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Abstract. In this report we will review some density problems in multivariate approx-
imation. Some of these problems are related to approximation by radial basis functions
and ridge functions. Others are motivated by various mathematical models in the theory
of (artificial) neural networks and computerized tomography.

§1. Introduction

We will look at a few elementary but not necessarily simple examples related to the ap-
proximation of multivariate functions, and ask one of the basic questions of approximation
theory. Namely, is the subspace dense? If the answer is yes, then we can continue to ask
for “good methods of approximation” and many of the other related standard questions of
approximation theory. If the answer is no, then we have a problem, and so it is important
that we know when it is yes.

Some of the questions we will look at were motivated by problems of (artificial) neural
networks (ANN), or computerized tomography, and some by the study of radial basis
functions, ridge functions and the like. Sometimes the problems seem historically to be
more connected with harmonic analysis, integral geometry and even algebraic geometry.
However all these problems can and should be considered as part of the repertoire of
approximation theory.

We will talk around the following class of problems. Fix f : IR+ → IR. Let ‖ ·‖ denote
the usual `2 norm on IRn. We will consider:

A) span{f(‖x − a‖) : a ∈ IRn}
B) span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0}
C) span{g(‖x − a‖) : g ∈ C(IR+) , a ∈ A} (here g varies but the centers a come from a

fixed set A).
We ask when we have density. We will consider this question in C(IRn) with the topology
of uniform convergence on compact subsets. That is, given any compact K ⊂ IRn, when
is the above dense in C(K)? We will also consider what is known, if anything, if we ask
this same question in L2(IRn).

§2. Problem A

We fix the function f and consider

span{f(‖x− a‖) : a ∈ IRn} .
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This is a class of radial basis functions with arbitrary (all) centres, and we are asking for
when this space has the density property. Note that this space is translation and rotation
invariant.

(i) L2(IRn). It is well-known that a translation invariant subspace is not dense if and only

if there exists a set of positive Lebesgue measure E such that ĥ|E = 0 for all h in the
space. This is a result due to N. Wiener. Thus if g ∈ L2(IRn), then

span{g(x− a) : a ∈ IRn}

is dense in L2(IRn) if and only if ĝ does not vanish on a set of positive Lebesgue measure.
(Somewhat similar results hold in Lp(IRn), 1 < p < ∞, see Edwards [2].) How can we
use the fact that we are here considering not the general situation, but only specific g?
Namely radial functions, i.e., f(‖ · ‖) where f is a univariate functions defined on IR+. It
is known that in this case the Fourier transform is also radial and at w equals

2π

‖w‖(n−2)/2

∫
∞

0

f(r)rn/2Jn−2

2

(‖w‖r)dr

if n ≥ 2, where J n−2

2

is the Bessel function of order n−2
2 . Aside from this, I know nothing

more.

(ii) C(IRn). In this topology functions, for which the span of all their shifts are not
dense, have been studied. They are called mean-periodic functions. There is no known
characterization of mean-periodic functions in C(IRn) for n ≥ 2. However many functions
cannot be mean-periodic. For example

Proposition. If g ∈ C(IRn) ∩ L1(IRn), g 6= 0, then

C(IRn) = span{g(x− a) : a ∈ IRn} .

Proof: The continuous linear functionals on C(IRn) are represented by Borel measures of
finite total variation and compact support. If the above space is not dense in C(IRn), then
there exists such a measure µ such that∫

IRn

g(x− a) dµ(x) = 0 ,

for all a ∈ IRn. Both g and µ have “nice” Fourier transforms. Since the above is a
convolution we must have

ĝ(w)µ̂(w) = 0 .

Now µ̂ is an entire function, while ĝ is continuous. Since ĝ must vanish where µ̂ 6= 0, it
follows that ĝ = 0 and thus g = 0, a contradiction.

Thus if f(‖ · ‖) ∈ C(IRn) ∩ L1(IRn), then density holds. This is not in the least
necessary. It is known that for f(r) = r density holds. I am unaware of any complete
characterization of all f ∈ C(IR+) for which density holds. There is a conjecture that
density does hold except for the f of the form

f(r) =
∞∑

k=0

pk(r)Jn−2

2

(αkr)

where the pk are even polynomials and αk > 0 are of a certain sparsity. We will not here
go into the reasons for this conjecture.
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§3. Problem B

Here we consider

span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0}

where again the function f is fixed. I was motivated to consider this problem by a mathe-
matical model in ANN which we will not describe here. There are simple characterizations
of the f for which this set spans in both L2(IRn) and in C(IRn), although the result and
especially the proofs are rather different.

(i) L2(IRn). If f(‖ · ‖) ∈ L2(IRn)\{0}, then

L2(IRn) = span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0} .

