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Descartes Systems from Corner Cutting

Charles A. Micchelli and Allan Pinkus

Abstract. This paper demonstrates that Descartes Systems can be conveniently
generated from matrix subdivision algorithms determined by totally positive
matrices.

1. Introduction

A frequent paradigm in computer graphics is the representation of a curve by
means of control points and, therefore, the association of the curve with a control
polygon obtained by joining control points with linear segments. Mathematically,
this means a curve representation is specified by scalar-valued blending functions
V(). ..., ¥, (t) through the formula

Y(tlc) =Y. ci(t):={(c, ¥()),

i=1

where

¢= (C;, (AR cn)a "P(t) = ('lll(t)h ceey lll,,(t)).

Here ¢;, ..., ¢, are vectors (control points) in some s-dimensional linear space, say
R*. The control polygon is then determined by the composite vector ¢ € R*™ and we
can think of ¢ geometrically as a polygonal line.

Various algorithms for the manipulation and computation of such curves take
the form of successive geometric alterations of the control polygon. In particular, in
the case of the Bernstein bases

Yie) = (':.’)t"(l o™ i=0,1,...,m,

algorithms for evaluating W%(t|c) either by subdivision or degree elevation or
passing from a B-spline representation of a polynomial curve segment to its
Bernstein form falls into this category. The common feature shared by these
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algorithms is that the new control polygons are formed by successively replacing
two adjacent control points by their convex combinations. We call this corner
cutting because of its apparent geometric interpretation. A particularly striking
example of corner cutting is the method of de Casteljau which gives us a direction
for much of what follows in this paper. The de Casteljau algorithm begins with an
initial control polygon ¢® = (c$, ..., c2) and then forms successive averages

(1.1) ="+, r=0,...,m-l I=1..,m
2

There are two facts about this recursion which are the subject of generalization
here. To explain them we display the de Casteljau points in a triangular array

cg . . . . c'c:'

& - - - o
(1.2)

o

and recall that the lower vertex of the triangle produces the value of the curve at
t = 4 Thus

(13) ar=Widle),  WHlo)= Y. ko).

i=0

Secondly, the sides of the triangle (vertical and diagonal) give a refined representa-
tion of the curve on the intervals [0, 1] and [3, 1], respectively. Specifically, we have

14 Witle) = Y ci¥i2r), O0<t<y
j=0

and

1.5 Witiey= ¥ FTWH2r—1), $<t<1L
j=0

These last relations are the bases of a subdivision scheme for the computation of
the whole curve ¥(t|c). To explain this we focus on two m + 1 x m + 1 matrices
defined by the equations

Abc®i=(cg,..., )
and
A= (cT,..., c0).
These matrices are lower and upper triangular, respectively. They are given

explicitly as

16 (A3)y = zC) bi=01,...m,
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G):O if j>i,
and

(]7) (A’i)u = (Af))m—i,m-js l:] = 0’ 1,“' > M.

A useful reformulation of the refinement equation (1.4)-(1.5) for the Bernstein
representation is the functional equation satisfied by the curve

Wo(t) = (F5 (1), .., ()

where

given by

‘Pb(%f)=(.4:)wb(:), 0<i<1, ee{01).
This functional equation was the subject of recent generalization [10]. The idea
there was to replace the control polygon ¢® by a new control polygon ¢!
determined by the application of two matrices 4,,&¢ {0, 1}, to ¢® Thus ¢! =
(Aqe% A4,¢%) = Ac®, where
Ao
=[]

and A% A,c® are thought to “control” the curve associated with ¢® on the
segments [0, 4], [3, 1], respectively. Iterating this procedure leads us to the
following subdivision scheme. Suppose Ao, A, are two matrices such that any
sequence of products of 4, and 4, applied to any vector converges to a multiple of
the vector e:= (1, 1,..., 1) assumed to satisfy 4,e = e, ¢ € {0, 1}. Then necessarily
AT has a unique eigenvector f, normalized so that (f,,e) = 1. If AZf, = ATf,
(compatibility relation), then we can unambiguously define a (fundamental) curve
¥: [0, 1] - R" by the formula

w
(18) lim 4, --A,e=Y(lc)e, =) g27%  W(t|c) = (c, ¥(1)),
k- k=1
see [10]. It should be emphasized here that this Matrix Subdivision Scheme (MSS),
although motivated by corner cutting as is indeed de Casteljau’s algorithm, is itself
generally not a corner-cutting procedure.

The characterization of n x n matrices 4y, A; which admit an MSS, in the sense
that there is a continuous curve ¥ satisfying (1.8), remains an open problem.
However, when the A4,, ¢ € {0, 1}, are stochastic necessary and sufficient conditions
on A,, A, are available. (Here and throughout this paper, a matrix B is said to be
stochastic if it has nonnegative entries and row sums one.) For our purposes it is
convenient to state a simple sufficient condition on two stochastic matrices to
admit an MSS, as it serves as a starting point for the observations we make here.

Theorem 1.1. Let Ao, A, be stochastic matrices each with a positive column.
Suppose f,, f; are the (necessarily unique) eigenvectors of AL, AT corresponding to
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eigenvalue one normalized so that (e,fy) = (e,f,) = 1. If ATf, = ATf,, then the
functional equation

t
(19) \P(—Jz“—?) =A™, O<t<l, ee{01},
has a unique continuous solution satisfying (e, ¥(t)) = 1,0 <t < 1. Moreover, it is
generated by the subdivision scheme

(1.10) lim A4, - 4,c=(c,¥(t)e, t=) g2~

k= k=1

Also, as a consequence

(1.11) lim AT .- AZ¥(x)=W() forany x€[0,1], t= ) g27~

k~co k=1

More can be said about the limiting curve P, in particular its smoothness and
the surprising relationship of this question to the existence of polynomial compo-
nents in ¥ [10]. Our intention in the paper is to study features of the fundamental
curve W which are motivated by certain properties of the Bernstein-Bézier curve
P,

It was observed quite awhile ago by I J. Schoenberg that the Bernstein
polynomial bases have the property that they are variation diminishing on (0, 1), in
the strong sense that

(1.12) Z¥PCle)) £S5 (), ceR™L

Here Z(f) counts the number of zeros of f on (0, 1) counting multiplicities and
S7(c) is the number of sign changes in the components of the vector ¢ =
(cos---» Cm)» Where zero entries are discarded. The proof of this fact is elementary
and can be based on Descartes’ rule of signs. To see this we write

Wo(ele) = (1 — z)“jgo C(T)(Tt-_z)

so that (1.12) follows from Descartes’ rule of signs

Z(igo ajtj)

This property of the Bernstein polynomials has a more or less equivalent form in
certain determinantal inequalities, namely

< ST (Agseess )
(0, )

(1.13) le( lggeces I )== det ?,(xj)) > 0
XiseeesXg Li=1,..., s
for0<i, < «-- <i;<m0<x; < --- <x,< 1. As we shall soon see, equality in
(1.13) holds if and only if x, =0 and i, >0 orx, =1 and i, < m.
The actual relationship between determinantal inequalities and the strong
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variation diminishing property is that for any continuous curve ¥ : [0, 1] - R™

\P(il,...,i,)>0’
Xgyeees Xs
forall <) < - <i;€m0<x; < --- <x,<1,and all 5if and only if

Z¥(le) <57(0)

(here Z(f) counts only simple zeros of f on (0, 1)) and whenever Z(¥(-|c)) = S™(c)
then the sign of ¥(t]c) for ¢ near zero is the same as the sign of the first nonzero
component of ¢ [7, p. 223]. The inequalities (1.13) for the Bernstein curve says
more in that the exact criteria for strict equality on [0, 1] is available.

The question arises as to whether or not there are other triangular arrays (1.2)
with associated fundamental curve ¥ which satisfy ail these three properties, (1.3),
(1.4), (1.5), and (1.13). We will show, in contrast to the observation in [2], that there
is a wide class of curves having these properties.

