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ABSTRACT

Let P denote the set of all square n X n nonnegative matrices. For A, =
n k
(afj)}fisl, k=1,...,m (k not a power), we set

For each A€ P, we let p(A) denote its spectral radius. This paper is concerned
with the characterization of those functions f:R7% — R, satisfying either

p(f(Ar, An)) < flp(A)s- s 0(A,) (D)

or
F(o(Ar) s rp(A)) < p(f(Ars-.. A,)) @)

for all A,,..., A, €P’ and every n€N. We totally characterize all functions
satisfying (1). We delineate various classes of functions which satisfy (2). If £0)=0,
and f is bounded above in some neighborhood of any a € intR™, then we totally
characterize all f satisfying (2).
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1. INTRODUCTION

For each n€N, let P denote the set of nXn nonnegative matrices,
and P*=U,, P/ Given' A €P!, A, =(ak i j-1 k=1...,m (k not a
power), and f:R7? - R, we let f(Al, m) (f(a,.j,... aiy))yij-1 In
this paper we consider the set of all such functlons satisfying

p(fAy,.... A)) < f(p(A),- . p(AL)) (1.1)
for A, eP/, k=1,...,m,andevery n €N, as well as the converse inequality
flo(A),....p(A)) <o(f(AL-.s AL)), (1.2)

where p(-) is the spectral radius.

In Section 2 we totally characterize all functions f:R7 — R, satisfying
(1.1) (Theorem 2.1). This class is exactly the set of functions satisfying the
functional inequalities

(i) f(a)+ f(b) < fa+Db),

(ii) Hfl/‘(a <fl(aye---°a)"*), s=23,..,

for all vectors in R™; here and throughout this paper, if a =(a,,...,a,,),
b=(b,,...,b,), then we define

acb=(ab,,...,a,b,)

m-m

to be the Hadamard product of a and b, and

We also present various properties and examples for this set of functions.
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In Section 3 we study (1.2). We prove that f:R7 — R, satisfies (1.2) if
it is in any one of the following three classes:

(a) f is bounded above at some point a€intR%, f(x,,...,x,)=
max,_, . fi(x;), where f,:R, » R, and each f; satisfies
(i) fila+b) < filla)+ £i(b),
(i) fi(Vab) < [f(a) fi(b)
forall a,b>0.

(b) f is componentwise decreasing.
(c) There exists a ¢ > 0 such that ¢ < f(x) < 2c forall x eRT.

Moreover, if f(0) =0 and f is bounded above at some point « € intR ™, then
we prove that f satisfies (1.2) if and only if it is in (a). However, there do
exist functions not in (a), (b), or (c) which satisfy (1.2). Thus this study is
incomplete. Again we present various properties and examples.

This work was partially motivated by the following result (see Karlin and
Ost [6] and Elsner, Johnson, and Dias da Silva [2]). Let A,,..., A,, € P/ and
o, >0, k=1,...,m, with X" @, >1. Set C= (c,.j), where

{0\ (,,m\%m .
C"j_(aij) (a,-,-) , i, j=1..,n.
Then

p(CY<p(A)™ - p(A,)". (1.3)

Setting f(x,,...,x,)=x{ --- 2% we may rewrite this result as

p(f(AL--s A,)) < fp(A),....p(A,)).

If we let x®=1 for all x >0, then it is easily checked that (1.3) holds if
a; =0, L0 ja; > 1. We will need this result in Section 2. Further motivation
was provided by a talk given by the first author at the Fourth Haifa Matrix
Conference (January 1988), in which the inequality (1.2) was proven for the
specific case of m =1 and f(x) = x +sgn(x). This result appears in [1], and
is an immediate consequence of our results (Propositions 3.3 and 3.7).

We end this introduction by introducing an ancillary function on P*
which we will need in the subsequent analysis.
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For A € P}, set

s 1/s
,U,(A)——-max( I—[lai,-ijﬂ) ,
j=

where i,,..., 1, are distinct indices in {1,...,n} and i, = i,. This functional
p was introduced in Engel and Schneider [3], where it was proven that

p(A) = inf{ max (D *'AD);;: D any positive diagonal matrix} .
ij
Subsequently Friedland [4] proved that
p(A) = lim p(Al)"",
r— o0

where Al")=(a];)] ;_, (r a power). While we will use neither of the above
characterizations, we will use the inequality provided by this fourth charac-
terization, to be found in Elsner, Johnson, and Dias da Silva [2):

p(A)=max{p(A°B): B P}, p(B)<1}. (1.4)

Paralleling the previous notation, A o B is the Hadamard product of A and
B, ie.,

ADB:(aijbij):,j=l'

Note that it easily follows from the above that 0 < p(A) < p(A) < nu(A) for
all A€ P}. Thus in particular, p(A)=0 if and only if p(A)=0, for any
AePt,

2. THE INEQUALITY p(f(A,..., A,))) < f(p(AL),---» 0(A )

The main result of this section is the following;:
THEOREM 2.1. Let f:R7T > R . Then f satisfies

p(f(Al""’Am))<f(p(Al)""’p(Am)) (21)
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forall A|,..., A, €P} and all n €N if and only if

f(a)+ f(b) < f(a+b), all a,beR™ (2.2a)

k]_[lfl/“‘(ak)sf((alo--- ca)"’), all a,...a,€RT, s=2,3,....