Proof: Since this space is translation invariant it follows from the theorem of N. Wiener,
mentioned earlier, that the space spans all L2(IRn) if and only if there does not exist a set

of positive Lebesgue measure E such that ĥ|E = 0 for all h in the space. Since f 6= 0, its
Fourier transform is not identically zero. Furthermore the Fourier transform of f is also
radial. Dilation by ρ, as above, essentially translates into dilation by 1/ρ in the Fourier
transform. From this it follows that the Fourier transform of all functions in the space
cannot all vanish on a set of positive Lebesgue measure.

(ii) C(IRn). The following result is to be found in [5].

If f ∈ C(IRn), then

C(IRn) = span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0} ,

if and only if f is not an even polynomial.

Proof: If f is an even polynomial of degree 2m, then f(ρ‖x − a‖) is an even polynomial
of degree 2m for every choice of a ∈ IRn and ρ > 0. Thus the above space cannot possibly
span all of C(IRn).

For the other direction we use a little known result of L. Schwartz [8] from 1944.

Theorem. Let g ∈ C(IRn). The space

span{g(λx1 − a1, . . . , λxn − an) : a1, . . . , an ∈ IR , λ ∈ IR}

is not dense in C(IRn) if and only if there exists a homogeneous polynomial p such that

p(D)g = 0

in the weak sense. If, in addition, the above space is rotation invariant, then it is not dense
if and only if

∆mg = 0
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in the weak sense, for some m, where ∆ is the Laplacian.

It is not difficult to show that the only continuous solutions to this last equation for
g(x) = f(‖x‖) are the even polynomials. (This is an elliptic equation and so all (weak)
solutions are in fact very smooth.)

(iii) One can also ask this same question in L1(IRn). Because of the translation and rotation
invariance it follows, from a different theorem of N. Wiener, that if f(‖ · ‖) ∈ L1(IRn) then

L1(IRn) = span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0} ,

if and only if ∫

IRn

f(‖x‖) dx 6= 0 ,

i.e., the Fourier transform of f does not vanish at zero.
We can also consider a slightly different problem. By

span{f(ρ‖x− a‖) : a ∈ IRn , ρ > 0}

we mean
m∑

i=1

cif(ρi‖x − ai‖)

for ci ∈ IR, ρi > 0, ai ∈ IRn and any m finite. We could also demand that we restrict the
ρi in that ρi = ρ for i = 1, . . . , m, (but the ρ is still variable). It is not difficult to show

that even with this restrictive definition we get density in L1(IRn) if and only if f̂(0) 6= 0.
This follows using a standard mollifier argument wherein we let ρ → ∞, see e.g. Park,
Sandberg [4].

§4. Problem C

Here we consider
span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

where g varies over all of C(IR), but the centers a come from a fixed set A. We are
interested in determining conditions on the set A which guarantee density. This is a fun-
damentally different problem from (A) or (B). Let me first try to motivate it by explaining
one philosophy behind this problem.

In a series of papers in the late 50’s, Kolmogorov proved the following startling result
which is considered to be the resolution, in the negative, of Hilbert’s 13th problem.

Theorem. There exist continuous functions of one variable hij (i = 1, . . . , 2n + 1, j =
1, . . . , n) such that every continuous function f of n variables on [0, 1]n can be represented
in the form

f(x1, . . . , xn) =

2n+1∑

i=1

gi

( n∑

j=1

hij(xj)
)
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where the gi are continuous functions of one variable which depend on f .

There have been numerous generalizations of this theorem in various directions. At-
tempts to understand the nature of this theorem have also led to interesting concepts
related to the complexity of functions. Nonetheless the theorem itself has had few, if
any, direct applications. This seems rather surprising since it does state that we can and
should consider multivariate functions as just compositions of univariate functions. In
other words, we can represent (and not only approximate) multivariate functions as a fi-
nite (fixed number) of compositions of univariate functions. There have been a few, but
very few, attempts to construct algorithms for approximating based on this theorem.

Perhaps one reason for the lack of success in this direction is related to the following
result which is due to Vitushkin and Henkin (separately and together). It says that one
cannot demand that the hij be C1 functions. Since the answer is in the negative, I only
formulate it for functions of two variables in [0, 1]2.

Theorem. For any m fixed continuously differentiable functions hi, i = 1, . . . , m, defined
on [0, 1]2, the set of functions

{ m∑

i=1

gi

(
hi(x, y)

)
: gi ∈ C(IR)

}

is nowhere dense in the space of all functions continuous in [0, 1]2 with the topology of
uniform convergence.

However there is a fundamental difference between the representation and the approx-
imation of functions. In practise we should give up the expectation of exact representation.
It is our hope that it might be possible, using smooth, calculable functions and the idea
of superposition (composition), to develop good methods of approximating multivariate
functions. This is one idea behind the following:

Consider a specific class Φ of functions φ : IRn → IR and study the linear space

span{g(φ(x)) : φ ∈ Φ, g ∈ C(IR)} .