Our analysis of this question focuses on the 2n x n matrix

~[4)

We will show that the essential property is that A4 is totally positive (TP), that is, all
its minors are nonnegative, and both 4, and 4, are nonsingular. The fact that these
properties hold for the Bernstein polynomials follows from the factorization of

Ab
A = °]
b
implied by the de Casteljau’s procedure. Specifically, A® can be factored as a
p

product of one-banded matrices with nonnegative elements. Since each one-

banded factor is easily seen to be totally positive, by the Cauchy-Binet formula [7],
$0 too is the matrix A°.

We now turn to some properties of the curve ¥ of Theorem 1.1 when 4 is TP.

2. Descartes Systems from Subdivision

This section contains a proof of the following theorem. Its geometric interpretation
as a corner-cutting algorithm is discussed in Section 3.

Theorem 2.1. Let Ay, A, be nonsingular n x n stochastic matrices such that

4]

is TP. Suppose further that the first row of A is (1,0, ..., 0), the last row of A, is
©,...,0,1), and the last row of A, and the first row of A, are the same. Then there
exists a unique continuous solution \P': [0, 1] — R" to the functional equation

q'(‘—;if) =AT¥@e), 0<t<1, se{0,1},
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satisfying (e, ¥(¢)) = 1. Furthermore, ¥ is constructed as

0

tim 4, - A, c=(c, ¥(t)e, =) g27%

k-0 k=1

W(il,...,i,)zo

X1seees Xg

for1<i; < -« <i;gn0<x, < --- <x, < 1, where equality holds if and only if
either x, =0,i;, > l,orx,=1,i,<n.

and moreover

We present the proof of this result in a series of observations which contain
further useful information about MSS when

(2]

is TP. We begin with some necessary facts about TP matrices and related matters.

Lemma 2.1. Let A be a nonnegative n x n matrix such that A; >0 for i < j and
suppose X is an eigenvector with nonnegative components corresponding to the largest
eigenvalue 2o of A. If x, =0, then x, =0 for all | > k.

Proof. Since
0 = onk = Z Aij.,-
i=1
we get A,x; =0and so x; =0 forj >k [ ]
Remark 2.1. Similarly, if A;;> 0 fori>jand x, =0, then x, =0 forall [ < k.
Lemma 2.2. Let Ay, A, be nonsingular n x n stochastic matrices such that

-[4]

is totally positive. Then A], AT have unique eigenvectors x°, x*, corresponding to
eigenvalue one normalized to satisfy (e,x°)=(e,x') =1, respectively, and

(Ao)ifAD; > Oforj<i.

Proof. Since Ay, A, are nonsingular and totally positive their principal minors

are nonsingular, i.e.,
| PR | fiseves]
VN i N L Y0
Qgyeenyig 1ree oo ds
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see p. 89 of [ 7]. Thus, in particular, the diagonal elements of A, and 4, are positive.
Consequently, sincefor 1 <j<i<n
(AO)ij (AO)H

i j+n
A =
0= (,/ ; > Ay (A,

we conclude that (4,),{4,); > 0 as asserted. Specializing this observation we have
that the first column of 4, and last column of A4, are strictly positive. Since both 4,
and A, are stochastic their highest eigenvalue is one and A7, A7 have unique
corresponding eigenvectors as claimed. ]

In preparation for the main result about the functional equation we note the
following fact.

Lemma 2.3. Let Ay, A, be nonsingular n x n stochastic matrices such that

=[]

is totally positive. Suppose further that
ATx0 = A7x2,
where x°, x* are the unique eigenvectors of AT, AT as referred to in Lemma 2.2. Then
x°=(1,0,...,0, x'=(0,...,0,1)
and

(Aodn; = (A1) (Ao = 61-{" (A= 5nj9 j=1...,n

Proof. Let k be the largest integer < n such that (x°), > 0. Then Lemma 2.2
allows us to apply Lemma 2.1 to A7 and conclude that (x°); > 0, j < k, and, of
course, by definition we have (x°);=0, j > k. Similarly, we let r be the least
integer > 1 such that (x'), > 0. Hence just as before (x'); =0, j <r, and (x'); >
0,j=r

We consider the vector x = (x!, —(x%),,..., —(x%),) e R***. Then x4 = 0 where
A is the (n + k) x n submatrix consisting of the first n + k rows of A. We recall the
fact [7, p. 230] that, for any TP m x n matrix B of rank n, the equation yB = 0 for
some y € R™ implies that S*(y) > n. (§ *(c) is the maximum number of sign changes
in the components of the vector ¢ = (c,,...,c,), Where zero entries are given
arbitrary sign.) Therefore, since S¥(x) =r we have r > n, ie.,, r = n. Similarly,
we obtain k = 1. The form of x° and x' implies the remaining claims of the
lemma. |

Proposition 2.1. Suppose Ay, A, are nonsingular stochastic matrices and

=[2]
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is totally positive. Then the functional equation
W(t) = AT¥(20), 0<t<y
@n T _ 1
Y(t) = A;¥P(2t — 1), ;<t<1
has a nontrivial continuous solution if and only if
(Ao)lj = 51,,', (Al)nj = 6nj’ (Ao)nj = (Al)lj: i=1...,n
In this case, (e, P(1)) = 1,0 <t < 1, P(0) = (1,0,...,0), and ¥(1) = (0,..., 0, 1).

Proof. Suppose A,, A, satisfy these conditions. Then x° =(1,0,...,0) and
x! = (0,...,0, 1) are the unique eigenvectors of A3, AT for eigenvalue one (both
have positive columns) and

ATX® = A7x'.
Hence Theorem 1.1 implies that the limit
lim 4, -+ A4,,¢ = (c, ¥(1))e

k=

exists where W is a continuous curve on [0, 1] satisfying (e, ¥(t)) = 1,0<t < 1,
and the functional equation (2.1).
Conversely, if ¥ satisfies the functional equation, then it follows that

@D

22) ¥(@) = lim AT - ATW(x), t=Y &2

k- k=1

for any x, t € [0, 1]. Thus if we set x° := ¥(0) and x* := P(1) we get x°, x* # 0 and
ATx? = ATx' as well as ATx* = x%, ¢ € {0, 1}. Equation (2.2) implies that (e, ¥(x)) is
a nonzero constant which we normalize to be one. Hence by Lemma 2.3 all the
desired properties of 4, and A, follow. |

Next we turn to the principal consequence of our running hypothesis that

=[]

is totally positive. The following result and Proposition 2.1 embody Theorem 2.1.

Proposition 2.2. Assume that the statements of Proposition 2.1 hold. Let 1 < i; <
- <i,<nand0<x; < -+ <x,<1,1 <r<n Then

‘I’( z,,...,z,) >0,

Xiseees Xy

where equality holds if and only if either x, =0,i; >l orx, = 1,i, < n.

Proof. We prove this result by induction on r. We begin with the case r = 1. Thus

we will establish the inequalities:

V(1) >0 ifand only if te[0, 1),
v{) >0 ifand only if te(0, 1), 2<i<n-—-1,
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and
() >0 ifand only if te (0, 1].

We have already pointed out that ¥(0) = (1,0,...,0) and ¥(1) =(0,...,0, 1)
and so by (2.2) (choosing x = 0) we get ¥(¢) = 0 for all € [0, 1]. Also, from the
form of W(0), ¥(1), we can restrict ourselves to t € (0, 1). To show y,(t) > 0 for
te (0, 1) we expand ¢ in its binary representation

t= Z 8k2-k.
k=1
Choose the least integer /> 1 such that ¢, =1, r<l Then g =0 and y;:=
2t —1/2—---=1/2"Ye[0,4). Forl= 1, y, =t e (0, 3] and therefore
Y1) = Y (Aoda¥u(20).
k=1

If ¢,(t) = O, then, by Lemma 2.2, ¥(2t) = 0 and therefore by (2.2) (with x = 2t)
¥ = 0, a contradiction. When | > 2 we use the equation

y.(0) = kil AT D n

and therefore

Y10 = (A)qy) W) > 0.

