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ABSTRACT 

Let Z’,’ denote the set of all square n x n nonnegative matrices. For A, = 
(a;j);j_“ k=l,..., m (k not a power), we set 

For each A E P,‘, we let p(A) denote its spectral radius. This paper is concerned 
with the characterization of those functions f: Rf= + R + satisfying either 

P(f(A,,...,A,,)) G~(P(A,),.-J~A”,)) (I) 

or 

j-(p(A,),...,p(A,)) <P(f(A,,...,Am)) (2) 

for all A ,,..., A,,, EP,+ and every n EN. We totally characterize all functions 
satisfying (1). We delineate various classes of functions which satisfy (2). If f(0) = 0, 
and f is bounded above in some neighborhood of any a E int W y, then we totally 
characterize all f satisfying (2). 
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1. INTRODUCTION 

For each n E kJ, let P,’ denote the set of n X n nonnegative matrices, 
and P’=U ,,alP,+. Given A,EP:, Ak=(afj)rj=i, k=l,...,m (k not a 
power), and f:Iwf= +R+, we let f(A, ,..., A,)=(_f’(Uti )..-, UG))rjsl. In 
this paper we consider the set of all such functions satisfying 

P(f(AlYV A,)) G f(dA,),- d Am)) (1.1) 

forAkEPz, k=l,..., m, and every n E N, as well as the converse inequality 

f(dA,)m p(A,)) <~(f(A,v-An))~ (1.2) 

where p( .) is the spectral radius. 
In Section 2 we totally characterize all functions f: WY -+ R + satisfying 

(1.1) (Theorem 2.1). This class is exactly the set of functions satisfying the 
functional inequalities 

(9 f(a) + f(b) d f(a+b)p 

(ii) kfiIflls(ax)<f((a,o ... ~a~)“‘), s=2,3,..., 

for all vectors in Iw y; here and throughout this paper, if a = (a,, . . . , a,), 
b=(b,,..., b,), then we define 

sob = (a,b,,...,a,b,) 

to be the Hadamard product of a and b, and 

a’= (ui,...,Ut,). 

We also present various properties and examples for this set of functions. 
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In Section 3 we study (1.2). We prove that f: R y + Iw + satisfies (1.2) if 
it is in any one of the following three classes: 

(a) f is bounded above at some point OL E int Iwy, f(xl,. . . , xnl) = 

maxk=,,,,,,m&(zk), where fk:OW++IW+, and each fk satisfies 

6) &(a + b) GXa>+ f,(b), 

(ii) 

for-all a,b>O. 
(b) f is componentwise decreasing. 
(c) There exists a c > 0 such that c Q f(x) < 2c for all x E Iwt;l. 

Moreover, if f(0) = 0 and f is bounded above at some point (Y E int Iw ‘:, then 
we prove that f satisfies (1.2) if and only if it is in (a). However, there do 
exist functions not in (a), (b), or (c) which satisfy (1.2). Thus this study is 
incomplete. Again we present various properties and examples. 

This work was partially motivated by the following result (see Karlin and 
Ost [6] and Elsner, Johnson, and Dias da Silva [2]). Let A,, . . . , A,,, E P,’ and 
a,>o, k=l,..., m, with Xpzrl(yk 2 1. Set C = (cij), where 

cij=(a~j)a'...(a~)am, i,j=l,...,n. 

Then 

(1.3) 

Setting f(xl ,..., x,,) = xp . . . x2, we may rewrite this result as 

If we let x0 = 1 for all x > 0, then it is easily checked that (1.3) holds if 
(Ye 2 0, Cp= rok > 1. We will need this result in Section 2. Further motivation 
was provided by a talk given by the first author at the Fourth Haifa Matrix 
Conference (January 1988), in which the inequality (1.2) was proven for the 
specific case of m = 1 and f(x) = x + sgn(x). This result appears in [l], and 
is an immediate consequence of our results (Propositions 3.3 and 3.7). 

We end this introduction by introducing an ancillary function on P+ 
which we will need in the subsequent analysis. 
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For A E F’,‘, set 

s 

( I 
l/s 

P(A) =m= II ai,ii+, T 
j-1 

where i,,..., i, are distinct indices in { 1,. . . , n } and i, + 1 = i 1. This functional 
p was introduced in Engel and Schneider [3], where it was proven that 

p( A ) = inf ( my ( D- ‘AD) ij : D any positive diagonal matrix] . 

Subsequently Friedland [4] proved that 

p(A)= lim P(A[“)“~ > 
r+m 

where A[‘] = (aLi): j=l (r a power). While we will use neither of the above 
characterizations, we will use the inequality provided by this fourth charac- 
terization, to be found in Elsner, Johnson, and Dias da Silva [2]: 

p(A)=max{p(AoB):BEP:, p(B)Gl}. (1.4) 

Paralleling the previous notation, A 0 B is the Hadamard product of A and 
B, i.e., 

Note that it easily follows from the above that 0 < p(A) < p(A) < rip(A)) for 
all A E P,‘. Thus in particular, p(A) = 0 if and only if P(A) = 0, for any 

AEP’. 

2. THE INEQUALITY p(f(A,,..., A,)) Q f(p(A,),..., p(A,)) 

The main result of this section is the following: 

THEOREM 2.1. Let f: R y + R +. Then f satisfies 

p(f(A,v.., A,)) 6 f(dA,)m &%n)) (2.1) 
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forallA,,..., A,EPZ andaZEnEN ifandonlyif 

f(a) + f(b) G f(a+b), all a,bERy (2.2a) 

k~lf’/‘(ax)< f((a,o ... oas)l”), all a, ,..., a,ER’;, s=2,3 ,.... 