(2.2b)

Furthermore if f is continuous, or m =1, then it suffices to take only s = 2 in

(2.2b).

The proof of the “if” part of this theorem is long, detailed, and arduous.
Therefore we first separate out a series of results needed in its proof.

LeEmMma 2.2.  Assume f:RT - R satisfies (2.2). Then:
i) f0)=0.

(i) fis componentwise increasing.
(iii) If f(a,...,a,,)>0and a,=0, then

fla,,...,a,_1,0,a,,\,....a,,)=flay,...,a,_\,x,a,,,,...,a,,)

for all x > 0.
(iv) For all )\j>0, )\jEQ, }:;.=l)\j=1,

nfkj(aj)sf(a)ilo oaﬁr).

j=1

Proof. Both (i) and (ii) are immediate consequences of (2.2a). To prove
(iii), assume that f(a,,...,a,,) >0 with a, = 0. From (2.2b) with s =2,

¥ ay,....a,_1,0,a,,1,....a,,) fay,....,a,_1,x,a,,4,...,a,)
< flay,...,a,_},0,a,,,,...,a,).
Thus
flay,...,a,_,x,a, 1,...,a,) < flay,...,a,_,0,a,,,,...,a,,)

for every x = 0. Since f is componentwise increasing, equality holds.



108 L. ELSNER, D. HERSHKOWITZ, AND A. PINKUS

To prove (iv), let )\j =p;/4; where p;»q; €N. Apply (2.2b) with
s =I1%_,q;, and repeat a therein A ;s times. |

Lemma 2.3.  Assume f:R7T — R, satisfies (2.2). Set

D = {a: f(a) > 0}.

() If a,,...,a,€D, then (a,° --- ca, )€ D.

(ii) If acint D, beR?, then a+beint D.

(iii) IfaeD,b>0(i.e., b;>0,i=1,...,m), then a+b €int D.
(iv) If a€ D, A>1, then Aa € int D.

The proof of this lemma is an immediate and simple consequence of (2.2).
We omit it. It is to be understood that by int D we mean the interior of D
relative to R™. Thus int D may include boundary points of R?. We always
assume that f # 0 and thus int D # @. In the next series of results we use the
following notation. If b,c €R", we let b*= bt - - - bm.

ProrosiTioNn 24. Assume f:R7T - R, satisfies (2.2). Let p=
(P1s--+s ) €Eint D. Then there exists an a=(ay,...,a,,), ;> 0, X7 a,> 1,
such that

fla) < fle)p ™" (2.3)

for all a € R™, where it is understood that x° =1 for all x > 0. Furthermore
a,=0ifp,=0.

Proof. Let
F={a:a€intD,a;>0,i=1,...,m}.
We first prove (2.3) under the assumption that p € F. To this end, set
E={b:ebeF)}.

(Observe that for each a € F there exists a b € E such that a = ¢.) Note that
E is open. For each b € E, set

g(b) =In f(e),
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ie., g(b)=1In f(e™,...,e"). From (2.2b) with s = 2, we obtain

g(b);rg(C) <g(‘DZC)

for all b,c € E. Thus g is midconcave on E. From Lemma 2.2(ii) we also
have that g is componentwise increasing. Thus g is concave and continuous
on E; see e.g. Jensen [5] or Roberts and Varberg [7]. In particular, at each
b € E a subgradient to g exists. That is, corresponding to b € E there exists
an o= (ay,...,q,,) such that

g(c) —g(b) <(a,c —b) (2.4)

for all ¢ € E [where (o, B)=X",a,8;]. Let e®=p. By assumption b € E.
Translating (2.4) back to f, we obtain (2.3) for all a € F. To extend (2.3) to
all aeR" we first need some additional facts.

Leta€ F. Thena,=(a,,...,a,_,x,a,,,,...,a,)Eint D forall x > a,,
by Lemma 2.3(ii). Since f is componentwise increasing, f(a) < f(a,) for all
x > a,. Therefore

0 < f(a) < fa,) < flp)p~"a}
for all x > a,. If a, <0, then letting x 100, a contradiction ensues. Thus
a,>0foreach re {l,...,m}.

From (2.2a), we have 2f(p) < f(2p). Since 2p € F [Lemma 2.3(iv)}, we
have from (2.3)

2f(p) < f(20) < flp)o*(2p)" = fp)25".

Thus X7 a; > 1.

Assume, without loss of generality, thata€int D, a,=--- =a, =0, and
a,.1->a,,>0 Then (x,....,x,,4a,,,...,a,)€intD for all x;>0, i=
1,...,7, and from Lemma 2.2(iii),

flxy,..o.x,,a,,4,....a,) = f0,...,0,a,. ,...,a,,).
Now, for x; >0, i=1,...,r,

0<f(0,...,0,a,,y,....a,,) = f(x},....,x,,a,,,...,a,,)

< flp)p™xft -+ xaft - agy.



110 L. ELSNER, D. HERSHKOWITZ, AND A. PINKUS

Thus x{ - - - x% is uniformly bounded below away from zero for all x, >0,
i=1,...,r. Since a; > 0 for all i, this implies that a;=0, i=1,...,7.