Thus ¥,(t) > 0 for ¢ € (0, 1). Similarly to show that ,(t) > 0, te (0, 1), we let | be
the least positive integer / > 1 such that ¢,=0, r <l Then ¢ =1 and z;:=
2"1%te@ 1] If I=1, then t e [4, 1) and we use the equation

V() = jjl (A2t — 1)

which implies ¢,(t) > 0 because (4;),, >0, 1 <k <n, and ¥(x) # 0 for all
x € [0,1]. When [ > 2 we use

Ult) = 2 (A5 (@) = (Ao~ n(z) > 0.

Let us now consider the other components of ¥. Forte (0,5)and2<i<n—l we
use the inequality

yn) = kz,l (Ao)ti(28) = (Ao)uithn(28) > 0
while for ¢ € [3, 1) we employ

ydt) = 1;;1 (A a2t — 1) 2 (4 %,(2t - 1) > 0.

This takes care of the case r = 1.



170 C. A. Micchelli and A. Pinkus

We now assume inductively that

‘P( il"“)il ) 20’

Xiseees Xg

forl<i;< - <§;€n0<x, < - <x;<1,and alll <r — 1, where equality
holds if and only if either x; =0, i, > 0 or x, = 1, i, < n. We consider a typical

minor of order r
gl i)
tisenist,

where 1 <i; < --- <i,<nand 0<t; < --- <t, <1 If t; =0, then because
l/l,(O) = 6i1! i= ls 2,...,", we gct

TR A igy.eesi,
P = §;, ¥
(O,tz,...,t,) al (tz,...,t,)
and similarily if ¢, = 1,

\P(i,,... Vo1 i,) _s ‘P(il,...,i,_l

Liyeeesbyeyy | LA W PV A

Therefore the induction hypothesis allows us to assume 0 <t, < -+ <, < 1.
The first possibility we consider is § € [t,, ¢,]. We dismiss the cases where 4 is an

endpoint of [t,,t,] as follows. For§ = ¢, < -+ <, < 1 we use the Cauchy-Binet
formula and the functional equation to obtain

yyeeesy by Giseeesdy Jiseeesde
! = A £
(tl,...,t,> ls,.,<.z..<jrs,, ‘(il,...,i,) (2:1—1,...,2t,—1>

= Z A1<1,_]2,“"_]')\P( J2se-5)r )
25j2<"'<jr5" 11,.-.,lr 2t2"“1,...,2tr“1

If 1 < iy, then since the last r rows of the 7 + 1 x r matrix

Li,...,|Q
T:=A,% V"""
ffeeesidy
are linearly independent and the first nonzero, there exists some 2 < j < -.- <
P <njefiy...,i,}, 2 <1< r, such that the first row and rows j3,..., j° of T are

linearly independent. When i, = 1 then we may set j? = i,, k = 2,..., r. Therefore
we have by the TP property of A, and the induction hypothesis

i1yeeesi, L., 00 L
¥ A ¥ > 0.
(tl,...,t,)z ‘( il,...,i,> (th——l,...,2t,—1 =

Similarly, if 4 is the right endpoint of [z,, t,] we use the equation

| P | fiyenesfpags It T
e s r>= z Ao(h. Jr .1 )‘P( 1 Jr-1 )
tyyeeast, 1Sji<- Tjoorsn—1 SU A 25,...,2t
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Just as before we choose j3,...,j%  e{i},....,5}, 1<j9< .- <%, <n—1,
such that by induction it follows that

. . -0 -0 0 -0
Bpeeesld yeevsdr—1s11 RO A
il V> 4, Ji ' sJr by Ji Jr-1 > 0.
tys-ensnty igyeensiy 24y 2ty
The case when § € (¢,, t,) is more involved. Here we choose aninteger 1 <! <7,
such that

tl <L enee <t,$%<t,+1< "‘t,.

(When | = 1, we need only consider the possibility that t; < { < t, because we
already considered the case t, = 1.) We now use the functional equation and factor

. 1,...,n
the n x r matrix '{’[ ]as

tise-ent,
‘P[ 1""’"] =ATC, A= [A°],
S A,
where C is the 2n x r'(block) matrix
1,...,n
‘I‘ ey
Cie [Ztl,...,Zt,] 0
- 0 W ,,....,n )
2., —1,...,2t,—1
By the Cauchy-Binet formula we have
iyeeesd, JiseersdeN fJ1seeesde
2.3 ¥ = Al° T1C .
( ) (tb""tr> 1$jl<.z.:<j'_$2n (ll,...,l,.) (1,...,)‘)
Ifk=|{ji.--»J,} N {1,...,n}| > [, then by taking linear combinations of its first k
rows the matrix
Jireeesdr
C[ 1,..., r:|
has a zero row and therefore a zero determinant. Similarly,
Jveeesde) _
C( 1,...,r> =0

if1{jy-.-sJs} 0 {n + 1,..., 2n}| > r — L Hence (2.3) becomes

‘Y(:li) _ 5 A(jl,...,j,, ki + n,....,k,_,-!-n)
e,

1€j1<- <jisn lyseen by
1gky< - <kr-15n

jl,---,jl kl,---,kr,.l
¥ kg .
x (2t1,...,2t,) (2t1+1 - 1,...,2:, - 1)
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The 2r x r matrix

Liyeees iy

A[il,...,i,,.il + n,-...,i,.+ n:I

has the property that its first r rows as well as its last r rows are linearly
independent. Hence for any choice of I rows among its first » rows there is a choice
of r — | row vectors from the last rows for which the resulting set of vectors is
linearly independent. Thus for any choice of integers 1 <j% < --- <j®<n in
{iy>..., i} there are integers 1 <k} < --- <k®_ ,<nin {i,,..., i} such that

0 O k4, K +n
A<.’19 ’.’l ] } i r—1 ) > O-

Pgseresly
The other qualification we must make in our choice is that if ¢, = § we choose

j? = n. This is easily done since the last row of A4 is nonzero. Therefore we obtain
by induction

Plyeensid (s kS + KO+ m
N et

0.
Liseresl, [ O

TR KS,..., k2
x ¥ J1» s Ji P 1s s Mp—1 = 0.
2t,,...,2 2. —1,...,2t,— 1
There remain the two cases ¢, < 3 or t, > . In the first instance, we consider the
binary expansion of the vector t = (¢,,...,¢,)

t= Y 27k

Sel

where & = (&!,..., &), & € {0, 1}. In the case at hand &' = 0. We let m, be the
largest integer > 2 such that £ = 0 for k <m,. Thus €™ # 0 and so its last
component must be one. Either the first component of €7 is zero or we have
g™ =(1,..., 1). In the latter case we let m, be the largest integer greater than m,
such that £ = (1,..., 1), m; < k < m,. Continuing in this way we can find a dyadic
fraction 7 € [0, 1] such that y, = 24(t, — 1) € [0, 1], the first u binary digits of each
t,,i=1,...,r agree with 7, and { € [y,, y,]. We take u minimal so that this holds.
Therefore

il""’ir jh-'-:jr jla-'-:jr
¥ - (A»---Ax)(, )xp( )

(tl,...,t,) Isjl<;<,-rs,, k1 i) \Piee s 3y
where ¢} = 0. When 0 < y, < y, < 1, then we use what we have already proved to
conclude that

T(.]li"'h’r) >0
yb"-:yr

forall 1 <j; < --- <j, <n. Since A --- 4, is TP and

(AC‘I"“. At})<;11---7l.l') > 0
19

iy
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we obtain our desired result because y was minimially chosen with 4 € [y,, y,]. It
may be verified that we must have 0 <y, <y, < 1. For if y;, =0, then since
0<t, < -+ <t, < 1wemust have had y, = § at some previous stage. Similarly, if
y, = 1, then at some previous stage we must have had y, = §. This completes this
case. The remaining case t, > } is the same.

