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Extending n-convex functions

by

Allan Pinkus (Haifa) and Dan Wulbert (La Jolla, CA)

Abstract. We are given data α1, . . . , αm and a set of points E = {x1, . . . , xm}. We
address the question of conditions ensuring the existence of a function f satisfying the
interpolation conditions f(xi) = αi, i = 1, . . . ,m, that is also n-convex on a set properly
containing E. We consider both one-point extensions of E, and extensions to all of R.
We also determine bounds on the n-convex functions satisfying the above interpolation
conditions.

1. Introduction. A function f defined on a set E in R is said to be
n-convex on E if for every choice of n + 1 distinct points {xi}

n+1
i=1 in E

the n + 1st divided difference on these points is nonnegative. This divided
difference may be formally defined by

[x1, . . . , xn+1; f ] :=

∣∣∣∣∣∣∣∣∣∣

1 · · · 1
x1 · · · xn+1
...

. . .
...

xn−11 · · · xn−1n+1
f(x1) · · · f(xn+1)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1 · · · 1
x1 · · · xn+1
...

. . .
...

xn−11 · · · xn−1n+1
xn1 · · · xnn+1

∣∣∣∣∣∣∣∣∣∣

. (1.1)

Alternatively we can set

[x; f ] = f(x),

and

[x1, . . . , xk+1; f ] =
[x2, . . . , xk+1; f ]− [x1, . . . , xk; f ]

xk+1 − x1
,
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k = 1, 2, . . . , and obtain [x1, . . . , xn+1; f ]. As the denominator in (1.1) is the
Vandermonde determinant and equals

∏
1≤i<j≤n+1(xj −xi), a function f is

n-convex on E if and only if
∣∣∣∣∣∣∣∣∣∣

1 · · · 1
x1 · · · xn+1
...

. . .
...

xn−11 · · · xn−1n+1
f(x1) · · · f(xn+1)

∣∣∣∣∣∣∣∣∣∣

≥ 0 for all x1 < · · · < xn+1 in E.

From this definition we see that a function is 0-convex if it is nonnegative,
1-convex if it is nondecreasing, and 2-convex if it is convex in the usual sense.
n-Convexity for n ≥ 3 on an interval was first considered by Eberhard Hopf
[10] in his dissertation, and was rather extensively developed by Popoviciu
in his thesis [17] and in his monograph [19].
The central questions we will address in this paper are the following. As-

sume we are given data α1, . . . , αm, a finite set of points E = {x1, . . . , xm},
and an n-convex function f on E satisfying f(xi) = αi, i = 1, . . . ,m. What
conditions ensure that f can be extended to an n-convex function on a
given set that properly contains E? In this paper we consider in detail one-
point extensions of E, and extensions to all of R. For f to be n-convex on
E = {x1, . . . , xm} it is obviously necessary that

(1.2)

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
xi1 · · · xin+1
...

. . .
...

xn−1i1 · · · xn−1in+1
αi1 · · · αin+1

∣∣∣∣∣∣∣∣∣∣∣

≥ 0 for all i1 < · · · < in+1 in {1, . . . ,m}.

These, and in fact fewer, necessary conditions also suffice for the existence
of extensions of n-convex f to all of R, when n = 0, 1, 2, and for all n
if m ≤ n + 2. However, for n ≥ 3 and m ≥ n + 3 these conditions are
not sufficient for either of the above-mentioned extension problems. This
problem was first considered by Popoviciu in [18]. He fully solved it for
one-point extensions of E. We will explain his result in Sections 3 and 4.
Popoviciu did not solve the problem for extensions to all of R. This latter
problem will be solved here, but not to our complete satisfaction since the
characterization we obtain depends upon the existence of Borel measures
with certain properties and is not constructive (see Section 6). Previously,
the only related problem that had been fully solved is the problem for data

(1.3) f (i)(a) = αi, f (i)(b) = βi, i = 0, 1, . . . , n− 1.

Conditions, albeit not easily verified, on the {αi}
n−1
i=0 and {βi}

n−1
i=0 such that

there exists an n-convex f on [a, b] satisfying (1.3) were given by Kakeya
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[11]. The other problem we will consider in this paper is that of determining
bounds on n-convex functions f satisfying f(xi) = αi, i = 1, . . . ,m. This is
addressed in Section 7 where we generalize results of Burchard [6].

2. Properties of n-convex functions. In this section we survey some
known, but seemingly not sufficiently well known, properties of n-convex
functions.

We start with some equivalent definitions of n-convexity. A function f
is nondecreasing (1-convex) on (a, b) if and only if for any constant function
p satisfying f(x1) = p(x1) we have f(x) ≥ p(x) for x ∈ [x1, b), while f(x) ≤
p(x) for x ∈ (a, x1], for all x1 ∈ (a, b). Similarly, f is convex (2-convex) on
(a, b) if and only if for every a < x1 < x2 < b the linear polynomial p for
which f(xi) = p(xi), i = 1, 2, satisfies f(x) ≥ p(x) for x ∈ (a, x1]∪[x2, b), and
f(x) ≤ p(x) for x ∈ [x1, x2]. The exact similar result for n-convex functions
was proved by Hopf [10] and by Popoviciu [17], and later by others. Assume
we are given a < x1 < · · · < xn < b. Let P (x1, . . . , xn;x) denote the unique
polynomial of degree at most n − 1 that interpolates f at x1, . . . , xn, and
set φ(x) = (x− x1) · · · (x− xn). With the use of the Vandermonde formula,
it follows from (1.1) with xn+1 = x ∈ R that

(2.1) f(x)− P (x1, . . . , xn;x) = φ(x)[x1, . . . , xn, x; f ].

It now follows that f is n-convex on (a, b) if and only if for every choice of
x0 = a < x1 < · · · < xn < b = xn+1 we have

(−1)j+n[f(x)− P (x1, . . . , xn;x)] ≥ 0

for all x ∈ (xj , xj+1), j = 0, . . . , n. In fact, due to the arbitrariness of the
choice of the xj ’s it suffices for the above to hold only for any one fixed j.
For example, f is convex (2-convex) if and only if for every a < x1 < x2 < b
the linear polynomial p interpolating f at x1 and x2 satisfies f(x) ≤ p(x)
for all x ∈ (x1, x2).

This leads to another equivalent definition of n-convexity. A function f
is n-convex (n ≥ 3) on (a, b) if and only if its derivative f (n−2) exists and
is convex on (a, b). This fact was also first proven by Hopf [10, p. 24] and
by Popoviciu [17, p. 48]; see also Boas and Widder [1]. Recall that convex
functions enjoy various smoothness properties. A convex function defined
on (a, b) is continuous and has both right and left derivatives f ′+ and f

′
− at

each point of (a, b). In addition, both these functions are nondecreasing and
satisfy f ′−(x) ≤ f

′
+(x) for all x ∈ (a, b).