We now prove that (2.3) holds for all a€R™”. Assume a € intD and

,=0forsome r € {1,...,m}. Since a, =01if a, =0, and f(a) = f(a), where

d;,=a;if a;>0,d,20if a;=0, it follows that
fla)=f(@) < flp)o~"a"= f(p)p “a

for all a € int D, where we set x°=1 for all x > 0.
Assume a € D\int D. From Lemma 2.3(iv) Aa€int D for all A > 1, and
from Lemma 2.2(ii) f(a) < f(Aa). Thus

fla) < f(Aa) < f(p)o~*(Aa)"

for all A > 1. By continuity we obtain

fla) < f(p)p™"a".

Since f(a)=0 if a &€ D, we have proven the validity of (2.3) for all a R
and pe F.

Finally, if p€intD but p,=0 for some re{l,...,m}, let p=
(Byre--» Pry)» Where p,=p, if p;>0, p;> 0 if p,=0. Thus § € F. There then
exists an a, as desired, such that

fla) < f(p)p "

for all a €R™. Since p €int D, it follows from the previous argument that
a,=0if p,=0. Thus §~*=p * Furthermore f(p)= f(p). Substituting p
for p in the above gives us the full result. ]

ProrosiTion 2.5. Assume f:RT — R, satisfies (2.2). Let p=
(Pys---»P,,) € D\int D. There then exists anr € {1,...,m} with p, > 0 such
that

flxy,eex,)=0 if x,=0, (2.5)

f(BrseesPn)=0 if p,<p;, i=1l,...,m, and p,<p,. (2.6)
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Proof. For ease of notation we assume that p,,..., p;>0 and Pji1=
cee=p,=0(j=1). Set

. m
{k:lskgy, Ax e X1 160, X 1 koo o> X ) > O for some {xik}i=1}.
itk

= {k:lgksj, f(pl,...,pk_l,/.tk,pkﬂ,...,p].,O,...,O) >Oforsomepk<pk}.
If SUT # {1,..., j}, then the proposition holds (since f is componentwise
increasing).

The proof is by negation. Assume SUT = {1,...,j}. Now S+ {1,...,j}.
For if S={1,..., j} then from (2.2b),

j
0< lknlf(xlk,...,xk_l,k,O,ka,k,...,xmk)]f(pl,...,p].,O,...,O)

< fi*Y(0,...,0) =0,

a contradiction. Let §= {1,..., j ]\T. Then SUT={(1,...,j}, SNT=2.
Foreach A, >0, A, €Q, k=1,...,j, Zl_ A, =1, we have from (2.2b)

0< [ IT = xk—l,k’O’xk+l,k""’xmk)}
kes

X[ I1 f}\k(pl""’pk~l’nuk’karl""’pjaOa---:O)]
keT
< floy,...,0,),

where 6;,=0for i=j+1,...,m (since T # @) and ieS. ForieT,

o [k];[S_xf‘,:]

I p,w]m'.
keT
k+i
Since p; < p;, it is possible to choose A, >0, A, €Q, k=1,..., j, Zi_ A, =1,
so that o, < p,;, i €T. Thus
ﬂqu%ﬁwq®>Q

where o, <p,, i=1,...,j. This contradicts the fact that p & intD [see
Lemma 2.3(iv)] and proves the proposition. [ ]
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With these preliminaries we can now proceed to the proof of Theorem
2.1.

Proof of Theorem 2.1. =: Assume f satisfies (2.1). Let a, bR,
a=(a,...,a,),b=(b,...,b,), and set

Ak—(ak bk), k=1,...,m.

Then p(A,)=a, + b, and f(p(A,),...,p(A,))) = f(a+b). Furthermore

fla,,...,a,) f(by,....b,)

p(fAr AL)) =p flay,....a,) f(by,....,},)

= f(a) + f(b).
This proves (2.2a). Note that this also implies that f{0) = 0.
Now set
0 ay 0
A, = : ) k=1,....,m,
0 0 A s—1

where each A, is an s X s matrix. Then p(A,) = [n;=lakj]l/s' Set
aj=(alja"'9am]'), j=1,...,8.

Then f(p(A,),-., p(A,) = fi@a, e -+ °a,)'/*). Since f(0) =0,

0 flay) - 0
p(f(AL....A)) =p (:) (:) f(a:Al)
f(as) O se s 0

s

= H % (ay)-

k=1

This proves (2.2b).
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«: Assume f:R™ —> R, satisfies (2.2). For given A,,..., A, € P}, let
pr=p(A,), k=1,...,m. We divide the proof of this part of the theorem into
three cases.

Case 1. p=(py,....p,) €D, ie, flpy,--..p,)=0. We must prove
that p(f(A},...,A,,))=0. As noted in Section 1, this is equivalent to
proving that u(f(A,,...,A,))=0.

Assume Ak=(af‘]),"] L k=1..m (the k is not a power). By defini-
tion, there exist {i,,...,i,} € {1,...,n}, 1 <s<n (i,,,=1i;), such that

w(f(AL A,)) = Hf‘/s( e @l )

j=1

Applying (2.2b) we obtain

s 1/s s 1/s
M(f(A1’~--,Am))<f(( lillazlwi,-ﬂ) ""’(Ula?;ru) )

By definition,

s 1/s
(Hlaf.,v.) sp(A) <e(A)=pr, k=1,...,m.

jrp+t
1=

Since f is componentwise increasing [Lemma 2.2(ii)], we finally obtain

MAAL . AD) < flpreees pn) =0

Case 2. p=(p,,...,p,)EintD. From Proposition 2.4 there exists an
a=(ay,...,a,) a; >0, X" a,>1, such that

fla) < flp)o“a
for all a € R™, where by definition x° =1 for all x > 0. Thus
fAL.. A) < flp)o Ao -+ 0 A%,

where the inequality is elementwise. Since A < B implies p(A) < p(B), it
follows that

p(f(AL.. A,)) < flo)p™p(Afe - - o ASr).
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Applying (1.3), we obtain
p(f(AL....A)) < fle)e - o5 = flp).