(2.2b) 

Furthevrwre if f is continuous, or m = 1, then it suffices to take only s = 2 in 
(2.2b). 

The proof of the “if” part of this theorem is long, detailed, and arduous. 
Therefore we first separate out a series of results needed in its proof. 

LEMMA 2.2. Assume f: W y -+ R + satisfies (2.2). Then: 

(i) f(0) = 0. 
(ii) f is componentwise increasing. 
(iii) Zff(al,..., a,)>Oanda,=O, then 

fb ,,...,a,_,, O,a r+l ,..., am)=f(al,...,ar-l,r,a,,,,...,a,) 

for all x > 0. 
(iv) Forall Xj>O, hj~Q,C;=rhj=l, 

fi fXJ(aj)Q f(a?o ... oa>). 
j=l 

Proof. Both (i) and (ii) are immediate consequences of (2.2a). To prove 
(iii), assume that f(a 1,. . . , a,)>Owitha,=O.From(2.2b)with s=2, 

f1/2(al,...,a,_,,O,a,+,,...,a,)f”2(a,,...,a,-,,x7a,+,,...,a,) 

G f(a,,...,a,~,,O,a,+,,...,a,). 

Thus 

f(a l,...,ar~l,x,a,+l,..., a,) < f(ar ,..., a,-l,O,o,+r,...yo,) 

for every x > 0. Since f is componentwise increasing, equality holds. 
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To prove (iv), let Xj = pj/qj, where pi, qj E N. Apply (2.2b) with 
s = n; = lqj, and repeat a j therein X js times. H 

LEMMA 2.3. Assume f: R y + W + satisfies (2.2). Set 

D = {a: f(a) > 0). 

(9 Zf a,,..., a, ED, then (ai0 -.. OaS)‘/‘E D. 
(ii) Zf aEintD, bElWy, then a+bEintD. 
(iii) Zf a E D, b > 0 (i.e., hi > 0, i = 1,. . . , m), then a + b E int D. 
(iv) Zf a E D, X > 1, then Xa E int D. 

The proof of this lemma is an immediate and simple consequence of (2.2). 
We omit it. It is to be understood that by int D we mean the interior of D 
relative to II3 :‘. Thus int D may include boundary points of RT. We always 
assume that f f 0 and thus int D # 0. In the next series of results we use the 
following notation. If b,c E R T, we let b’ = bil . . . b2. 

PROPOSITION 2.4. Assume f: !R’: -+ R + satisfies (2.2). Let p = 

(P 1,. . . , p,,) E int D. Then there exists an (Y= (a,, . . . , am), (Yi > 0, Zkiai > 1, 
such that 

(2.3) 

forall aElRy, where it is understood that x0 = 1 for all x 2 0. Furthermore 
aI=0 ifpp,=O. 

Proof. Let 

F= {a:aEintD,ai>O, i=l,..., m}. 

We first prove (2.3) under the assumption that p E F. To this end, set 

E= {b:ebEF). 

(Observe that for each a E F there exists a b E E such that a = eb.) Note that 
E is open. For each b E E, set 

g(b) = In f(eb>, 
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i.e., g(b) = In f(e’l,. . . , e”*a ). From (2.2b) with s = 2, we obtain 

for all b,c E E. Thus g is midconcaue on E. From Lemma 2.2(ii) we also 
have that g is componentwise increasing. Thus g is concave and continuous 
on E; see e.g. Jensen [5] or Roberts and Varberg [7]. In particular, at each 
b E E a subgradient to g exists. That is, corresponding to b E E there exists 
an a= (aI ,..., a,,) such that 

g(c) -g(b) G (a,c -b) (2.4) 

for all c E E [where (a, f3) = ~~~~ai/li]. Let eb = p. By assumption b E E. 
Translating (2.4) back to f, we obtain (2.3) for all a E F. To extend (2.3) to 
all a E Ry we first need some additional facts. 

LetaEF.Thena,=(a, ,..., a,_,,x,a,+, ,..., a,)EintDforallx>a,, 
by Lemma 2.3(ii). Since f is componentwise increasing, f(a) < f(a,) for all 
x > a,. Therefore 

0 <f(a) d f(a,) Q f(Waat 

for all x > a,. If a, < 0, then letting x f co, a contradiction ensues. Thus 
a, >O for each r E {l,...,m}. 

From (2.2a), we have 2f(p) < f(2p). Since 2p E F [Lemma 2.3(iv)], we 
have from (2.3) 

2f(p) <f(2P) Q f(P)P-“(2P)p= f(P)2xy’1”8. 

Thus CElla, 2 1. 
Assume, without loss of generality, that a E int D, a, = . . . = a, = 0, and 

a r+ly...ya,, > 0. Then (x1 ,..., x,,a,+, ,..., a,)EintD for all xi>O, i= 
1 ,***, r, and from Lemma 2.2(m), 

f(x l,...,xr,a,+l,...,a,)= f(0 ,..., O,a,+, ,..., a,,). 

Now, for xi > 0, i = l,..., r, 

O<f(O,...,O,ar+l,...,a,)=f(~1,...,~,,a,+lr...ra,) 

< f(p)pmaxFl . . . x,“rapqi . . . a>. 
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Thus $1 . . . x;r is uniformly bounded below away from zero for all xi > 0, 
i=l ,..., T. Since a,>OforaU i,thisimpliesthat q=O, i=l,..., r. 