This proves the proposition and Theorem 2.1 as well. [ ]

We end this section with some remarks on possible extensions of this result. The
first possibility we consider is the iteration of more than two matrices. Thus the
functional equation takes the form

W(t) = AT (pt — i), éstsl——-;——, i=0,1,....p—1,

and the iteration is based on p-adic expansions

t=)Y &7 ge{01,...,p—1}, lim A4, --A4,c=( ¥F)e
k=1 k=
This case is also consiaered in [10]. The analysis necessary to extend Theorem 2.1

is not essentially different from what we have aiready provided. It leads to the
following result.

Theorem 2.2. Let A,,e€{0,1,...,p — 1} be nonsingular matrices such that the
pn X n matrix

is totally positive. Suppose further that the first row of Ay is (1, 0,..., 0), the last row

of Ap_y is (0,...,0,1), and the last row of A; and the first row of A;.,, i=
0,1,...,p— 2, are the same. Then there exists a unique continuous solution
W¥: [0, 1] — R" to the functional equation

satisfying (e, W(t)) = 1,0 < t < 1. Furthermore, ¥(t) can be constructed as

o

lim 4, - A, c=(c,'P()e, t=3 gp™" ge{01,...,p—1}

k~ k=1

W(il,...,i,)zo

Xgyeeny Xs

fl<ij< - <i;<n0<xy < -~ <x, <1 where equality holds if and only if
either x, =0,i; > lorx,=1,i,<n.

and moreover



174 C. A. Micchelli and A. Pinkus

As a simple example of the above we consider subdivision for the quadratic
Bernstein-Bézier curve by trisection. The matrices in this case are

4 4 1 1 4 4

100 5 5 3 5 5 35

2 1 2 5 — 1 2

Ao=} % $ 0}, A =|333%]), A,=|0 3 3}
4 4 1 1 4 4

5 53 5 5 % 0 01

and geometrically the process proceeds as a corner-cutting scheme:

Our next remarks are a useful weakening of our hypotheses in Theorem 2.1. Let
Ao, ..., Ap-, be a family of matrices satisfying the hypotheses of Theorem 2.2.
Assume that Y is a stochastic nonsingular totally positive matrix and set
24 A=Y '4Y, i=0,1,..,p—1

Then associated with the matrices 4;,i=0,1,...,p — 1, is a fundamental curve
Y. [0, 1] — R” which satisfies the functional equation

£
‘{"($>=A§‘P(t), 0<tx<l, ee{0,1,...,p—1},

and

x

lim A, -+ 4, ¢ = (c, ¥(D)e, t=Y &p™% &e{0,1,...,p—1}

k—+x k=1

This curve is %iven by ¥ = YT, where ¥ is the fundamental curve associated with
the matrices 4;,i=0,1,...,p~ 1.
Although the matrix
Ao
A= :
Ap-y

is not generally totally positive, the curve ¥ inherits positivity from ¥ and more.

Proposition 2.3. Assume the A4;,,i=0,1,...,p ~ 1, are given by (2.4) where the
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Ay, A -1 Satisfy the hypotheses of Theorem 2.2, and Y is a stochastic nonsingular
totally positive matrix. Let \¥ denote its fundamental curve. Then

‘f’(i”""i’)z()
Xgpenes Xg
foralllgi, < --- <ig<nand0< x; < --+ < x, £ 1 with equality if and only if

x, =0, >korx,=1,i; <, where
k = max{j: y,; > 0},
1 = min{i: ynj > 0}.

Proof. As previously noted, ¥ = YT¥ where ¥ satisfies the conclusion of
Theorem 2.2. Thus

LI Jioeadshaf Jiseess
2.5 pl ! = Y(” )‘P( )
(2.5) (xl,...,xs) 15,.,<Z..<,.‘5,, (11,...,zs XipeeerXs

Since Y is TP and \i’(" """") >0 for all ordered {j,}i-, and {x}i.,, it

Xyyeees X =1
immediately follows that

Byyereyd
\P 13 s ts 20
Xgyeues Xg
foralll1<i; < - <ig<nand 0<x; < --- <x, < 1. Moreover because Y is
nonsingular,
|
Y[V >0,
11,...,13
and thus
Bgseensd
4 R PN}
Xigyeeny Xg
if

af Uyeesd
‘I’( ! ) > 0.
Xiyenes Xs
It therefore remains to consider the cases where x, =0 and i, > 1 or x, = 1 and

ii<n
Assume x; = 0 and i; > k. From the properties of ¥, (2.5) reduces to

q,(i,, iz,...,i,) - ¥ Y(‘l,j-z,...,j‘s)l?( 1,,-2,...,;,)'
09x25-~-’xs 2<ja< - <jegn 11a129'”’ls O,XZ,...,XS

Because i, > k, we have y,;, =0,r=1,...,k Thus

gf il o
0, x5,..., X,
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\P(il,...,is)=0
Xipenns Xg
ifx;=1landi; <l

It remains to consider the case where x, =0 and 1 < i, < k and/or x, = 1 and
1 <i; < n. By definition y,, >0 and y,, =0 for all r > k. Since Y is TP and
nonsingular, y; > 0,i=1,...,n. If y;, = O for some 1 <r <k, then

1 r
Y(r k) <0,

a contradiction. Thus y,, >0,r = 1,..., k. Similarly y,. >0, r=1,...,n
Assume for the moment that x, =0 and 1 < i, < k while x, < 1. Thus

\{,(ihiz"--:is _ Z Y Ljaseoods @ Ljaseoisds
0, %5500y X 2€ja< - <jgn \Ipri2seesis 0, x5,...,x;

The last s rows of the (s + 1) x s matrix

Y[l,_il,...,.i,]
| P

arelinearly independent and the first row is not identically zero. Thus there exist
Joa< +- <jyin {iy,..., i} such that

Ly oot
Y(_ J,z j_’)>0.
TP PYRNON

\‘I",( 19j,2a ’]; ) > 0’

0,%5,...5 X,

we obtain the desired result. The similar analysis proves the strict positivity in the
case where x, = 1, I < i, < n, and x; > 0.

Finally let us assume that x;, = 0,1 <i; <k and x,= 1,1 <i; <n(s>2). We
first digress to prove a general result. Assume Bisanm X s(s = 2) TP (TP,) matrix
of rank at least 2. If the first and last rows of B are not identically zero, then they are
necessarily linearly independent. For since B is of rank at least 2 there exists an
ie{2,...,m}and 1 <j, <j, <ssuch that

B(,.l ,') > 0.
1 J2

If the first and last rows are linearly dependent, the last row must be a positive
(because of the TP property) multiple of the first row, and i < m. Thus

B(}'_" ,’) > 0.
1 J2

Similarly

Since
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B(’,l m) <0,
1 J2
Y[l, 1:1,---’1::9 n]
fseees iy
()0
ll""”s

Because i; <k and i, > I, both the first and last rows are not identically zero.

Thus the first and last rows are linearly independent. There therefore exist
{f2s--+sJe-1} E {i1s...,is} such that

Y(LJZs ceesJs~1s n) > 0

by igseeendomy s

But then

contradicting the TP property.
The (s + 2) x s matrix

is TP and of rank s since

Since
wf 1, Jo0eeesfocis
\F J2 Js 1 > 0,
0,%5,.00s X151
we obtain the strict positivity of the associated minor of V. [ |

As an example of this observation we consider the Chaiken algorithm

q

do

Here the matrices are

1+0 130

Ado={% 3 0}, A ={0 2 %

0 %3 0 43

The fundamental curve ¥: [0, 1] — R3 is easily seen to be

-9
W) =f t(1l—1)+3
3
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and the components of ¥ form the pieces of the quadratic B-spline ¢ given by
¥ 3(x), 0<x<l,
o(x) =1 Yy(x — 1), 1<x<2,
‘ll1(x_2)’ 2£x$3,

(-] [+]
The Y matrix in this case is
1o
Y=J0 1 0
04}
and
100 I
Ado=f% + 0], A ={0 3 %
P yod 00 1

are the Bernstein-Bézier subdivision matrices.

