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AN EXTREMAL PROPERTY OF MULTIPLE GAUSSIAN NODES

Samuel Karlin and Allan Pinkus

1. PFORMULATION AND STATEMENT OF RESULTS

In the previous paper [1], we established the existence and
uniqueness of a Gaussian type quadrature formula having mul-
tiple nodes of prescribed odd multiplicities for an Extended
Complete Chebyshev (ECT) system. Our result refined and
extended work of Turan [3] and Popoviciu [2], where the method
of proof is very different. Turan and Popoviciu exploited the
connection between quadrature formulae and an associated mini-
mum problem. In this paper we analyze more deeply this

relationship.
Specifically, Turan [3] proved the following theorem:

Theorem A. Let k and £ be positive integers, & odd.

k .
Then there exists a unique set of nodes {t;}l and coeffi-

cients {a;j} such that

b k -1 . (3)
(LD [ £ oax= ] [ al.£?ed
a i=1 §=0 J
holds for alt f € g%£+l)k—l , vwhere @ consists of the

set of all polynomials of degree < m .

The deduction of (1.1l) emanates from a study of

2+1 dx

r

b
(1.2) min [ [p(x)]
a

where the minimum is extended over all monic polynomials of

degree k . (See the introduction of [1] for more details
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on this procedure.)

Popoviciu [2] generalized the Turdn result as follows.

Theorem B. For any set of given positive odd integers”

k . . . .
{ui}l , there exist distinct nodes {t;}t located in

-1
(a,b) and real numbers {a;j}:=l u;=0 with the property
that

b k Mt P
(1.3) [ g ax= 3 ¥ ar,£«hH

. . ij i
a i=1 3=0
k

holds for all f€ $ _ , where n= ) u, +k.
—————— n-1 Imme—— i=1 i

The equation (1.3) derives from the analysis of the
extremal problem

b k ui+l
(1.4) inf [ I (x-t) ax ,
a i=1
where the infimum is evaluated with respect to all real

k
{ti}1 . The resulting quadrature formula of Theorem B is

non-unique partly attributable to the fact that the class of
admissible polynomials in (1.4) is non-convex.

It is not immediately evident that (1.2) and (1.4) entail
(1.1) and (1.3), respectively. The intrinsic connection

follows with the help of b k u.+1

Proposition 1.1 . Let F(t ,...,t) =[ T (x-t) ax,
a i=1
where {ui}t are all fixed odd positive integers. Let the

domain D of F(tl""’tk) consist of all sets of k dis-

tinct t's, ag<tg<b. If F(tl,...,tk) admits a criti-
cal point {t;}t in D, then (1.3) holds with nodes

k
{t;}l .

Proof. The critical point conditions applied to {t;}i are
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3 * * b k * uj k *
Fe, PEeeert) s [ TG T el fax =0
i a 3=1 j=1
J#i
e, = -(ui+l) r 1i=1,.00k .

* *
Because ti # tj for i # j , we readily deduce

b k % M
J
(1.5) / [n (x-t.) :lq(x) dx = 0
a j=1 J

i € .
valid for all g ?k-l

Next we construct the unique quadrature formula of the

k.
form (1.3), having nodes {t;}l , exact with respect to all
k
fe€ ‘q)n-l—k ;, n = izl H; + k . More specifically, the

coefficients {a;j} are determined maintaining (1.3) for all
f € Qn-l—k . This is manifestly feasible since the deter-
minant of the associated linear system is non-zero. Set

k * My .

p*(x) = @I (x~-t,) . Any g € EP can be factored to
i=1 i n-1

g(x) = p*(x)q(x)+ql(x) , where g(x) € ?k-l r and

ql(x) € fpn_ By construction, R(f) =

1-k °
K Mi-1

> 5 _(5)  *

f f(x)ax - 2 z a,, £37(t;)) =0 on P . There-
. . ij i n-1-k

a i=1 3=0

fore, R(g) = R(p*q+q1) = R(p*-q) . However, (1.5) entails
R(p*-q) = 0 , and consequently R(g) = 0 for all g € g)n—l'

0.E.D.
Proposition 1.1 has an analogue for an ECT-system
{ui(x) };_1 defined on [a,b]l . However, since an ECT-system
in general lacks the factoring property of the polynomials,
the analysis becomes more arduous.