Case 3. p=(py,..-»p,)ED\intD. Let re{l,...,m} be such that
p, > 0 and (2.5), (2.6) of Proposition 2.5 hold. Set

flxy,eonxy,)
- > X >07
h(xy,...,x,,)= x, r
0, x,=0.
From (2.5)
h(xy,.x,)x, = f(x,...,%,)
for all x € R"”. Furthermore, using (2.2b) we obtain
[1ra) <h((are---°a,)"”") (2.7)
k=1

for all a,,...,a, € R". Thus from (1.4)

p(f(ALsA)) =p(h(Ar. AL) e A ) <p(R(AL AL))e;

By definition there exist {i,,...,i,} C {1,...,n}, 1<s<n (i;,,=1,), such
that

s

p(h(AL,...,A,)) = ]Dlhl/s(a}j‘fﬂ""’a::'lim)'

From (2.7),

s 1/s s /s
p(f(Ala""Am))sh((]'_Ila'!f"f“) ,...,( a:'j‘ij*-l) )P,‘

By definition,

s 1/s
( .I—Ilaff'}w) <p(A) <pps k=1,...,m.
i=
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If (I—I;=1af

g

)13 < p,, then from (2.6),

s 1/s s 1/s
1 =
h((naij,.m) ,.,.,(Ha:',_',.i*l) )—O
i=1 i=1

and therefore
p(f(Al""’ Am)) =0 <f(p)

If (I15.a}

'jij+l

s 1/s ¢ 1/s
sl {1 ) 1o

)/$=p_ then

Sf‘(pl"“’ pm)?

since f is componentwise increasing.

This completes the proof of the fact that (2.2) implies (2.1).

It remains to prove that it suffices, if f is continuous or m =1, to only
take s = 2 in (2.2b). We claim that in both these cases (2.2a) and (2.2b) with
s = 2 implies

fa)f Ab) < fla'b ) (2.8)
for all A €(0,1) and a,b € R", whence we obtain (2.2b) for all s.
In the proof of Proposition 2.4 we obtained, using only (2.2a) and (2.2b)
with s = 2, that
g(c) =1n f(e*)
is concave and continuous on E. Translating back the inequality

Agle)+(1-A)g(d) <g(Ac+(1—-A)d)

for all e,d € E and A €(0,1), we obtain (2.8) for a,b € int D with a,, b, > 0,
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i=1,....,m. If a¢€D or b& D, then (2.8) trivially holds. The remaining
cases are dealt with as follows.

If f is continuous then D is open, i.e., D\int D =@. Thus in this case it
remains to prove (2.8) only for a,b € D, where [17 ;a; = O and /or [1}*. |b, = 0.
Let 4 satisfy @, =a, if a,> 0, @, > 0 if a, =0, and let b be similarly defined.
Then f(a)= f(3) and f(b)= f(b) from Lemma 2.2(iii). Applying (2.8), we
obtain

fHa)f'7Mb) = FA@)F 7 (b) < fE'D' )

for any A €(0,1). Since f is continuous, we can let 3 —a and b—b to
obtain (2.8).

Let m=1. If D\int D=2, there is nothing to prove. We therefore
assume that D\int D = {¢}. The only case left to prove in (2.8) is

fMa)f'Me) < flahe! ™)

for A €(0,1) and all a > ¢. From the proof of Proposition 2.4 we have that f
is continuous on (¢, ). Since f is componentwise increasing, we also have

fle) < lixg+ flc+¢).

Substituting ¢ + € for ¢ in the remaining case of (2.8), letting £ | 0, and using
the above two facts, we obtain the desired conclusion. [ ]

In the proof of the equivalence of (2.1) and (2.2) we use (2.2b) for all s. If
f is continuous or m =1, it is only necessary that (2.2b) hold for s = 2. In
general we do need (2.2b) to hold for all s. We illustrate this fact with this
next example.

ExampLE. Define f:R2 >R, by

xy, xy>1,
flx,y)=(1, xy=1, x=¢*?", k,meN,
0, otherwise.
We claim that f satisfies (2.2a) and (2.2b) with s = 2, but does not satisfy

(2.1).
We first consider (2.2a). We must prove

flay,a,)+ f(by, by) < fla,+ by, a3+ by) (2.9)
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for all a,;,a,, by, by > 0. Since f is componentwise increasing, (2.9) holds if
fla,,a,)=0or f(b,, by) = 0. Assume neither is zero. Then f(a,,a,)=a,a,
21, fib;,by)=bby>1. Now (a,+b,)a,+ b,y) > 4. Thus

flay,a,)+ f(by,by) =a,a,+b;b, < (a,+b,)(ay+ by)
=fla,+b,,a,+b,).

