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Descartes Systems from Corner Cutting 

Charles A. Micchelli and Allan Pinkus 

Abstract. This paper demonstrates that Descartes Systems can be conveniently 
generated from matrix subdivision algorithms determined by totally positive 
matrices. 

1.  I n t r o d u c t i o n  

A frequent paradigm in computer graphics is the representation of a curve by 
means of control points and, therefore, the association of the curve with a control 
polygon obtained by joining control points with linear segments. Mathematically, 
this means a curve representation is specified by scalar-valued blending functions 
~l(t) . . . . .  ~,~(t) through the formula 

W(tlc),= ,= (c, W(t)), 
i=l 

where 

c = (el . . . .  , c . ) ,  ~F( t )  , =  ( ~ q ( t )  . . . .  , ~k.(t ) ) .  

Here cI . . . . .  c~ are vectors (control points) in some s-dimensional linear space, say 
W. The control polygon is then determined by the composite vector c r R "~ and we 
can think of c geometrically as a polygonal line. 

Various algorithms for the manipulation and computation of such curves take 
the form of successive geometric alterations of the control polygon. In particular, in 
the case of the Bernstein bases 

~,~(t),=(7)t'(1- t)'-~, i= O, 1,...,m, 

algorithms for evaluating it'd(tic) either by subdivision or degree elevation or 
passing from a B-spline representation of a polynomial curve segment to its 
Bernstein form fails into this category. The common feature shared by these 
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algorithms is that the new control polygons are formed by successively replacing 
two adjacent control points by their convex combinations. We call this corner 

cutt ing because of its apparent geometric interpretation. A particularly striking 
example of corner cutting is the method of de Casteljau which gives us a direction 
for much of what follows in this paper. The de Casteljau algorithm begins with an 
initial control polygon c o o o = (% . . . . .  era) and then forms successive averages 

I 1.~_1- 1 1--1 (1.1) c,=2~,~, +c,+1), r = O , . . . , m - l ,  1 = 1  . . . .  ,m. 

There are two facts about this recursion which are the subject of generalization 
here. To explain them we display the de Casteljau points in a triangular array 

co c o 

c~ 1 Cm- 1 

(1.2) 

c~ 

and recall that the lower vertex of the triangle produces the value of the curve at 
t = �89 Thus 

(1.3) c~ = ~Fb(�89 u/~(tlc ) ~ 6 b = c~r 
2=0 

Secondly, the sides of the triangle (vertical and diagonal) give a refined representa- 

tion of the curve on the intervals I-0, �89 and i-�89 11 respectively. Specifically, we have 

~pb(tlc) = ~ 4V~(2t), 0 < t < �89 
..i=O 

(1.4) 

and 

(1.5) ~Fb(tlC) = ~ c~'-JV~(2t - 1), �89 < t _< 1. 
j = 0  

These last relations are the bases of a subdivision scheme for the computation of 
the whole curve Wb(tle). To explain this we focus on two m + 1 x m + 1 matrices 
defined by the equations 

~ : =  . . . . .  

and 

These 
explicitly as 

b O. m 0 A 1 c  .=  (Co . . . . .  c,D. 

matrices are lower and upper triangular, respectively. They are given 

(1.6) (Abo)~j = 2 - iC) ,  i , j  = O, 1 . . . . .  ra, 
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where 

C ) = 0  if j > i ,  

and 

(1.7) (A~),j = ( A o ) , ~ - ~ . m - ~ ,  i , j  = O, 1 . . . . .  m .  

A useful reformulation of the refinement equation (1.4)-(1.5) for the Bernstein 
representation is the functional equation satisfied by the curve 

. . . .  , 

given by 

wb(~-~)=(A:)rWb(t),  0 < t <  1, , e { 0 , 1 } .  

This functional equation was the subject of recent generalization [10]. The idea 
there was to rep!ace the control polygon c o by a new control polygon c t 
determined by the application of two matrices A~, e ~ {0, 1}, to c ~ Thus c t = 
(Ao c~ Ate ~ = Ac ~ where 

A =  At 

and Ao c~ Ate ~ are thought to "control" the curve associated with c o on the 
segments I0, �89 [�89 1], respectively. Iterating this procedure leads us to the 
following subdivision scheme. Suppose Ao, At are two matrices such that any 
sequence of products of Ao and A 1 applied to any vector converges to a multiple of 
the vector e..= (1, 1, . . . ,  1) assumed to satisfy Ace = e, ~ e {0, 1}. Then necessarily 
A r has a unique eigenvector f, normalized so that (f,, e ) =  1. If Aorfl = Arfo 
(compatibility relation), then we can unambiguously define a (fundamental) curve 
~F: [0, 1] ~ R n by the formula 

(1.8) lim A~k-.. A,lc = W(tle)e, t = ~ ek2 -k, ~F(tlc) = (c, ~F(t)), 
k ~ a o  k = t 

see [10]. It should be emphasized here that this Matrix Subdivision Scheme (MSS), 
although motivated by corner cutting as is indeed de Casteljau's algorithm, is itself 
generally not a corner-cutting procedure. 

The characterization ofn  x n matrices Ao, At which admit an MSS, in the sense 
that there is a continuous curve ~ satisfying (1.8), remains an open problem. 
However, when the As, 8 ~ {0, 1}, are stochastic necessary and sufficient conditions 
on Ao, At are available. (Here and throughout this paper, a matrix B is said to be 
stochastic if it has nonnegative entries and row sums one.) For our purposes it is 
convenient to state a simple sufficient condition on two stochastic matrices to 
admit an MSS, as it serves as a starting point for the observations we make here. 

Theorem 1.1. Let Ao, A t be stochastic matrices each with a positive column. 
Suppose fo, ft are the (necessarily unique) eiffenvectors of A~, A r correspondinff to 
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eigenvalue one normalized so that (e, fo )=  (e, f l ) =  1. I f  A r f o =  Atoll, then the 
functional equation 

(1.9) ~ ( ~ - ~ ) = A r ~ ( t ) ,  0_<t_< 1, ee{0,1},  

has a unique continuous solution satisfying (e, ~(t))  = 1, 0 _< t _< 1. Moreover, it is 
9enerated by the subdivision scheme 

(1.10) lira A,~... A,,c = (e, ~[l(t))e, t ---- ~ 8t2 -k. 
k--*~ k - ~ I  

Also, as a consequence 

(1.11) lim A r . . .  Ar~t'(x) = V(t) for any x E [0, 1], t = ~ ak2-*. 
k ~ o  k =  1 

More can be said about the limiting curve re, in particular its smoothness and 
the surprising relationship of this question to the existence of polynomial compo- 
nents in ~t' 1-10]. Our intention in the paper is to study features of the fundamental 
curve ~ which are motivated by certain properties of the Bernstein-B6zier curve 
~ .  

It was observed quite awhile ago by I. J. Schoenberg that the Bernstein 
polynomial bases have the property that they are variation diminishing on (0, 1), in 
the strong sense that 

(1.12) Z(Wb(.le)) _< S-(e), c ~ R ~'+ 1. 

Here Z( f )  counts the number of zeros of f on (0, 1) counting multiplicities and 
S-(e)  is the number of sign changes in the components of the vector e = 
(Co,..., cm), where zero entries are discarded. The proof of this fact is elementary 
and can be based on Descartes' rule of signs. To see this we write 

m m m t 

so that (1.12) follows from Descartes' rule of signs 

ZC~o a f  ) Lo,~ ' <_ S-(ao . . . . .  a.). 

This property of the Bernstein polynomials has a more or less equivalent form in 
certain determinantal inequalities, namely 

(1.13) V~ ( ix . . . . .  i, ' ) := det OF~,(x~)) >__ 0 
\xx . . . . .  Xs] td---1 ..... s 

for 0 < il < "" < i~ < m, 0 < xl < ... < x, _< 1. As we shall soon see, equality in 
(1.13) holds if and only ifxx = 0 and it > 0 or x, = 1 and i s < m. 

The actual relationship between determinantal inequalities and the strong 
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variation diminishing property is that for any continuous curve ~ : [0, 1] --, R m 

~ (  i l , ' " , i s  ~ > O, 
\ x l  . . . .  , x j  

for all 1 _< il < -.- < is -< m, 0 < x I < -.. < xs < 1, and all s if and only if 

z ( ~ ( . l e ) )  _< s - ( e )  

(here Z ( f )  counts only simple zeros o f f  on (0, 1)) and whenever Z(~(.le)) = S-(e) 
then the sign of ~t'(tle) for t near zero is the same as the sign of the first nonzero 
component of e [7, p. 223]. The inequalities (1.13) for the Bernstein curve says 
more in that the exact criteria for strict equality on [0, 1] is available. 

The question arises as to whether or not there are other triangular arrays (1.2) 
with associated fundamental curve ~F which satisfy all these three properties, (1.3), 
(1.4), (1.5), and (1.13). We will show, in contrast to the observation in !'2], that there 
is a wide class of curves having these properties. 

Our analysis of this question focuses on the 2n x n matrix 

A =  .41 . 

We will show that the essential property is that A is totally positive (TP), that is, all 
its minors are nonnegative, and both A o a M  AI are nonsingular. The fact that these 
properties hold for the Bernstein polynomials follows from the factorization of 

Ab rA ,-i 
--  [_.4]J 

implied by the de Casteljau's procedure. Specifically, A b can be factored as a 
product of one-banded matrices with nonnegative elements. Since each one- 
banded factor is easily seen to be totally positive, by the Cauchy-Binet formula [7], 
so too is the matrix A b. 

