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ON THE ERDOS CONJECTURE CONCERNING MINIMAL
NORM INTERPOLATION ON THE UNIT CIRCLE*

L. BRUTMAN AND A. PINKUS

Abstract. The purpose of this note is to complete the proof of the Erd6s conjecture concerning optimal
points of polynomial interpolation on the unit circle when the number of these points is even.

1. Introduction. Let r {z "lz 1}, D {z "lz l=< 1} and C(D) denote the space of
continuous functions in D supplied with the supnorm Ilfll-maxzo[f(z)l. Let z
{zl, z2," , Z./l} be (n + 1) distinct points on F, and Pz be the Lagrange interpolating
operator based on this point. Obviously, Pz is a projection from C(D) onto zr., the space
of polynomials of degree =<n. The norm of Pz is given by

IIell II&ll max A.a(z) max Az(z),
zD zF

Iz z,I/Iz z,I is the so-called Lebesgue function.where A(z)----Y.k=I li=
It has been conjectured by ErdSs [3] that the norm IlAzll is minimal when the nodes

{z} are equally distributed on F. For the case when the number of interpolation nodes is
odd, this conjecture has been proved in [2]. The proof is based on the equivalence of the
above problem to a corresponding minimum norm problem for trigonometric poly-
nomials on [0, 2). This latter problem has been solved by de Boor and Pinkus in [1],
where they extended techniques primarily developed by Kilgore [4] in order to
characterize the optimal points of interpolation by algebraic polynomials on a finite real
interval. Here we are completing the roof of the ErdSs conjecture for the case when the
number of interpolation points is even. The proof also consists in reducing the minimum
norm problem on the unit circle to the corresponding trigonometric problem and using
the techniques of [4] and [1], but instead of usual trigonometric polynomials the
"trigonometric" polynomials of the half-angles will be used.

2. Results. The main result we are going to prove is the following theorem.
THEOREM 1. Among all polynomial projections from C(D) onto rt, induced by

interpolation at (n + 1) distinct points zl,’", Z,+l on the unit circle, the projections
corresponding to the equally distributed points, i.e., z e2k/<"+)+ (k 1, , n + 1;
some ) are the only ones of minimal norm.

Proof. Since Theorem 1 has been proven for n 2m in [2], we consider only the
case when the degree of the polynomial is odd, n 2rn 1. As has been noted above,
the proof consists in reducing this minimum norm problem to the equivalent "tri-
gonometric" interpolation problem. For this purpose let us define the following
2m-dimensional subspace

O 2m-1 2,..-.,, 1/H,=span sin,cos,...,sin 2
0, cos

2

and let T_.a: [0, 2zr) --> H. be the interpolating operator at the points 0= (01," , 02.),
where C[0, 2r) denotes the class of continuous functions satisfying/(0)=-/(27r).
The operator Ta is well-defined since H. is a Chebyshev system of order 2m on [0, 2 zr)
(see, for example, [5]).
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Now if A’_o(0) denotes the associated Lebesgue function then the following
identification may be easily verified (see [2]).

(1)
A’_o(0) Az(e i), 0 _<- 0 < 27r,

0 <- 01 <" < 02,, <27r.

z (e’}m=

Equation (1) shows that the proof of Theorem 1 is equivalent to the proof of the
following theorem.

THEOREM 2. min_0o maxo_0<2,, A(0) is attained only if Ok (k 1)Trim + a;
k 1.,..., 2m, some a.

Proof. The proof follows the pattern of the proof given in 1 ]. To ease notation let us
make a change of variable so that our domain is [0, r) rather than [0, 2r). Therefore set

span {sin 0, cos 0, sin 30, cos 30,. , sin (2m 1)0, cos (2m 1)0}.

Now set

l) {O_ (01, 02m),

and for each _0 let Sk e $,, denote the uni..’que "polynomial" satisfying
2k=1 ISk(O)l wherek,/" 1,.. , 2m. It may be verified that A0(0)

2m

Sk(O) I-I sin (0 01)/sin (0k 0i).
i=1

Note that A0(0), on each interval (0, 0+1), k 1,. , 2m (0,,+1 r + 01), is a
"polynomial" in S,,, which will be denoted by Fk. Let ’k denote the unique point in
(0k, 0k+l) at which A0(0) attains its aximum value, and let (0) denote this maximum
value, k 1, 2,. , 2m. Without loss of generality let 01 0. It remains to solve the
problem of finding the minimum of IIAo over O.