For (2.2b) to hold with s = 2 we must verify

F2(ay,ay)f%(by, by) < f((albx)l/z’(azbz)l/z)' (2.10)

If the left hand side of (2.10) is zero, there is nothing to prove. We therefore
assume that fY%(a;, a,)=(a,a,)""?>1 and fY*(b,, b,)=(bby))V?> L. If
(a,a,)%(b,b,)'/? > 1, then equality holds in (2.10). If (a,a,)"/*(b,b,)"/? =1,
then a,a, = h,b, =1, and by definition

ky ks
a1=exp(ﬁ), b,=exp %)
Thus
k2™ + k2™
(alb1)1/2=exp(W)

and f((a,b,)"/% (asb,)'/?) =1. Thus (2.10) holds.
To see that (2.1) does not hold, set

0 ¢ O 0 ¢! 0
A=10 0 e, B=|o o0 e
1 0 O 1 0 0
Then
0 f(e,e_l) 0 0 1 0
flA,B) = 0 0 fle,e ) =(0 0 1),
£(1,1) 0 0 1 00

since £(0,0)=0. Now p( f(A, B))=1, p(A)=e?3, and p(B)=e"?/°. But
flp(A), p(B)) = f(e?®3, e~ 2/3) = 0. Thus (2.1) does not hold.
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We now record some properties of the set of functions satisfying (2.1).

ProrosiTiON 2.5. Let f,g:R? >R ,, h:R, >R, and h|,...,h,:R?
— R, all satisfy (2.1). Then so do:

(i) h(f(x)).

(i) fihy(x)s-., b, ().

(iii) min{ f(x), g(x)}-

(iv) flex) and cf(x), ¢ > 0.

v) fex)gf(x) fora, >0, a+B>1

(vi) The function

fM(x) = {](;(X)’ i; 11:44’

where M is any subset of R"! with the following properties:

(1) aeM,beR"” implies a+be M,
(2) a,,...,a,€ M implies (a,° --- ca )/ € M.

Proof. Statements (i)—(iv) can be proved by verifying either (2.1) or
(2.2). In (i) and (ii) we use the fact that h and f are componentwise
increasing, respectively. (v) follows from (2.1) and the inequality p( A% o B¥)
< p%(A)p#(B) for all a,8>0, a+ B>1; see (1.3). Using (2.2), we easily
verify (vi). [ ]

Note that included in (v) are functions of the form F(x,y) = f(x)gA(y).

A set of functions satisfying (2.1) is obtained from the following:

ProposiTioN 26. Letc> 0, t >0, and
1/t
1/t x'—¢ , ‘>,
flx) = (=) = { Fme) T
0, x'<ec.

Then f satisfies (2.1).

Proof. For f(x)=(x'—c)¥" the inequality (2.2a) is

1/t

(a’—c)i/ti—(b'——c L/IS((a+b)l—c)+. (2.11)
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If a'<c or b'<c or ¢ =0, then (2.11) is easily checked. Assume that

al,b'>c>0, and set a'=A"+¢, b'=B'+¢, and C'=c. Then (2.11) is
equlvalent to

[(a+B) +ct]" <(a+ct) +(B'+C)

for all A, B,C > 0. Now,

[(a+B) +C’]1/’=£§[(A+B)‘+C']V'+

Jelsle] refaal

<A+ +(Br+c),

]1/z

1/t 1/t

proving (2.11).
The inequality (2.2b) with s =2 for f(x) is

(a 1/2t(b, 1/2: (( b),/g )l/t (2‘12)

Here again, if a’ < ¢ or b' < ¢, then there is nothing to prove. Assume that
a', b' > c. Raise both sides of (2.12) to the power 2¢. The desired inequality is
then seen to be equivalent to 0 < c(a'/2 — b'/2)2, whose validity is clear. ®

From Propositions 2.5, 2.6, and since we know that f(x)=x{1 ... x%m
satisfies (2.1) if «, > 0, X7 1a; = 1 [see (1.3)], we get:

CororLrary 2.7. The function f(x,...,x,)=(x} —c)"
(xln —c,) satisfies (2.1) whenever ¢;> 0, t,>0, and t,;r;>1, i=1,...,m

Finally we remark that the set of functions satisfying (2.1) is not convex.
We know that f(x) = x" satisfies (2.1) whenever r > 1. Nevertheless we have:

ProposiTioN 2.8. Let r,t =1, r #¢. Then f(x)=x"+ x' does not sat-
isfy (2.1).

Proof. Assume that f{x) satisfies (2.1). From Theorem 2.1, f{x) satisfies
(2.2), and therefore

(a'+ a')l/z(b'+ b')l/2< a’/2b7/2 4 gt/2pt/2
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for all a,b>=0. Set b=1. Then

(a"+ a')l/221/2 <a”?+a'?
for all a > 0. Squaring, we obtain

(a”%— at/z)2 <0,
which holds only if @ = 0 or a = 1. This contradiction yields our claim. [ ]

We remark that using similar arguments one can prove that whenever
k > 1, the function

k
flx)= T o
i=1

where 7, > 1, all distinct, and o; > 0, i =1,..., k, does not satisfy (2.1).
3' THE INEQUALITY f(p(Al)" v p(Am)) < p(f(Al’ e Am))

In this section we study the set of functions f:R7 — R, which satisfy

flo(A),....p(A,)) <p(f(A,,....A,)) (3.1)

for all A,..., A, €P' and all n €N. We do not completely characterize
this set. However, we identify various classes of functions satisfying (3.1).
Under certain restrictions we are able to completely characterize the set.