Theorem B will follow from Proposition 1.1 once we

145




SAMUEL KARLIN AND ALLAN PINKUS

establish the existence of an attained minimum of (1.4) in D.

Theorem C pertains to this objective.

k
Theorem C. Let {ui}l be positive 0dd integers. Consider

b k ui+l
(1.6) min [ T (x-t)) ax ,
tET a  i=1

where T = {t = (tl,...,tk): agt; €...% tk ¢ b} . BAny

. .. *. k .
attained minimum {ti}l of (1.6) satisfies

* %*
< < oo < .
a t1 < tk b

Proof. Since [ is closed, the existence of a minimum
{t:}? of (1.6) follows. We embody the proof of Theorem C

in the next two lemmas.

* *
lemmg 1.1 . a< t and t. < b .

1 k
* *

Proof. Assume, without loss of generality, a = t1 < t2 and
consider

br k .+ +1

r(e) = | T (x—t*)ul ’ (x-t T
1 . i 1
a i=2

The assumption a = tI gives F(a+e) = F(a) implying

F'(a) 2 0 . A direct calculation produces

' b k * ui+l ul
F'(a) = —=(u,+1) [ | T (x-t,) (x-a) — ax
1 , i
a Li=2
k « Hytl My
which is manifestly negative since Il (x—ti) (x~a) >0
i=2

for all x € [a,b] as u; are all odd. The foregoing
*

contradiction can be averted provided tl

> a prevails. A

*
parallel analysis proves that tk <b.

*

* *
Lemma 2 . < < ... < .
1 tl t2 tk

Proof, We assume, without loss of generality, that
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*

*

%* * *

t, <t =t, = < j i -
-1 3 41 t tj+2 for some j(1 g 3 g k-1)
* *
where to =a, tk+l =b . Set F(sl,sz) =
b k u,+1 u,+1 u +1
* i j+1
F(t,,t, )=/ I (x-t,) (x-t,) 7 (x-t, ) 7T ax
+1 . i j j *
33 a i=1 i J j+l
i#j,3+1

. . * * * & *  *
A Taylor expansion gives F(t -6,t +¢) = F(t ,t )—GFl(t B )+
. (t* t*)-+62 . (t* * e2 * L
EF, ’ > Fi1 )+ 5 F22(t 't )—e6F12(t 2) +
3 3
O(le! +|6[ } , where Fi(t*,t*) = 32—-F(t*,t*) , 1i=1,2
i
2 * %
L. 4 I°F(t . * *
and F,., (t ,t) = ———L——Lz—l-. By assumption, F(t -6,t +g)
ij ds,9s,
* % 13 *  *
2 F(t ,t) for € , § small and positive. Since F(t ,t )
is a critical point of F(sl,sz) it follows that Fl(t*,t*)
= Fz(t*,t*) = 0 , and consequently 52Fll(t*,t*) +

2 *  k * ok
€ F22(t £ ) - 2e8 FlZ(t s£) 20 . Let §=ce, ¢c>0,

so that the preceding inequality reduces to
1.7 2 * * ok L
(1.7) ¢ Fll(t ) - 2¢ Flz(t 8+ F22(t s£) 20

for all ¢ > 0 . Computing F and F , and sub-

11 7 F1o 22
stituting into (1.7), we obtain

2
. . .= . . A . >
(1.8) c (uj+1)uj 2c(uJ+l)(uJ+l l)+(uJ+l l)u:'_'_l > 0 for all

c >0 .

However, this quadratic has two distinct positive real roots,

a fact incompatible with (1.8). Thus t; = t;+l is im-
possible., Lemma 1.2 is proved and therefore also Theorem C.
b{ k ui+l
Let F(t,,...,t) =[ | T (x-t,) dx . From Theorem
1 k a [ i=1 t

* *
c, F(tl,...,tk) presents a strict local minimum and thus

. . k
by Proposition 1.1, Theorem B is confirmed. If the {ui}l
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are not all equal, then by a rearrangement of the {ti}f

we can exhibit a number of quadrature formulae fulfilling

(1.3). By contrast we proved in [1] uniqueness of the quad-

rature formula (1.3) subject to a specific ordering of the

{ti}t . In particular, there exists a unique point t* €T
e ... <t <p , which is a

1 k
reeert ) .

arranged in the order a < t

critical point of F(t

1 k
In this paper we are concerned with the extension of
Theorem C to ECT-systems. Let {ui(x)}z+l be an ECT-system
on [a,b] . We determine
n+l
(1.9) ulxity oo, ty) = izl a;u, (x)

as the unique "polynomial" (real linear combination of

{ui(x)}) vanishing at t, with multiplicity u+l o,

k

n = z u.,+k , and a = 1 . We shall prove the following
. i n+l
i=1

theorem.