We begin with a proof of the claim that

e0 for all0 and k 1,..., 2m.(2) J=det 00
In view of a formula in [4, p. 275],

OOi
-Fi (Oi)Si(7i) i sin (ri Ok)sin (Oi--ri)--=x

sin (Oi-- Ok),
ke]

so that Jk 0 for all is equivalent to proving that

2m 2m

(3) det q(O) 0
i= =2
ik

for all eO, where qi(O)=F’(O)/sin(O-ri),i=l,...,2m. In order to prove (3),
suppose to the contrary that Jk 0 for some k 1, , 2m and some . Then there
eists a set of nontrivial coefficients, a a,’’’,ak-l, ak+l,’’’,a2m for which
’=.ekaq(O) vanishes at 003,’’’,02. We now show that this implies

aq(O)O Indeed qi(O) is a polynomial in 1-2, the trigonometric poly-i=l,ik
nomials of degree ,N2m 2, such that q(O + ) qi(O), 0 [0, ). Thus on [0, 2), the

2m
combination i=l,iekaiqi(O), which is also a polynomial in T2m-, vanishes at
02, Oa, ..., 02m, Oz + , ", 02m + , i.e., 2(2m 1) times.
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However every nontrivial function in T2m_2 has at most 2(2m 2) zeros on [0, 2r).
2m

Thus Y.i=l,ikaiqi(O) =-- O.
2mNow we shall complete the proof of (3) by showing that if i-- biq(O) =’0, then

either all b 0, 1, , 2m or all the coefficients bi 7 0, 1, , 2m, contradicting
the above choice of a. The proof of this last statement is based on the following lemma,
which is analogous to Lemma 6 of [1] and is given here without proof.

LEMMA. Let 7"(1i), _(i)
", 2,,-1 denote the zeros ofF (0), all simple, cyclically ordered

in some interval of length 7r so that ’kk) ’k, k 1, , 2m 1, and .]2,,,) ’2m. Then

for some 1,. , 2m 1.
Assume without loss of generality that qi(7"l) > 0, 1,. , 2m and bl >= 0. From

the Lemma it then follows that

sgn qi(ri) (-1)i+1

sgn q(-i) (-1)

sgn ql(-i) (-1)

for i, 2,. , 2m, - ,for 2,. ., 2m,

for/’=2,. ., 2m.

Since q(’l) > 0 for 1, , 2m, the set N {i" 2, , 2m, b < 0} is not empty.
Let P {2,. ., 2m}\N and set

r(0)= blql(O)+ ., b,qi(O) -Z biqi(O).
iN iP

Now (-1)ir(-i) ip bi(-1).i+lq(-i) >- 0 for/’P, while

(-1)ir(ri)=bl(-1)iql(ri)+ , (-bi)(-1)i+lq(’i)>O for/’P.

Thus r(O), being a linear combination of the qi, has at least (2m 1) zeros in [0, r) and
hence by the previous analysis r(O)=O. Since O=r(O), but (-1)ir(-i)>0 for/’P, it
follows that P b. Hence b < 0, 2,..., 2m, which in turn implies by the above
reasoning that bl > 0. Thus bi 0 for all 1, , 2m. This completes the proof of (3).

In order to complete the proof of Theorem 2, we note that if we are at any __0", a
minimum of [IAall we must have A 1(_0") A 2m (__0"). For assume to the contrary that
there exists a _0" 19, which is a minimum of IIAall, with at least one of the Ai(_0*), say
A 1(_0"), strictly less than IIAo.II. Since J1 0, it follows by the implicit function theorem
that in any neighborhood of _0" we may strictly decrease the ?i(_O), 2,..., 2m,
contradicting the minimality of _0". Since for the choice 0"k =(k-1)r/(2m), k
1,... ,2m we have ;tl(_) A2m(_0), it remains to show that there is a unique
point _0" 19 for which A(_0*) A2m(_0*). This is dcmonstrated by reasoning
totally analogous to that found in the proof of Theorem 1 of [1].
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