If Φ is composed of a finite number of smooth (C1) functions, then this set is, by the above
theorem, nowhere dense in the space of all functions continuous on any compact set in IRn

(with interior) with the topology of uniform convergence. However if Φ is composed of an
infinite set of functions, then this is no longer necessarily true.

What type of functions might we look at. One example is to look at the class

Φ = {< a · x >=

n∑

i=1

aixi : a ∈ IRn} .

We are then led to a consideration of the functions

span{g(< a · x >) : a ∈ IRn, g ∈ C(IR)} .
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This is the class of ridge functions. They are dense in C(IRn). In fact we can considerably
restrict the set of admissible a. It suffices that it runs over any set such that no non-trivial
homogeneous polynomial vanishes thereon, see Lin, Pinkus [3].

Another example is to take a fixed function φ and consider Φ to be all (or a subset
of) its shifts. That is, in this case we consider the approximating set

span{g(φ(x− a)) : a ∈ IRn, g ∈ C(IR)} ,

where φ is fixed. There are only a few things that one can say in this generality. One
obvious necessary condition for density, in general, is that the set must separate points.
(That is, not all functions in the space take on the same values at x and y for some x 6= y.)
If φ is a polynomial then the demand of separation of points in this setting is equivalent
to the linear independence of the first order partial derivatives of φ.

This necessary condition turns out to be also sufficient for n = 2 and n = 3. It is
sufficient for n = 4 if the polynomial is homogeneous, but not in general. For n ≥ 5 it is
not the correct sufficient condition even if φ is homogeneous. However if φ is homogeneous
and the first partial derivatives are algebraically independent, i.e., there does not exist a
non-trivial polynomial p of n variables such that

p(φx1
, . . . , φxn

) = 0 ,

then we necessarily have density. The above question is actually quite interesting and
is connected to some work in algebraic geometry of more than a hundred years ago by
L. O. Hesse, Max Noether, and Paul Gordon, (see Pinkus, Wajnryb [6] and [7]).

If φ (and it need not even be a polynomial) is such that

{x : c ≤ φ(x) ≤ d}

is, for some c < d, a bounded nonempty set then we always have density. Thus, for
example, the space

span{g(‖x− a‖) : a ∈ IRn, g ∈ C(IR)} ,

in dense in C(IRn). (This can also be proven by other methods.)
Thus we are led back to the problem we started this section with. We would like to

characterize the sets A for which

span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

is dense in C(IRn).
Certain facts are relatively elementary to prove. For example, if A is not contained

in the zero set of some polynomial (i.e., in an algebraic variety), then

C(IRn) = span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

In a recent preprint M. Agranovsky and E. T. Quinto [1] totally characterize the set
of A for which density holds in IR2. They prove what V. Lin and I had in fact conjectured.
Their analysis is deep and lengthy. We will not delve into it here.
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To explain the answer, assume that A is a straight line (or any subinterval thereof).
Then the set of functions in the closure of

span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

is exactly the set of all continuous functions which are even about this straight line. Now
if A is a set of straight lines in IR2, then the above closure in not C(IR2) if and only if all
these lines have a common intersection point, and the angles between each of the lines is
a rational multiple of π.

If
C(IR2) 6= span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

then A is a subset of the set just described above, together with any finite number of
points.

There is a dual version to this problem. It is connected with a uniqueness problem in
the theory of spherical Radon transforms and thus to questions in integral geometry.

By duality, the space

span{g(‖x− a‖) : g ∈ C(IR) , a ∈ A}

is not dense in C(IRn) if and only if there exists a non-trivial Borel measure µ of finite
total variation and compact support such that

∫

IRn

g(‖x− a‖)dµ(x) = 0

for all g ∈ C(IR) and a ∈ A. This is easily seen to be equivalent to the fact that
∫

B(a,r)

dµ(x) = 0

for all a ∈ A and r > 0, where B(a, r) is the ball centered at a and of radius r. It can
also be shown that the existence of such a µ implies the existence of an h ∈ C(IRn) with
compact support such that ∫

B(a,r)

h(x)dx = 0

for all a ∈ A and r > 0. (I.e., we can assume that µ is sufficiently smooth.) This, in turn,
is equivalent to ∫

S(a,r)

h(x) dA = 0

for all a ∈ A and r > 0, where S(a, r) is the sphere centered at a and of radius r, and dA
is the appropriate area measure on the sphere.

Our original problem is therefore equivalent to finding both necessary and sufficient
conditions on A such that ∫

S(a,r)

f(x) dA =

∫

S(a,r)

g(x) dA

for all a ∈ A and r > 0, implies that f = g if f, g ∈ C(IRn) and both (or their difference)
have compact support.
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