If f is sufficiently smooth on [a, b], then from Taylor’s Theorem we have

f(x) =

n−1∑

k=0

f (k)(a)(x− a)k

k!
+

1

(n− 1)!

b\
a

(x− t)n−1+ f
(n)(t) dt,
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where

(x− t)n−1+ =

{
(x− t)n−1, x ≥ t,

0, x < t.

Now assume f is n-convex on (a, b), n ≥ 2. Thus the left and right

derivatives f
(n−1)
− and f

(n−1)
+ exist on (a, b). To each such f we associate a

measure µ defined on (a, b) by

µ([x, y]) = f
(n−1)
+ (y)− f

(n−1)
− (x)

for a < x ≤ y < b. This is a nonnegative Borel measure on (a, b). If f
(n−1)
+ (a)

is finite then µ may be extended as a bounded (finite) measure to all of [a, c],
for all c < b. In this case f has the representation

f(x) =
n−1∑

k=0

f
(k)
+ (a)(x− a)

k

k!
+

1

(n− 1)!

b\
a

(x− t)n−1+ dµ(t)

for x ∈ [a+, b). If we cannot extend µ to the endpoint a, then we will have
this representation only on closed subintervals of (a, b). The converse also
holds. If µ is a nonnegative Borel measure on [a, b], then any f of the form

(2.2) f(x) = P (x) +
1

(n− 1)!

b\
a

(x− t)n−1+ dµ(t)

is n-convex where P is an arbitrary polynomial of degree at most n − 1.
In particular, for every t ∈ R, ( · − t)n−1+ is n-convex on R. These results
are essentially in Popoviciu [19]. They are given in detailed form in Karlin
and Studden [13, Chap. XI], with generalizations, and may also be found
in Bullen [5] and Brown [4]. The above results underscore an essential trait
of n-convex functions on intervals, namely that they are the appropriate
closure of functions with nonnegative nth derivatives.

We state here for convenience a technical result we will later need, related
to (1.1) and (1.2), and of independent interest. Assume we are given ordered
points x1 < · · · < xm, m ≥ n+ 1. Then for∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
xi1 · · · xin+1
...

. . .
...

xn−1i1 · · · xn−1in+1
f(xi1) · · · f(xin+1)

∣∣∣∣∣∣∣∣∣∣∣

≥ 0

to hold for all i1 < · · · < in+1 in {1, . . . ,m} it suffices that it hold only for
the consecutive indices {j, . . . , j + n}, j = 1, . . . ,m− n. Thus to determine
whether f is n-convex on a finite ordered set of points {x1, . . . , xm} it suffices
to verify that it is n-convex only on each n + 1 consecutive points. These
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results follow from the fact (see Popoviciu [17, p. 7]) that

(2.3) [xi1 , . . . , xin+1 ; f ] =
m−n∑

j=1

Aj [xj , . . . , xj+n; f ],

where the {Aj}
m−n
j=1 are nonnegative values that sum to one. The {Aj}

m−n
j=1

do not depend upon the specific function f .

3. Elementary extensions. We are interested in the question of when
an n-convex function defined on E can be extended to an n-convex function
defined on some larger set E′. We will always assume that E = {x1, . . . , xm},
i.e., E is a finite point set in R. We will deal with either E′ = E ∪ ξ, i.e.,
one point extensions of E, or E′ = R. This problem was first considered in
Popoviciu [18].
The first thing to be noted is that for any finite point set E, any 0-convex

(nonnegative), 1-convex (nondecreasing) or 2-convex (convex) function on
E can always be extended to a 0-convex, 1-convex or 2-convex function,
respectively, on all of R. For 0-convex and 1-convex functions this is obvious.
It is also simple for 2-convex functions, but we will nonetheless detail this
case (see also Galvani [9]).
Assume f is 2-convex on E = {xi}

m
i=1, where x1 < · · · < xm. From (2.3),

f is 2-convex on E if and only if

[xj , xj+1, xj+2; f ] ≥ 0, j = 1, . . . ,m− 2.

This, in turn, is equivalent to

f(xj+2)− f(xj+1)

xj+2 − xj+1
≥
f(xj+1)− f(xj)

xj+1 − xj
, j = 1, . . . ,m− 2.

Thus f can be extended to be 2-convex on E′ = {xi}
m
i=1∪ξ for ξ ∈ (xk, xk+1)

if and only if we can define f at ξ so that

f(xk+2)− f(xk+1)

xk+2 − xk+1
≥
f(xk+1)− f(ξ)

xk+1 − ξ
≥
f(ξ)− f(xk)

ξ − xk
≥
f(xk)− f(xk−1)

xk − xk−1
,

whenever these inequalities make sense. (That is, for ξ <x1 and for xm<ξ
there is one inequality. For ξ ∈ (x1, x2) or ξ ∈ (xm−1, xm) only two inequal-
ities apply.)
That this can be done is easily seen geometrically. Let Pj(x) denote

the straight line (linear polynomial) interpolating f at xj and xj+1, j =
1, . . . ,m − 1. Assume k ∈ {2, . . . ,m − 2}. In (xk, xk+1) the line Pk(x) lies
above both Pk−1(x) and Pk+1(x). For any value of f(ξ) satisfying

max{Pk−1(ξ), Pk+1(ξ)} ≤ f(ξ) ≤ Pk(ξ)

it follows that f is 2-convex on E′ = {xi}
m
i=1 ∪ ξ. The other cases, i.e.,

k ∈ {0, 1,m− 1,m}, are similarly handled.
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f can also be extended in this same manner so that it is 2-convex on
all of R. For example, one might take f to equal Pk on (xk, xk+1) for k =
1, . . . ,m−1, and suitably define it on (−∞, x1) and (xm,∞). This is just the
obvious choice of taking the continuous, piecewise linear function obtained
by joining the point (xk, f(xk)) to (xk+1, f(xk+1)), k = 1, . . . ,m− 1.
Another interesting feature that follows from the above analysis is that

any 2-convex extension of f from E is necessarily bounded above and below
on [x1, xm], and is also bounded below on (a, x1)∪(xm, b). Let U(x) = Pk(x)
on [xk, xk+1], k = 1, . . . ,m− 1. Set

L(x) =





P1(x) for x ∈ (−∞, x1],

P2(x) for x ∈ (x1, x2),

max{Pk−1(x), Pk+1(x)} for x ∈ [xk, xk+1], k = 2, . . . ,m− 2,

Pm−2(x) for x ∈ [xm−1, xm),

Pm−1(x) for x ∈ [xm,∞).

(Note that L need not be continuous at x1 or xm.) Then any 2-convex
extension f from E necessarily satisfies

f(x) ≤ U(x) for all x ∈ [x1, xm],

L(x) ≤ f(x) for all x ∈ R.