We now prove that (2.3) holds for all a E If4 y. Assume a E int D and 
a,=Oforsomer~{1,...,m}.Sincea,=Oifa,=0,andf(~)=f(a),where 
Gi = ai if a, > 0, a’, >, 0 if a, = 0, it follows that 

f(a) = f(Z) G f( p)p-““a” = f( p>p-“a” 

for all a E int D, where we set x0 = 1 for all x > 0. 
Assume a E D\int D. From Lemma 2.3(iv) Aa E int D for all X > 1, and 

from Lemma 2.2(ii) f(a) < f( ha). Thus 

f(a) < f(xa) G f(Pk-a(ha)a 

for all X > 1. By continuity we obtain 

f(a) G f( p )peaaa. 

Since f(a) = 0 if a 6 D, we have proven the validity of (2.3) for aff a E Wf: 
and pEF. 

Finally, if pEintD but p,=O for some r~{l,...,m}, let fi= 

G l,. . . , &), where fii = pi if pi > 0, fii > 0 if pi = 0. Thus fi E F. There then 
exists an o(, as desired, such that 

f(a) Q f(r?)b-"a" 

for all aElk!?. Since p E int D, it follows from the previous argument that 
(Y, = 0 if p, = 0. Thus fi-“= pbQ. Furthermore f( 6) = f(p). Substituting p 
for (3 in the above gives us the full result. n 

PROPOSITION 2.5. Assume f: R?+’ + R + satisfies (2.2). Let p = 

(P 1 ,..., p,,)ED\intD.TherethenexistsanrE{l,..., m} withp,>Osuch 
that 

f(x l,...Jn*>=o if x,=0, (2.5) 

f(C I,...,&,)=0 if &<p,, i=l,..., m, and &<p,. (2.6) 



FUNCTIONAL INEQUALITIES FOR SPECTRAL RADII 111 

Proof. For ease of notation we assume that pl,. . . , pi > 0 and pj+l = 
. . . = p,, = 0 (j > 1). Set 

S= k:l<k<j, f(Xlk ,..., xk_l,k,O,Xk+l,k ,..., X,k)>Oforsome {Xik}r=l 
i#k 

T= {k:l<k<j, f(plt...,pk_l,Clk,pk+l,...,pj”““’ 0) > 0 for some pk < pk}. 

If SlJT# {l,..., j}, then the proposition holds (since f is componentwise 
increasing). 

Theproofisbynegation.AssumeSUT={l,...,j}.NowS~{l,...,j}. 
For if S = { 1,. . . , j } then from (2.2b), 

,...,Xk_1,k,O,Xk+l,k,...,Xmk) f(P1?“‘~Pj~“~“‘,o) 1 
G fj+l(o ,...,o)=o, 

a contradiction. Let g= { 1 o, hkEag, k..=..l,j}\T Then SUT={l,..., j}, snT=0. 

,..., 3, &_lhk = 1, we have from (2.2b) For each h, > 

O< I L 

k~~fA*(X,k~...~Xk-~,k~o.Xk+I.k.“~.X,k )I 

where a,=Ofor i= j+l,..., m (since Tf0)and i~g For iET, 

Sincepi<pi,itispossibletochooseAk>O, XkEQ, k=l,...,j,&lXk=lY 
sothat ui<pi, i~T.Thus 

f(u I,..., uj,o )...) 0) > 0, 

where ui < pi, i = l,..., j. This contradicts the fact that p e int D [see 
Lemma 2.3(iv)] and proves the proposition. n 
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With these preliminaries we can now proceed to the proof of Theorem 
2.1. 

Proof of Theorem 2.1. - : Assume f satisfies (2.1). Let a,b E Ry, 

a=(a,,..., a,,,), b =(b, ,..., b,), and set 

k=l,...,m. 

Then &Ak)=uk+bk, and f(p(A,),...,p(A,,,))= f(a+b). Furthermore 

= f(a)+ f(b). 

This proves (2.2a). Note that this also implies that f(0) = 0. 
Now set 

A,= 

0 Ukl ... 0 
. . 

0 (j ..: 
ak,s-l 

Q k,s 0 . . . 0 

\ 

> k= l,...,m, 

where each A, is an s X s matrix. Then p(A,) = [rI~=r~,~]~/~. Set 

aj=(“ljT..a2u,j)~ 
j=l ,..., s. 

Then f(P(A,),...,p(A,,,))= f((a,o ..- oas)‘/‘). Since f(O)=O, 

’ 0 f(al) ... 0 

~(f(4v-A,))=~ ; ; .:: fca;_lj 

,f(a,) 0 ... 0 

This proves (2.2b). 
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c=: Assume f:IwT-+lR+ satisfies (2.2). For given A,, . . . , A, E I’:, let 

Pk = P(A,), k = l,..., m. We divide the proof of this part of the theorem into 
three cases. 

Case 1. p=(Pi ,..., P,)4D, i.e., f(P, ,..., P,)=O. We must prove 

that P(f(A,,..., A,,,)) = 0. As noted in Section 1, this is equivalent to 
proving that p(f(Al,...,A,))=O. 

Assume A,=(u:~):~=~, k=l,..., m (the k is not a power). By defini- 
tion, there exist {ii ,..., i,} c {l,..., n}, 1 <s Q n (is+i= ii), such that 

Applying (2.2b) we obtain 

By definition, 

G ~(4) G ~(4) = Pk? k = l,...,m. 