Clearly Y is totally positive and it is straightforward to confirm (2.4). The matrix
Y converts a quadratic polynomial expressed in B-spline form to its Bernstein-
Bézier form, specifically we have

(1 -1
¥@) = YT 2e(1 — 1) | = YTH(0).

t2

i, i
gl S0
Xiseeey Xg

unless s =1 and x; = 0,i; = 3 or x, = 1,i, = 1. This example admits generaliza-
tion to arbitrary degree B-splines, but we do not dwell upon it here.

We make one further observation in this section. For this purpose, we recall the
definition of stationary subdivision [9]. We are given a mask {a;: j € Z} which is
assumed to have only a finite number of nonzero terms. Given control points
{cJ:jeZ} we form new control points {c}:je Z} by the rule

Note that

-]

1__ 0
¢ = Z ;- 21 C -

-0

If we suppose for convenience that the nonzero elements of the mask are confined
to {ag,..., a,}, n = 1, then we may express a step of stationary subdivision in MSS
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form as
Cl al aS a2n—l co
1 0
ag a, Azp-2 .
= . . . ’
Cont2 ’ Cone
A_p+2 Gopia a,
el Qg a, Azp-2 &0
0 0
. a.; a, tt Q2p~3
. = . . 3
1 . . . o
Conty Cent1
Q_psy Qopes 0 Gpy

Therefore, Ao = (A?i :J= 1 Al = (Ab)ij:l With
Agzzalj-‘i’ A'-i'-’-":azj..l'_l, i,j= 1,...,n.

We assume that A,, A; are nonsingular and so the functional equation for ¥,

(2.6) \I’(i—;—f) =AT¥(), ec{0,1}, 0<e<1,

has the equivalent form

Q.7 <p<§) =Y aplx—j), —o0<x<ao,
ji=0

where @(x) = 0, x ¢ [0, n], and otherwise it is given by the formulas
ox) =y, (x—10), I<x<l+1, I=01,...,n-1,
ql(x) = (IﬁI(X), AR} !pn(x)),

see [9] When Y 72— dy =3 2 _  dy— 1 = 1, then 4, 4, have row sums one and
if the corresponding MSS converges, then ¢ is continuous [9]. This also follows
from the hypotheses that the functional equation (2.6) has a continuous solution,
ag # 1,4, # 1, and the nonsingularity of A,, 4,. To see this first note that
¥.(0) = 0, ¢,(1) = 0 by (2.6) and s0 ¢ is continuous at x = 0 and x = n. For the
integers interior to the support of the mask we introduce the n x n + 1 matrix

a, a ttt Bopya Qops
B=| % @7 fowes fone
Ayp-y Ayp-2 **° a, a,-

The first # columns and n rows of B are A2, while its last n columns and n rows are
AT. Thus from the functional equation (2.6)

¥ (1)
VD=, \ /0
B : =|:
Y1) ~ ¢, 1(0) 0
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Since ¥,(1) = ¢,(0) = O the nonsingularity of 4, and 4, imply
¢i+1(l)=¢l’(0)s i= 1’“""'— 1,

which are the conditions for continuvity of p at x=1,...,n - 1.

In [9] it was proved that when aq,...,a,>0,n>2, and )2, a, =
Y e dy;-, = 1, there exists a unique solution to the functional equation (2.7)
which is continuous and satisfies Y% _ ,o(x — j) =1 (see [4] for multivariate
versions of this result). It was left open in [9] as to whether or not ¢(x) > 0, with
strict inequality if and only if x € (0, n). We prove that this is indeed the case.

Proposition 24. Let Y2 _,a,;=)2 _ a3, =1,4;>0,j=0,1,...,n zero
otherwise, n > 2. Then there exists a unique continuous function ¢(x), —0 < x <
o0, satisfying the functional equation

i==aw

x .4
(p(E) = Y apx~i), ~® <X < 00,
which is strictly positive on (0, n), and zero otherwise.

Proof. We need to show that forn > 2
Yi{x) >0, xe[0,1], i=2,...,n—1,
¥i(x) >0, x € [0, 1),
Yau(x)>0, xe(0,1].

We begin with the case where n is odd, n =2m + 1, m > 1. In this case, the
(m + 1)st column of Ay is @2+ 1,.--, @,)T and the (m + 1)st of A, is (@a,,, ... Go)"
Hence from Theorem 1.1 we conclude

Q0
Y(t) = lim AT --- ATY©0), =Y g27%
k=w k=1
and so AT¥(0) = ¥(0). ¥(0) is the nonnegative eigenvector of A. Hence (t) > 0,
i=1,...,nte[0,1]. Now, it follows that ¢, ,(t) > 0, t € [0, 1], because
2m+1

Ums1(t) = kz Al?,mn'»[’k(Zt) >0
=1

and since there is no 4 € [0, 1] with ¥(¢,) = 0. Similarly, we can show ¥, ., is
positive on {4, 1]. When n = 2m the same argument shows that y,(t) > 0 for
t [0, 1]. Thus we have established that on some open interval of length greater
than one ¢ is positive. Now it is an easy matter to “propogate” positivity by the use
of the functional equation (2.7). Specifically this equation implies that whenever
¢(x) > 0 on some interval I, :=(a, b) = (0,n) of length greater than one then
@(x) > 0 on the interval ( J1-o(j + (a, b))/2 = (a/2, (n + b)/2) =4I, + X0, n). The
iteration I, =4I, + %0,n), k=1,2,...,clearly converges to (0,n) thereby
establishing the positivity of ¢ on (0, n). ||
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In [9] it was shown that when {a;: —0 < j < o0} is a Polya frequency sequence

S'(Z c;o(- —j)) <S8 ({ej: ~0 <j < o0}).
Here S™({c;: —0 <j < 0}) is the number of strict sign changes in the vector
{..., €1, €0, Cy,-..}, and similarily S™(f) counts the number of sign changes of a
function f on (— o0, o0). We conjecture that in fact under the same hypothesis ¢
satisfies the following determinantal inequalities. Let K(x, y) = ¢(x — y). Then

K(-x.h---’-?‘r) 2 0
Pgyesey iy
and strict inequality holds if and only if [ J{., K(x;, i;) > 0. The techniques used in

the proof of Theorem 2.1 do not seem to carry over to this problem.

Added in Proof: In the meantime the conjecture has been proved by T. N. T.
Goodman and C. A. Micchelli, On Refinement Equations Determined by Polyd
Frequency Sequences, preprint, 1990.

3. Corner Cutting and Total Positivity

In this section we give a geometric interpretation to our central hypothesis that the

[ ]
1

is TP. But first we demonstrate that the variation-diminishing property of the
associated fundamental curve follows easily from this condition. For this purpose,
we observe that the successive control polygons generated by MSS can be
described in the following way. We define inductively rectangular matrices
A k=0,1,2,...,0f size 2¥*'n x 2*n. For k = 0 we set A° = A4 and generally

A0
Ak+1 = N
[0 ]
It follows that 4* is TP whenever A4 is TP. Next we generate successive control
polygons by the formula
@3.1) &+t = gd*, d°=ceR"

Thus d&* = (d§,..., d%_,) e R**" and by construction df = 4, _, --- 4,,¢, where
l= 8"_1 + 28*-2 + .- + 2,‘-180, 8_,6 {0, 1},j = O, 1,..., k.

