n, dist inct  nonzero points  zl , . . . , Zn in C and  nonzero  values  0 , . . . ,  cn 

in C, we  have  
n 

E k~l  erZrZ r r 0 
r = l  

f o r  some  (k, g) �9 J. 

Note that we have here assumed that each of  the z x , . . . ,  Zn is nonzero and we 

have dropped the condition (0, 0) E J .  It  is easily shown that we can make  this 

assumption.  

A l inear  recurrence  relation is a series o f  equations of  the fo rm 

( 3 . 5 )  as+m = a s + m - l W l  '? "'" -k- asWm , 8 E ~ ,  

satisfied by the recurrence  sequence  {a~}scz  for some given w x , . . . ,  wm (m finite). 

We assume that the wj and a,  are in C. Associated with each such recurrence 

sequence is a genera l i z ed  p o w e r  sum 

r 

(3.6) a ,  = ~ P~(s)u~, 
j = l  
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where  the Pj are polynomials  in s o f  degree OPj with ~ = 1 0 P j  + 1 < m, and vice 

versa. That  is, each general ized power  sum of  the fo rm (3.6) gives rise to a l inear 

recurrence relation of  the fo rm (3.5). 

We are interested in the fo rm (3.6). A delightful theorem in number  theory 

which concerns  recurrence sequences is the S k o l e m - M a h l e r - L e c h  Theorem;  see, 

e.g., [28, p. 38]. 

T h e o r e m  3.6  ( S k o l e m - M a h l e r - L e c h ) .  A s s u m e  that  { as}se ~, is a recurrence  

sequence ,  i.e., satisfies (3.5) or  (3.6). Set  

A =  {s : as = 0 } .  

Then  .,4 is the union o f  a f ini te  n u m b e r  o f  points  and  a f in i te  n u m b e r  o f fu l l  ar i thmet ic  

sequences .  

What  is the connection be tween this result and our  problem? Recall that we 

are concerned  with the equations 

n 

Z 
r = l  

Assume  for  the momen t  that Iz~l = 1 for all r = 1 , . . .  ,n .  We can then rewrite the 

above  as 
n 

Z 
r~---1 

Set 
n 

as --- ~ c r z ~ ,  s e ; z .  
r~--1 

These  are equations of  the fo rm (3.6) and thus { a s } , e z  is a recurrence sequence.  

Let  us rewrite and prove T h e o r e m  3.5 in this particular case. (The same holds if  

we a s sume  Iz~l = ;~ for some A E/R+ and all r = 1 , . . .  ,n . )  

P r o p o s i t i o n  3.7.  Let  J* C_ 2g be  such that  f o r  each p E ~V a n d  q E 

{ 0 , 1 , . . . , p -  1), we  have 

I{s : s E J*,  s = q (modp)} l  = oo. 

Then  f o r  all n, dist inct  nonzero  po in t s  zl , . . . , Zn in C, a n d  nonzero  values  C l , . . . ,  Cn 

in C, w e  have  
n 

Z~z: to 

f o r  s o m e  s E J*. 
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P r o o f .  Set 

and let 

as = ~ crzS~ , 
r---~l 

s E 2 g ,  

.4= {s: =0}. 

Assume a8 = 0 for all s E J*, i.e., J* _C ,4. The Sko lem-Mah le r -Lech  Theorem 

implies that J* is contained in the set .4 which is the union of  a finite number  of 

points and a finite number  of  full arithmetic sequences. As the a8 cannot all be 

zero, it is readily verified that there must exist an arithmetic sequence disjoint from 

.4. Thus there exists a p  E JN and q E {0, 1 , . . .  ,p - 1} for which 

{s : s E  J * , s = q ( m o d p ) } = O .  

This contradiction proves the proposition. [] 

R e m a r k  1. The above is equivalent to the following. Let  J* C_ 2g and 

I I j .  = span{z k : k E J*} .  

Then for every finite point set E in C, 

dim II j .  [E = [El 

if and only if 0 E J* and J* satisfies the criteria of  Proposition 3.7. 

R e m a r k  2. By a discrete measure d# on [0, 27r) we mean a measure o f  the 

form 
n 

d# = ~ crSo, 

for some finite n, where 5o is the Dirac-Delta point measure at 0. F rom Propositions 

3.4 and 3.7 the J* C_ 2g, as above, characterize the sets of  uniqueness for  the Fourier 

coefficients o f  a discrete measure. Set 

ff ~(s) = eiOSd#(O), s E 2~. 