Since f is componentwise increasing [Lemma 2.2(ii)], we finally obtain 

p(f(A,,..., A,)) Gf(pp-v P,> =o. 

Case 2. p=(pi ,..., p,)EintD. From Proposition 2.4 there exists an 
a=(ai,..., a,,,), ai 2 0, Cy=iai > 1, such that 

f(a) G fhW”a” 

for all a E Iw y, where by definition X” = 1 for all x > 0. Thus 

f(A l,...,A,)<f(p)p-aA~o ... oA%, 

where the inequality is elementwise. Since A < E implies P(A) G P(B), it 

follows that 

p(f(A,>-v A,)) < f( p)p-“p( A”1’ 0 . . . 0 A%). 
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Applying (1.3), we obtain 

~(f(Awv A,)) Q f( p)~-~p”1’ . . . P% = f(P). 

Case 3. p=(pl ,..., p,)ED\intD. Let r~{l,..., m} be such that 
p, > 0 and (2.5), (2.6) of Proposition 2.5 hold. Set 

From (2.5) 

h(x I,..., X,)X,=f(Xlr..4”,) 

for all x EIWY. Furthermore, using (2.2b) we obtain 

kj,h'/'(a,) Q h((alo ... oas)“‘) (2.7) 

for all a 1 ,..., a,s E rWy. Thus from (1.4) 

&-(A,,..., A,,,)) =p(h(A,,...,A,)oA,) ~~(h(4mAn)br. 

By definition there exist {il,...,iS) c {l,...,n}, I<s<n (iS+l=il), such 
that 

From (2.7), 

By definition, 

l/S 

GP(A,)GP~> k=l,...,m. 
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If (I’I;=~u:,~,+,)~/~’ < p,, then from (2.6) 

and therefore 

~(f(A,v-> A,,)) = 0 < f(p). 

If (rl;=,~~,~,+,)r/~‘= p,, then 

since f is componentwise increasing. 

This completes the proof of the fact that (2.2) implies (2.1). 
It remains to prove that it suffices, if f is continuous or m = 1, to only 

take s = 2 in (2.2b). We claim that in both these cases (2.2a) and (2.2b) with 
s = 2 implies 

f”(a)f’-“(b) < f(axb’-‘) (2.8) 

for all h E (0,l) and a, b E Iwy, whence we obtain (2.2b) for all s. 
In the proof of Proposition 2.4 we obtained, using only (2.2a) and (2.2b) 

with s = 2, that 

g(c) = lnf(e') 

is concave and continuous on E. Translating back the inequality 

Xg(c)+(l-X)g(d)<g(Xc+(l-X)d) 

for all c,d E E and A E (0, l), we obtain (2.8) for a, b E int D with a,, bi > 0, 
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i = l,..., m. If a @ D or b P D, then (2.8) trivially holds. The remaining 
cases are dealt with as follows. 

If f is continuous then D is open, i.e., D\int D = 0. Thus in this case it 
remains to prove (2.8) only for a, b E D, where ny! ia i =, 0 and/or ny_ ibi = 0. 
Let 1 satisfy 6, = a i if a i > 0, ZL > 0 if a i = 0, and let b be similarly defined. 
Then f(a) = f(5) and f(b) = f(b) f rom Lemma 2.2(iii). Applying (2.8) we 
obtain 

f'(a) f l-‘(b) = f ‘(ii) f ‘-‘(“b) Q f(ZiAlb’-‘) 

for any X E (0,l). Since f is continuous, we can let “a -+ a and b -+ b to 
obtain (2.8). 

Let rn = 1. If D\int D = 0, there is nothing to prove. We therefore 
assume that D\int D = { c }. The only case left to prove in (2.8) is 

for X E (0,l) and all a > c. From the proof of Proposition 2.4 we have that f 
is continuous on (c, co). Since f is componentwise increasing, we also have 

f(C) G e\y+f(C+E). 

Substituting c + E for c in the remaining case of (2.8) letting E J 0, and using 
the above two facts, we obtain the desired conclusion. n 

In the proof of the equivalence of (2.1) and (2.2) we use (2.2b) for all s. If 
f is continuous or rn, = 1, it is only necessary that (2.2b) hold for s = 2. In 
general we do need (2.2b) to hold for all s. We illustrate this fact with this 
next example. 

EXAMPLE. Define f:R:+R+ by 

XY ’ 1, 

xy=l, X = ek/2”’ , k,mEN, 

otherwise. 

We claim that f satisfies (2.2a) and (2.2b) with s = 2, but does not satisfy 
(2.1). 

We first consider (2.2a). We must prove 

fha,> + fh b2) G f(% + hY% + b2) (2.9) 
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for all a,, us, b,, b, > 0. Since f is componentwise increasing, (2.9) holds if 
f(u,, a,) = 0 or f(b,, b,) = 0. Assume neither is zero. Then f(a,, a,) = u1u2 
> 1, f(b,, b,) = b,b, >, 1. Now (ai + b,)(u, + b,) > 4. Thus 

da,> ~2) + fh b2) = ~1~2 + b,b, < h + Ma2 + b2) 

= f(q + b,, ~2 + b,). 