+
Theorem D. Let {ui(x)}i 1 and u(x;t ,t.) be delimited

I RARERAH

k . sos
as above. Assume {ui}l are prescribed odd positive

integers, and T = {(tl,...,tk): agt) §...5% tk < b} .
Then

b
(1.10) min [ u(xity,...,t)dx
€T a
. . . *.k * *
is uniquely attained for {ti}l pa<tl <<t <Db,
*k .
and the {ti}l are independent of un+l(x) .

For any ECT-system, the fact that the solution to (1.10)

is unique and independent of u (x) is perhaps striking in

n+1l
view of the non-convex domain attendant to the minimum
problem.

* k
The uniqueness assertion pertaining to {ti}l and the
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*k o, .
fact that {ti}l is independent of un+l(x) follows on the

basis of Proposition 1.1 and the uniqueness result of the
quadrature formula affirmed in [1]. Therefore, we need only
concern ourselves with proving that any minimum of (1.10) must

. * *
ees < < .
satisfy a < t1 < tk b

2. PRELIMINARIES AND SOME DETERMINANTAL IDENTITIES

For ease of exposition, we fix some notation and termi-

nology.
1.
ul(tl) . e . ul(tk)
i, ... ,4L . .
’ U ( ) = . .
tl"”'tl . .
: ul(tl) SRR (t,Q,)
T §
while U*( ) , &= v,
tyreeertyy 2,...,t%,...,tp,...,tp j2p 4
. — ey . v ”
v
vl \)2 P

shall denote the determinant of the matrix with columns

{uij)(ti),...,u(j)(ti)} r 3 =0, 1= 1,ep

L
s . *,k
2. In the four guantities defined next, {ti}2 and
{u.}k are held fixed.
12
. *(l, . . . . . . ,2)
a) Wyllitiv) =T L e TR '
—_— e —> . —
3 +
v u2+l uk 1
k
= +k-1 .
L=V + _22 w k-1

149




SAMUEL KARLIN AND ALLAN PINKUS

% (1, . . . . . nn)
b) W.(m;t;v;x) = U * *
) W ) t,...,t,tz,...,t;,...,tk,...,t]:,x
Sy JW 4 hr—)
v u.+1 U +1
2
k
where m = v + z u, +k .
: . i
i=2
c) ﬁo(l;t;v) stands for the determinant of the matrix
associated with Wo(2+l;t;v+1) with the last row and
vth column deleted. 1In display
(u.)
v=2 v * k *
u, (8 e ,u](_ ) (e ,u{ ) () ry (6)) sy (E0)
Wo(ﬂ;t;v) = . . . . .
. . . . ()
(v=-2) (v) * k *
uz(t) 7 voe Iul (t) Iuk (t) ’uz(tZ) 7 oo 'ul (tk)

d) ﬁo(l;t;v;x) is defined to be the determinant of the

matrix associated with WO(2+l;t;v+1;x) with the last

row and vth

column deleted.

Note that
d ~
* WolLityv) = Wy (2:t5v)
4 Ji.w (£:t5vix) = W, (L;3t;v;%)
an gt Mo lLitivix) = Wy(L;t;v;x) .
3. In the following six determinantal expressions
* * * *
tl""’ti—l’ti+2'°"'tk and ”1""’“1-1’“i+2""'“k are
held fixed.
a) Wi(l;t;v) =

*<1 ’ . . .

U

* * * * * * * *

tl’""tl’""ti—l'""ti—l’t’""t'ti+2""’ti+2""'tk'""t
ul+l ui_1+1 v ui+2+1 uk+1

.