I f  d#x and d#2 are two discrete measures and 

for all s E J*, then d#l  = d#2. 
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Unfortunately, there seems to be no a priori reason to assume that the {z~} 

are all of  equal modulus. We nonetheless prove that such is effectively the case. 

We prove this fact via the following generalization of the Skolem-Mahler -Lech 

Theorem. 

T h e o r e m  3.8 (Laurent [17], [18, p. 26]). Let  

k 
ak,g = ~ CrZr Wr 

r = l  

f o r s o m e  (zr,w~) � 9  2 andc~  � 9  r = 1 , . . . , n .  Let  

= { ( k , e )  : ak,  = 0 }  

Then  B is the union o f  a f in i te  n u m b e r  o f  translates  o f  subgroups  o f  2g, 2. 

Note that this is not a full generalization of the Skolem-Mahler-Lech Theorem 

in that the polynomial parts of  the generalized power sum, see (3.6), are here 

assumed to be constants. 

In our problem, we are given 

n 

Z CrZ r Zr: ak,e =- k--e 

i.e., gr = wr. Additionally, and importantly, we only consider (k, g) E ig~. al- 

though, since zr r 0 for all n, we can and do define ak,e for all (k, g) �9 2g 2. 

What  are the subgroups of  292? Each subgroup is given as the set of  (k, g) 

satisfying 

(:) 
where p, q vary over all 2g, and a, b, c, d are given integers with ad - bc ~[ {-1 ,  1}. 

If  ad - bc �9 {-1,  1}, then the set of  solutions is all of  2g 2. If ad - bc = O, then the 

solution set can be rewritten as 

(k,g)  = ( js ,  j t ) ,  j E 2g 

for some (s, t) E 2g ~. This includes the case (s, t) = (0, 0). For lad - bc I > 2, the 

subgroup is a lattice. 

Let  us denote a translate of  a subgroup of  2g 2 by L. 

P r o p o s i t i o n  3.9. A s s u m e  IL fq 292+1 = ~ ,  a n d  

k- - t  
CrZ r Z r = 0 

r = l  
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for all (k, g) E L. Then 

Z k-~ = 0  CrZ T Z r 

{r:lz~l=M 

for  all (k, f) E L and each A E ~+. 

O f  course, we only consider values A equal  to one of the [Zl I,. �9 �9 I z,~l. For other 

values of  A, the set {r : Iz~l = ~} is empty.  

Before  proving Proposit ion 3.9 we first prove an ancillary result. 

Proposition 3.10.  Assume 

;q 

r = l  

for  all j E 2Y, with dr r 0 and w~ E C\{O}, r = 1, . . . ,  n. Then 

drw~ = O 
{~:w,=,} 

for  each # E C and all j 6 ~,. 

P r o o f .  Let  ] q , . . . ,  #m denote the distinct values of  the w l , . . . ,  wn, and assume 

that G of  the wj's equal  #8, s = 1 , . . . ,  m. Thus Y~-~--1 G = n. 

For any k, 

/ j + k ~ , n  n--1 k 
det kw~ )~=lj=o = w ~ ' " w , ~  I I  (w, - w t ) .  

l<_t<s<_n 

Thus 

The linear subspace  

j n 
r a n k ,  ,(w~T=l,je z = m .  

1% 

D = {d = ( d , , . . . , d n )  : ~ d , - w  j = O, a l l j  6 2g} 
r = l  

is therefore of  d imension n - m. 

Now if, for example ,  wl . . . . .  wtl = #1 (and wj # #1 f o r j  > el), then 

W J = t rank t t=l,j6~, 

and there are therefore el - 1 linearly independent  vectors d l , . . . ,  d h in D satisfying 

. . . . .  4 '  = 0 
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for all t = ~ + 1 , . . .  ,n. In this manner, we obtain 

m 

~ _ , ( e s - 1 ) = n - m  
8 = 1  

linearly independent vectors in D. As 

dim D = n - m, 

we have therefore found a basis for D. The proposit ion now easily follows. .~ 

P r o o f  o f  P r o p o s i t i o n  3.9.  A translate of  a subgroup L of  2~ 2 is given by 

the formula  

where  p, q vary over  all 2g. We divide the proof  of  this proposit ion into two cases. 