We now turn to some properties of the curve �9 of Theorem 1.1 when A is TP. 

2. Descartes Systems from Subdivision 

This section contains a proof of the following theorem. Its geometric interpretation 
as a corner-cutting algorithm is discussed in Section 3. 

Theorem 2.1. Let Ao, A1 be nonsingular n x n stochastic matrices such that 

A =  A1 

is TP. Suppose further that the first row of A o is (I, 0 . . . .  ,0), the last row of Aa is 
(0 . . . .  ,0, 1), and the last row of A o and the first row of A 1 are the same. Then there 
exists a unique continuous solution ~F: [0, 1] ~ R" to the functional equation 

~F([-~)=A:~P(t) ,  0_<t_< 1, ~ { 0 , 1 } ,  
\ ,- / 



166 

satisfying (e, ~F(t)) = 1. Furthermore, ~F is constructed as 

and moreover 
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ot~ 
lim A,k... A,,c = (c, ~F(t))e, t = ~ ek2 -k, 
k ~  k = l  

~ ( i t  . . . . .  i s ) >  0 
~,X 1, �9 ~ Xs 

for  1 < it < . . .  < i s < n, 0 < x t < . . .  < xs < 1, where equality holds i f  and only i f  
either x t  = O, it > 1, or x s = 1, is < n. 

We present the proof of this result in a series of observations which contain 
further useful information about  MSS when 

[A~ l A =  At 

is TP. We begin with some necessary faCts about TP matrices and related matters. 

Lemma 2.1. Let  A be a nonnegative n x n matr ix  such that Ai~ > O fo r  i <_ j and 
suppose x is an eigenvector with nonnegative components corresponding to the largest 
eigenvalue ;t o o f  A. l f  x k = 0, then x z = O for  all l >_ k. 

Proof. Since 

0 = 2oX k = ~. Akjx~ 

we get AkjX j = 0 and so x~ = 0 for j >__ k. 

Remark  2.1. Similarly, if Aq > 0 for i >_ j and xk = 0, then x~ = 0 for all l _< k. 

Lemma 2.2. Let  Ao, A t  be nonsingular n • n stochastic matrices such that 

A =  A t  

is totally positive. Then r r Ao, A t  have unique eigenvectors x ~ x t, corresponding to 
eioenvalue one normalized to satisfy ( e , x ~  = 1, respectively, and 

(Ao)o(At)~, > O for j < i. 

Proof. Since Ao, At arc nonsingular and totally positive their principal minors 
are nonsingular, i.e., 

..... '.) 
\ q , . . . ,  is ' U* . . . . .  A/ 
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see p. 89 of [7]. Thus, in particular, the diagonal elements of Ao and A~ are positive. 
Consequently, since for 1 < j < i < n 

O<<_A C J + n ) = l ( A ~  (Ao),, 
i (A1)n (aa)~i 

we conclude that (Ao)o(A 1)j~ > 0 as asserted. Specializing this observation we have 
that the first column ofA o and last column of A, are strictly positive. Since both Ao 
and At are stochastic their highest eigenvalue is one and A r ,  A r have unique 
corresponding eigenvectors as claimed. �9 

In preparation for the main result about the functional equation we note the 
following fact. 

I.emma 2.3. Let Ao, A ~ be nonsinflular n x n stochastic matrices such that 

A =  AI 

is totally positive. Suppose further that 

a r x  o = a r x  ~, 

where x ~ x 1 are the unique eigenvectors of A r, A r as referred to in Lemma 2.2. Then 

x ~ = (1, 0 , . . . ,  0), x x = ( 0 , . . . ,  0, I) 

and 

(Ao)ny = ( A t ) l / ,  (Ao)I. / = ~Stj, (At),j = 3,j, j = 1 . . . . .  n. 

Proof. Let k be the largest integer < n such that (x~ > 0. Then Lemma 2.2 
allows us to apply Lemma 2.1 to Ao r and conclude that (x~ > 0, j < k, and, of 
course, by definition we have (x~ = 0, j > k. Similarly, we let r be the least 
integer >_ 1 such that (xl),  > 0. Hence just as before (xl)j = 0, j < r, and (xl)~ > 
O,j>_r. 

We consider the vector x = (x 1, - ( x ~  -(X0)k) ~ R n +k. Then xA = 0 where 
is the (n + k) • n submatrix consisting of the first n + k rows of A. We recall the 

fact [7, p. 230] that, for any TP  m x n matrix B of rank n, the equation yB = 0 for 
some y ~ R m implies that S+(y) > n. (S+(c) is the maximum number of sign changes 
in the components of the vector c = (co . . . . .  cm), where zero entries are given 
arbitrary sign.) Therefore, since S + ( x ) =  r we have r > n, i.e., r = n. Similarly, 
we obtain k = 1. The form of x ~ and x 1 implies the remaining claims of the 
lemma. �9 

Proposi t ion 2.1. Suppose Ao, A 1 are nonsingular stochastic matrices and 

A =  AI 
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is totally positive. Then the functional equation 

qJ(t) = Aor~P(2t), 0 ~ t _< �89 
(2 .1 )  

~P(t) = A~P(2t - 1), �89 < t _< 1, 

has a nontrivial continuous solution if and only if  

(Ao)~j  = ~i~,  (A~) . j  = ~.~, ( A o ) . j  --- ( A t ) ~ j ,  j = 1 . . . . .  n. 

In this case, (e, ~P(t)) = 1, 0 < t _< 1, ~P(0) = (1, 0 . . . . .  0), and ~P(1) = (0 . . . . .  0, 1). 

Proof .  Suppose Ao, At satisfy these conditions. Then  x ~  (1 ,0  . . . . .  0) and 
x t = (0 . . . . .  0, 1) are the unique eigenvectors of  Ao r, A r for  eigenvalue one (both 
have positive columns) and 

A r x  o = AorxL 

Hence  Theorem 1.1 implies that  the limit 

lim A ~ . . .  A,,e = (e, ~( t ) )e  
k"* ~o 

exists where �9 is a cont inuous curve on [0, 1] satisfying (e, ~P(t)) = 1, 0 < t < 1, 
and  the functional  equat ion (2.1). 

Conversely,  if ~F satisfies the functional equation,  then it follows that  

(2.2) ~I'(t) = lira A~ . . .  A ~ ( x ) ,  t =  ~ a,2-' ,  

for  any x, t e [0, 1]. Thus  if we set x ~ ,= ~F(0) and x ~ ..= ~P(1) we get x ~ x x # 0 and 
A~x ~ = AoTx I as well as A~x ~ = x *, t e {0, 1}. Equa t ion  (2.2) implies that  (e, ~F(x)) is 
a nonzero  constant  which we normalize to be one. Hence  by Lemma 2.3 all the 
desired propert ies  of Ao and At follow. �9 

Next  we turn  to the principal consequence of  our  running hypothesis  that  

A =  A1 

is totally positive. The  following result and Propos i t ion  2.1 embody  Theorem 2.1. 

Proposition 2.2. Assume that the statements of Proposition 2.1 hold. Let 1 <_ i t < 
�9 .. < i ,<nandO<<_Xx< ... < x , < l , l < _ r < n .  Then 

�9 ( .  ..... ',)>_0, 
~ X  1) . . . ,  Xr  

where equality holds if  and only if either x~ = 0, i i > 1 or x, --- 1, i, < n. 

Proof.  We prove  this result by induct ion on  r. We begin with the case r = 1. Thus  
we will establish the inequalities: 

r  > 0 if and only if t e [0, 1), 

r > 0 if and only if t e (0, 1), 2 < i _< n - 1, 
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and 

#.(t) > 0 if and only if t �9 (0, I]. 

We have already pointed out that ~F(0) = (I, 0, .... 0) and ~F(1) = (0 ..... 0, I) 
and so by (2.2) (choosing x -- 0) we get ~F(t) _> 0 for all t �9 [0, I'I. Also, from the 
form of ~F(0), ~F(1), we can restrict ourselves to t �9 (0, I). To show ~1(t) > 0 for 
t �9 (0, I) we expand t in its binary representation 

co 

t = ~ 8k2 -k. 
k=l 

Choose the least integer I_ I such that e, = 1, r < I. Then s~---0 and y~,--- 
2 l -  t(t -- 1/2 . . . . .  1/2 t -  t) �9 [0, �89 Fo r  I - 1, Yl = t r (0, �89 and therefore 

~x(t) = ~ (Ao)~t~'k(2t). 
k = l  

If ~q(t) = 0, then, by Lemma  2.2, ~F(2t) = 0 and therefore by (2.2) (with x = 20  
q '  = 0, a contradict ios .  When 1 > 2 we use the equat ion 

and therefore 

#,(t) = 
k=l 

~ll(t ) ~_~ ((al)11)l-1~11(Yl) > Oo 

Thus ~l(t) > 0 for t �9 (0, i). Similarly to show that ~,(t) > 0, t �9 (0, I), we let I be 
the least positive integer /_ I such that e, = 0, r </. Then e I = I and zl:= 
2t-lt �9 (�89 I]. If I = I, then t e [�89 I) and we use the equation 

r = I) 
k=l 

which implies r > 0 because (At)~, > 0, I _< k _< n, and ~F(x) ~ 0 for all 
x �9 I'0, l'i. When  1 _> 2 we use 