Furthermore these bounds are tight in the sense that for any ξ ∈ R and α
satisfying L(ξ) ≤ α ≤ U(ξ) (the upper bound is not present outside [x1, xm])
there exists a function f that is a 2-convex extension from E to all of R and
satisfies f(ξ) = α.

(x1, y1)

(x2, y2) (x3, y3)

(x4, y4)

Fig. 1. n = 2 and m = 4. L is the full line, while U is the dashed line

These elementary results do not always extend to n-convex functions for
n ≥ 3, unless m = n+ 1 or m = n+ 2. We first explain the case m = n+1.
A polynomial Q of degree at most n is n-convex if and only if its leading

coefficient (the coefficient of xn) is nonnegative. In fact from (1.1), by the
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Vandermonde formula, we immediately see that if Q(x) =
∑n
j=0 ajx

j , then

(3.1) [x1, . . . , xn+1;Q] = an

for any choice of {xi}
n+1
i=1 . Furthermore, if Q is the polynomial of degree at

most n that interpolates f at {xi}
n+1
i=1 , then it follows that

[x1, . . . , xn+1; f ] = [x1, . . . , xn+1;Q].

Thus, if f is n-convex on the n + 1 points {x1, . . . , xn+1} then so is the
polynomial Q of degree at most n that interpolates f at these points. Then,
due to (3.1), Q is n-convex on all of R, and is therefore an n-convex extension
of f defined on E = {x1, . . . , xn+1} to all of R.
Moreover, if f is n-convex on the n+2 points {x1, . . . , xn+2} then there

also exists an n-convex extension of f to all of R. There are various methods
of proving this result. It follows easily from what we will show in Section 6.
However, here is a more elementary explanation. Let Q1 denote the polyno-
mial of degree at most n that interpolates f at {xi}

n+1
i=1 , and let Q2 denote

the polynomial of degree at most n that interpolates f at {xi}
n+2
i=2 . Since f

is n-convex on {xi}
n+2
i=1 , we know that

Qr(x) = Arx
n + · · ·

for r = 1, 2, where A1, A2 ≥ 0. As Q1(xj) = Q2(xj), j = 2, . . . , n + 1, and
Q1 −Q2 is a polynomial of degree at most n, we have

(Q2 −Q1)(x) = (A2 −A1)
n+1∏

j=2

(x− xj).

We first assume that A2 ≥ A1. Thus

f(xn+2)−Q1(xn+2) = Q2(xn+2)−Q1(xn+2) ≥ 0.

Set

S(x) = Q1(x) + C(x− xn+1)
n−1
+ where C =

f(xn+2)−Q1(xn+2)

(xn+2 − xn+1)n−1
≥ 0.

By construction f(xj) = S(xj), j = 1, . . . , n+2. Furthermore S is n-convex
on all of R since it is the sum of two n-convex functions. From symmetry
considerations a similar result holds for A2 ≤ A1. It suffices to note that

(−1)n(x2 − x)
n−1
+ = (x− x2)

n−1
+ − (x− x2)

n−1.

4. Point extensions. Based on the results of the previous section we
assume in what follows that n ≥ 3 and m ≥ n+3. Given E = {x1, . . . , xm}
with x1 < · · · < xm, we will delineate necessary and sufficient conditions for
an n-convex f defined on E to have an n-convex extension onto E′ = E ∪ ξ.
Fix ξ ∈ (xk, xk+1), where k ∈ {0, 1, . . . ,m} (we set x0 = −∞ and xm+1
=∞).
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We know from (2.3) that f is n-convex on E if and only if

[xj , . . . , xj+n; f ] ≥ 0, j = 1, . . . ,m− n.

Thus a necessary and sufficient condition for an n-convex f defined on E to
have an n-convex extension to E ∪ ξ is

[xj , . . . , xj+n−1, ξ; f ] ≥ 0

for all relevant j ∈ {1, . . . ,m− n+ 1}, i.e., for j satisfying

(4.1) max{1, k − n+ 1} ≤ j ≤ min{k + 1,m− n+ 1}.

It is difficult to deal directly with [xj , . . . , xj+n−1, ξ; f ] ≥ 0. Thus we will
rework this inequality using (2.1). Let Pj denote the unique polynomial of
degree at most n−1 that interpolates f at the n points xj , . . . , xj+n−1, and
set φj(x) = (x− xj) · · · (x− xj+n−1). Then from (2.1) we have

(4.2) f(x)− Pj(x) = φj(x)[xj, . . . , xj+n−1, x; f ].

Since ξ ∈ (xk, xk+1) and sgn{φj(ξ)} = (−1)
j+k−n+1 for k−n+1 ≤ j ≤ k+1,

we have that an n-convex f defined on E, as above, may be extended to an
n-convex function on E ∪ ξ with ξ ∈ (xk, xk+1) if and only if

(−1)j+k−n+1 (f(ξ)− Pj(ξ)) ≥ 0

for each j satisfying (4.1). Set

L(ξ) = max{Pj(ξ) : j + k − n+ 1 even, j satisfies (4.1)},

U(ξ) = min{Pj(ξ) : j + k − n+ 1 odd, j satisfies (4.1)}.

We summarize the above analysis as follows.

Theorem 4.1 (Popoviciu [18, p. 78]). Assume f is n-convex on {xi}
m
i=1

where −∞ = x0 < x1 < · · · < xm < xm+1 = ∞. Let ξ ∈ (xk, xk+1). Then
a necessary and sufficient condition for f to have an n-convex extension to
{xi}

m
i=1 ∪ ξ is that L(ξ) ≤ U(ξ) where L(ξ) and U(ξ) are defined as above.

f is n-convex on {xi}
m
i=1 ∪ ξ if and only if f(ξ) ∈ [L(ξ), U(ξ)].

For j ∈ {1, . . . ,m − n}, Pj+1(x) − Pj(x) is a polynomial of degree at
most n− 1 that vanishes at xj+1, . . . , xj+n−1. Thus

Pj+1(x)− Pj(x) = Cj

j+n−1∏

i=j+1

(x− xi).

From (4.2) we see that f(xj+n) − Pj(xj+n) ≥ 0. Furthermore f(xj+n) =
Pj+1(xj+n). Thus Cj ≥ 0, implying that the inequality

(4.3) (−1)j+k−n+1 (Pj+1(ξ)− Pj(ξ)) ≥ 0

holds for the relevant j.
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In the case n = 2, (4.1) reads

max{1, k − 1} ≤ j ≤ min{k + 1,m− 1}.

Thus for 2 ≤ k ≤ m − 2 the set of j satisfying these inequalities is j =
k − 1, k, k + 1. In this case

L(ξ) = max
j=k−1,k+1

Pj(ξ), U(x) = Pk(ξ).