For (2.2b) to hold with s = 2 we must verify 

f1’2(a,,a,)f”2(b,, b,) $f((a,b,)1’2,(a,b,)1’2). (2.10) 

If the left hand side of (2.10) is zero, there is nothing to prove. We therefore 
assume that f1/2(u,, a,) = (a,~,)‘/~ > 1 and f1/2(bl, b,) = (blb2)1/2 > 1. If 
(ala2)1/2(blb2)‘/2 > 1, then equality holds in (2.10). If (ulas)‘/2(blb2)‘/2 = 1, 
then ala2 = b,b, = 1, and by definition 

Thus 

(a,bl)1’2 = exp kl”,:;‘,Z~:~m’) 
i 

and f((ulbl)‘/2,(a2b2)1/2) = 1. Thus (2.10) holds. 
To see that (2.1) does not hold, set 

B= 

Then 

i 0 f(e,e-') 

0 e-l 0 

0 0 e-l 
1 0 0 

f(A,B)= o I 0 f(e, e-l 
f(l>l) 0 0 

since f(O,O) = 0. Now p(f(A, B)) = 1, p(A) = e213, and p(B) = em213. But 
f(P(A),p(B))=f(e2'3,e -2/3) = 0. Thus (2.1) does not hold. 
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We now record some properties of the set of functions satisfying (2.1). 

PROPOSITION 2.5. Let f, g : II3 :’ -+ R +, h : R + + R +, ad h,, . . . , h,,, : R “, 

-+R+ all satisfy (2.1). Then so do: 

6) h( f(x)). 

(ii) f(h,(x), . . , h,,,(x)). 

(iii) min{ f(x), g(x)}. 

(iv) f(cx) and cf(x), c > 0. 

(v) f”(x)gP(x) fora,/3>0, a+p>1. 

(vi) The function 

where M is any subset of R y with the following properties: 

(1) a E M, b E IR’J implies a+b E M, 

(2) a,,..., a,s E M implies (a, 0 . . . oas)l/y E M. 

Proof. Statements (i)-(iv) can be proved by verifying either (2.1) or 
(2.2). In (i) and (ii) we use the fact that h and f are componentwise 
increasing, respectively. (v) follows from (2.1) and the inequality p(A” 0 BP) 
< p*( A)pfl( B) for all (Y, fi > 0, OL + /3 >, 1; see (1.3). Using (2.2) we easily 
verify (vi). n 

Note that included in (v) are functions of the form F(x, y) = f”(x)gP(y). 
A set of functions satisfying (2.1) is obtained from the following: 

PROPOSITION 2.6. Let c > 0, t > 0, and 

Then f satisfies (2.1). 

Proof. For f(x) = (x’ - c):/’ the inequality (2.2a) is 

(a’-c)y’+(h’--c):/‘<((a+h)‘-c):‘. (2.11) 
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If a” < c or b’ < c or c = 0, then (2.11) is easily checked. Assume that 
a’,b’>c>O, and set a’=A’+c, b’=B’+c, and C’=c. Then (2.11) is 
equivalent to 

for all A, B, C > 0. Now, 

proving (2.11). 
The inequality (2.2b) with s = 2 for f(x) is 

(2.12) 

Here again, if ut Q c or b’ =g c, then there is nothing to prove. Assume that 
at, b’ > c. Raise both sides of (2.12) to the power 2t. The desired inequality is 
then seen to be equivalent to 0 Q c(a ‘I2 - bt/2)2, whose validity is clear. H 

From Propositions 2.5, 2.6, and since we know that f(x) = X? . . * x2 
satisfies (2.1) if ai > 0, Cyzn=ai > 1 [see (1.3)], we get: 

COROLLARY 2.7. The function f(x,, . . . , xm) = (x:, - cl)2 . . . 
(xk - c,)? satisfies (2.1) whenever ci > 0, ti > 0, and tiri > 1, i = 1,. . . , m. 

Finally we remark that the set of functions satisfying (2.1) is not convex. 
We know that f(x) = x’ satisfies (2.1) whenever r > 1. Nevertheless we have: 

PROPOSITION 2.8. Let r, t a 1, r # t. Then f(x) = xr + d &es not sat- 
isfy (2.1). 

Proof Assume that f(x) satisfies (2.1). From Theorem 2.1, f( r ) satisfies 
(2.2), and therefore 
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for all a, b > 0. Set b = 1. Then 

for all a > 0. Squaring, we obtain 

(a r/2 _ &2)2 < 0, 

which holds only if a = 0 or a = 1. This contradiction yields our claim. n 

We remark that using similar arguments one can prove that whenever 
k > 1, the function 

f(x) = i qx” 
i=l 

where r, > 1, all distinct, and (Y~ > 0, i = 1,. . . , k, does not satisfy (2.1). 

3. THE INEQUALITYf(p(A,),...,p(A,,))~p(f(A,,...,A,)) 

In this section we study the set of functions f: R y -+ R + which satisfy 

for all A,,..., A,,, E I’,: and all n E N. We do not completely characterize 
this set. However, we identify various classes of functions satisfying (3.1). 
Under certain restrictions we are able to completely characterize the set. 

Before stating our first main result, we need some simple definitions. 
Firstly, we say that a function is bounded above at a point if there exists a 
neighborhood of the point such that the function is bounded above in this 
neighborhood. Secondly, if f: L% ;-’ + R +, we define fk : R + + R +, k = 
1 ,...> m, by 

fk(X) =f(O ,...> 0,X,0 >...> o), 

where x is in the kth coordinate position. We can now state: 

THEOREM 3.1. Assume f: iRy + R + is bounded above at some point 
cxE intRy and f(0) = 0. Then f satisfies (3.1) if and only if 

f(x ,,...,Xn,) = 
k =?,?T, Wlfk(xk) 

(3.2) 
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and each fk : R + + R + satisfies 

h(d-4)) d &i(A)) (3.3) 

for all A E P,’ and all n E N, or what is equivalent, each fk satisfies 

(3.4a) 

(3.4b) 

for all a, b > 0. 