Before stating our first main result, we need some simple definitions.
Firstly, we say that a function is bounded above at a point if there exists a
neighborhood of the point such that the function is bounded above in this
neighborhood. Secondly, if f:R™ - R,, we define f:R, —-R,, k=
1,...,m, by

fi(x)=£0,...,0,x,0,...,0),

where x is in the kth coordinate position. We can now state:

THEOREM 3.1. Assume f:RT - R, is bounded above at some point
a<sintR” and f(0) = 0. Then f satisfies (3.1) if and only if

flxinn ) = max £i(x,) (32)

,,,,,
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and each f,:R , » R, satisfies
filp(A)) <p(£i(A)) (3.3)

for all A € P} and all n €N, or what is equivalent, each f, satisfies

fla+b) < fila)+ £ib), (3.4a)
flVab) < /fi(a) fi(b) (3.4b)

foralla,b = 0.

We will divide the proof of Theorem 3.1 into its two main steps.

ProrosiTion 3.2. Assume f:R” - R, and f(0)= 0. Then f satisfies
(3.1) if and only if (3.2) and (3.3) hold.

Proof. =>: Assume f satisfies (3.1) and f(0) = 0. It easily follows that
each f, satisfies (3.3). To prove that (3.2) holds, set

*(0 b,

by 0 ), k=1,...,m.

Then p(A,) = (b, by)"? k=1,...,m. From (3.1), using f(0) =0, we ob-
tain

(b)) %o (Brbe,) ) < FY%(byya- oy By ) /by o)
Thus in particular
£0,...,0,a,,0,...,0) < fV%0,...,0,a,.0,...,0) f"*(a,,...,a,,).
If fi(a,)=A0,...,0,a,,0,...,0) > 0, then

fla,) < flay,...,a,,).
Thus

.....
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Now let A, denote the m X m matrix all of whose entries are zero except
for the (k, k) entry equal to a,. Thus p(A)=a,, k=1,...,m, and

o(flAL..., Am)) = B max mfk(ak)'

From (3.1)

fla)< max fi(a).
1 ™

Therefore (3.2) holds.
«<: Assume that the {f,}7'_, satisfy (3.3), and f is defined by (3.2).
From (3.2) and (3.3),

f(P(A1)>~~-,P(Am)):k_nl‘ax ﬁc(P(Ak))<kmaX p( fil A)).

Again from (3.2),
ﬁ((Ak)Sf(Al""’Am)

for each k =1,..., m, where the inequality is understood elementwise. Since
A < B implies p(A) < p(B), we obtain

ax ”p(fk(Ak)) <p(flAL....A,)).

k=1,.... 1
This together with a previous inequality implies (3.1). =
ProposiTioN 3.3.  Assume f:R, = R, is bounded above at some point

a€(0,0), and f(0)=0. Then f satisfies (3.3) if and only if for every
a,b=0

fla+b)< fla)+ f(b), (3.4a)
fVab ) <|f(a)f(h) . (3.4b)

Proof. =:1f f satisfies (3.3) and f{0)=0, then from (3.3) applied to

the matrices

SR
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we obtain (3.4a) and (3.4b), respectively.

<: We now assume that f:R, - R, is bounded above at some a &
(0,0), f(0)=0, and f satisfies (3.4). We first claim that f is continuous on
(0, 0) and

fa*b' ™) < fNa)f17N(b) (3.5)

for all a, b > 0 and A €(0,1). To this end let us assume that f # 0. We note
that f(x)> 0 for all x> 0. For if f{b) =0 for some b > 0, then from (3.4b)
we obtain f(vVab )= 0 for all a > 0, implying that £ = 0. Set g(x) = In f(e*).
Since f(x)> 0 for all x >0, g is well defined on all R. Furthermore, from
(3.4b)

g(c;d)<g(c);g(d)

for all ¢,d € R. Thus g is midconvex. By assumption g is bounded above at
In a. This implies that g is both convex and continuous on all R. Thus f is
continuous on (0, c0) and satisfies (3.5).

Set h(x)=x/f(x) for x > 0, and h(0) = 0. Since f(x)>O0forall x>0, h
is well defined. From (3.5) we easily obtain

Ma)R* ~Mb) <h(a*b*~?) (3.6)
for all a, b = 0 and A €(0,1). Also, h is an increasing function. The proof of

this fact is as follows. From (3.4a), f{nx) < nf(x)forall n €N. Let ¢t > 1 and
n* = ¢ for some n €N and A € (0,1). Then using (3.5)

flex) = fnrx) = A(nx) 2 ) < Hnx) £ N(x)

< n* N x) M) =tf(x).
Thus

h(x)=—— h(tx)

flx) = f(t )~

forall ¢ >1 and x> 0, i.e., h is increasing.
To prove (3.3) we initially note that (3.3) trivially holds if p(A) = O [since
f(0)=0]. Thus we assume that p(A)> 0, implying that f(p(A))> 0. We
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have from the definition of u(h(A)) the existence of {i,,...,i,} € {1,...,n},
1<s<n (i,,,=14,) such that

1/s
w(h(4)) = | TTh(a ] .

Since h is increasing and satisfies (3.6), we also obtain

1/s s 1/s
p(h(A)) = [ l—[ h(a iii ] < h[( .I;Ila"i"iﬂ) ]
<h(p(A)) <h(p(A)).