From (4.3) it follows that Pk(ξ) ≥ Pk−1(ξ) and Pk(ξ) ≥ Pk+1(ξ). Thus we
always have L(ξ) ≤ U(ξ). This is the same analysis as done in Section 3
from a slightly different perspective.
In the case n = 3, (4.1) reads

max{1, k − 2} ≤ j ≤ min{k + 1,m− 2}.

Thus for 3 ≤ k ≤ m − 3 the set of j satisfying the above is j = k − 2,
k − 1, k, k + 1. In this case

L(ξ) = max
j=k−2,k

Pj(ξ), U(ξ) = min
j=k−1,k+1

Pj(ξ).

From (4.3) we also have (−1)j+k−2(Pj+1(ξ)− Pj(ξ)) ≥ 0 for all relevant j,
implying that

Pk−1(ξ) ≥ Pk−2(ξ), Pk−1(ξ) ≥ Pk(ξ), Pk+1(ξ) ≥ Pk(ξ).

This does not imply, offhand, that L(ξ) ≤ U(ξ). Namely, we are missing the
inequality Pk+1(ξ) ≥ Pk−2(ξ). In fact this inequality need not hold, as we
show below. For n = 3 (and therefore for all n ≥ 3) there exist n-convex
functions f defined on {xi}

m
i=1, and points ξ such that there is no n-convex

extension of f to {xi}
m
i=1 ∪ ξ.

It is readily verified that for ξ ≤ x3 and ξ ≥ xm−2, i.e., k ∈ {0, 1, 2,
m − 2,m − 1,m}, we always have L(ξ) ≤ U(ξ), and thus every n-convex
function defined on the ordered points {xi}

m
i=1 has an n-convex extension

to {xi}
m
i=1 ∪ ξ for all ξ < x3 and for all ξ > xm−2.

Example 4.2. Here is an example of a 3-convex function f on E and a
point ξ with no 3-convex extension of f to E ∪ {ξ}. Let n = 3, m = 6, and
xi = i, i = 1, . . . , 6. Set f(x1) = 0, f(x2) = 0, f(x3) = 0, f(x4) = 0,
f(x5) = 2, and f(x6) = 6. It is easily verified that f is 3-convex on
{x1, . . . , x6}, as

[x1, x2, x3, x4; f ] = 0, [x2, x3, x4, x5; f ] = 1/3, [x3, x4, x5, x6; f ] = 0.

Furthermore

P1(x) = P2(x) = 0, P3(x) = P4(x) = (x− 3)(x− 4).

Thus for any ξ ∈ (x3, x4) = (3, 4),

L(ξ) = max{0, (ξ − 3)(ξ − 4)} = 0,

U(ξ) = min{0, (ξ − 3)(ξ − 4)} = (ξ − 3)(ξ − 4),
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implying L(ξ) > U(ξ). Therefore f has no extension as a 3-convex function
to any point in (3, 4).

Example 4.3. Here is an example of a function f that is 3-convex on
E = {xi}

8
i=1, can be extended to be 3-convex on E ∪ ξ for every ξ ∈ R, but

cannot be extended to be 3-convex on all of [x1, x8]. In other words, while
extension at all individual points is necessary for extension to a full interval,

it is not sufficient.

Set xi = i for i = 1, . . . , 8. Let f(1) = f(2) = f(3) = 0, implying
P1(x) = 0. We define, for j = 2, . . . , 6,

Pj(x) = Pj−1(x) + aj(x− j)(x− j − 1)

where aj ≥ 0. In this way we define f at xj+2, i.e., set f(xj+2) = Pj(xj+2).
As f(xj) = Pj(xj) and f(xj+1) = Pj(xj+1), it follows from (2.1) that f is
3-convex on the xi. Set a2 = 1, a3 = 6, a4 = 1, a5 = 6, and a6 = 1. (This
implies that f(4) = 2, f(5) = 18, f(6) = 50, f(7) = 110, and f(8) = 200.)
As we have seen, to verify that L(ξ) ≤ U(ξ) in this case of n = 3 it is both
necessary and sufficient to prove that

Pk+1(x) ≥ Pk−2(x) for all x ∈ (xk, xk+1), k = 3, 4, 5.

We verify this as follows. For k = 3, we need P4(x)−P1(x) ≥ 0 on (3, 4).
Now

P4(x)−P1(x) = (x−4)(x−5)+6(x−3)(x−4)+(x−2)(x−3) = 2(2x−7)
2 ≥ 0.

For k = 4, we need P5(x)− P2(x) ≥ 0 on (4, 5). Now

P5(x)− P2(x) = 6(x− 5)(x− 6) + (x− 4)(x− 5) + 6(x− 3)(x− 4)

= 6(x− 5)(x− 6) + (7x− 23)(x− 4) > 0.

For k = 5, we need P6(x)− P3(x) ≥ 0 on (5, 6). Now

P6(x)−P3(x) = (x−6)(x−7)+6(x−5)(x−6)+(x−4)(x−5) = 2(2x−11)
2 ≥ 0.

Thus f may be extended to be 3-convex on {xi}
8
i=1 ∪ ξ for any ξ ∈ R.

However, as we now show, f cannot be extended to be 3-convex on the
full interval. Assume f is 3-convex on [1, 8]. Then on [3, 4],

L(x) = max{P1(x), P3(x)} ≤ f(x) ≤ min{P2(x), P4(x)} = U(x).

This implies that we must have f(7/2) = P1(7/2) = P4(7/2)(= 0). As f
agrees with P1 (a polynomial of degree at most 2) at the four points 1, 2, 3,
and 7/2, the 3-convex function f must agree with P1 on all of [1, 7/2]. (This
can be shown in a number of ways. For example, the divided difference at
these four points is zero, and thus from (2.3) must be zero for any four points
in [1, 7/2].) Similarly f agrees with P4 at 7/2 by the above analysis and at
4, 5, and 6 by definition. Thus f must agree with P4 on all of [7/2, 6]. Now
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on [5, 6],

max{P3(x), P5(x)} ≤ f(x) ≤ min{P4(x), P6(x)}.

Thus we must have f(11/2) = P3(11/2) = P6(11/2). As f agrees with P3 at
3, 4, 5, and now also at 11/2, it must agree with P3 on all of [3, 11/2]. But
now we have reached a contradiction, as P1 6= P3 on [3, 7/2], or P4 6= P3 on
[7/2, 6].

5. n-Convexity and moment conditions. If f is n-convex on an
open set containing [c, d], then according to (2.2) we have

(5.1) f(x) = P (x) +
1

(n− 1)!

d\
c

(x− t)n−1+ dµ(t)

where P is a polynomial of degree at most n − 1 (in fact it is the Taylor
polynomial of f at c) and µ is a nonnegative bounded Borel measure with
support in [c, d].