= F. _> > 0. 
k=l 

Let us now consider the other components of ~F. For t e (0, �89 and 2 <_ i _< n - I we 
use the inequality 

r = ~ (Ao)u~k(2t) >--_ (Ao) ,# , (2 t )  > 0 
k = t  

while for t �9 [�89 1) we employ 

r = ~ (A1)k#k(2t -- 1) > ( A : ) : # x ( 2 t  -- 1) > 0. 
k = l  

This  takes care of  the case r = 1. 
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= 2 
\ t l ,  , tr l~jl <: "'" <jr~n 

= E 
2~j2< " ' "  <jr<_n 

I f  1 < i 1, then  since the last r 

, J, . . . . .  j, ) 
' \ i l ,  , i d  k 2 t l  - 1, , 2 t r  - -  1 

. . . . .  . . . . .  j, ) 
\ i I . . . .  , i ,  J \2 t  2 - 1  . . . .  , 2 t , - - 1  " 

rows of the r + 1 x r matr ix  

i ,_l 
are l inearly independent  and the first nonzero,  there exists some  2 < j~ < . . .  < 

1 ~ <  .~ - n, ll ~ {il . . . .  , i,}, 2 < l <_ r, such that  the first row and  r o w s j  ~ . . . . .  19 of T are 
l inearly independent .  When  il = 1 then we m a y  set /~ --- ik, k = 2 . . . . .  r. Therefore  
we have by  the T P  p rope r ty  of  AI and the induct ion hypothesis  

> > 0 .  
\ t x  . . . . .  t, \ q , .  , i ,  J \ 2 t z - 1  . . . . .  2 t , - 1  - 

Similarly,  if �89 is the right endpoin t  of  [tt, t,] we use the equa t ion  

1LI/( | 1 i 1 . . . . .  i, 2tl  . . . . .  2t ,_ x]" \ t l~  , t r  l~ j l<. . ,<jr_l<n--1  

We now assume inductively tha t  

~F( il . . . . .  i, ~ > O, 
\ x l ,  , x~/ 

for  1 _ il < - "  < iz < n, 0 < x t  < " "  < x~ < 1, and  all l < r - 1, where equal i ty 
holds if and  only if either x t = 0, i I > 0 or  x z = 1, i t < n. We consider  a typical  
m i n o r  of  o rder  r 

\ t l ,  . . . ,  

where l _ < i  1 <  ..- < i  r < n  and  0 _ < t ~ <  .-. < t , < l .  I f t  1 = 0 ,  then because 
~i(0) = 6a ,  i = 1, 2 . . . . .  n, we get 

~t(i, ,  i, . . . . .  i , ~ =  ~ , ,  {/i2 . . . . .  i , )  
\0 ,  t 2 , . . . ,  tr/  W\ t  2 . . . .  , tr 

and similarily if t, = 1, 

~Pf i l ' ' ' ' ' i ' - ~ ' i ' ~  = ,~,,,,~t',/il . . . . .  i,_ 1\}. 
" l J k t l , . . . ,  t , -1 ,  \ t l  . . . .  , t , - t J  

Therefore  the induct ion hypothesis  allows us to assume 0 < t~ < ... < t, < 1. 
The  first possibili ty we consider is ~ E [ t t ,  t,]. We dismiss the cases where �89 is an 

endpoin t  of  [ t l ,  tr] as follows. F o r  �89 = t t < . . .  < t, < 1 we use the Cauchy-Bine t  
fo rmula  and  the functional  equat ion  to obta in  
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Just as before we choose jo . . . .  .o ,J r - I  E { i l ,  . . . ,  i t }  , I __<jl 0 < . . -  < j o _ ,  _< n -- I ,  
such that  by induct ion it follows that  

�9 . . . .  ' i t )  > _ A ( J ~ 1 7 6  j~ . . . . .  J~ 
V(h\t z, , t ,  o k i, . . . . .  i, ,] \2 t  z . . . . .  2tr_ I ]  

O. 

The  case when �89 ~ (tl,  tr) is more  involved. Here  we choose an integer 1, 1 < 1 < r, 
such that  

tl  < . . . .  < t z < � 8 9  < ""t , .  

(When l = 1, we need only consider the possibility that  tz < �89 < t2 because we 
already considered the case t ~ = �89 We now use the functional  equat ion  and factor 

the n x r matr ix  qslr 1 . . . .  ,n|-i  as 
It, . . . . .  t d 

,eF 1 ..... nI= ATC, 
Ltl,  . . . ,  t, 

where C is the 2n x r ( b l o c k )  matr ix  

[ 4  ' .... ' n l  
c= l L2t"o"' 2t'j 

 =V ol 
L'hJ 

0 ] 
[ 1 , n  .... ] 

~P 2tl+ z - 1  . . . . .  2t r - 1  

By the Cauchy-Bine t  formula we have 

(2.3) ~(i t  ..... it~ ) A jl , . . . , j ,  j,, 
l : ~ j t  < " ' -  < j r  < 2n . .., r / "  

If k.'= I{jz,---,J,} n {I . . . . .  n}l > l, then by taking linear combinat ions  o f  its first k 
rows the matr ix 

cFJl . . . . .  J ' l  
L I . . . . .  r / 

has a zero row and therefore a zero determinant.  Similarly, 

JJ,...,Jg 
\ z  . . . . .  r / • ~  

if I{Jt . . . . .  j,} n {n + 1 . . . . .  2n}l > r -- 1. Hence (2.3) becomes 

i, 
v(i'  . . . . .  i ,  . . . .  ,i, 

~ / ~ 1 , ' ' "  , t r  l _ < j t < - "  <jl~n 
' < k l <  " ' "  < k r - t ~ n  

X +( Jl . . . . .  J' ~+( ]('1 . . . . .  kr- ,  1~ 
\ 2 t l ,  ,2tt] \ 2 t l+ l  -- 1 . . . . .  2 t , - -  
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The 2r x r matrix 

A[i~,...,i,,h,.i~ + n...,,,, i, + n] 

has the proper ty  that  its first r rows as well as its last r rows are linearly 
independent.  Hence for any choice of  I rows a m o n g  its first r rows there is a choice 
o f  r - l row vectors f rom the last rows for which the resulting set of  vectors is 
linearly independent.  Thus  for any choice of  integers 1 < jo < . . .  < jo < n in 
{q . . . . .  i,} there are integers 1 < k ~ < . . .  < k~ < n in {il . . . . .  i,} such that  

(j .... k,_, + n) A o .... ,jO, kO+n ' o > 0 .  

i1,- .- ,  it 

The other  qualification we must  make in our  choice is that  if tt = �89 we choose  
jo = n. This is easily done  since the last row of  Ao is nonzero.  Therefore we obta in  
by induct ion 

AfJl . . . .  , h ,  kx + n . . . .  , k~ + n'~ , / i l , . . . , i r \ [ | _ _  .o .~ o 
> -0. -0 

\ t l ' ' ' ' '  tr] L '1 . . . . .  ' r  / 
�9 0 .... .0 0 

. . . .  k~-t > 0. ~f.  J1 ,h . .'~tt' f kl, 0 X ) \ 2 t  1 . . . . .  2fi]  \ 2 h +  1 - 1  . . . . .  2 t , - 1  

There  remain the two cases t, < �89 or  tl > �89 In the first instance, we consider the 
binary expansion of  the vector t = ( q , . . . ,  t,) 

t = ~ i~k2 -~, 
k=l  

where ek = (e] . . . . .  ek), ek e {0, 1}. In  the case at hand e x = 0. We let m I be the 
largest integer _ 2 such that  ~k=  0 for k < ml. Thus E "  r 0 and  so its last 
c o m p o n e n t  must  be one. Either the first componen t  of  ~:]' is zero o r  we have 
e" '  = (I  . . . .  , I). In  the latter case we let m2 be the largest integer greater  than m~ 
such that  ~k = (1 . . . . .  1), ml < k < m2. Cont inuing in this way we can find a dyadic  
fraction z ~ [0, 1] such that  y~ = 2u(ti - r) e [0, 1], the first/~ b inary  digits o f  each 
fi, i = 1 . . . . .  r, agree with z, and �89 ~ [yl ,  y,]. We take # minimal so that  this holds. 
Therefore 

+(i I . . . . .  i,) ___ 2 (A,7... A ,~/Jx .... .  J,~v{Jx .... .  J, ~ 
~11 �9 �9 \ t ,  . . . . .  t, \ ' ,  . . . . .  ' , /  Ly,  . . . . .  y , /  

where el = 0. W h e n  0 < yt  < y, < 1, then we use what  we have already proved  to 
conclude that  

\Yl ... . .  Yr/ 
for all 1 < j ~  < ..- < j ,  < n. Since A~ .. .  A d is T P  and 

(A,, �9 Ad)(i. 1' ' ' ' ' it) �9 . > 0  
\ I  1 . . . . .  i, 
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we obtain our  desired result because/~ was minimially chosen with �89 e Ev 1, y,]. It 
may be verified that  we must  have 0 < Yl < Y, < 1. For  if yl  = 0, then since 
0 < tl < . . .  < t, < 1 we must  have had Yl = �89 at some previous stage. Similarly, if 
y, = 1, then at some previous stage we must have had y,  = �89 This completes this 
case. The remaining case t I > �89 is the same. 