Thus from (1.4) and the easily checked equality h(A)f(A) = A, we have

p(4) _p(h(A)f(4)) - _ p(4)
oA - p(fa)y SHRA) <h(p(4) = Forgy

ie., f(p(A)) < p(f(A)). u

Remark 3.1. The converse (more difficult) part of Proposition 3.3 can
also be proven via the analysis of Section 2. As therein, we set p = p(A). If
p =0, then (3.3) holds. For p > 0 we obtain, as in the proof of Proposition
2.4, the existence of an a € R for which

fx) = flp)p~ %"

for all x > 0. From (3.4a), we infer that a < 1. It may then be shown that for
all such «

p(A%) > p(A)",
where we set af; =0 if a;; = 0. Finally
p(f(A)) = flp)p 0(A%) > flp) = f(p(A)).

To prove Theorem 3.1, we apply Propositions 3.2 and 3.3, and note that
since f is bounded above at some point a € intR”’ and f(0) = 0, we obtain
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from (3.2) that f; is bounded above at some point a; € (0,00) and £,(0)=0
for each k=1,..., m.

We will return to the study of functions of the above form. Firstly
however let us note some general properties of functions satisfying (3.1).

ProposiTioN 34. Let f,g:RT? >R _, h:R,—>R_ and h,,..., h,:R?
- R, all satisfy (3.1). Then so do:

(i) h(f(x)) if h is increasing.

(i) f(h(x),..., h,(x)) if fis componentwise increasing.
(iil) max{ f(x), g(x)}.

(iv) flex) and cf(x) for any ¢ > 0.

Proof. The proofs of these facts are simple consequences of (3.1). ]

From Proposition 3.4(iii), all functions of the form

flxpx, ) = max{ fi(x)),..., fu(x,) )

satisfy (3.1) if the f,:R, —» R, satisfy (3.1) [(3.3}). Theorem 3.1 does not
give us all functions f; satisfying (3.3). To see this more explicitly, we first
prove:

LeEmMa 3.5. Assume f:R - R, satisfies (3.3). Let

g(x) = {i‘(x) x>0,

x=0,
where ¢ > f(0). Then g satisfies (3.3).

Proof. 1f p(A)=0, then every function g:R, - R, satisfies

g(p(A)) <p(g(A)).

For since p(A) =0, we have that a;,, =0 for all i. Thus g(A)> B, where
by =g(a,;)=g(0), and b,;; =0 for all (i, j) # (1,1). Therefore

g(p(A)) =g(0)=p(B) <p(g(4)).
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Assume p(A)> 0. Now g(A) > f(A) and thus

g(p(A)) = flp(A)) <p(f(A)) <p(g(A)). u

In the proof of Proposition 3.3, the condition f(0)= 0 was used to obtain
(3.4b) from (3.3). We needed (3.4), but not f(0)=0 in the proof of the
converse direction of Proposition 3.3. Lemma 3.5 illustrates this point. We
now incorporate this fact into one direction of Proposition 3.3, and state
certain properties of the functions contained therein.

ProposiTion 3.6. If f:R . =R, is bounded above at some point in
(0, 00) and satisfies (3.4) for all a,b >0 (f(0) arbitrary), then f satisfies
(3.3). Furthermore, f is necessarily continuous on (0,00) and satisfies the
following:

() lim, 4+ f(e) and lim

(i) If lim,_ - f(e)=0, then f is strictly increasing on (0,00) and
lim,_,  flx)=c0.

(iii) If lim, .+ f(e) = ¢ where 0 < ¢ < oo, then there existsa K, 0 < K <
0, such that f(x)=c for all x €(0, K], while f is strictly increasing on
(K, 00). Furthermore, if K < oo, then lim_,  f(x)=oc0.

(iv) If lim f(€) = oo, then one of the following holds:
(1) fis strictly decreasing on (0, o0).
(2) There exists a K, 0 < K <00, and ¢ > 0 such that f is strictly decreasing
on (0, K) and f(x)=c for all x € [K, ).
(3) There exist K and L, 0 <K< L <, and ¢ >0 such that f is strictly
decreasing on (0, K), f is strictly increasing on (L, o), and f(x)=c for all
x € [K, L]. Furthermore, lim, _,  f(x)= 0.

f(x) exist (and may be infinite).

x —oC

e— 07

Proof. The fact that f satisfies (3.3) and is continuous on (0, o) follows
from the proof of Proposition 3.3. [Assume f{0) = 0 and then use Lemma 3.5
to obviate this assumption.] Properties (i)—(iv) follow from the fact that
g(x)=1n f(e*) is convex on R, as was shown in the proof of Proposition 3.3.

|

Fach of the possibilities as enumerated in (iv) of Proposition 3.6 can
occur. Examples of such are easily constructed from the next few results.
Note also that if (ii) of Proposition 3.6 holds and f(0) =0, then f ! exists,
f LR, >R, and f ! satisfies (2.2) and thus (2.1). Conversely, if f:R , —
R, satisfies (2.1) and f(x)> 0 for all x > 0, then f is continuous and strictly
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increasing on R, and lim,_  f(x)=o00 [since nf(x)< f(nx)]. Thus
fL:R, >R, satisfies (3.4) and thus (3.3).
We also have:

ProposiTion 3.7. If f,g:R, =R, are both continuous on (0,00) and
satisfy (3.4) for all a, b > 0, then f + g satisfies (3.3).