C a s e  1. ad - bc = 0. In this case, 

(k, e) = (c~ + js ,  1~ + j t ) .  

I f  st < 0 or i f s  = t = 0, then ILA 2~_ I < oo. Thus we may  assume that s , t  _> 0 

a n d s + t > 0 .  Now for (k, g) E L ,  

n 

r = l  

for all j E 2g, where 

r = l  r = l  r = l  

dr a-B and Wr s-t C r Z r  Z r ~ Z r Z  r �9 

Note that dr r O, since cr ~ 0 and zr ~ 0. Furthermore,  as s + t > 0 and 

Iw l = Iz l s+t, 

we have 

i.e., the indices {1 , . . . ,  n} divide in the same way when considering the distinct 

Iz~r or  the distinct Iw~[. We apply  Proposition 3.10 to obtain our result. 

C a s e  2. lad - be[ > 2. In this case, 
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and necessarily IL n 2g~_ I = oo. Now 

i ' l  n 

: - ,  = 

r = l  r = l  r----1 

for all p, q �9 2~. 

W e m u s t h a v e a + b ~ 0 o r c + d ~  0. For otherwise, a d - b c =  0. Assume,  

without loss of  generality, that a + b ~ 0. Fixing any q �9 ,~, we have 

for all p E 2~, where 

dr c~-3 c-d q =c~z~z~(z~zr) ~0 and 

A s  Iw~l = Iz,.P +b and a + b ~ 0, we have 

n 

r----1 

{ r :  I z r l - - ~ )  = { r :  Iwrl = ,x~+b} �9 

Applying Proposit ion 3.10 gives us our result. [] 

Our proof  of  Theorem 3.5 is a consequence of  Theorem 3.8 and Proposit ions 

3.7 and 3.9. 

P r o o f  o f  T h e o r e m  3.5.  Assume to the contrary that there exists d C_ 2g~_ 

such that for each p E ~vV and q E {0, 1 , . . .  ,p  - 1} we have 

I{k - e : (k,g) E J, k - • = q (modp)}l = ~ ,  

and yet there exist distinct nonzero points Z l , . . . , z n  in C and nonzero values 

c l , . . . ,  c,~ in C such that 
71 

Z = o 
r----~ 1 

for all (k, t) E J .  Set 

= 0} ,  t3 = {(k,e)  : (k , t )  �9 ~ ,  CrZrZrk--e 
r = l  

Then J C_ B, and f rom Theorem 3.8 we know that B is a union of  a finite number  

o f  translates of  subgroups  of  2~ 2. 

Let /3 ~ be the union of  those translates o f  subgroups of  2g 2 in/3 which have an 

infinite number  of  e lements  in 2g~_. That  is, 

m 

B * =  U L s ,  
s = l  
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where Ls is a translate of  a subgroup of  2~ 2, L~ C_/3 and ILs n ~ - I  : ~ .  Note that 

/3* contains all of  the elements of  3, except perhaps for a finite number of  indices. 

Thus 

I { k -  e : (k,e) � 9  k -  e = q (modp)}  I = c~, 

for all p and q as above. 

Applying Proposition 3.9 to the subgroups Ls of/3",  we obtain 

Cr Zr Zr = 0 

{r:lz, l=A} 

for all (k, e) � 9  This implies that for each A �9 ~ + ,  we have 

CrZr : 0 

{~:lz~l--~,} 

for all (k, ~) �9  Applying Proposition 3.7 to 

J* = { k - e  : (k,e) � 9  

we obtain a contradiction. [] 

R e m a r k  3. As in Remark 1, the condition on J given in Theorem 3.1 is 

necessary and sufficient so that for every finite point set E in C, 

where 

d imII j lE  : IEI 

II j  = span{ zk~ e : (k, ~) �9 J }. 

R e m a r k  4. If we restrict ourselves to S, the unit sphere in H,  i.e., S --- 

{z : z �9 H ,  Ilzll = 1}, then it readily follows from the above analysis that .f of  the 

form (3.1) is strictly Hermitian positive definite on S if and only if for each p �9 ~ /  

and q �9 {0, 1 , . . . , p -  1}, 

I { k - e  : ( k , e )  �9 J ,  k - g =  q (rnodp)}l = oo. 

In other words, the condition is exactly the same as for all o f  H except that we do 

not have or need (0, 0) E J .  
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