We will divide the proof of Theorem 3.1 into its two main steps. 

PROPOSITION 3.2. Assume f: R y + R +, and f(0) = 0. Then f satisfies 
(3.1) if and only if (3.2) and (3.3) hold. 

Proof * 3 : Assume f satisfies (3.1) and f(0) = 0. It easily follows that 
each fk satisfies (3.3). To prove that (3.2) holds, set 

A,= k= l,...,m. 

Then p( Ak) = ( blkbzk)l12, k = 1,. . . , m. From (3.1), using f(0) = 0. we ob- 
tain 

f((bllbgd1’2,...> (bl,,,bz,,,)1’2) G f 1’2(b,l-> bdf1’2(b21 )... ) b2”J. 

Thus in particular 

If f,(ak)=f(O,...,O,ak,O,..., O)> 0, then 

Thus 
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Now let A, denote the 71~ x m matrix all of whose entries are zero except 
for the (k, k) entry equal to uk. Thus p(Ak) = uk, k = l,..., m, and 

From (3.1) 

f(a) G max fk(ak). 
k = 1,. , II, 

Therefore (3.2) holds. 
e= : Assume that the { fk }r= I satisfy (3.3), and f is defined by (3.2). 

From (3.2) and (3.3) 

Again from (3.2) 

fk(&) <f(A,>...A,,) 

each k = 1,. , m, where the inequality is understood elementwise. Since 
A < B implies p(A) < p(B), we obtain 

This together with a previous inequality implies (3.1). n 

PROPOSITION 3.3. Assume f: R + + R’ + is bounded above ut some point 
01 E (0, m), and f(o) = 0. Then f satis$es (3.3) if and only if for every 

a,h>,O 

f(u+h)Gf(a)+f(h), (3.4a) 

f(m) GdfWf(W . (3.4b) 

Proof. * : If f satisfies (3.3) and f(0) = 0, then from (3.3) applied to 
the matrices 
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we obtain (3.4a) and (3.4b), respectively. 
- : We now assume that f: R + + R + is bounded above at some (Y E 

(0, co), f(0) = 0, and f satisfies (3.4). We first claim that f is continuous on 

(0, CQ) and 

f(a%'-")<fA(a)f'-"(b) (3.5) 

for all a, b >, 0 and X E (0,l). To this end let us assume that f f 0. We note 
that f(x) > 0 for all x > 0. For if f(b) = 0 for some b > 0, then from (3.4b) 
we obtain f(a) = 0 for all a > 0, implying that f = 0. Set g(x) = In f(e'). 
Since f(x) > 0 for all x > 0, g is well defined on all R. Furthermore, from 

(3.4b) 

c+d 

g2 i i 

~ g(c) + g(d) 
2 

for all c, d E R. Thus g is midconvex. By assumption g is bounded above at 
In (Y. This implies that g is both convex and continuous on all R. Thus f is 
continuous on (0, co) and satisfies (3.5). 

Set h(x) = x/f(x) for x > 0, and h(0) = 0. Since f(x) > 0 for all x > 0, h 
is well defined. From (3.5) we easily obtain 

hx(u)h’-“(b) < h(a’b’-“) (3.6) 

for all a, b > 0 and X E (0,l). Also, h is an increasing function. The proof of 
this fact is as follows. From (3.4a), f(m) < nf(x) for all n E N. Let t > 1 and 
nA = t for some n E N and h E (0,l). Then using (3.5) 

< n"f"(x)f'-"(X)= tf(x). 

Thus 

-- h(x)= f;x, Q f;x, =h(fr) 

for all t > 1 and x 2 0, i.e., h is increasing. 
To prove (3.3) we initially note that (3.3) trivially holds if p(A) = 0 [since 

f(0) = 01. Thus we assume that p(A) > 0, implying that f(p(A)) > 0. We 
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have from the definition of p(h(A)) the existence of {il,...,iS} c {l,...,n}, 
1 G s Q n (iS+i = ir) such that 

Since h is increasing and satisfies (3.6) we also obtain 

< h(p(A)) G h(&W 

Thus from (1.4) and the easily checked equality h(A)f( A) = A, we have 

P(A) p(h(A)f(A)) P(A) 

p(.f-(A)) = p(f(A)) 
dh(A)) G h(p(A)) = f(p(A)) 7 

i.e., f(p(A)) G p(f(A)). W 

REMARK 3.1. The converse (more difficult) part of Proposition 3.3 can 
also be proven via the analysis of Section 2. As therein, we set p = p(A). If 
p = 0, then (3.3) holds. For p > 0 we obtain, as in the proof of Proposition 
2.4, the existence of an LYE R for which 

for all x > 0. From (3.4a), we infer that (Y < 1. It may then be shown that for 
all such (Y 

P(A”) > P(A)“, 

where we set ayj = 0 if a i j = 0. Finally 

To prove Theorem 3.1, we apply Propositions 3.2 and 3.3, and note that 
since f is bounded above at some point OL E int R y and f(0) = 0, we obtain 
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from (3.2) that fk is bounded above at some point (Ye E (0, co) and &(O) = 0 
for each k = l,...,m. 

We will return to the study of functions of the above form. Firstly 
however let us note some general properties of functions satisfying (3.1). 

PROPOSITION 3.4. htf,g:kt:'-'[w+, h:R++R+ Und hl,...,h,,:R; 

'R+ all satisfy (3.1). Then so do: 

(i) h( f(x)) $ h is increasing. 