Let

Bj(t) = [xj , . . . , xj+n; (· − t)
n−1
+ ], j = 1, . . . ,m− n.

These Bj are called B-splines of degree n − 1 with the (simple) knots
xj , . . . , xj+n. It is well known that each Bj is strictly positive on (xj , xj+n),
and vanishes identically outside (xj , xj+n). Furthermore, the Bj are normal-
ized so that

xj+n\
xj

Bj(t) dt =
1

n
, j = 1, . . . ,m− n.

B-splines were introduced in Popoviciu [18] in connection with n-convexity.
This seems to have been the first consideration of B-splines on nonequidis-
tant knots. See de Boor and Pinkus [3] for a history and explanation thereof.

Recall (from (3.1)) that [xj , . . . , xj+n;P ] = 0 for every polynomial P of
degree at most n− 1. Set αj = f(xj), j = 1, . . . ,m, and

cj = [xj , . . . , xj+n; f ], j = 1, . . . ,m− n.

It follows from (5.1) that if there exists an n-convex extension of f on (a, b)
containing E, then

(5.2) cj =
1

(n− 1)!

xm\
x1

Bj(t) dµ(t), j = 1, . . . ,m− n,

where µ is a nonnegative bounded Borel measure. The converse is also true.
If there exists a nonnegative Borel measure µ satisfying (5.2), then for any
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polynomial P of degree at most n− 1 the function

g(x) = P (x) +
1

(n− 1)!

xm\
x1

(x− t)n−1+ dµ(t)

is n-convex and satisfies

[xj , . . . , xj+n; g] = cj , j = 1, . . . ,m− n.

Furthermore, if we choose the polynomial P so that g(xj) = αj , j = 1, . . . , n,
then from (1.1) we have g(xj) = αj , j = 1, . . . ,m, i.e., g = f on E.
Thus we arrive at the following equivalence, which may be found in

Popoviciu [18] (see also de Boor [2]).

Proposition 5.1. Let a < x1 < · · · < xm < b. Then there exists an
n-convex f on (a, b) satisfying f(xj) = αj , j = 1, . . . ,m, if and only if there
exists a nonnegative bounded Borel measure µ on [x1, xm] satisfying

cj =
1

(n− 1)!

xm\
x1

Bj(t) dµ(t),

where cj = [xj , . . . , xj+n; f ], j = 1, . . . ,m − n, and Bj(t) = [xj , . . . , xj+n;
(· − t)n−1+ ] is the B-spline of degree n − 1 with simple knots xj , . . . , xj+n,
j = 1, . . . ,m− n.

What are necessary and sufficient conditions for c1, . . . , cm−n to satisfy
(5.2) for some nonnegative bounded Borel measure? The first characteriza-
tion of such moments follows from a general known result in moment theory
and convex analysis (via dual cones) which we state and prove.

Proposition 5.2. Let {gj}
r
j=1 be functions in C[c, d]. Then

cj =

d\
c

gj(t) dµ(t), j = 1, . . . , r,

for some nonnegative Borel measure on [c, d] if and only if
r∑

j=1

ajcj ≥ 0

for all {a1, . . . , ar} satisfying
∑r
j=1 ajgj(t) ≥ 0 for all t ∈ [c, d].

Proof. We first recall a result concerning convex cones. Assume A is a
convex cone in R

r. Then the dual cone A+ is defined via

A+ = {b ∈ R
r : (b,a) ≥ 0 for all a ∈ A}.

It is a classical result that if C is a closed convex cone in R
r, then C = C++.

The fact that C ⊆ C++ follows by definition. Furthermore, if there exists
a b ∈ C++ \ C, then by the separation of hyperplanes (C and C++ are
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both closed) there exists an a ∈ R
r satisfying (b,a) < 0 ≤ (c,a) for all

c ∈ C. Thus a ∈ C+. But since (b,a) < 0 we have b 6∈ C++, which is a
contradiction. Thus C = C++.

Set

M =
{
a = (a1, . . . , ar) :

r∑

j=1

ajgj(t) ≥ 0 for all t ∈ [c, d]
}
,

P =
{
c = (c1, . . . , cr) : cj =

d\
c

gj(t) dµ(t), j = 1, . . . , r, for some µ ≥ 0
}
,

where µ in P varies over all nonnegative Borel measures on [c, d].

Both M and P are closed convex cones. Furthermore, if a ∈ M and
c ∈ P, then

r∑

j=1

ajcj =

d\
c

r∑

j=1

ajgj(t) dµ(t) ≥ 0

as
∑
ajgj and µ are nonnegative, and therefore M ⊆ P

+. On the other
hand, if d ∈ P+ then

∑r
j=1 djcj ≥ 0 for all c ∈ P. Thus

d\
c

r∑

j=1

djgj(t) dµ(t) ≥ 0

for every nonnegative measure µ on [c, d], including all point measures.
Therefore,

∑r
j=1 djgj(t) ≥ 0 for all t ∈ [c, d], implying d ∈ M. Hence

P+ ⊆M, and we have the equality P+ =M.

Applying the result of the first paragraph of the proof, it follows that
P =M+, which is exactly the statement of the proposition.

Combining Propositions 5.1 and 5.2, we see that a necessary and suffi-
cient condition for the existence of an n-convex extension of f from E to
any interval containing E is that there exists a nonnegative Borel measure µ
on [x1, xm] satisfying (5.2), which in turn, by Proposition 5.2, is equivalent
to

m−n∑

j=1

ajcj ≥ 0

for all {a1, . . . , am−n} satisfying
∑m−n
j=1 ajBj(t) ≥ 0 for all t ∈ [x1, xm]. This

result may be found in Popoviciu [18, p. 90].

This last result is neither insightful nor very useful. Nonetheless for n = 2
these equivalent forms easily show what we have already verified in Section 3.
For n = 2, Bj has its support on (xj , xj+2). It is continuous, linear on each
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of [xj , xj+1] and [xj+1, xj+2], satisfies

Bj(xk) =
1

xj+2 − xj
δj,k−1, j = 1, . . . ,m− 2, k = 1, . . . ,m,

and
xj+2\
xj

Bj(t) dt =
1

2
.

To have

cj =

xj+2\
xj

Bj(t) dµ(t), j = 1, . . . ,m− 2,

for any nonnegative measure µ it is both necessary and sufficient that the
cj be nonnegative. Indeed, this is clearly necessary. It is also sufficient since
xj+1 lies in the support of Bj , but of no other Bk, k 6= j. Let δx denote the
Dirac functional at x. Then the nonnegative Borel measure

µ =
m−2∑

j=1

(xj+2 − xj)cjδxj+1

for any nonnegative c1, . . . , cm−2 satisfies

cj =

xm\
x1

Bj(t) dµ(t), j = 1, . . . ,m− 2.