This proves the proposi t ion  and Theorem 2.1 as well. �9 

We end this section with some remarks  on possible extensions of  this result. The  
first possibility we consider is the i terat ion of  more  than two matrices. Thus the 
functional equat ion takes the form 

i i + 1  
~P(t) = A r t p ( p t  - i), - < t <_ , i = O, 1 . . . . .  p - 1, 

P P 

and the iteration is based on p-adic expansions 

t = ~ ekp -~, e k e  {0, 1 . . . . .  p - 1}, tim A ~ . . -  A,,e = (e, tF(t))e. 
k= I k-~o 

This case is also consiaered in [10]. The  analysis necessary to extend Theorem 2.1 
is not  essentially different from what  we have already provided. It leads to the 
following result. 

Theorem 2.2. 
pn x n matr ix  

Let  A s, e e {0, 1 . . . . .  p -- 1} be nonsingular matrices such that the 

Ao 
A =  

Ap_ 1 

is totally positive. Suppose  fur ther  that  the f irs t  row o f  A o is (1, 0 . . . . .  0), the last row 
�9 o f A p _  1 is (0 . . . .  ,0,  1), and the last row o f A  i and t h e f i r s t  row o f  A i+l ,  i =  

O, I . . . . .  p -  2, are the same. T h e n  there exists a unique continuous solution 
~I': [0, 1] - ,  R n to the func t ional  equation 

t F ( ~ - - ~ )  =A~r~P(t), 0 < t <  I, t e {0,1,.  . . ,  p - -1},  

satisfying (e, ~F(t)) = 1, 0 < t <_ 1. Furthermore,  ~P(t) can be constructed as 

lim A s k ' "  A~le = (e, ~P(t))e, t = ~ ekp -k, tk ~ {0, 1 . . . . .  p -- 1}, 
k-~oo k= l 

and moreover 

/ f l  < i t  < . . .  <is<n,O<xl< . . .  
either x 1 = O, i t > 1 or x s = 1, is < n. 

�9 ( ' ,  ..... ',)>_0 
~'~I, �9 " �9 Xs 

< xs <- 1 where equality holds i f  and only i f  
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As a simple example of the above  we consider subdivision for the quadrat ic  
Bernstein-B6zier  curve by trisection. The  matrices in this case are 

l o o  

= = ~ A~ 0 ~  Ao ~ ~ 0 , A~ ~ 9 , = 

o o l  9 9 

and geometrically the process proceeds as a corner-cutt ing scheme: 

7 
Our  next remarks  are a useful weakening of our  hypotheses in Theorem 2.1. Let  

,4o . . . . .  Ap- 1 be a family of matrices satisfying the hypotheses of Theorem 2.2. 
Assume that  Y is a stochastic nonsingular  totally positive matr ix and set 

(2.4) A i = Y-  1,4iY, i = 0, 1 . . . . .  p - 1. 

Then associated with the matrices Ai, i = 0, 1 , . . . ,  p - 1, is a fundamenta l  curve 
q~: [0, 1] ---, R n which satisfies the functional equat ion 

�9 ( ~ - - f )  = Ar~F(t), O < t _ < l ,  ~ {0, l , . . . , p - -  1}, 

and 

lira A ~ . . .  A~e = (c, W(t))e, t = )-" ekp -k, ek~ {0, 1 . . . . .  p -- 1}. 
k~o~ k = l  

This curve is given by W = y rq , ,  where ~d is the fundamental  curve associated with 
the matrices ,41, i = 0, 1 . . . . .  p - 1. 

Although the matr ix  

Ao 

A =  

Ap-1 

is not  gcnerally total ly positivc, the curve qJ inherits positivity from ~ and more.  

Proposition 2.3. Assume the A~, i = 0, 1 . . . . .  p - 1, are given by (2.4) where the 
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Ao . . . . .  Ap- l satisfy the hypotheses of Theorem 2.2, and Y is a stochastic nonsingular 
totally positive matrix. Let  �9 denote its fundamental curve. Then 

~ , (  i~ . . . . .  i, ) >_ 0 
\ X  1, . . . ,  Xs 

for all 1 <_ i 1 < . . .  < is < n and 0 <_ x I < . . .  < x,  < 1 with equality i f  and only i f  
xl  = O ,  it > k or x~ = 1, i: < l, where 

k = max{j:  Ytj  > 0}, 

l = min{j:  y~j > 0}. 

Proof.  As previously  noted,  � 9  where ~ satisfies the conclusion of 
T h e o r e m  2.2. Thus  

\ X  1 . . . . .  X, l<_jt<'"<j.<n \11, , i s /  \ X I ,  ,XsJ" 

Since r is v P  a ,d  r  . . . . .  J ' ~ _ _ 0  for all ordered {jr~,~=~ and { ,~_~,x ~ it 
�9 \ X l  . . . . .  x~/ 

immedia te ly  follows that  

~F( i~ . . . . .  i ~ ) > O  
\ X  1 , � 9  Xs 

for all 1 < i 1 < . . . .  < i, < n and  0 < x 1 < --- < x,  < 1. Moreove r  because Y is 
nonsingular ,  

and  thus 

if 

> O, 
V 1  . . . . .  i ,  

v(il  ..... i.) >0, 
\ X  I ,  � 9  ~ Xs 

( ,1 . . . .  q'_ > O. 
\ X  I, �9 , Xs 

It  therefore remains  to consider  the cases where x~ = 0 and  i, > 1 or  x ,  = 1 and  
i s < n .  

Assume x I = 0 and  il > k. F r o m  the propert ies  of  ~ ,  (2.5) reduces to 

k,0, x2 . . . . .  xs,] 2<./2<-.- < i .~, ,  \ i t ,  i2 . . . . .  i~] \0,  x 2 . . . . .  x , ]  

Because i I > k, we have  Ylir = 0, r = 1 . . . . .  k. Thus  

\0,  x ,  . . . . .  x j  
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Similarly 

q , ( i t  . . . . .  i ' ) = 0  

\X 1, . . . ,  X s 

if xs -- 1 and  i, < I. 
I t  remains  to consider  the case where x 1 = 0 and 1 < iI -< k and /or  xs = 1 and  

l <  i s < n. By definit ion Ylk > 0 and  yz, = 0 for all r > k. Since Y is T P  and  
nonsingular ,  y== > 0 ,  i = 1 , . . . ,  n. I f  Yl, = 0 for some i < r < k, then 

:)<0 
a contradict ion.  T h u s  Yl, > 0, r = 1,..., k. Similarly Y~r > O, r -- l . . . . .  n. 

Assume for the m o m e n t  tha t  x l  -- 0 and  1 < il _< k while x s < 1. Thus  

~O, x2,'",XsJ 2<h<..-<J._<n \il, i2,'",iJ \ 0 ,  Xz, ,Xs/  

The  last s rows of  the (s + 1) x s mat r ix  

yF l, il . . . . .  is 1 

are l inear ly  independent  and the first row is not  identically zero. Thus  there exist 
J[  < "'" < A in {i 1 . . . . .  is} such tha t  

y(1,j'2 .... ,J's~ > 0. 
\ i l ,  i2 . . . .  , is/ 

Since 

',J;, ,J:% 
\0 ,  x :  . . . .  , x d > 0, 

we obta in  the desired result. The  similar analysis proves  the strict posit ivity in the 
case where x,  = 1, l < i, < n, and Xx > 0. 

Finally let us assume that  x l  = 0, 1 <_ i I _< k, and x, = 1, l < i, < n (s > 2). We  
first digress to prove  a general result. Assume B is an m x s (s > 2) T P  (TP2) matr ix  
of  rank  at  least 2. If  the first and last  rows of B are not  identically zero, then they are  
necessarily l inearly independent .  F o r  since B is of  rank  at  least 2 there exists an 
i e {2 . . . .  , m} and 1 < Jx < J2 -< s such tha t  

G'/) B A > 0 .  

I f  the first and  last  rows are l inearly dependent ,  the last row must  be a posit ive 
(because of the T P  proper ty )  mult iple  of  the first row, and i < m. Thus  
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But then 

contradicting the TP property. 
The (s + 2) x s matrix 

is TP and of rank s since 

177 

m 
B J2 <0.  

yI I, ii, ..-,il, ' iS'is ~1 

..... 
\ 7 1 ,  . . . ,  is 

Because il < k and is > I, both the first and last rows are not identically zero. 
Thus the first and last rows are linearly independent. There therefore exist 
{:~ . . . . .  J's-1} --q {i , , . . . ,  is} such that 

9J2~... ,Js-1, Y . . . .  >O. 
lD 72,"'~ 7s-1 ls 

Since 

~/:. I, j~ ..... j;_ ,,n '~> 
O, 

\0, x2 , . . . ,  xs- , ,  1// 

we obtain the strict positivity of the associated minor of ~F. 