-
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b) Wi(z;t;v;x) =

1, . . . . . . . . . . . . ¢ 2
u*
(* * * * *)‘
tl""'tl""'t s st

* * *
117 ety g ettt

i+2 i R
u1+1 ui_l+1 v ui+2+l uk+1

A

c) Wi(z;t;v) and

d) ﬁi(l;t;v;x) are defined in the analogous manner.

e) Vi (Lite;as8)

U'(l, : : . . : N

s L] L] *

1) ,...,f,,....ti_l,....tr_,,f,....i.he,...,he,f;.‘,,....ti‘:z....,t: Vot
gyt Bt a B Bt Byt

£) Vi(dit,€,a; 8;x)

-u"(" . . . . ; . ]

= ” * » » " * . "

'I beos ," ,....?'_1 ,...,fi_1.f,...,f,ft&,...,f#E,?i’z v "'i‘z ""'tk’ - 'tk R
it Pt a B Piez *1 Byt

When k=2, we drop the subscript i in the definition of

the W 's and v 's.

4. We shall exploit Sylvester's determinant identity
recorded here for easy reference. Let A be a fixed
m X m matrix. Specify two sets of P tuples of indices,

1
fixed. For each index i (L <ism not contained in

1 g Yy < eee < Yp £gm, 16 <.., < Gp £ m to be held

the set y = (yl,...,yp) » and index j (1 53 g m not

contained in the set § = (61,...,6p) + we form

(kl,...,kp+1>
b,,. =2
ij

21,...,2P+1

where {kl,...,kp+l} comprises the set of indices
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{i,yl,...,yp} arranged in increasing order, and

{2

1,...,2P+l} consists of the set of indices {j,61,...,6p}

also appearing in increasing order. For any selection of

indices i <'“<iq' i, #y, v=1,...,.9, and

1,
J'1<---<jq, juflg. w=1,...,9, g < mp , we have
the identity (known as the Sylvester determinant identity)
i i a-1 o o
11---l q er---lYp ll---r P+q
(2.1) B . . = [al s 5 A 8 8
Jlr--orjq 17! p 1T p+q
where {al""'ap+q} = {11,...,1q,y1,...,yp} and

{Bl""'8p+q} = {jl,...,jq,Gl,...,GP} are each arranged in

increasing order. The submatrix of A , composed of the rows
of indices Yl""’Yp and columns of indices 61,...,6p is
called the pivot block in the application of Sylvester's

determinant identity.

5. Proposition 2.1 . WD(n+1;t;ul+1;x) ﬁo(n;t;ul+l) -
Wo(n+1;t;ul+l;x) Wo(n;t;u1+l) = Wo(n;t;ul;x) wo(n+l;t;ul+2) .

Proof. Consider the n+2 X n+2 matrix

B (g4 1) i
u (1., "‘"(t) 000 () ), 4, (00
C=
{ 1) (i)
R T (S N O R 0.0 SO (L SN S Y
L o ... O (o] o ... (o] | .
k
(Recall that n = z uy +k .) Proposition 2.1 results by
i=1

application of Sylvester's determinant identity applied to the
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above matrix, where the pivot block is composed of the first

n rows of C , and all columns of C aside from the

u +1St and ul+2nd.

1 Q.E.D.

6. Proposition 2.2 . If J =
= “nm

?;:r;)_'— for n2m; 0 for

n <m , then for any non-negative integers b and a

7

1) J<b'b+l""’b+a) _ al(a=1)!...1!
- 1 [N ’
0,1,...,a (b+a)!...(b+l) !b!
and
b,b+l,...,b+i=-1,b+i+l,...,bta+l
0,1, . . . @
_ al(a-1)!...1! a+l
(b+a+l) ... (b+i+l) ! (b+i-1)!...Db! i !
i=20,1,...,a+1 .
1
Proof. To prove 1), note that (:l) = %;— Jnm , and letting

n . . .
knm = (m) , 1) is equivalent to showing

b,b+l,...,bt+a
K

0,1 ,..., a

. . . . . n+1 n
validated invoking repeatedly the identity ( ) —( )=

oy 5 - (x

The proof of 2) reduces to showing

(b:b+l,...,b+i—l,b+i+l,...,b+a+1) (a+l)
K 0,1 ., . . . ,al = i . We proceed

1 . This latter identity is readily

by induction on a . Note that
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(a+1) (a) ( a ) (b,b+1,...,b+i-1,b+i+1,...,b+a )
. = A =
i i i-1 K 0,1 ,a=1 +

2 - - -

(b,b+1,...,b+i-2,b+i,...,b+a

. )

0,1 , e e ra~1

by the induction hypothesis. Subtract from each row of
(b,b+l,...,b+i-l,b+i+l,...,b+a+l

K

0,1 , . . . ,a) the previous row and

() + (L) ens
() - (4) (o) -

n+l
use the binomial identities ( )

(%)

Q.E.D.

