The Closed Linear Span of $\{x^k - c_k\}_1^\infty$

J. M. ANDERSON

Department of Mathematics, University College, London WC1E 6BT, England

PAUL ERDÖS

Mathematical Institute, Hungarian Academy of Sciences, Budapest H-1053, Hungary

Allan Pinkus

Department of Mathematics, Technion, Haifa 32000, Israel

AND

OVED SHISHA

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881, U.S.A.

Communicated by V. Totik

Received February 24, 1984

Let $\{c_k\}_1^\infty$ be a given real sequence. We wish to determine, in the first instance, easily verified conditions on $\{c_k\}_1^\infty$ which imply that the sequence of functions $\{x^k - c_k\}_1^\infty$ is *total* in C[0, 1]; that is, that the closed linear span $\overline{V}\{x^k - c_k\}$ is all of C[0, 1] or, in other words, that every real function, continuous in [0, 1], is the limit, in the uniform norm, of a sequence of finite linear combinations of the $x^k - c_k$. When this happens we refer to $\{c_k\}_1^\infty$ as an *approximating sequence*. Since the sequence $\{x^k\}_0^\infty$ is total in C[0, 1], our problem is equivalent to demanding that the function $f(x) \equiv 1$ belong to $\overline{V}\{x^k - c_k\}$. In this case we wish, in the second instance, to find an effective approximation to $f(x) \equiv 1$ in the uniform norm on [0, 1] by finite linear combinations of the $x^k - c_k$.

An equivalent formulation of our problem, which is sometimes useful, is afforded by the following proposition. This proposition is an elementary application of the Hahn-Banach theorem.

PROPOSITION 1. The sequence $\{c_k\}_1^\infty$ is an approximating sequence if and

only if it is not a Hausdorff moment sequence, i.e., if and only if, with $c_0 = 1$, there is no real function μ of bounded variation on [0, 1] satisfying

$$c_k = \int_0^1 x^k d\mu(x), \qquad k = 0, 1, 2, 3, \dots$$
 (1)

To determine whether or not $\{c_k\}_{1}^{\infty}$ is an approximating sequence, one might try to apply the following well-known criterion [1, p. 99].

PROPOSITION 2. A necessary and sufficient condition for the existence of a real function μ of bounded variation, satisfying (1), is the convergence, as $n \uparrow \infty$, of

$$\sum_{\nu=0}^{n} |\lambda_{n\nu}|, \qquad (2)$$

where

$$\lambda_{n\nu} = \binom{n}{\nu} \Delta^{n-\nu} c_{\nu} = \binom{n}{\nu} \sum_{k=0}^{n-\nu} (-1)^k \binom{n-\nu}{k} c_{\nu+k}, \qquad \nu = 0, 1, ..., n.$$

Note that the value of c_0 is immaterial in the above theorem since we may add point masses at x = 0. The convergence of (2) is rather difficult to verify and so we seek simpler sufficient conditions for a sequence $\{c_k\}_1^\infty$ to be an approximating sequence. We now present some such conditions.

1. If $\{c_k\}_1^\infty$ is a Hausdorff moment sequence, then $|c_k| \le \|\mu\|$ for all k, where $\|\mu\|$ denotes the total variation of μ . In addition, it follows from the dominated convergence theorem that the sequence $\{c_k\}_1^\infty$ must converge, i.e., $\lim_{k\to\infty} c_k$ exists. Thus if either $\limsup_{k\to\infty} |c_k| = \infty$ or $\lim_{k\to\infty} c_k$ does not exist, then $\{c_k\}_1^\infty$ is an approximating sequence. In the first case the function 1 can be approximated by $f_k(x) \equiv (c_{n_k})^{-1}(x^{n_k} - c_{n_k})$ for a suitable subsequence $\{c_{n_k}\}_1^\infty$.

2. If $\{c_k\}_1^\infty$ is not an approximating sequence and if we change c_k for a finite number of k's, however slightly, then the resulting sequence $\{c'_k\}_1^\infty$ is an approximating sequence. For if

$$F(z) = \int_0^1 x^z \, d\mu(x),$$
 (3)

then F(z) is holomorphic and bounded in Re $z > \delta > 0$ for every $\delta > 0$, with $F(k) = c_k$. But such an F(z) is uniquely determined by its values at all but a finite number of the k's. In particular, if $c_k = c$ for all k, then $\{c_k\}$ is not an approximating sequence, so that if $c_k = c$ for all but a finite number of k,

and there exists a j for which $c_j \neq c$, then $\{c_k\}$ is an approximating sequence.