As an example of this observation we consider the Chaiken algorithm 

dl 

I/4~4 

% " /  ",;" o, 
Here the matrices are 

Ao_ ~�88 J -~O 
0 ~ ~ ~ 

The fundamental curve ~F: [0, 1] --, R 3 is easily seen to be 

�9 (t) - - -  t(l }t o + �89 
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and the components of W form the pieces of the quadratic B-spline tp given by 

[ edx) ,  
~(x)..= ~ r - 1), 

l ~b l(x - 2), 

O ~ x ~ l ,  

l ~ x ~ 2 ,  

2 ~ x ~ 3 ,  

The Y matrix in this case is 

and 

Y =  1 0 
�89 �89 

(100) 
,~o= �89 �89 o , ~i= o �89 �89 

�88 �89 �88 001 

arc the Bernstcin-B6zier subdivision matrices. 
Clearly Y is totally positivc and it is straightforward to confirm (2.4). The matrix 

Y converts a quadratic polynomial expressed in B-spline form to its Bernstein- 
B6zier form, specifically we have 

Note that 

[(1 - 0 2 

~X 1, �9  ~ Xs 

unless s = 1 and xl = 0, i t = 3 or xl = 1, il = 1. This example admits generaliza- 
tion to arbitrary degree B-splines, but we do not dwell upon it here. 

We make one further observation in this section. For  this purpose, we recall the 
definition of stationary subdivision 1"9]. We are given a mask {aj:j e Z} which is 
assumed to have only a finite number of nonzero terms. Given control points 
{c~ ~ Z} we form new control points {c):j ~ Z} by the rule 

ct = E a,-2~c ~ 

If we suppose for convenience that the nonzero elements of the mask are confined 
to {ao . . . . .  an}, n > 1, then we may express a step of stationary subdivision in MSS 
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form a s  

t tc~ �9 (10 (12 " " " a 2 n -  2 �9 
, , �9 , 

o c~247 \c_.+, 
a _  +2 a - n + 4  " ' "  an  

)(o . a2t(:o t �9 = a - I  a i , � 9  a 2 n _  3 . 
�9 , , 

I : cO+ 
C - n + l  (1- +1 a - n + 3  " ' "  a n - 1  

Therefore, Ao o ,  tAI~" with = (Ao)i.i=l, Ax = ~ ijJi4=l 

A 9...= i , j =  I . . . . .  n. ~./ (12.j- t, / l l $ : = a 2 j - i - l ,  

We assume that Ao, A ~ are nonsingular and so the functional equation for q', 

(2.6) ~ P ( - ~ ) =  A~rtP(t), s~{0,  l}, 0 _ < t <  l, 

has the equivalent form 

(2.7) :0(2)  = j=o~a/P(x--J)'  --o~ < x < o %  

where ~o(x) = 0, x r [0, n], and otherwise it is given by the formulas 

~o(x) = ~,_~(x - / ) ,  l _ < x < l + l ,  l = 0 ,  l , . . . , n -  I, 

�9 (x) = ( ~ ( x ) , . . . ,  r 

see [9]�9 When ~'~'= - 3  azl = Z~~ - ~  a2i- 1 = I, then Ao, At have row sums one and 
if the corresponding MSS converges, then r is continuous [9]. This also follows 
from the hypotheses that the functional equation (2.6) has a continuous solution, 
ao ~ l , a ,  ~ 1, and the nonsingularity of Ao,  A 1. To see this first note that 
~,(0) = 0, q/x(1) = 0 by (2.6) and so ~0 is continuous at x = 0 and x = n. For the 
integers interior to the support of  the mask we introduce the n x n + I matrix 

B = 

a t  a o  . . ,  a _ n +  2 a - n +  l 

a3  a2  . . .  a _ n +  4 a - n + 3  

a 2 n -  1 ( 1 2 n -  2 "" �9 an  a n -  1 

The first n columns and n rows of B are A r, while its last n columns and n rows are 
Aa r. Thus from the functional equation (2.6) 

[ ~,,0) \ 

io 
\ - r / 
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Since r = ~b,(0) = 0 the nonsingularity of Ao and At imply 

~ .~ (1 )  --- r i = 1 . . . .  , n - 1, 

which are the conditions for continuity of r at x = 1, . . . ,  n - 1. 
In I-9] it was proved that when ao . . . .  , a , > 0 ,  n>__2, and ~ _ ~ a 2 j =  

~ azj_ t = 1, there exists a unique solution to the functional equation (2.7) 
which is continuous and satisfies ~ = _  ~ r  = 1 (see 1-4] for multivariate 
versions of this result). It was left open in 1:9] as to whether or not ~p(x) > 0, with 
strict inequality if and only if x ~ (0, n). We prove that this is indeed the case. 

Proposit ion 2.4. Let ~ = - o o  a2j = ~'~=- ,~ a2j-1 = 1, a i > O, j = O, 1 . . . .  , n, zero 
otherwise, n >_ 2. Then there exists  a unique continuous function q~(x), - o o  < x < 
oo, satisfying the functional equation 

which is strictly positive on (0, n), and zero otherwise. 

Proof. We need to show that for n >_ 2 

~b~(x) > 0, x e  [0, 1], i =  2 , . . . , n -  1, 

~h(x)  > 0, x e [0, 1), 

r > 0, x e (0, 1]. 

We begin with the case where n is odd, n = 2m + 1, m > 1. In this case, the 
(m + 1)st column ofA o is (a2m+ 1 . . . . .  al) r and the (m + 1)st ofA 1 is (a2,~ . . . . .  ao) r. 
Hence from Theorem 1.1 we conclude 

oo 

~ = lim A ~ . . .  ArW(0), t - -  ~ ak2-*, 
k ~  k = l  

and so AorW(0) = W(0). H(0) is the nonnegative eigenvector ofAo r. Hence tk~(t) > 0, 
i = 1 . . . . .  n, t ~ [0, I]. Now, it follows that ~bm+ 1(0 > 0, t e [0, �89 because 

2 m +  1 

era+ dr) = Z A~'.+ l~k(2t) > 0 
k = l  

and since there is no to e [0, 1] with W(to) = 0. Similarly, we can show r is 
positive on [�89 1]. When n = 2m the same argument shows that ~k~,(t)> 0 for 
t E [0, 1]. Thus we have established that on some open interval of length greater 
than one r is positive. Now it is an easy matter to "propogate" positivity by the use 
of the functional equation (2.7). Specifically this equation implies that whenever 
rp(x) > 0 on some interval 11 ,= (a, b)___ (0, n) of length greater than one then 
(p(x) > 0 on the interval U~=o(j + (a, b))/2 = (a/2, (n + b)/2) --- �89 t + ~0, n). The 
iteration I,+ t = �89 + ~(0, n), k --- 1, 2 . . . . .  deafly converges to (0, n) thereby 
establishing the positivity of r on (0, n). III 
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In [9] it was shown that when {ai: - o o  < j  < or} is a Polyh frequency sequence 

S- (~ |  < S- ({c~: -oo  < j <  ~}). 

Here S-({cj: - o o  < j  < ~})  is the number of strict sign changes in the vector 
{ . . . .  c_ 1, co, c~ . . . .  }, and similarily S - ( f )  counts the number of sign changes of a 
function f on ( - ~ ,  ~) .  We conjecture that in fact under the same hypothesis r 
satisfies the following determinantal inequalities. Let K(x, y) ~= ~p(x - y). Then 

Kfx~ ... .  , x , )  > 0 

and strict inequality holds if and only if 1-1~_ a K(xt, iz) > O. The techniques used in 
the proof of Theorem 2.1 do not seem to carry over to this problem. 

Added in Proof: In the meantime the conjecture has been proved by T. N. T. 
Goodman and C. A. Miechelli, On Refinement Equations Determined by Poly6 
Frequency Sequences, preprint, 1990. 

3. Comer Cutting and Total Positivity 

In this section we give a geometric interpretation to our central hypothesis that the 
2n x n matrix E ol 

A =  A1 

is TP. But first we demonstrate that the variation-diminishing property of the 
associated fundamental curve follows easily from this condition. For this purpose, 
we observe that the successive control polygons generated by MSS can be 
described in the following way. We define inductively rectangular matrices 
A k, k = 0, 1, 2 . . . . .  of size 2k+tn x 2kn. For k = 0 we set A ~ = A and generally 

A k �9 

It follows that A k is TP whenever A is TP. Next we generate successive control 
polygons by the formula 

(3.1) d k + 1 ~___ Akd k, d o = e ~ R". 

Thus dk= (d~ . . . .  , d ~ - l ) ~  R 2k" and by construction d~ = A,~_, .-. A~oe, where 
l = t h - i  +2~k-2 + "-" + 2~-leo, eje{0, 1},j=O, 1 . . . . .  k. 

Let ~ be the fundamental curve for MSS based on Ao and A 1. I fr  is any integer 
such that 

wecanfindpoints0 < tl < "-" < t,§ 1 < 1 suchthatthefunctionf(t). .--  ~.,~ffi 1 c~j{t) 
alternates in sign thereon, i.e., f(t~)f(ti+l)< 0, i - -1  . . . . .  r. We now choose 
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integers l~ such tha t  0 < Ik ~ < . . .  < 4 + I < 26, k = 1, 2 . . . . .  and  

hm ~ =  ti, i = 1  . . . . .  r + l .  
k , ao2  

Using the var ia t ion diminishing p rope r ty  of  total ly posit ive matrices,  see [7], we 
get by (1.10) for k sufficiently large, 

r = S-(df~ . . . . .  d~§ ,) _< S - ( d  ~) ___ S - ( c ) .  

In  other  words  when A is T P  we conclude that  

S-  cj~j < S -  ( c l , . . . ,  cn). 