3. PROOF OF EXTREMAL PROPERTY (THEOREM D)

b
Let F(tl,...,tk) = £ u(x;t

l,...,tk)dx + where t €T .

As we stated in the introduction, we need to prove that any

k e e . e
{t;}1 minimizing F(tl,...,tk) over I' satisfies

a < tI < oe. < t; < b . The proof of Theorem C is instructive.
In the present context due to the fact that a general ECT-
system lacks the factoring properties of polynomial systems,

the analysis is more intricate.

* %*
< < .
emma_ 3 a tl and tk b

Proof. Assume, without loss of generality, that

. * * .
a= t; < t; < 4.. < t; < b . Since F(a,tz,...,tk) is a
minimum for t € T , é%-F(t,t;,...,t*) 2 0 . Now, for
=a

£t < ... % <b
a 1 tk ’

154
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* 1, . . . yn+l
v ( J
tl,...,tl,tz,...,t2,...,tk,...,t ’

(3.1) u(x;tl,.",tk) =
N (1, . . . ,n )
U
tl"”’tl'tz”"'t2"“’tk""’tk
(ti occurring ui+1 times, i = 1,2,...,k) . Therefore,
p.) bW(n+l'1' +1;x)
_F(h,f;"..'f:) -9 o ihapely dx
r-38 3ty 3 Wolnitispyet)
t =a t=a
(3.2)
fWo(nfhu;,4101;X)Wo(n;d;p,|+|)-wo(n+|:,0~,p.'vf‘,x)\;\lo(n’,u;,u‘ﬂi)
a (W, (n,a,p, +1)12
Simplifying in accordance with Proposition 2.1, we obtain,
3 . . b Wo(n;a;ul;x)wo(n+l,a;u1+2)
ae. Flt ity m,t)) =-f 5 dx .
1 t,=a a [Wo(n;a;u1+l)]
n+l
Because {ui(x)}l 1s an ECT-system on [a,b] , the deter-
minants Wo(n;a;u1+l) and Wo(n+l;a;u1+2) are positive.

Moreover, since all ui are odd we have Wb(n;a;ul;x) 20

for x in [a,b] and vanishing only at x = a,t;,...,t; .
*
Therefore 2 F(t_,t ,...,t*) < 0, contradicting
ot 1'72 k
1 ) tl=a
a previous fact. Thus, we necessarily have t; >a . A
similar analysis validates the inequality t; <b.
L 3.2 t*<t*< <t*
emma 3.2 . 1 5 e k
Proof. We shall assume, without loss of generality, that
* * * * * * *
con . . = t, = < t, < see < < b
PO st s G <, ERLE
for some i (1 5 i < k-1) . Set for convenience t; = a and
* . * . : .
= . . =t +1 and regard
tk+l b Fix t] tj r J#£L, i ; an g.
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F(tl,...,tk) as a function of ti and ti+ denoted more

l 1
compactly by G(ti'ti+1) . A Taylor expansion gives
G(t*-8,t"+e) = G(£*,£%) -8 G (t*,t7)+eq, (£¥,£%) +
2 2
8 * % € * % * L% 3 3
S Gpp (B, t%) +5 6, (87, £%)-e8 ap, (e, th)+0([e[ 48]
where Gi and Gij are appropriate first and second order
partials, respectively.

We shall prove later (Lemma 3.4) that Gl(t*,t*) =
G2(t*,t*) = 0 . When this is done, then since G(t*,t*) is a
local minimum of G(ti,ti+1), we may conclude that

2 * * 2 * * * *
- >
§ Gll(t 't ) + € G22(t 't ) 2ed G12(t 't ) 2 0

for all €,8 small and positive. 1In particular, with

§=ce, c¢20, it follows that
2 % ok * & * % >
c Gll(t ,E25)-2¢ Gl2(t ,t )+G22(t ,£7) 2 0 for all c¢ 0.

We shall ultimately contradict this statement thereby com-

i *eotF <l < tr,
pelling t1 t2 tk

The proof of Lemma 3.2 is divided into a series of steps.