Proof. Obviously f+ g satisfies (3.4a). A simple calculation proves
(3.4b). m

We remark that we have replaced “bounded above at some point in
(0, 0)” by “continuous on (0, 20)” due to Proposition 3.6.

This result together with (iv) of Proposition 3.4 implies that the set of
functions satisfying the conditions of Proposition 3.7 is convex. As examples
of functions satisfying the above, we have the class of functions f(x)=x" for
x>0 and f(0)>0, where —oo<r<1. For this class equality holds in
(3.4b). The inequality (3.4a) holds for r < 0 simply because the functions are
decreasing on (0, o). The inequality (3.4a) holds for O < r <1 from the fact
that (a"+ b")*/" is a decreasing function of r & (0,00). Alternatively, it
follows because the inverse function satisfies Theorem 2.1.

There are functions which satisfy (3.1) but do not satisfy (3.2), or more
explicitly, functions f:R . —» R, which satisfy (3.3) but do not satisfy (3.4b)
[which we obtained using the fact that f(0) = 0].

Tueorem 3.8. If f:R7 = R satisfies either

(i) fis componentwise decreasing, or
(ii) there exists a ¢ > 0 such that ¢ < f(x) < 2¢ forall x €ERT,

then f satisfies (3.1).

Proof. (i): From the Perron-Frobenius theorem, p(A,)>a%, k=
L,...,m. Thus f(p(A)),...,p(A,))< flal,,...,al ). Let B be the nxXn
matrix where b, = f(a},,...,a}}) and b;;=0 for all (i, j)#(1,1). Then
flA,,...,A,)> B and

flp(AD),....p(A,)) < flaly,....a7 ) = p(B) < p(f(A}..... A,)).

(ii): Equality in (3.1) holds if n=1. Let A,,...,A,,€P}, n>2. By
assumption, f(p(A,),...,p(A,)) < 2c. Let J denote the n X n matrix all of

whose entries are 1. Then by assumption f(al, -«,aj;)>c and therefore
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f(AL...,A,))=c] Thus p(f(A,,...,A,)=p(c])=cn. Since n>2, we
have our result. =

Remark 3.2. Note that each of the above two sets of functions is a
convex cone. Thus each of the three identified sets of functions satisfying
(3.1) is a convex cone. This is not true of the set of all functions satisfying
(3.1). As an example it suffices to consider m = 1. Let f{x) =x, and g satisfy
1< g(x) < 2 where g(1)=g(2) = g(3) =1 and g((5+v5 )/2) = 2. Set

_{3 1
a=(3 1)
It is easily checked that f+ g does not satisfy (3.1).

Remark 3.3. The above three sets of functions, i.e., those satisfying
either (i) or (ii) of Theorem 3.8, or those obtained via (3.2) and (3.4), are not
all the functions satisfying (3.1). Using Proposition 3.4(iii) we may construct
additional functions satisfying (3.1). For example f(x)= max{x,(1+x)"!)
satisfies (3.1) and is in none of these three sets.

In the previous results, we delineated functions satisfying (3.1). In the
converse direction our results are more sparse except in the case of Theorem
3.1, where we demand that f(0) = 0. In general, if f satisfies (3.1), then it
necessarily satisfies (3.4a), but not (3.4b). We end this paper with an
additional consequence of (3.1).

Prorposition 3.9. Let f:R7 - R, satisfy (3.1), and assume that f is
bounded above on every rectangle in R’} If there exists a sequence {x,}7 ,
for which lim, _, _x, =y, where y €int R} and lim, _,  f(x,) =0, then fis
componentwise decreasing.

Proof. Let a,b,c€RY, and

Then p(A,) =a, +b,c;, k=1,...,m, and from (3.1),

flat(bec)”?) < fla)+ [ f(b) f(e)] /%
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Letd €R™. Set b=x, and ¢ =d%ox; !. Then

1/2

fla+d) < f(a) + [ fx,)fd®ox; )]
Letting r 7 o0 and using the hypothesis, we obtain

fla+d) < f(a)
for all a,d € R". Thus f is componentwise decreasing. ]

A similar result holds if lim, _,  f(x,) =0 where lim, _, (x,), =y, and
O<y,<o0, k=1,....,m.

Remark 34. If f:R™T - R, satisfies

p(f(A,....A,))=f(p(A),....p(A,))

forall A,e P, k=1,...,m, and n €N, then

flxy,ox,) =cxg
for some ¢ >0 and k€ {1,...,m). This may be proven as follows. From
(2.2a),
f(a)+ f(b) < f(a+b)

for all a,b € R”, implying that f(0)=0 and f is bounded above at some
a € intR"”. From Theorem 3.1,

f(xl"“’xm) = k'—nl]ax , .fk(xk)
and
fila,+b,) < filay) + fillby)

for each ke {l,...,m} and all a;,b,€R_. From the above two
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inequalities,

,,,,,

Thus

, ax mfk(ak)+ , fhax mfk(bk) =, max [ filay)+ £illby)].

=1,..., 1,..., =1,..., m

It now follows that there exists at most one k € {1,...,m} for which f, #0.
Assume f; # 0 and f, =0 for all i # k. From the above,

fla)+ filb) = filla +b)

for all a, b €R . From Proposition 3.6, f, € C(0, o). As is easily checked, f
is continuous at zero. This functional equality now implies that f,(x) = ¢x for
all x > 0, where ¢ = f(1)> 0.
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