We n o w  turn  to the ma in  subject of  this section. We demons t r a t e  tha t  each step 
of  the i terat ion (3.1) can  be viewed as a corner-cutting procedure .  This  leads us to 
the factor izat ion of rec tangular  T P  matr ices as a p roduc t  of  a cer tain type of one-  
banded  matrices.  T o  explain what  we have in mind we recall some  te rminology 
f rom [6]�9 

Given  the contro l  po lygon  c --- (e 1 . . . . .  c~) ~ R sn cutting k corners from the right, 
1 _< k <__ n - 1, means  forming the new control  polygon d = (dl . . . . .  dn) E R s~ by 

(3.2) dj = % j = 1 . . . . .  n - k ,  

dj = 2jci_ 1 + (1 - 2~)c~, j = n - k  + 1 . . . .  ,n, 

for  some 0 < 2 i < 1, j = n - k + 1 , . . . ,  n. Thus  in matr ix  te rms  d = Lke where 
Lk = (L~j)}'d= 1 is a nonsingular lower triangular one-banded row stochastic matrix 
with L~,~_ ~ = 0, i = 2 . . . . .  n - k, for  k --- 1 . . . . .  n - 2. Similarly, cutting k corners 

from the left has the fo rm d = Ukc where d is given by  

(3.3) d~ =/~j~e~ + (1 - p~)ej+ ~, j = 1 . . . . .  k, 

d~ = cj, j = k + l  . . . . .  n, 

and  0 < p s <  1 , j =  1 . . . .  ,k .  
In  each case above  the corner-cut t ing matr ices are square.  In  cont ras t  corner 

cutting from both ends increases the n u m b e r  of  cont ro l  points  by one. This 
procedure  is defined by the equat ions  

(3.4) d:  = cl ,  

d~ = vje~_~ + (1 - vj)ej, j = 2 . . . .  , n, 

dn+l  = gn, 

where 0 < v~ < 1,j  = 2 . . . . .  n. Thus  in this case d = B ' e  where  B" is an (n + I) x n 
mat r ix  with two nonzero  "diagonals ."  O u r  goal is to show tha t  any  rec tangular  T P  
mat r ix  can be essentially decomposed  into these basic factors.  

Theorem 3.1. Let A be an m x n, m >_ n, T P matrix. Then it can be factored as 

(3.5) A = DB m. . �9  1 . . . L " - I U  1 ... U "-1 = DBLU, 
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where D is a nonnegat ive  m x m diagonal  m a t r i x  and the o ther  f a c t o r s  have the 

fo l lowing  propert ies .  T h e  matr ices  L k = (L/kj)7.j= t, k = I . . . . .  n - 1, are lower  trian- 

gular n x n one-banded s tochas t ic  matr ices  and Lk.i_ t = O, i = 2 , . . . ,  n -  k f o r  
k ~ { 1 , . . . ,  n - 2}. T h e  matr ices  U k = (U~j)~j= 1, k = I . . . . .  n - 1, are upper  triangu- 

lar n x n one-banded s tochas t ic  matr ices  and u k _ i j  = O, i = k + 2 . . . .  ,n,  f o r  
k e { 1, . . . . . . ,  n - 2}. F o r  k ~ {n + 1 , . ,  m}, the matr ices  B k ~t'BkijJi ~--- 1~=k- it are k x k - 

1 s tochast ic  matr ices  wi th  Bkj = O, i f  i v~ j or i ~ j + 1. 

R e m a r k  3.1. As shall be shown in the p roof  of  T h e o r e m  3.1, the factor izat ion (3.5) 
is just  one of  m a n y  such factorizations.  In  fact, it is analyt ical ly one of  the more  
involved. We have chosen it because of  its geometr ic  in terpre ta t ion  and  connect ion 
with (3.2)-(3.4). 

Before proving  Theo rem 3.1, we consider  var ious consequences.  No te  that  by 
construct ion B o = 0 for i < j and i > j + m - n. 

Proposition 3.1. A s s u m e  A is an m x n (m > n) T P  matr ix ,  and 

(3.6) A = D B  m . . .  B " + I L  I . . .  L " - I U  1 . . .  U ~-1 = D B L U  

as in Th eo re m  3.1. 

(i) ~_~=1 A o  = D i i f o r  i = 1 . . . . .  m. Thus ,  i f  A is s tochast ic ,  then D = I. 

(ii) l f  A l j  = ~ l j ,  J = 1 . . . . .  n, then U~2 = O, k = 1 . . . . .  n - 1. Thus ,  in particular,  
U 1 = I .  

(iii) / f r a n k  A = n and A~,j = ~, j ,  j = 1 . . . . .  n, then L~ . ,_  1 = O, k = 1 . . . . .  n - 1. 
Thus,  in part icular,  L l = I. 

(iv) I f  

A 1 , . . . ,  n - > n + 1 , . . . , m ~  
( 1  . . . . .  n)" A (  m I . . . . .  n j O, 

and A o = O f  o f  i < j and i > j + m - n, then necessari ly  L = U = L 

Proof. (i) Since each of  the B ~, L k, and  U k is stochastic,  it is readily verified tha t  
~_~=I A ~ j =  Dii, i =  1 , . . . ,  m. 

(ii) First note  tha t  since U is upper  tr iangular,  we get 

A l l  = D l t ( B L ) I I U t l .  

Fur thermore ,  f rom (i), A 1 t = DI t = 1, and  since B, L, and  U are  stochastic,  we also 
obtain  (BL)11 = U11 = 1. Thus  we conclude that  UI j  = t~lj,j = 1 . . . . .  n. Proceed-  
ing further we observe  tha t  

Ul l  = U~t "'" U ~  1. 
Again using the fact that  each U k is stochastic,  we ob ta in  U k 1 = 1, k = 1 . . . . .  n - 1, 
and the result follows. 

(iii) Since rank  A = n, bo th  L and  U are nonsingular .  Thus  Ui, > 0, i = I . . . . .  n. 
F rom (i) we conclude tha t  D u  = 1. Because B is stochastic,  B,~j = ~ , i , J  = 1 , . . . ,  n. 
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Consequent ly  we obta in  

F o r  j = l  . . . .  , n - l ,  

6,~ = A,,j  = ~ L,kUk2. 
k = l  
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n 

0 = ~ L,,Ukj > L,jUjj. 
k** l 

Thus  Lnj = 0 for j = 1 . . . . .  n - 1, which also implies that  L,~ = 1. Now,  

n--1 I =L,,=L~,...L,, . 

Since each L k is stochastic, we have LI ,  = 1, k = 1 . . . . .  n, and the result follows. 
(iv) Since 

and D B L  is TP,  we get (DBL),~ > O, i = 1 . . . .  , n. For  i < j ,  

0 = A u > ( D B L ) , U  o. 

Thus U o = 0 for i < j, i.e., U = I. Now,  

and thus (DB),+m_,. ,  > O, i = 1 , . . . ,  n. For  1 ___j < i < n, 

0 = Ai+m-, . j  >- (DB)~+m-,.iL O. 

Thus L~j = 0 for j < i, i.e., L = I. �9 

Proposi t ion  3.1 leads us to the following result concerning matrices considered 
in Theorem 2.1. 

Corollary 3.1. Let  Ao, A 1 be nonsingular n x n stochastic matrices such that 

A =  A t  

is TP.  Suppose fur ther  that the f irst  row o f  A o is (1, 0, . . . .  0), the last row o f  A t is 
(0 , . . . ,  0, 1), and the last row o f  A o and the f irst  row o f  A t are the same. Then 

A = B 2n...Bn+IL 2 . . . L n - t U  2 . . .  U ~-1, 

where the B z, L k, and U k are as in Theorem 3.1. Furthermore, Ukt2 = Ln,~ 1 = O, 
k 2 . . . . .  n 1, while B~ ~ 1, i 1 . . . . .  z~ . . . .  n,B~.~_ 1 = 1, i = n + 1 . . . . .  2 n ( a n d B ~ i s  
zero elsewhere). 

Proof. Let ,4 be the 2n - 1 x n matrix obtained f rom A by deleting the nth or  
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(n + 1)st row (which are the same). Apply Theorem 3.1 and Proposition 3.2(i)-(iii) 
to A. For B 2n as above, A = B2n~. m 

In proving Theorem 3.1, we first recall how to factor r x r strictly totally positive 
(STP) matrices. In doing so we review certain results from 1,3], 1,5t and 1,,8]. 

Let A be an r • r STP matrix, i.e., all minors of A are strictly positive. Then, as is 
well known, A can be written in the form 

(3.7) A = LDU, 

where L is a unit diagonal lower triangular matrix, D is a strictly positive diagonal 
matrix, and U is a unit diagonal upper triangular matrix. In fact L, D, and U are 
explicitly given by {(,:o :; :;) 

1,,__~_~ . . . .  
" - -  ~ i:i Z w / u  . . . .  " '->J 

D~j= i"1 . . . .  , i \  l { l , . . . , i -  % ..... , ) / %  , , - ,  

and 

A 1 . . . .  , - l , i \ l  /1 . . . .  , i  

U o (1 . . . .  , _ _  , .... , ,),  
i 

0, 

i<_j, 

i > j .  

As it turns out, if A is STP then both L and U are TP. Even more, from Cryer 1"5] 
we know that L and U are what Cryer calls ASTP, i.e., 

L(i.~ . . . . .  !k~> 0 
VI . . . .  ,A]  

if and only if ii _> Jl . . . . .  ik > A, while 

VI  . . . . .  A /  

if and only if it < J l , - . . ,  ik < Jk. This result is also a consequence of what we prove 
below. 