3. Suppose that the sequence $\{c_k\}_{1}^{\infty}$ is such that for all $k \ge M$,

$$\varepsilon(-1)^k(c_k - c) \ge 0,\tag{4}$$

where $c \in \mathbb{R}$ and $\varepsilon \in \{-1, 1\}$, fixed. If $c_k - c \neq 0$, then $\{c_k\}_1^{\infty}$ is an approximating sequence. By subtracting a point mass at 1, if necessary, we may assume that c = 0 and that $c_r \neq 0$ for some $r \ge M$. Then for all $n \ge r$,

$$\sum_{v=0}^{n} |\lambda_{nv}| \ge |\lambda_{nr}| = \left| \binom{n}{r} \sum_{k=0}^{n-r} (-1)^{k} \binom{n-r}{k} c_{r+k} \right|$$
$$\ge \binom{n}{r} |c_{r}| \to \infty \quad \text{as} \quad n \uparrow \infty,$$

establishing the result.

As a slightly more general example we assume that

$$(-1)^{k}(c_{n_{k}}-c) \ge 0, \qquad k=1, 2,...,$$
 (5)

where $\{n_k\}_1^{\infty}$ is a subsequence satisfying the Müntz condition $\sum_{k=1}^{\infty} (n_k)^{-1} = \infty$. If $c_k \neq c$ for some $k \ge 1$, then $\{c_k\}_1^{\infty}$ is an approximating sequence. We may again assume that c = 0 and consider the function F(z) of (3). The condition (5) implies that $F(t_k) = 0$ for some t_k with $n_k \le t_k \le n_{k+1}$. Since $\sum_{k=1}^{\infty} (t_k)^{-1} = \infty$, we see, by the uniqueness theorem for functions holomorphic and bounded in a half-plane, that $F(z) \equiv 0$, contradicting the fact that $c_k \neq 0$.

4. If (4) holds and $c_k \neq c$ for infinitely many k, we can explicitly construct a good approximation to $f(x) \equiv 1$ on [0, 1]. For n = 1, 2, 3, ..., let $T_n(x) = \sum_{k=0}^n b_k^{(n)} x^k$ denote the *n*th Chebyshev polynomial of the first kind on [0, 1], normalized so that $||T_n||_{\infty} = b_0^{(n)} = 1$. We choose $\{a_k^{(n)}\}_1^n$ and A(n), k = 1, 2, 3, ..., n; n = 1, 2, ..., to satisfy

$$\sum_{k=1}^{n} a_{k}^{(n)}(x^{k}-c_{k})-1=A(n) T_{n}(x).$$

For this we require that $a_k^{(n)} = A(n) b_k^{(n)}$ and that

$$\sum_{k=1}^{n} a_k^{(n)} c_k + 1 = -A(n) b_0^{(n)} = -A(n).$$

Thus

$$A(n)\left(\sum_{k=1}^{n}b_{k}^{(n)}c_{k}\right)+1=-A(n)$$

and

$$A(n) = -\left(\sum_{k=1}^{n} b_{k}^{(n)} c_{k} + 1\right)^{-1}.$$

(See below where we show that A(n) is well defined for all sufficiently large n.) We may assume that (4) holds with $\varepsilon = 1$ and c = 0. Since, for every n,

$$\left\|\sum_{k=1}^{n} a_{k}^{(n)}(x^{k}-c_{k})-1\right\|_{\infty}=|A(n)| \|T_{n}\|_{\infty}=|A(n)|,$$

it suffices to show that $A(n) \rightarrow 0$ as $n \rightarrow \infty$ or that

$$\left|\sum_{k=1}^{n} b_{k}^{(n)} c_{k}\right| \to \infty \quad \text{as} \quad n \to \infty.$$
 (6)

It is known that

$$(-1)^k b_k^{(n)} = \frac{2^k}{k!} \frac{n^2 (n^2 - 1^2) \cdots (n^2 - (k-1)^2)}{1 \cdot 3 \cdot 5 \cdots (2k-1)}.$$

Let k_0 be the smallest integer $k \ge M$ for which $c_k \ne 0$. Then for $n \ge M$ we have

$$\left|\sum_{k=1}^{n} b_{k}^{(n)} c_{k}\right| \geq \left|\sum_{k=M}^{n} b_{k}^{(n)} c_{k}\right| - \left|\sum_{k=1}^{M-1} b_{k}^{(n)} c_{k}\right| \geq |b_{k_{0}}^{(n)} c_{k_{0}}| - \left|\sum_{k=1}^{M-1} b_{k}^{(n)} c_{k}\right|.$$

Note that it is precisely here that we make use of the hypothesis that $(-1)^k c_k \ge 0$, $k \ge M$. It is readily shown that the first term on the right of the above is $\ge \delta n^{2M}$ for some suitable $\delta > 0$, while the second term is $O(n^{2M-2})$ as $n \uparrow \infty$. Thus (6) holds and the functions

$$\sum_{k=1}^n a_k^{(n)}(x^k-c_k)$$

converge uniformly to 1 on [0, 1].