L&3é_3—'— aB a,a"'l,...,a"‘s-l
Vi(ﬁ;t;e;u:ﬁ) = g [Wi(l;t;u+8) J ) +
0,1 ,..., B-1

R a,0+l,...,0+B-2,0+8 5
+ sWi(R;t;d+B) J( ) + 0(e“)] ,
OIl Peeey 8—1

OyanesOl
1’ s

where J( ) is determined as in Proposition 2.2.

ByreverBg

Proof. To ease the notational complexity we carry out the

proof assuming k=2 , such that o+ = £ , and
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1, ... 1048
V(&;t;e;0;B8) = g* ( ) (a little reflection
t,...,t,t+€,...,t+€
- ,\__E ,
o

reveals that the proof is the same for any k apart from more
tedious notational inconveniences) .
&)

Now, each wu,/-’ (t+€) permits a Taylor series expansion

i
-3 k
j £ j =5+
ufj)(t+€) = z =T u$j+k)(t)+0(s J l) ry i=1,...,0+B ;
1 k.
k=0
j =0,1,...,8-1 . Let yij=ui(3)(t) v 3 =0,1,...,s ;
i=1,...,048 , where s 2 £ = a+B , and
6ij i=1,...,s ; i=1,...,a
M5 = i-j+a
_— = 1 i = o+l o+8
13791 i=1,...,8 ;7 j Feoey .
(If 'i-3+0 < 0 , we define Mij =0 .)
Then,
1, . e ,O0+B
U*< ) ) Z
t,...,t,t+e,...,t+e 1i.<,..<i <s
r ’ (4 r ’ l a+8
o B
1,...,048 il”"'ia+6 B+2
x Y ( ) M ( ) + O(ea ) .
il""’ia+B 1,...,048

In light of the structure of M , we find that
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U*(l, e e ,0L+B) ] Z

tyeeert,tte, ..., tte o+1<i <,..<1 <s
\—V_’;'—\f_——/ o

+1 a+B
o B
1, . e o+B i sesesl
+
_ M o+l a+B . 0(5a8+2).
l""’a’ia+l""’ia+8 o+l ,..., G+B

i reeeri
. + + . . .
Consider Bd( o+l o+8 ) . Expanding this determinant we
o+l ,..., at+B

aB

find that the smallest power in ¢ is ¢ and its term is

a+l,...,o0+B s71l,...,0+B

( ) )
ot+l,...,0+B l,...,0+B
B 0,0+, ..., 0+B~1

=g J » W(a+B;t;0+8) .
0,1 ,..., B-1

+
Also, the only term of the power euB 1 is
o+l,...,a+B=1,0+B+1 1, . e e ;048
a+l, e e e ,0+B l,...,0a+B-1,0+B+1
The identity of the lemma is hereby established. Q.E.D.

Since G(t*,t*) is a minimum of G(t,t) over

* < <* s e * s
ti—l t tio 7 then viewing t~ as a node of multi
plicity ui + ui+l + 2 , with ti and ti+l coalesced,
it follows that

9G * L ky _
3T (t*,t%) =0 .

Now,

b wi(n+l;t;u+V;x)

(3.3) G(t,t) = [ e
a i
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where ui+1 =u, ui+1-+1 = Vv . Differentiating (3.3) with
Yespect to t , and adapting the analysis of Lemma 3.1, see

following (3.2), we infer the equation

b
(3.4) / W (nit*iutv-1;%) dx = 0 .

! .
Lemma 3.4 . 6, (t%,t") =g, (t*,t") =0 .

Proof. We shall prove that G2(t*,t*) = 0 ; the proof of

Gl(t*,t*) = 0 is similar. By definition

* * - * *
(3.5) G (t*,t*) = lim G(t™,t +€) G(t £ ) .
2 €
>0

b Vi(n+l;t*;e;u;v;x)
Now, G(t*,t*+e) = | dx  and

a Vi(n;t*;e;u;v)

* b Wi(n+1;t*;u+v;x)

G(tT,t%) = f ax .

a Wi(n;t*;p+v)

The computation of (3.5) with the aid of Proposition 2.1
with application of Lemma 3.3 to Vi (n+l;t*;e;u;v;x)  and

Vi(n;t*;e;u;v) leads to the representation

( HoU+l, ..., p+v-2, u+v
J

*
+1; iUV
0,1 ,..., v—l) W (01t utvil)