Since L and U are triangular (unit diagonal) matrices, each can be factored in 
many ways as a product of r -  1 unit diagonal one-banded matrices. One such 
factorization is given on p. 167 of l8]. 

We restrict our remarks to L. Parallel arguments apply to U. 

Proposition 3.2. L e t  L be  a unit diagonal r x r lower triangular ASTP matrix. Then, 

L = • I . . . L  r - I  = E r - 1  . . .  E t ,  



186 C. A. Micchdli and A. Pinkus 

where each s ~ is a one-banded unit diagonal lower triangular matrix such that 

s = 0 ,  i = 2 ,  , r - - k ,  k 1, r - 2 ,  
(3.8) ^k 

Li, i -a  > 0, i = r - k + l  . . . . .  r, k = l  . . . . .  r - l ,  
and 

--k 
(3.9) Lid_ 1 > 0 ,  i = 2  . . . . .  k + l ,  k = l  . . . . .  r - l ,  

~ k _  = 0 ,  i = k + 2 , . . . , r ,  k 1, , r - 2 .  

Proof.  At  the first stage of  the factorization process we eliminate (make zero) the 
(r, I)  element of  L by using either the (r - 1)st row or  the 2nd co lumn of  L. In this 
way we express L either as 

L = s 

where 

L 1 
1 0 . . . . . .  i ]  0 1 . . . . . .  

�9 . �9 �9 * .  

0 . . .  0 1 

0 . . .  0 x 

L �9 ~-- 

1 0 . . . . . .  0 
x 1 . . . . . .  : 
�9 - . .  " . .  : : 

X " -  X 1 : 

0 X . . .  X 1 

(by using the (r - 1)st row), or  as 

L = L**~  1, 

where 

L ~ 

1 0 . . . . . .  0] 
x 1 

x x 1 : 

0 x --. x 1 

1 0 . . . . . .  0 
x 1 . . . . . .  : 

0 0 1 ..- : 
: . " . .  ". .  �9 

0 . . . . . .  0 1 

(by using the second column). This process can be repeated. At every stage we use 
either row or  co lumn elimination to eliminate successive off-diagonals, s tart ing 
from the left. Fo r  ou r  purposes here, we use either row elimination or  co lumn 
elimination throughout �9  In this way, by row elimination we get 

L = s , , ,  L r - - 1  

where L k is a unit d iagonal  one-banded lower tr iangular  matrix satisfying 

Liki_l = 0, i = 2  . . . . .  r - k ,  k = l  . . . .  , r - 2 .  

Using column elimination we obta in  

L = p-i...~i, 
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where E k is a unit diagonal one-banded lower triangular matrix satisfying 

F~.~_ 1 = 0 ,  i = k + 2  . . . . .  r, k = l  . . . . .  r - 2 .  

It remains to show that all possible nonzero elements of L k and Ek are in fact 
positive. It actually suffices to assume that 

L(  l+ ll .. . .  . . . . .  ,k l+k)  > 0  / = I  . . . .  . r - k ,  k = l , . . . , r - l .  

Because of the zero elements in L k, k = 1 . . . . .  r - 1, we readily see that 

0 < Lj+I. I ^ ' -J  - , -1  - -  " ' "  L 2 , 1 ,  E -  L~+ I. j j = 1 . . . . .  1. 

Therefore, starting with j = 1 and proceeding successively we conclude that 

s p-2 -I 
2,1, 3,2,...,Lr, r_i >0. 

Thus we have shown that the element ofeach L k, k = I ..... r - l, on the secondary 
diagonal after the last zero, is positive. Now we proceed one layer down the 
secondary diagonal by considering 2 • 2 minors of L. Since 

1,2 l , l + l  1,2 ' 

we get 

D- I( 2, -2 
..... ,(, ,,,,)>0,, 

Based on what we have already proved and since 

. _ , ( ! +  1, l +  2 )  r , - ,  f ' , - ,  
l, l + 1 = --.l+ 1,v-.l+2.~+ 1, 

we conclude that 

> 0. 

We continue in this manner. Finally, to show 
r - 1  x r - l m i n o r o f L a n d  

l = 1 , 2  . . . . .  r - 2 ,  

that ~,;]1_ 1 > 0 we use the 

0 <  \1  . . . . .  r - 1  \1  . . . . .  r - 1  = L 2 ' t ' " L " ' - v  

These facts also follow from explicit formulas for the entries of the factors 
r. 1 . . . . .  L ' -1  in terms of minors of L. However, as this is not important  to use here 
we do not elaborate on this point. 

These same arguments applied to the factorization 

L -- L ~-I . . . L  1 

give us 

F~k~-t > 0, i =  2 , . . . , k +  1, 
for all k ~ { 1 . . . . .  r - 1 }. �9 
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For easy reference we state the analogous factorizations of U. These easily follow 
by parallel arguments, or more simply by applying Proposition 3.2 to the lower 
triangular matrix U r. 

Corollary 3.2. Let U be a unit diagonal r x r upper triangular A S T P  matrix. Then 

U = 0 " -1  . . .  0 1  = 0 1  . . .  0 " - I ,  

where each O k, O k is a one-banded unit diagonal upper triangular matrix, and 
A k 

(3.10) U i _ t . i = O ,  i = 2  . . . . .  r - k ,  k = l  . . . . .  r - 2 ,  
Ok ~-l.i > 0, i = r - k + l  . . . . .  r, k = l  . . . . .  r - I ,  
- k  

(3.11) U~_l.i > 0, i - - 2  . . . . .  k + l ,  k = l , . . . , r - l ,  
r r  rt - - k  k =  1 r - 2 .  u~_x.i -- v, l----- g t z . . . . .  r, . . . . .  

If A is merely TP,  then there exists, for each e > O, an r x r STP matrix A~ such 
that 

lira A~ = A. 
~-~0 + 

We can factor A~ as above in (3.7) 

A E = LcDcU ~. 

By premultiplying U~ by a diagonal matrix and postmultiplying L~ by a diagonal 
matrix we can assume that L~ is ASTP with column sums one, U~ is ASTP with row 
sums one, and D~ is a positive diagonal matrix. It  therefore follows that 

i,jffi l i = l  

Since all elements of L~, D~, and U~ arc now uniformly bounded, we can cxtract 
convergent subsequcnces to obtain 

A ffi LDU. 

The factors L, D, and U are now only assured of being TP, as zero elements may 
result from the limiting process. The same argument applies to the factorization of 
A~ into one-banded factors. Thus in the limit we can write any r x r TP  matrix as 

A = L I . . . L ' - I D O  r - l . . .  0 t 

o r  

o r  

o r  

A = s  . . .  E l D e r  . . .  0 , - 1  

,4 = p - i  . . .  s  . . .  01  

a = s  . . . L , - t D O t  . . .  0 , - 1 .  

Here the O k, O k are row stochastic, while the j:k, L~ are column stochastic. 
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Four  additional factorizations are possible by considering the inverse of A. 
Specifically, if A is STP then so is E A - t E  where E = diag(1, - 1  . . . . .  ( -  1)"-~). 
Thus we may factor A-  1 as 

A -  1 = ELDUE,  

where L and U are ASTP and therefore A = ( E U - I E ) D - I ( E L - 1 E ) .  Now, both 
E U - 1 E  and E L - 1 E  can each be factored as above in two ways as products of 
one-banded factors. Note that what is obtained is a UDL factorization. For  a 
matrix A which is only TP  the limiting argument used above also applies to these 
four factorizations. 

With this background in place, we now turn to the proof of Theorem 3.1. 

r ~" ~ is an m • n (m > n) TP  matrix. Proof of Theorem 3.1. Assume A = x ijJi= l j= 1, 
Let.4 ~ " where = ( / l u ) ~ , j =  1, 

~A o, j < n, 

~J  = ~0, j > n. 

Let .4~ be an m x m STP matrix such that l im,_o. /~ ,  =/~. We factor A, in the form 

(3.12) ,4~ = E~0~, 

where E~ is a unit diagonal lower triangular ASTP matrix and 0~ is an upper 
triangular ASTP matrix. Let L~ be the submatrix of r,~ composed of its m rows and 
first n columns. Let U~ be the matrix obtained from the first n rows and columns of 
O~, while A~ is the matrix obtained from the m rows and first n columns of ~, .  We 
claim that A, = L~U,. To see this we recall that (0~)kj = 0 ifk > j .  Thus f o r j  < n, 

k = l  k = l  kffil 

U~ is an upper triangular ASTP n x n matrix and can be factored in the two ways 
previously mentioned. We now work with L~. 

From our previous analysis, 

where each L~ is a unit diagonal one-banded m x m lower triangular matrix 
satisfying (3.9). We let L~ be the restriction of L~ to its first n rows and columns, 
for k = 1 , . . . ,  n - 1. Similarly, B~, k = n + 1 . . . .  , m, is the restriction ofL~-  I to its 
first k rows and k -  1 columns. Thus (B~)ii, (B~)i+l. i > 0, while (B~) 0 = 0 for 
i r {j,j + 1}. Let us show that 

(3.13) L, = B m .. .  B'~+ IL'~ -1 . . .  L~. 