Thus in this case the associated closed convex cone P is R
m−2
+ . The same

can be obtained as follows. If
∑m−2
j=1 ajBj(t) ≥ 0 for all t ∈ [x1, xm], then

setting t = xj+1 we have aj ≥ 0. Thus the set

M =
{
a :

m−2∑

j=1

ajBj(t) ≥ 0 for all t ∈ [x1, xm]
}

is exactly R
m−2
+ , and from Proposition 5.2 we again obtain P = R

m−2
+ .

Similarly, assume m = n + 2. In this case we have only two B-splines,
namely B1 and B2 with support (x1, xn+1) and (x2, xn+2), respectively. For
any given c1, c2 ≥ 0 we can set µ = aδy1 + bδy2 where y1 ∈ (x1, x2] and
y2 ∈ [xn+1, xn+2), and obtain a, b ≥ 0 satisfying (5.2). (The case m = n+ 1
is even simpler.)
For n ≥ 3, we can immediately see that the situation is more complicated.

Assume that n = 3. As Bj has support (xj , xj+3) it follows that if cj = 0
then the nonnegative measure µ has no support in (xj , xj+3). Thus, for
example, if c1 = c3 = 0 then µ has no support in (x1, x6) and if c2 > 0 there
exists no 3-convex f satisfying the interpolation data; see Example 4.2.
(Even if c1, c3 > 0, it follows that the “admissible” c2 are bounded above.)
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For later convenience we renormalize the moments in the cone of mo-
ments P via

cj =
1

(n− 1)!

xm\
x1

Bj(t) dµ(t), j = 1, . . . ,m− n.

Here µ varies over all nonnegative bounded Borel measures on [x1, xm]. This
cone is often called the moment space induced by the {Bj}

m−n
j=1 .

For n = 2, as we have seen, this cone is simply R
m−2
+ . Its extreme rays

are the multiples of the m− 2 unit vectors. These vectors may be obtained
by choosing the measures

µk = αδxk+1 , α ≥ 0, k = 1, . . . ,m− 2,

since

Bj(xk)

{
= 0, j 6= k + 1,

> 0, j = k + 1,

for j = 1, . . . ,m− 2 and k = 1, . . . ,m.

However for n ≥ 3 and m ≥ 6 there are an infinity of extreme rays in P.
Obviously each α(B1(ξ), . . . , Bm−n(ξ)), α ≥ 0, is a boundary ray of P for
each ξ ∈ (x1, xm). We also have

Proposition 5.3. For each ξ ∈ (x3, xm−2) the vector α(B1(ξ), . . . ,
Bm−n(ξ)), α ≥ 0, is an extreme ray of P.

Proof. Assume not. Then there exist {ξ1, . . . , ξr} in (x1, xm), and γk > 0,
k = 1, . . . , r, r finite, such that

(5.3)

r∑

k=1

γkBj(ξk) = Bj(ξ), j = 1, . . . ,m− n,

with ξ /∈ {ξ1, . . . , ξr}. Assume ξ ∈ (xs, xs+1) for some s ∈ {3, . . . ,m − 3}.
We must handle somewhat differently the cases n+1 ≤ s ≤ m−n−1, s ≤ n
and s ≥ m−n. In what follows we only detail the case n+1 ≤ s ≤ m−n−1.
(If ξ = xj for some j = 4, . . . ,m − 3, similar arguments apply.) For each
s + 1 ≤ j ≤ m − n there exists the B-spline Bj satisfying Bj(ξ) = 0 and
strictly positive on (xj , xj+n). Thus ξk ≤ xs+1 for all k. Similarly, since
s ≥ n+ 1, we have ξk ≥ xs for all k. Hence ξk ∈ [xs, xs+1] for k = 1, . . . , r.

The Bj with subscripts j ∈ {s−n+1, . . . , s} are those that do not vanish
on (xs, xs+1). For j 6∈ {s−n+1, . . . , s} the equation (5.3) always holds. Let
{ξ1, . . . , ξr} ∪ {ξ} = {η1, . . . , ηr+1} where xs ≤ η1 < · · · < ηr+1 ≤ xs+1. By
the Schoenberg–Whitney Theorem (see Schoenberg and Whitney [20]), the
matrix

(Bj(ηk))
s
j=s−n+1

r+1
k=1



140 A. Pinkus and D. Wulbert

is an n × (r + 1) matrix of rank min{n, r + 1} since Bs−n+j(ηj) > 0, j =
1, . . . ,min{n, r + 1}. As

r+1∑

k=1

βkBj(ηk) = 0, j = s− n+ 1, . . . , s,

where βk = γl if ηk = ξl, and βk = −1 if ηk = ξ, it follows that n < r + 1.
Furthermore, from Karlin [12, p. 230], as this matrix is totally positive (TP)
and of full rank we have

S+(β1, . . . , βr+1) ≥ n,

where S+ is the number of (weak) sign changes. As βk > 0 for all but one
index, we have

S+(β1, . . . , βr+1) ≤ 2.

But n ≥ 3 and this contradiction proves the proposition.

Having an infinite number of extreme rays makes it exceedingly difficult
to determine easily verified criteria for when a specific vector belongs to P.
The B-splines {Bj}

m−n
j=1 enjoy various well studied properties. One of

these properties is that their span forms a weak Chebyshev (WT) system.
That is, no linear combination of these Bj has more than m − n − 1 strict
sign changes. Both Chebyshev (T) and weak Chebyshev systems, and the
moment spaces induced by them, have been studied in detail (see Karlin
and Studden [13], Krein and Nudel’man [15], and Krein [14]).
One result from Micchelli and Pinkus [16] is particularly useful in our

context. We first define a nonnegative Borel measure µ to be positive relative
to a WT-system M if \

m(t) dµ(t) > 0

for every nonnegative nontrivial m ∈M .

Theorem 5.4 (Micchelli and Pinkus [16]). Let M be a WT-system of
dimension 2r on [c, d], containing a function strictly positive on (c, d). Then
for every positive measure µ relative to M there exist c < ξ1 < · · · < ξr < d
and λ1, . . . , λr > 0 such that

d\
c

m(t) dµ(t) =
r∑

k=1

λkm(ξk) for all m ∈M .

In other words, there is a discrete nonnegative measure with exactly
r points of increase that provides a representation for the same moments
as does the measure µ. Such a discrete measure is called a lower principal
representation and it has various extremal properties.
Specializing this to B-splines we have some additional results. Assume

we are given the B-splines B1, . . . , B2r based on the knots x1 < · · · < xn+2r.
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Given a positive measure µ on [x1, xn+2r] relative to B = span{B1, . . . , B2r}
we have from Theorem 5.4 the existence of ξ1 < · · · < ξr in (x1, xn+2r) and
λ1, . . . , λr > 0 satisfying

(5.4)

xn+2r\
x1

B(t) dµ(t) =
r∑

k=1

λkB(ξk), B ∈ B,

since
∑2r
j=1Bj(t) > 0 for all t ∈ (x1, xn+2r).