(4 f( h 1(x), . . . , h,,,(x)) if f is componentwise increasing. 

(iii) m=( f(x), g(x)}. 
(iv) f(cx) and cf(x) for any c > 0. 

Proof. The proofs of these facts are simple consequences of (3.1). 

From Proposition 3.4(iii), all functions of the form 

f(x ,~...,~.,>=max{f,(x,>,...,f,(x,>} 

satisfy (3.1) if the fk: R + -+ Iw + satisfy (3.1) [(3.3)]. Theorem 3.1 does not 
give us all functions fk satisfying (3.3). To see this more explicitly, we first 
prove: 

LEMMA 3.5. Assume f: R + + R + satisfies (3.3). Let 

g(x)= c, 
t 

f(x), x=-O, 

.z = 0, 

where c > f(0). Then g satisfies (3.3). 

Proof. If p(A) = 0, then every function g : R + -+ R + satisfies 

z&(A)) G &(A)). 

For since p(A) = 0, we have that a,, = 0 for all i. Thus g(A) 2 8, where 
b,, = g(a,,) = g(O), and bij = 0 for all (i, j) + (1,l). Therefore 

i&-G)) = do) = P(B) q&(A))- 
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Assume p(A) > 0. Now g( A ) 2 f(A) and thus 

&(A)) = f(dA)) G p(f(A)) G d&)). n 

In the proof of Proposition 3.3, the condition f(0) = 0 was used to obtain 
(3.4b) from (3.3). We needed (3.4) but not f(0) = 0 in the proof of the 
converse direction of Proposition 3.3. Lemma 3.5 illustrates this point. We 
now incorporate this fact into one direction of Proposition 3.3, and state 
certain properties of the functions contained therein. 

PROPOSITION 3.6. If f: Iw + + R + is bounded above at some point in 

(0, co) and satisfies (3.4) for all a, b > 0 (f(0) arbitrary), then f satisfies 

(3.3). Furthermore, f is necessarily continuous on (0, co) und satisfies the 

following: 

(i) lim ,,obf(e) and lim.,, f(x) exist (and may be infinite). 

(ii) Zf lim,_,+ f(e) = 0, then f is strictly increasing on (0,~) und 

lim *+mf(x)=m. 

(iii) Zf lim,_,,+ f(s) = c where 0 -C c -C co, then there exists a K, 0 d K < 

co, such that f(x) = c for all x E (0, K], while f is strictly increasing on 

(K, 00). Furthermore, if K < 00, then lim.,, f(x) = 00. 

(iv) Zf lim,_,,+ f(~) = 00, then one of the following holds: 

(1) f is strictly decreasing on (0,~). 

(2) There exists a K, 0 < K < 00, and c > 0 such that f is strictly decreasing 

on(O,K)andf(x)=cforaZZxE[K,co). 

(3) There exist K and L, 0 -C K < L < 00, and c > 0 such that f is strictly 

decreasing on (0, K), f is strictly increasing on (L, m), and f(x) = c for all 

x E [K, L]. Furthermore, lim,,, f(x)= co. 

Proof. The fact that f satisfies (3.3) and is continuous on (0, a) follows 
from the proof of Proposition 3.3. [Assume f(0) = 0 and then use Lemma 3.5 
to obviate this assumption.] Properties (i)-(iv) follow from the fact that 
g(x) = In f( es) is convex on [w, as was shown in the proof of Proposition 3.3. 

n 

Each of the possibilities as enumerated in (iv) of Proposition 3.6 can 
occur. Examples of such are easily constructed from the next few results. 
Note also that if (ii) of Proposition 3.6 holds and f(0) = 0, then f i exists, 
fi:IW++IW+, and f ’ satisfies (2.2) and thus (2.1). Conversely, if f: R + + 
II3 + satisfies (2.1) and f(x) > 0 for all x > 0, then f is continuous and strictly 
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increasing on R + and lim,,, f(z) = co [since nf(r) =S f( nr)]. Thus 

fr:[W++lR+ satisfies (3.4) and thus (3.3). 
We also have: 

PROPOSITION 3.7. Zff, g : W + + R + are both continuous on (0, co) and 
satisfy (3.4) for all a, b > 0, then f + g satisfies (3.3). 

Proof. Obviously f + g satisfies (3.4a). A simple calculation proves 
(3.4b). n 

We remark that we have replaced “bounded above at some point in 
(0, co)” by “continuous on (0, co)” due to Proposition 3.6. 

This result together with (iv) of Proposition 3.4 implies that the set of 
functions satisfying the conditions of Proposition 3.7 is convex. As examples 
of functions satisfying the above, we have the class of functions f(x) = xr for 
x > 0 and f(0) > 0, where - co < T < 1. For this class equality holds in 
(3.4b). The inequality (3.4a) holds for r < 0 simply because the functions are 
decreasing on (0, co). The inequality (3.4a) holds for 0 < r < 1 from the fact 
that (a” + b’)“’ is a decreasing function of r E (0, co). Alternatively, it 
follows because the inverse function satisfies Theorem 2.1. 

There are functions which satisfy (3.1) but do not satisfy (3.2) or more 
explicitly, functions f: R + -+ R + which satisfy (3.3) but do not satisfy (3.4b) 
[which we obtained using the fact that f(0) = 01. 

THEOREM 3.8. Zf f: R ‘J -+ R + satisfies either 

(i) f is componentwise decreasing, or 
(ii) there exists a c > 0 such that c < f(x) < 2c for all x E R y, 

then f satisfies (3.1). 