Let ¥ be the fundamental curve for MSS based on A and A,. Ifr is any integer
such that

wecanfindpointsO < t; < --- <t,,; < Isuchthatthefunction f(2) == 5., cf ()
alternates in sign thereon, ie, f(t)f(t;+.) <0, i=1,...,r. We now choose



182 C. A. Micchelli and A. Pinkus

integers I such that 0 < I} < -+ < [*' <2 k=1,2,...,and

lim L"

=t, i=1..,r+1
k-»nozk '

Using the variation diminishing property of totally positive matrices, see [7], we
get by (1.10) for k sufficiently large,

r= S'(d;‘}‘,..., d';‘;n) <S7(@) <S8 (c)

In other words when A is TP we conclude that

S'(/i c,a//j) S8 (Cpyeees Cal
j=1

We now turn to the main subject of this section. We demonstrate that each step
of the iteration (3.1) can be viewed as a corner-cutting procedure. This leads us to
the factorization of rectangular TP matrices as a product of a certain type of one-
banded matrices. To explain what we have in mind we recall some terminology
from [6].

Given the control polygon ¢ = (¢4, ..., ¢,) € R™ cutting k corners from the right,
1 < k < n— 1, means forming the new control polygon d = (d,,...,d,) e R by

(3.2) d;=c;, j=1L..,n—k

d1=2.1c1_1+(1—2.j)cj, j=n—k+1,...,n,
for some 0 < A;< 1, j=n—k+1,...,n Thus in matrix terms d = L*¢ where
L* = (%) ;= is a nonsingular lower triangular one-banded row stochastic matrix

with Lf;_; =0,i=2,...,n—k, for k=1,...,n — 2. Similarly, cutting k corners
from the left has the form d = U*c where d is given by

(3‘3) di = #jcj + (1 - ”])cj+ 1 j = 13 (AR ] ks
dl=c1, j=k+1,...,n,
andO<y; <L j=1,...,k
In each case above the corner-cutting matrices are square. In contrast corner

cutting from both ends increases the number of control points by one. This
procedure is defined by the equations

(349 d, =c¢y,
d.’=vﬁj_1+(1—vj)cj, j=2,...,n,
dn+1 =Cp»

where 0 <v; < 1,j=2,...,n Thusin this case d = B"c where B"isan(n+ 1) x n
matrix with two nonzero “diagonals.” Our goal is to show that any rectangular TP
matrix can be essentially decomposed into these basic factors.

Theorem 3.1. Let A be anm x n, m = n, TP matrix. Then it can be factored as
3.5 A=DB™...B"*L!'...*"1U'... U = DBLU,
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where D is a nonnegative m x m diagonal matrix and the other factors have the
following properties. The matrices L* = (L)} ;,, k = 1,..., n — 1, are lower trian-
gular n x n one-banded stochastic matrices and L¥;_, =0, i=2,...,n—k for
ke{l,...,n — 2}. The matrices U* = (UY) ;= 1,k = 1,...,n — 1, are upper triangu-
lar n x n one-banded stochastic matrices and Ut., =0, i=k+2,...,n, for
ke{l,...,n—2}. Forke{n+1,..., m}, the matrices B* = (B%)t. X2 | arek x k —
1 stochastic matrices with Bf; =0, if i #jor i #j + L.

Remark 3.1.  As shall be shown in the proof of Theorem 3.1, the factorization (3.5)
is just one of many such factorizations. In fact, it is analytically one of the more
involved. We have chosen it because of its geometric interpretation and connection
with (3.2)-(3.4).

Before proving Theorem 3.1, we consider various consequences. Note that by
construction B;; =0fori<jandi>j+m—n.

Proposition 3.1. Assume A is an m x n (m > n) TP matrix, and
3.6) A=DB™..-B"*iL! ... [""yt... U~ = DBLU
as in Theorem 3.1.

() Y31 Ay=Dyfori=1,...,m Thus, if A is stochastic, then D = I.
(i) IfA;j=0,5j=1,...,n,then Uy; =0,k = 1,...,n — 1. Thus, in particular,
Ul=1
(iii) Ifrank A=nand A,;=06,,,j=1,....,n,then L¥ ,_, =0,k=1,...,n—1.
Thus, in particular, L' = I.

(v) If
1..., - [ EERK]
A( , n>’ A(m n+1 m) >0,
I....,n I,...,n
and A;;=0fori<jand i>j+ m—n, then necessarily L = U = I.

Proof. (i) Since each of the B!, L* and U* is stochastic, it is readily verified that
Z}=1 A” = Dil'! i == 1,...,m.
(ii) First note that since U is upper triangular, we get

A= Du(BL)uUu-

Furthermore, from (i), A;, = D,, = 1, and since B, L, and U are stochastic, we also
obtain (BL);, = U,, = 1. Thus we conclude that U; = é,;,j = 1, ..., n. Proceed-
ing further we observe that

Uy = Uh U'Hl-
Again using the fact that each U* is stochastic, we obtain U%, = LLk=1,...,n— 1,
and the result follows.
(iii) Since rank A = n, both L and U are nonsingular. Thus U; > 0,i=1,...,n.
From (i) we conclude that D, = 1. Because B is stochastic, B,; = ,;,j = 1,..., n.
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Consequently we obtain
6"1- = Am] = Z LnkUkj'
k=1
Forj=1,...,n—1,

0= Y L,U;=L,;U

nj™ jj
k=1

Thus L,; =0 forj = 1,...,n — 1, which also implies that L,, = 1. Now,
I = Lml = L:n"' L:n_l'

Since each L* is stochastic, we have LY, = 1, k = 1,..., n, and the result follows.

(iv) Since
0< A L...,n — (DBL) L,...,n U 1,...,n
1,...,n 1,...,n 1,...,n
and DBL is TP, we get (DBL); > 0,i=1,...,n. Fori <},

0 = AiJ Z (DBL),',-U"J'.
Thus U;; =0for i <j,ie, U =1 Now,

- yeees - L..., yenns
0<Am n+1 m=(DB)m n+ le n
1,...,n 1,...,n 1,....n
and thus (DB)j4p-n;>0,i=1,...,nForl <j<i<gn,
0= Ai+m—n.j = (DB)i+m—n.iLij'
Thus L;; =0forj<iie,L=1I ]

Proposition 3.1 leads us to the following result concerning matrices considered
in Theorem 2.1.

Corollary 3.1. Let A,, A, be nonsingular n x n stochastic matrices such that

(2]

is TP. Suppose further that the first row of A, is (1,0,...,0), the last row of A, is
,...,0,1), and the last row of A, and the first row of A, are the same. Then

A= an"'B'H'le"'L"-le"' Un-l,

where the B', L*, and U* are as in Theorem 3.1. Furthermore, U%, = LX ,_, =0,
k=2,...,n—1,whileB}f =1,i=1,...,n,B¥_, = Li=n+1,...,2n(and B} is
zero elsewhere).

Proof. Let A be the 2n — 1 x n matrix obtained from A by deleting the nth or
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(n + 1)st row (which are the same). Apply Theorem 3.1 and Proposition 3.2(i)-(iii)
to A. For B*" as above, A = B*"4. |

In proving Theorem 3.1, we first recall how to factor r x r strictly totally positive
(STP) matrices. In doing so we review certain results from [3], [5], and [8].