Since E~ = E~-  i . . .  E~ we have for j < n 

(L,)o = (L,)o = Z ( ~ -  1),k,(s 2)k,k~ "" (E~)k,,_ 2.J" 
k l t . . . , km-1  
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Suppose kx, k2 , . . . , km_ 2 gives a nonzero  p roduc t  in the above  sum. Since 
(E~- 1 . . .  E t )o  = 0 if i > j and  i > n, it follows tha t  k , ,_ ,  < n. Fur the rmore ,  since 
each above  factor  is nonzero,  we have  k~ - I < k~§ I < kl. Thus,  in part icular ,  
k , ,_ , ,  . . . ,  kin-2 are all less than  n, and  k , ,_ ,_  1 < n + 1, k , ,_ ,_  2 < n + 2, . . . ,  k 1 < 
m - 1. Thus,  by our  definition, (3.13) follows. Combin ing  this conclusion with our  
previous  analysis,  we get the factor izat ion 

At = BT.. .  n: § IL o u,, 

where each B~ is as defined above  (with unit upper  d iagonal ) , / '~  is an  n x n ASTP 
lower t r iangular  unit  d iagonal  matr ix ,  Ds is a posit ive d iagonal  n x n matr ix ,  and 
Us is an  n • n ASTP  upper  t r iangular  unit  d iagonal  matr ix.  

We  ob ta in  the factor izat ion 

m. n + l ~ l  ^ n - 1  ~1 ~ n - I  A ~ -  B e ..  B~ L~ . . .  L~ D~U~ . . .  U~ 

by apply ing  (3.8) t o / ' ~ ,  and (3.11) to U~. Note  that  (/'~)~.~_ t = 0, i = 2, . . . ,  n - k, 
for k ~ { 1 , . . ,  n 2},while  ~k ., 2} ,as  , --  ( U ~ ) i _ t , i = O , i = k + 2 , . .  n f o r k r  . . . . .  n -  
is desired. Since the row sums of  all these factors are nonzero,  we can rewrite As as 

1--1 . .  ~ n - 1 t 7 1  - -n-1  (3.14) A , = / ) , B ~ . . . B g :  + L , .  _ ,  - s  "'" U, , 

where  now the B-~, ~ ,  and O~ are all stochastic. This is easily done  by pre- and 
pos tmul t ip ly ing  by  diagonal  matrices.  N o t e  tha t  ~7= I(A~)~ = (/~)u, i = 1 . . . . .  m, 
so tha t  all entries in each of the factors are uniformly bounded.  We  now pass to the 
limit (e ~ 0 +) in (3.14) th rough  a subsequence and  verify (3.5). �9 

R e m a r k  3.2. One  of  the o ther  factor izat ions of  A satisfying the condi t ions  of 
T h e o r e m  3.1 is wor th  ment ioning.  Such A m a y  also be factored in the form 

A = D L  1 . . . L " - I B  " . . .  B " + I U  I . . .  U " -1 ,  

where D and the U k are as in T h e o r e m  3.1, the L k are m x m lower t r iangular  
one-banded  stochast ic  matr ices  with 

Lik, i - i ----- 0,  i = 2 . . . . .  m - k, 

while the B k are k x k - 1 s tochast ic  matr ices with Bi~ = 0 if i ~- j or  i ~ j + 1. If A 
is as in T h e o r e m  2.1, then D = L 1 = U 1 = I. 

4. Reparametrized Bernstein Polynomials 

We end this pape r  with a c o m m e n t  concerning some specific corner-cut t ing  
strategies which provide  concrete  var ia t ions on de Castel jau 's  me thod  ment ioned  
in the introduct ion.  Beginning with an  initial contro l  po lygon  e ~ = (co~ ., c,,),~ we 
form the weighted averages 

(4.1) e',--(1--x)c~-1+xc~+~, r=0,1 ..... m--l, l = I  ..... m, 

where x is any number chosen in the interval (0, I). The case x = �89 is de Casteljau's 
method (1.1). In the general case the (m + I) x (m + I) matrices for the corres- 
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ponding MSS may be identified as 

C) (Ao(x))~j'.= (1 - x)~-~x~ 

where 

and 

(4.2) 

where Pm is 

C) = 0  if j > i ,  

191 

i ,j  = 0, I . . . .  ,m, 

Al(x) ~= PmAo(1 - x)Pm, 

the permutation matrix defined by (Pm)/j,=bi.,~_j, i,j = 0 . . . . .  m. 

where 

To(x) := 1 - x 

A ~(x)~t(r)  = ~t(W~(x)r), 

Tl(x) := Pt  To(l - x)PI" 

The matrices To(x) and T~(x) are stochastic and have a positive column. Hence by 
Theorem 1.1 there is a continuous fundamental curve ~(.Ix): [0, 1] --, R 2 defined 
by the MSS determined by To and 7"1, 

(4.3) lim T~k-.- T,I~, = (7,~(tlx))e2, t= ~ ej2 -J, e , , ,= ( l  . . . . .  l ) r ~ R  ~'. 
k~ j = l  

Note that for x --- �89 the functional equation for ~(-1�89 shows that 

�9 ( t l ~ )  = (1 - t, t).  

Let us denote by ~P(.lx) the limiting curve for the MSS based on the matrices Ao(x) 

and similarly by (4.2), 

where 

(Note that these reduce to (1.6) and (1.7) when x = �89 Thus we have 

(Co ~ . . . . .  c~') --- Ao(X)e  ~ 

and 

(c~, . . . ,  e ~ -- A~(x)e ~ 

To identify the limiting curve we introduce the vector 

~(r)- '= (rT, vT-  ~r2 . . . . .  r , r~ ' -  l, r l )  

in R "+ ', where ), ,= (Y,, F2) is an arbitrary real vector in R 2. Note that {la(7): 7 e R 2 } 
span R m + '. It follows directly that 

Ao(X)la(r) = tt(To(x)r), 
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and A l(X)- (Theorem 1.1 also assures the existence of W(. Ix) as a continuous curve.) 
Then we have from (4.3) 

(lt(r), qs(tlx))em = lim A,Jx). . .  A,,(x)p(y) 
k ~ o  

= lim p(T, J x ) . . .  T,,(x)~,) 
k " * ~  

- p((~, ~(tlx))e2) = (T, @(tlx))~e,. 

Consequently, by the Binomial Theorem we get 

W(tlx) --- Wb(C)(tlx)), 

where 

m m m m 

is the Bernstein polynomial curve represented in terms of homogeneous coordi- 
nates. 

This example has wider implications beyond the geometrically apparent corner- 
cutting procedure (4.1). We have in mind the following: for any ~ e R s+a we set 
~ = ~  ...  ~ , §  . . . . . . . . .  , ~§ I~t a t +  +~,+~,  ~ ( ~ 1 ,  ~s+l)�9 +1, and form the 
vector 

lt(y):=(~':[~l = m ) � 9  N = ( m + s )  " s  

For every (s + 1) x (s + 1) matrix T we define an N x N matrix by the equation 

(4.4) p(T~,) = Ap(~). 

Note that the coordinates of la(~) span all homogeneous polynomials of degree m 
on R s§ z. Since each coordinate of p(T~) is a homogeneous polynomial, the matrix 
A is well defined by (4.4). 

There is an elegant interpretation of the process of passing from the matrix T 
to the matrix A by using the notion of the permanent of a matrix. For 
every ~, f l � 9  +1 with I ~ l = l / ~ l = m  we form the m x m matrix T(~,fl) by 
repeating ~i, fls times the ith row and j th column of T, respectively. Then 
A = (fl!- i per T(~, fl): I~1 = IPl = m, ~,, p �9 2% + 9 ,  that is, for every ~ �9 R s+ 1 

VP 
( T ~ ) ' =  ~ ~ p e r T ( a ,  fl), I~l = m ,  ~ � 9  +1, ~!"--~a!'"fls+~!- 

I#l=m 

This formula follows from the well-known formula which has some relation to the 
MacMahon Master theorem (see [1]). 

T h e o r e m  4.1. For any k x I matrix C 
x # 

(Cx)l ..- (Cx)k = I~,- ~  "~ per C(/~), x �9 W, 

~eZ~ 
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where C(fl) is the k x k matrix obtained by taking fli copies of the ith column of C. 

Pick any two (s + 1) x (s + 1) stochastic matrices T o and T~ which satisfy the 
hypothesis of Theorem 2.1 and suppose @: [0, 1] ~ R  s+~ is its corresponding 
continuous fundamental curve. Let Ao, A x be the corresponding N • N matrices 
defined by (4.4) and suppose that 

qJ,(~.) = ( ( : ) 3 2  : ct ~ Z~++ t. ,ct[ = m) 

is the multivariate Bernstein polynomials in homogeneous coordinates 2 = 
(2~ . . . . .  ).s+ ~). Then the Binomial Theorem in s + 1 variables takes the form 

(~, ~)" = ( p ( ~ ) ,  ~(2) ) .  

Thus, for every y e  R s+l and t = ~~ x gk2 -~ e [0, 1], we have 

lira A~---  A~t(~,) = lira I~(T~--- T~?) 

= tu((~. ~(t))%+ ~) 

= (y,  ~(t))SeN 

= Or(?), V~(r 

Consequently, the MSS based on the matrices A0, A~ converge to the curve 
~ ( r  The fundamental curve q~ for MSS based on T o and T 1 furnishes a 
continuous imbedding of [-0, 1] into the standard simplex {2: ), = (~x . . . . .  ~s+l), 
~.~ > 0, ~ ~ 3.~ = 1 }, and r  provide barycentric coordinates at which to evaluate 
the multivariate Bernstcin polynomials. 
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