(u,u+l,...,u+v—1 ) [Wi(n;t*;u+\))]2
J

*
G, (£%,t")
0,1 Peseyg v=-1
b
X f Wi(n;t*;u+v—1;x)dx .
a

The assertion of the lemma is now manifest by virtue of (3.4)
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b
Lemna 3,5 ., 1f | W, (n;t*;uev-1;%)dx = 0 , then
a

b/\
/ W (nst*;uv-1;x)dx < 0
a

Brogf. On the basis of Proposition 2.1, we obtain
W, (n=1;t*; p+v-2; %) W (nit*;uty) = W, (nit*; utv-1;x)

x Wi(n-l;t*;u+v-l)-&i(n;t*;u+v-l;x) Wi(n—l;t*;u+v—l) . Now,

Wi(n;t*;u+v) and Wi(n-l;t*;u+v-l) are positive and

b

f Wi(n;t*;u+v-1;x)dx = 0 by assumption. Thus

a
b ~

sgn f Wi(n-l;t*;u+v—2;x)dx = -sgn f Wi(n;t*;u+v—1;x)dx .
a

a

Since p+v-2 is even, Wi(n—l;t*;u+v—2;x) 2 0 and # 0 for

some x € [a,b] . Therefore
bA
Wi(n;t*;u+v-l;x)dx <0 .

o —

* ok
Lemma 3.6 . G22(t 7)) =

Weutl, ..., p+v-3, utv-1 Hou+l, ..., u4v
0,1 ,..., V=2 0,1 ,..., v
2
(u,u+l,...,u+v—1)
J

0,1 ,..., wv-1

Won+lit*iuev+l) b
X 5 f Wi(n;t*;u+v—l;x) dx .,
(W, (n;t*;p+v) ] a
1

Broof., The verification of this identity uses the facts of

Lemma 3.3 and equation (3.4) and the representation
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b Vi(n+l;t*;e;u;wl)vi(n;t*;e;u;v-lfx)

G, (t* t%e) = - [ ax .
a

2
[Vi(n;t*;e;u;v)]
. ‘0.E.D.
Wi(n+l;t*;u+v+1) b

Set M, = - f ﬁi(n;t*;u+v-l;x) dx .

On the b
an appli

[Wi(n;t*;u+v)]2 a
asis of Lemma 3.5 we find that Mi > 0 . Moreover,

cation of Proposition 2.2 yields

* Lk v(v-1)
G288 = oy v M -

By symmetry considerations, we have

u(u-1) M .

* * = ———tP
G (7)) = Ty ey Ms

It is possible to calculate G12(t*,t*) following the
above techniques. However,we can also ascertain Glz(t*’t*)
from the equation

32G(t* t*) * Lk * * _ *

7 — *
) = Gll(t A7)+ G22(t 7)Y + 2 G12(t L)
t

coupled to the fact of

2 * _k
Lemma 3.7 . E—QLEELE—1-= My

ot
Proof. Paralleling the discussion of (3.2) and (3.3), we get
* % W, (n+1;t*;u+v+1) b

BG(gt,t ) . _ 4 5 Wi(n;t*;u+v-l;x) dx .

[Wi(n;t*;u+v)] a

b
Since, by (3.4), f Wi(n;t*;u+v—1;x) dx =0 ,
a
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Wi(n+l;t*;u+v+1) b

2 * %
IG(E™,t¥) _ d *
= £ Y Wi(n,t sutv=1l;x) dx

3t2 [Wi (n;t*;u+v) 12

[

Wi(n+l;t*;u+v+l) b
= - f Wi(n;t*;u+v-l;x) dx
a .

[Wi(n;t*;u+\))]2
= M, .

i

Q.E.D.
Combining as indicated earlier leads to
* Lky KV
€127t = Ty aen M -
L buti . .
Substituting in the values of Gll ’,G12 and G22 in

2 * L ky * Lk * Lk .
c Gll(t t£7)-2c Glz(t 7))+ G22(t ,£¥) 2.0 , we obtain

M |
i 2
(3.6) Ty Ty [e®u(u-1) - 2cuv + v(v=-1)1 2 0
r. 4
for all ¢ > 0, where u,v 2 2 . However, it is easy to

see that the quadratic changes sign (twice in fact) for ¢

positive. This contradiction as argued earlier implies
R
0.E.D.

The proof of Theorem D is complete.
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