We say that g is in the convexity cone of the WT-systemM of dimension
n if M̃ = span{M, g} is a WT-system, and if h ∈ M̃ has n strict changes of
sign and is nonnegative to the right of its largest change of sign, then

h = a0g +m

where m ∈M and a0 > 0. (There is an equivalent determinantal condition.)
Regarding (5.4) we prove the following.

Proposition 5.5. Under the above conditions we have:

(a) x2k < ξk < xn+2k−1, k = 1, . . . , r.
(b) The {ξk}

r
k=1 and {λk}

r
k=1 satisfying (5.4) are unique.

(c) For every nonnegative Borel measure ν satisfying
xn+2r\
x1

B(t) dν(t) =

xn+2r\
x1

B(t) dµ(t), B ∈ B,

we have
xn+2r\
x1

g(t)dν(t) ≥

r∑

k=1

λkg(ξk)

for every g in the convexity cone of span{B1, . . . , B2r}.
(d) The constant function identically equal to 1 is in the convexity cone
of span{B1, . . . , B2r} and thus

xn+2r\
x1

dν(t) ≥
r∑

k=1

λk

for every nonnegative Borel measure ν as in (c).

Proof. (a) Assume

(5.5) ξk ≤ x2k

for some k ∈ {1, . . . , r}. Now, span{B2k, . . . , B2r} constitutes a WT-system
of dimension 2(r − k) + 1. Thus there exists a nontrivial linear combi-
nation of these B-splines that is nonnegative on [x1, xn+2r] and vanishes
at ξk+1, . . . , ξr. This nontrivial linear combination vanishes identically on
[x1, x2k], and thus by (5.5) at each of the ξ1, . . . , ξk. The right-hand side of
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(5.4) is therefore equal to zero. But since µ is a “positive” measure rela-
tive to B the left-hand side is strictly positive. This is a contradiction. The
inequality ξk < xn+2k−1 is proved similarly.

(b) Assume there are two such representations, i.e.,

(5.6)

xn+2r\
x1

B(t) dµ(t) =
r∑

k=1

λkB(ξk) =
r∑

k=1

µkB(̺k), B ∈ B,

where λk, µk > 0 (it is easily proven that the coefficients must be strictly
positive) and x1 < ξ1 < · · · < ξr < xn+2r, x1 < ̺1 < · · · < ̺r < xn+2r.
From (a) we have x2k < ξk < xn+2k−1 and x2k < ̺k < xn+2k−1 for k =
1, . . . , r. For ease of exposition assume that all the ξk and ̺k are distinct.
Let

{ηk}
2r
k=1 = {ξk}

r
k=1 ∪ {̺k}

r
k=1

arranged in increasing order of magnitude. Then from (a) it may be seen
that

xk < ηk < xk+n, k = 1, . . . , 2r.

But these are exactly the Schoenberg–Whitney conditions which imply that
we can uniquely interpolate to any values at {ηk}

2r
k=1 from B. Thus, for

example, there exists a nontrivial B ∈ B vanishing at all the ηk but one.
This is easily seen to contradict (5.6).

(c) This inequality is a well known result called the Markov–Krein in-
equality (see Karlin and Studden [13, p. 80], Krein and Nudel’man [15,
p. 109], and more explicitly in this case Micchelli and Pinkus [16, Cor. 2.1]).

One proof is the following. Assume that g is in the convexity cone of
{B1, . . . , B2r}. There exists a nontrivial linear combination

h(t) = d0g(t) +
2r∑

k=1

djBj(t)

that is nonnegative and vanishes on {ξk}
r
k=1. If d0 = 0, then

B(t) =
2r∑

k=1

djBj(t)

is nontrivial, nonnegative and vanishes on {ξk}
r
k=1, contradicting the pos-

itivity of µ. It may also be easily shown that d0 > 0. Normalize so that
d0 = 1. Let ν be any nonnegative measure satisfying

xn+2r\
x1

B(t) dν(t) =

xn+2r\
x1

B(t) dµ(t) =
r∑

k=1

λkB(ξk), B ∈ B.
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Thus

0 ≤

xn+2r\
x1

h(t) dν(t) =

xn+2r\
x1

h(t) dν(t)−
r∑

k=1

λkh(ξk),

that immediately reduces to
xn+2r\
x1

g(t) dν(t) ≥
r∑

k=1

λkg(ξk).

(d) Assume span{B1, . . . , B2r, 1} is not a WT-system. There then exists
a linear combination h of B1, . . . , B2r, 1 with at least 2r + 1 strict sign
changes. Set

h(t) = b0 +

2r∑

j=1

bjBj(t).

We must have b0 6= 0 since span{B1, . . . , B2r} is a WT-system of dimen-
sion 2r. As h(t) = b0 for t ≤ x1 and t ≥ xn+2r, it follows that h has at least
2r + 2 strict sign changes. Thus h′ has at least 2r + 1 strict sign changes.
However,

h′(t) =
2r∑

j=1

bjB
′
j(t) =

2r+1∑

j=1

djB̃j(t),

where B̃j is the B-spline of degree n− 2 supported on the knots xj < · · · <

xj+n−1. As span{B̃1, . . . , B̃2r+1} forms a WT-system of dimension 2r + 1,
the nontrivial function h′ has at most 2r strict sign changes, a contradiction.
Thus span{B1, . . . , B2r, 1} is a WT-system of dimension 2r+1, and there

exists a nontrivial linear combination

h(t) = a0 +
2r∑

j=1

ajBj(t)

that has 2r sign changes and is nonnegative to the right of its largest sign
change. We cannot have a0 = 0 as span{B1, . . . , B2r} is a WT-system. As
h(xn+2r) = a0 6= 0, we must have a0 > 0. This proves (d).

It should be emphasized that the above proof of (a) and (b) implies that
if

xn+2r\
x1

B(t) dµ(t) =
s∑

k=1

µkB(ηk), B ∈ B,

for some s ≤ r and ordered {ηk}, then necessarily s = r, µk = λk and
ηk = ξk.
Let us now reformulate the consequences of Theorem 5.4 and Proposition

5.5 in the language of our original interpolation problem.
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Assume f is n-convex on (a, b) and let αi = f(xi), i = 1, . . . , n + 2r,
where

x0 = a < x1 < · · · < xn+2r < b = xn+2r−1.

(It is convenient, see Theorem 5.4, to assume m = n+ 2r.) Let

cj = [xj , . . . , xj+n; f ], j = 1, . . . , 2r.