Let A be anr x r STP matrix, i.e., all minors of 4 are strictly positive. Then, as is
well known, 4 can be written in the form

3.7 A=LDU,

where L is a unit diagonal lower triangular matrix, D is a strictly positive diagonal
matrix, and U is a unit diagonal upper triangular matrix. In fact L, D, and U are
explicitly given by

(0, i<j,
L--= ere "‘,. ,'-',.
U b [ b NS
L 1,...,] - 1,} 1,...,}
(0, i#j,

D;; = L...,i I...,i—1 o
LA(I,...,i>/A(1,,,,,i_1>’ =]
[ (L,...,i=1,i 1,....1
A - 1) 3 yoney . .
y= (1,...,i—1,j>/A(1,...,i>’ P=)

U
0, i>]

and

As it turns out, if 4 is STP then both L and U are TP. Even more, from Cryer [5]
we know that L and U are what Cryer calls ASTP, i.e.,

)

19++-sJk

o) o
1,...,}*

ifand only if i; <j,,..., i <j,. This result is also a consequence of what we prove
below.

Since L and U are triangular (unit diagonal) matrices, each can be factored in
many ways as a product of r — 1 unit diagonal one-banded matrices. One such

factorization is given on p. 167 of [8].
We restrict our remarks to L. Parallel arguments apply to U.

Proposition 3.2. Let L be a unit diagonal r x r lower triangular ASTP matrix. Then,

L[l fr'=[r-1. 1
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where each [¥, I* is a one-banded unit diagonal lower triangular matrix such that

LA,:."‘.,1=0, i=2..,r—k k=1,...,r=2,

3.8 N

(38) Lk, >0, i=r—k+1,...,r, k=1,...,r—1,
and

(39) E:"‘i_l >0, i=2,...,k+1, k—"—'l,...,r—l,

Lll",l"'].:()’ i=k+2,...,r, k=l,...,r'—2.

Proof. At the first stage of the factorization process we eliminate (make zero) the
(r, 1) element of L by using either the (r — 1)st row or the 2nd column of L. In this
way we express L either as

-

L=[L1%
where
1 O 0 0 0
0 1 : x 1
I:l = . : N y L¥ =
0 0 1 : x x
0 0 x 1 0 x x 1
(by using the (r — 1)st row), or as
L=L*[!
where
0 .- .. 0 1 0 -« ... 0
x 1 : x 1 .
L** = , L'=]0 0 1
x x 1 O
0 x x 1 0 - .. 0 1

(by using the second column). This process can be repeated. At every stage we use
either row or column elimination to eliminate successive off-diagonals, starting
from the left. For our purposes here, we use either row elimination or column
elimination throughout. In this way, by row elimination we get

L=[L'...fr1,

where [* is a unit diagonal one-banded lower triangular matrix satisfying
L oi=0, i=2...,r—k k=1,..,r—2

Using column elimination we obtain

L=Er_1 ...El’
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where L* is a unit diagonal one-banded lower triangular matrix satisfying
E:"','._1=O, i=k+2,...,r, k=1,...,r—2.

It remains to show that all possible nonzero elements of L* and L* are in fact
positive. It actually suffices to assume that

LC+:W”L+$>O I=1,....,r—k k=1..,r—-1

Because of the zero elements in LX, k = 1,...,r — 1, we readily see that
0<Lj+1'1=£;:{'j_””r2"11, j=1,...,r—1.
Therefore, starting with j = 1 and proceeding successively we conclude that
'ZTlls “3'—22’ [EER] L:,r— 1 > O'

Thus we have shown that the element of each L*, k = 1,..., r — 1, on the secondary
diagonal after the last zero, is positive. Now we proceed one layer down the
secondary diagonal by considering 2 x 2 minors of L. Since

I+ 4L,1+2\ o _/1+1,1+2 rro1f23
= I o LT l—_- revgd TT Ly
0<L( 12 ) L ( Li+1 ) L (1’2, L2,...,r=2

we get
- 2,3 - r—Lr
r=1f = 2 H
L (1,2)""’L(r—2,r—1)>0'

Based on what we have already proved and since
cpetfVHLI+2Y o ol
L ‘( Li+1 ) = L7+11,1 ;+lz,1+1,
we conclude that
L5, L2y >0

We continue in this manner. Finally, to show that f,:",.l_l >0 we use the
r—1xr—1minor of L and

2,...,r - 2. . ~
0 ’ ’ =Lt A = fr-l...fr-1 .
<L(1,...,r—1) L (1,.__’,_1) Loy - Liioy
These facts also follow from explicit formulas for the entries of the factors

LY,..., L'~ in terms of minors of L. However, as this is not important to use here
we do not elaborate on this point.

These same arguments applied to the factorization
L= Er- S ZI
give us

Lk >0, i=2..,k+1,
forallke{l,...,r—1}. n
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For easy reference we state the analogous factorizations of U. These easily follow
by parallel arguments, or more simply by applying Proposition 3.2 to the lower
triangular matrix UT.

Corollary 3.2, Let U be a unit diagonal r x r upper triangular ASTP matrix. Then
U=0rte 0 =0t ... 051,

where each U*, U* is a one-banded unit diagonal upper triangular matrix, and

Of,;=0, i=2..,r—k k=1,.,r-2,

U5,:>0, i=r—k+1,..,r k=1..r—1,

U5.,:i>0, i=2,..,k+1, k=1..,r—1,

311 ~
(311) Ut1.:=0, i=k+2,...,r, k=1,...,r—2

(3.10)

If A is merely TP, then there exists, for each £ > 0, an r x r STP matrix A4, such
that

lim A, = A.

&0
We can factor 4, as above in (3.7)
A.=LDJU,.

By premultiplying U, by a diagonal matrix and postmultiplying L, by a diagonal
matrix we can assume that L, is ASTP with column sums one, U, is ASTP with row
sums one, and D, is a positive diagonal matrix. It therefore follows that

) Z__.:l (Ac)ij = _Zl (l_)c).ii'

Since all elements of L,, D,, and U, are now uniformly bounded, we can extract
convergent subsequences to obtain

A=LDU.

The factors L, D, and U are now only assured of being TP, as zero elements may
result from the limiting process. The same argument applies to the factorization of
A, into one-banded factors. Thus in the limit we can write any r x r TP matrix as

A =£1“_I:r-1DUr-l._. 01

or

A=Irr...[Ap0r...Jr1
or

A=Dt DOt O
or

A=L'...[r-'DO*... O

Here the U* U* are row stochastic, while the [*, L* are column stochastic.
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Four additional factorizations are possible by considering the inverse of A.
Specifically, if 4 is STP then so is EA™!E where E = diag(l, —1,...,(—1)""1).
Thus we may factor 47! as

A~! = ELDUE,

where L and U are ASTP and therefore A = (EU " 'E)D~Y(EL™'E). Now, both
EU7'E and EL™'E can each be factored as above in two ways as products of
one-banded factors. Note that what is obtained is a UDL factorization. For a
matrix 4 which is only TP the limiting argument used above also applies to these
four factorizations.

With this background in place, we now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Assume A = (4;;)=,}-, is an m x n (m > n) TP matrix.
LetA = (A4;)7 =1, Where

- A J<n
A, ={"" ’
v {0, j>n

Let 4, be an m x m STP matrix such that lim,_,. A, = 4. We factor 4, in the form
(3.12) 4, =L0,

where L, is a unit diagonal lower triangular ASTP matrix and U, is an upper
triangular ASTP matrix. Let L, be the submatrix of L, composed of its m rows and
first n columns. Let U, be the matrix obtained from the first n rows and columns of
U,, while 4, is the matrix obtained from the m rows and first n columns of 4,. We
claim that 4, = L,U,. To see this we recall that (J,),; = 0if k > j. Thus forj < n,

(A:)ij = (;{z)ij = k‘_z:l (E:)ik(Uc)kj = kz-:l (Ez)ik(Uc)kj = kz, (L:)ik(U s)kj'

U, is an upper triangular ASTP n x n matrix and can be factored in the two ways
previously mentioned. We now work with L,.
From our previous analysis,