5. If $|c_{n_k} - c|^{1/n_k} \to 0$ as $k \to \infty$, where the subsequence $\{n_k\}_1^\infty$ satisfies the Müntz condition $\sum_{k=1}^{\infty} (n_k)^{-1} = \infty$ and $c_k \neq c$, then $\{c_k\}_1^\infty$ is an approximating sequence. We assume that c = 0 and that $\{c_k\}_1^\infty$ is the Hausdorff moment sequence of a real function μ of bounded variation. For each $x \in [0, 1)$ assume, without loss of generality, that $\mu(x) = \mu(x + 0)$. Set

$$\rho = \inf\{s: \mu(x) = \mu(1), s \le x \le 1\}.$$

Since $c_{n_k} = O(d^{n_k})$ (as $k \to \infty$) for each d > 0, it follows from Theorem 2 of

[2] that $\rho = 0$. Thus μ is the Dirac measure at 0, which contradicts the fact that $c_k \neq 0$ for some $k \ge 1$.

In the case when $|c_k|^{1/k} \to 0$ as $k \to \infty$, we shall again explicitly construct a good approximation to $f(x) \equiv 1$. We are unable to do this in the general case where the subsequence $\{n_k\}$ is more lacunary. Since $|c_k|^{1/k} \to 0$, we can find a positive continuous increasing function $\phi(x)$ defined on $[0, \infty)$ such that

$$\phi(x) \to \infty \qquad \text{as} \quad x \to \infty,$$
$$\frac{\log |c_k|}{k} \leqslant -\phi(k), \qquad k = 1, 2, \dots.$$

Set $\varepsilon(k) = \max\{(\log k)^{-1/2}, (\phi((\log k)^{1/2}))^{-1/2}\}, k = 2, 3,..., \text{ so that } \varepsilon(k) \text{ is positive and} \}$

We now construct a sequence of polynomials

$$p_n(x) = \sum_{k=1}^{s_n} \alpha_k^{(n)} x^k, \qquad n = 1, 2, ...,$$

with the property that $||p_n||_{\infty} \to 0$ as $n \to \infty$, and

$$\left|\sum_{k=1}^{s_n} \alpha_k^{(n)} c_k\right| \ge \delta > 0,$$

where δ is some suitable constant. Assuming that this may be done, we have

$$\left\|1 + \left(\sum_{k=1}^{s_n} \alpha_k^{(n)} c_k\right)^{-1} \sum_{k=1}^{s_n} \alpha_k^{(n)} (x^k - c_k) \right\|_{\infty} \leq \delta^{-1} \|p_n\|_{\infty} \to 0$$

as $n \to \infty$, thus achieving the desired approximation to 1.

It remains to construct p_n . Assume for simplicity that $c_1 \neq 0$. Set

$$p_n(x) = x(1-x^r)^n,$$

where $r = [\varepsilon(n) \log n]$. Thus, in the above notation, $s_n = n[\varepsilon(n) \log n] + 1$. It is an elementary exercise to verify that

$$||p_n||_{\infty} = \exp\{(-1+o(1))(\varepsilon(n))^{-1}\}, \quad n \to \infty,$$

so that $||p_n||_{\infty} \to 0$ as $n \to 0$. Now

$$\sum_{k=1}^{s_n} \alpha_k^{(n)} c_k \bigg| \ge |c_1| - \binom{n}{1} |c_{r+1}| - \binom{n}{2} |c_{2r+1}| - \cdots.$$

Furthermore,

$$\frac{\log|c_{r+1}|}{r+1} \leqslant -\phi(r+1) \leqslant -\phi(\varepsilon(n)\log n)$$

and thus from (7),

$$\log |c_{r+1}| \leq -(\log n)[\varepsilon(n) \phi(\varepsilon(n) \log n)] \leq -2\log n$$

for all *n* sufficiently large. Thus $|c_{r+1}| \le n^{-2}$. Similarly it may be shown that $|c_{2r+1}| \le (n^{-2})^2, ..., |c_{jr+1}| \le (n^{-2})^j$, for all *r* sufficiently large and j = 1, 2, Hence

$$\left|\sum_{k=1}^{s_n} \alpha_k^{(n)} c_k\right| \ge |c_1| - \sum_{k=1}^n \binom{n}{k} n^{-2k} \ge |c_1| - \frac{1}{n} \sum_{k=1}^\infty \frac{1}{k!} \ge \delta > 0,$$

as required.

ACKNOWLEDGMENT

We thank A. Jakimovski, D. Lubinsky, and A. Ziv for their helpful comments.

References

- 1. J. A. SHOHAŢ AND J. D. TAMARKIN, "The Problem of Moments," Math. Surveys No. 1, 3rd printing, revised ed., Amer. Math. Soc., Providence, R.I., 1963.
- 2. R. TRAUTNER, Density properties of Hausdorff moment sequences, *Tôhoku Math. J.* 24 (1972), 347–352.