Proof. (i): From the Perron-Frobenius theorem, p(A,) > a:,, k = 
1 ,..., m. Thus f(p(A,) ,..., p(A,))< f(at, ,..., a;;). Let B be the n x n 
matrix where b,,= f(ai,,..., a;;) and b,,=O for all (i,j)#(l,l). Then 

f(A 1,. . . , A,,,) > B and 

(ii): Equality in (3.1) holds if n = 1. Let A,,. . . , A,,, E Z’,‘, n > 2. By 
assumption, f( p( A,), . . . , p( A,,)) < 2c. Let J denote the n X n matrix all of 
whose entries are 1. Then by assumption f( aii,. . . , a;) >, c and therefore 
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f(A 1,...,A,,,)acI. Thus p(f(A, ,..., A,))>p(cJ)=cn. Since n>2, we 
have our result. n 

REMARK 3.2. Note that each of the above two sets of functions is a 
convex cone. Thus each of the three identified sets of functions satisfying 
(3.1) is a convex cone. This is not true of the set of all functions satisfying 
(3.1). As an example it suffices to consider m = 1. Let f(x) = x, and g satisfy 
1 G g(x) G 2 where g(1) = g(2) = g(3) = 1 and g((5f &)/2) = 2. Set 

It is easily checked that f + g does not satisfy (3.1). 

REMARK 3.3. The above three sets of functions, i.e., those satisfying 
either (i) or (ii) of Theorem 3.8, or those obtained via (3.2) and (3.4), are not 
all the functions satisfying (3.1). Using Proposition 3.4(iii) we may construct 
additional functions satisfying (3.1). For example f(x) = max{ X, (1 + x)- ‘} 
satisfies (3.1) and is in none of these three sets. 

In the previous results, we delineated functions satisfying (3.1). In the 
converse direction our results are more sparse except in the case of Theorem 
3.1, where we demand that f(0) = 0. In general, if f satisfies (3.1), then it 
necessarily satisfies (3.4a), but not (3.4b). We end this paper with an 
additional consequence of (3.1). 

PROPOSITION 3.9. Let f: R ‘: + Iw + satisfy (3.1), and assume that f is 
bounded above on every rectangle in [w ‘+“. If there exists a sequence {x I } F= 1 
forwhichlim,_,x,=y, whereyEintR:‘and lim,,,f(x,)=O, thenfis 
componentwise decreasing. 

Proof. Let a, b, c E Iw y, and 

A,= ;: bk 

i 1 ak ’ 
k=l,...,m. 

Then p(A,) = ak + Jb,c, , k = 1,. . . , m, and from (3.1) 

f(a+ (boc)1’2) < f(a) + [ f(b)f(c)]“2. 
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Let delW:‘. Set b=x, andc=d20x;l. Then 

f(a+d) <f(a)+ [ f(xr)f(d2 oxF1)]1’2. 

Letting r t co and using the hypothesis, we obtain 

for all a, d E R y. Thus f is componentwise decreasing. n 

A similar result holds if lim I _ m f(x ,) = 0 where lim r _ m (x r)k = yk and 
O-C yk<a, k=l,..., m. 

REMARK 3.4. If f: R :’ -+ W + satisfies 

rdf(A,v-7 A,)) = f(~(A,)m r+L)) 

forall A,EP,I, k=l,..., m,and n~N,then 

for some c>,O and ke {l,..., m}. This may be proven as follows. From 

(2.2a), 

f(a)+ f(b) G fb+b) 

for all a, b E I%:, implying that f(0) = 0 and f is bounded above at some 
oE intRy. From Theorem 3.1, 

and 

f(x p...J,,) = 

fkbk + bk) G fkcak)+ fkcbk) 

for each kE{l,...,m} and all ek,bkER+. From the above two 
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inequalities, 

I; =‘:Ia”,r$‘“k’ + k ‘C”,,l,fk’bk) ’ k =‘:‘.“,,,,fk’“k + bk) 

< kc?: ,,,[fkbk)+h@k)l. 
1 , 

It now follows that there exists at most one k E { 1,. . . , m } for which fk f 0. 
Assume fk f 0 and f; = 0 for all i # k. From the above, 

for all a, b E [w +. From Proposition 3.6, fk E C(0, co). As is easily checked, f 

is continuous at zero. This functional equality now implies that fk( X) = cx for 
all x > 0, where c = f(1) > 0. 

REFERENCES 

1 L. Elmer and C. R. Johnson, Nonnegative matrices, zero patterns and spectral 
inequalities, preprint. 

2 L. Elsner, C. Johnson, and J. A. Dias da Silva, The Perron root of a weighted 
geometric mean of nonnegative matrices, Linear and Multilinear Algebra, to 
appear. 

3 G. M. Engel and H. Schneider, Diagonal similarity and equivalence for matrices 
over groups with 0, Czechoslouak. Math. 1. 25:389-403 (1975). 

4 S. Friedland, Limit eigenvalues of nonnegative matrices, Linear Algebra Appl. 
74:173-178 (1986). 

5 J. L. W. V. Jensen, Snr les fonctions convexes et les inegalitbs entre les valeurs 
moyennes, Acta Math. 30: 175- 193 (1906). 

6 S. Karlin and F. Ost, Some monotonicity properties of Schur powers of matrices 
and related inequalities, Linear Algebra Appl. 68:47-65 (1985). 

7 A. W. Roberts and D. E. Varberg, Convex Functions, Academic, New York, 1973. 