¥ —7Tm-1 i
L=L L,

where each I* is a unit diagonal one-banded m x m lower triangular matrix
satisfying (3.9). We let Lk be the restriction of ¥ to its first n rows and columns,
fork=1,...,n— 1. Similarly, B¥, k = n + 1,..., m, is the restriction of [*~! to its
first k rows and k — 1 columns. Thus (Bf);, (B!)4,,; > 0, while (BY),;=0 for
i¢ {j,j + 1}. Let us show that

(3.13) L =Br...Brripr-t... LL
Since L, = L™~!...L! we haveforj<n

(Lz)ij = (Ec)ij = z (Z:n—l)ik,(izl_z)klkz v (Ecl)k,,.-,.j-

"lv---vkm—z
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Suppose k,,k,,...,k,-, gives a nonzero product in the above sum. Since
(L2t LY,;=0if i >jand i > n, it follows that k,,., < n. Furthermore, since
each above factor is nonzero, we have k; — 1 < k;,; <k;. Thus, in particular,
kpopsoo s km_pareall less thann,and k..., <n+ Lk, .2 <n+2,....k <
m — 1. Thus, by our definition, (3.13) follows. Combining this conclusion with our
previous analysis, we get the factorization

Az = B:l tec B:+1£5D£Uc’

where each B is as defined above (with unit upper diagonal), L, is an n x n ASTP
lower triangular unit diagonal matrix, D, is a positive diagonal n x n matrix, and
U, is an n x n ASTP upper triangular unit diagonal matrix.

We obtain the factorization

A =Br...Btift...[»=1p OL... Ont

by applying (3.8) to L,, and (3.11) to U,. Note that (L¥),;,., =0,i=2,...,n —k,
forke{l,...,n—2}, while (0%),_, ;=0,i=k+2,...,nforke{l,...,n—2},as
is desired. Since the row sums of all these factors are nonzero, we can rewrite 4, as
(3.14) A,=DBr-- B[ [0 O,

where now the BY, ¥, and U* are all stochastic. This is easily done by pre- and
postmultiplying by diagonal matrices. Note that Y 7. ,(4,);; =D, i=1,...,m,
so that all entries in each of the factors are uniformly bounded. We now pass to the
limit (¢ - 0*) in (3.14) through a subsequence and verify (3.5). n

Remark 3.2. One of the other factorizations of A satisfying the conditions of
Theorem 3.1 is worth mentioning. Such A may also be factored in the form
A= DLI “'L"_IB'"--' Bn+1u1 v U"_l,

where D and the U* are as in Theorem 3.1, the L* are m x m lower triangular
one-banded stochastic matrices with

Lii-y =0, i=2..,m—k,

while the B* are k x k — 1 stochastic matrices with BY; = 0ifi # jorisj+ 1.1f A
is as in Theorem 2.1, then D = L' = U' = L.

4, Reparametrized Bernstein Polynomials

We end this paper with a comment concerning some specific corner-cutting
strategies which provide concrete variations on de Casteljau’s method mentioned
in the introduction. Beginning with an initial control polygon ¢® = (¢, ..., c2), we
form the weighted averages

@n d=-x}"t+xelil, r=01,....m—1 I=1,..m

where x is any number chosen in the interval (0, 1). The case x = { is de Casteljau’s
method (1.1). In the general case the (m + 1) x (m + 1) matrices for the corres-
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ponding MSS may be identified as

(Ao(x))yj = C)(l — x)7ixd, Lj=01,....,m,

C):O if j>i
and

(4.2) Ay(x):=PnA(l = X)Py,

where P, is the permutation matrix defined by (P,);j=06; m-;,4j=0,...,m
(Note that these reduce to (1.6) and (1.7) when x = 1.) Thus we have

©5,...,e0 = Ag(x)?

where

and
(C'S, LA Cg) = Al(x)co'

To identify the limiting curve we introduce the vector

O =G0 1T Y7 L YD)

in R™*1, where y == (y,, 7,) is an arbitrary real vector in R2. Note that {u(y): 7 € R?}
span R™*!. It follows directly that

Ao(n(?) = W(To(x)y),

1 0
To(x)==(l ., x)

A (0p@) = KTy (x)),

where

and similarly by (4.2),

where
Ty(x)s= Py Ty(1 — x)Py.

The matrices Ty(x) and T;(x) are stochastic and have a positive column. Hence by
Theorem 1.1 there is a continuous fundamental curve @(-|x): [0, 1] — R? defined
by the MSS determined by T; and 77,

@3) lim T, Ty =000, =Y 27,  en=(l...,)7eR"
k= i=1
Note that for x = § the functional equation for ®(-|$) shows that
ot|3) =1~ 10
Let us denote by ¥(:|x) the limiting curve for the MSS based on the matrices Ay(x)
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and A,(x). (Theorem 1.1 also assures the existence of W(-|x) as a continuous curve.)
Then we have from (4.3)
(), ¥(tIx))e, = lim A, (x)--- A, ()

k= w

= lim p(T,(0) - T, ()

k=

= u((y, ®(t]x))e;) = (3, D(t]x))"ep.

Consequently, by the Binomial Theorem we get
(t|x) = WH(@(t]x)),

Yo(yy, 12) = ((7;)7'{', (T)‘r'{'” i 2T (:)?’z")

is the Bernstein polynomial curve represented in terms of homogeneous coordi-
nates.

This example has wider implications beyond the geometrically apparent corner-
cutting procedure (4.1). We have in mind the following: for any y € R°*! we set
Py i, lale=oy + o b oy, @ =(8gye.., 80 y) €Z5FE, and form the
vector

where

B() = (0 |a] = m) € RY, N=("‘ N S).

For every (s + 1) x (s + 1) matrix T we define an N x N matrix by the equation

(44) w(Ty) = An(y).

Note that the coordinates of u(y) span all homogeneous polynomials of degree m
on R**1, Since each coordinate of p(Ty) is a homogeneous polynomial, the matrix
A is well defined by (4.4).

There is an elegant interpretation of the process of passing from the matrix T
to the matrix A by using the notion of the permanent of a matrix. For
every o, feZ5! with |a| =[B]=m we form the m x m matrix T(x, f) by
repeating o;, f; times the ith row and jth column of T, respectively. Then
A= ("t per T(x, B): o] = |Bl = m, o, B Z5}1), that is, for every ye R°*?

b
(TY)1=| |Z %iper T(a’ﬂ)s la|=ms aezs_:l, B!:aﬁl!"'ﬁs*»l!'
Bl=mF*

This formula follows from the well-known formula which has some relation to the
MacMahon Master theorem (sece [1]).

Theorem 4.1. For any k x | matrix C

8

X
(Cx), - (Cx) = Y, rn
i3

perC(B), xeR,
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where C(B) is the k x k matrix obtained by taking P; copies of the ith column of C.

Pick any two (s + 1) x (s + 1) stochastic matrices T, and T; which satisfy the
hypothesis of Theorem 2.1 and suppose ®:[0, 1]— R**! is its corresponding
continuous fundamental curve. Let A,, A, be the corresponding N x N matrices
defined by (4.4) and suppose that

Ph(3) = ((';‘)/1 e Z5, o] = m)

is the multivariate Bernstein polynomials in homogeneous coordinates A =
(A1s.--s As+,)- Then the Binomial Theorem in s + 1 variables takes the form

(o A" = (u(y), P
Thus, for every ye R** ' and t = Y 2., 27* € [0, 1], we have

Iim Aek Tt Az;u(}’) = hm u(,};k Ter ?;)}’)

= "'((ys (D(t))es+ l)
= (¥, ®(1))"ey
= (u@), PAOD)ey.

Consequently, the MSS based on the matrices A4,, A; converge to the curve
Wi(®(r)). The fundamental curve ® for MSS based on T, and T; furnishes a
continuous imbedding of [0, 1] into the standard simplex {i: 1= (4,,..., 4+1)s
2;>0,>35%1 2, = 1}, and @(t) provide barycentric coordinates at which to evaluate

the multivariate Bernstein polynomials.
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