Then

cj =
1

(n− 1)!

xn+2r\
x1

Bj(t) dµ(t), j = 1, . . . , 2r,

for some nonnegative bounded Borel measure µ. For the moment assume
that c = (c1, . . . , c2r) is in the interior of P. (If c ∈ P, then c + ε ∈
intP where ε = (ε, . . . , ε) for any ε > 0.) Then µ is positive relative to
span{B1, . . . , B2r}. From Theorem 5.4 and Proposition 5.5 we have

cj =
r∑

k=1

λkBj(ξk), j = 1, . . . , 2r,

where x2k < ξk < xn+2k−1, and λk > 0, k = 1, . . . , r. Set

s∗(x) = p(x) +
r∑

k=1

λk(x− ξk)
n−1
+ ,

where we choose the polynomial p of degree at most n− 1 so that

s∗(xi) = αi, i = 1, . . . , n.

Then, as is readily verified,

s∗(xi) = f(xi) = αi, i = 1, . . . , n+ 2r.

Note that s∗ is n-convex on all R as it is a nonnegative combination of
n-convex functions, namely a polynomial of degree at most n − 1 and the
functions (x− ξk)

n−1
+ .

The important Proposition 5.5(c) can be applied to obtain the following.

Theorem 5.6. Let f and s∗ be as above. Then

(−1)n+i(f − s∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 0, 1, . . . , n+ 2r.

Proving Theorem 5.6 using Proposition 5.5(c) involves the identification
of the convexity cone of {B1, . . . , B2r} and some other technical details. We
have chosen to provide a more direct elementary proof that provides some
insight into why the result is valid.

Proof. We first prove this result assuming that f − s∗ does not vanish
identically on any interval (xi, xi+1), i = 1, . . . , n+2r−1. With this assump-
tion, and f − s∗ vanishing at {xi}

n+2r
i=1 , it follows that f

′ − s∗′ has at least
n−1+2r sign changes in (x1, xn+2r). Continuing we see that f

(n−2)−s∗(n−2)
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has at least 2+2r sign changes in (x1, xn+2r). Recall that f
(n−2) and s∗(n−2)

are continuous and convex.

Now

s∗(n−2)(x) = c+ dx+
r∑

k=1

λk(n− 1)!(x− ξk)
1
+.

That is, s∗(n−2) is a convex, piecewise linear function with the knots ξk,
k = 1, . . . , r. On each (ξk−1, ξk), k = 1, . . . , r + 1, (ξ0 = a, ξr+1 = b) the
function f (n−2)−s∗(n−2) has at most two sign changes, since s∗(n−2) is linear
and f (n−2) is convex there. Furthermore if f (n−2) − s∗(n−2) does not have
two sign changes on each (ξk−1, ξk), k = 1, . . . , r + 1, then f

(n−2) − s∗(n−2)

does not have 2 + 2r sign changes in (a, b). This implies that f (n−2) −
s∗(n−2) has exactly two sign changes in each (ξk−1, ξk), k = 1, . . . , r+1, and
f − s∗ has exactly n + 2r sign changes, and in fact changes sign weakly at
{xi}

n+2r
i=1 . Furthermore, f

(n−2) − s∗(n−2) is necessarily positive to the right
of its rightmost sign change. This implies that f − s∗ is positive to the right
of its rightmost zero, and thus

(−1)n+i(f − s∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 0, 1, . . . , n+ 2r.

We proved this under the assumption that f −s∗ does not vanish identi-
cally in any (xi, xi+1). If this assumption does not hold, then we first apply
a perturbation, obtain the result and then perturb back.

6. Extensions to all of R. In this section we present a method, albeit
nonconstructive, for determining if an n-convex f on E = {x1, . . . , xm} has
an extension to an n-convex function on all of R. We first explain the method
using the moment theory approach, and then redefine it in terms of splines.

Assume we are given the ordered points a < x1 < · · · < xm < b, and
data {αi}

m
i=1. We associate with them the moment c = (c1, . . . , cm−n) where

[xj , . . . , xj+n; f ] = cj , j = 1, . . . ,m− n,

where f is any function satisfying f(xi) = αi, i = 1, . . . ,m. We wish to
determine if c ∈ P, i.e., if there is an associated n-convex function f on all
of R satisfying

[xj , . . . , xj+n; f ] = cj , j = 1, . . . ,m− n.

We shall determine whether c ∈ intP, i.e., whether the associated measure
µ is positive. (The boundary makes for technical difficulties we prefer to
avoid.)

Let [(m − n)/2] = r and consider {cr, cr+1}. A necessary and sufficient
condition for the existence of a nonnegative Borel measure µ on [xr, xr+n+1]
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satisfying
xr+n+1\
xr

Bj(t) dµ(t) = cj , j = r, r + 1,

is that cr, cr+1 ≥ 0 (this is equivalent to the case m = n + 2 discussed
in Section 5), and similarly with “nonnegative” replaced by “positive”, and
“cr, cr+1 ≥ 0” by “cr, cr+1 > 0”. Assume that such a positive measure exists.
From Theorem 5.4 and Proposition 5.5 we have the existence of a unique
lower principal representation for µ with respect to {Br, Br+1}, namely

cj = λ11Bj(ξ11), j = r, r + 1,

where λ11 > 0 and xr+1 < ξ11 < xr+n. It is easily verified that both Br−1
and Br+2 are in the convexity cone of the WT-system span{Br, Br+1}.
Applying Proposition 5.5(c), we see that for any nonnegative Borel measure
ν satisfying

xr+n+1\
xr

Bj(t) dν(t) = cj , j = r, r + 1,

we have
xr+n+1\
xr

Bj(t) dν(t) ≥ λ11Bj(ξ11), j = r − 1, r + 2.

Thus if there exists a nonnegative Borel measure ν on [xr−1, xr+n+2]
satisfying

xr+n+2\
xr−1

Bj(t) dν(t) = cj , j = r − 1, r, r + 1, r + 2,

then necessarily

cj =

xr+n+2\
xr−1

Bj(t) dν(t) ≥ λ11Bj(ξ11), j = r − 1, r + 2.

On the other hand, if

cj ≥ λ11Bj(ξ11), j = r − 1, r + 2,

then there exists a nonnegative Borel measure ν on [xr−1, xr+n+2] satisfying

xr+n+2\
xr−1

Bj(t) dν(t) = cj , j = r − 1, r, r + 1, r + 2.

One such nonnegative measure is given by

µ1 = λ11δξ11 + aδη1 + bδη2
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where we can arbitrarily choose η1 ∈ (xr−1, xr), η2 ∈ (xr+n+1, xr+n+2), and
define a, b ≥ 0 accordingly. (Note that η1 lies in the support of Br−1 but
not in those of Br, Br+1 and Br+2, while η2 lies in the support of Br+2 but
not in those of Br−1, Br and Br+1.)
Now, if

cr−1 = λ11Br−1(ξ11),

i.e., a = 0, then there exists a nontrivial linear combination of {Bj}
r+2
j=r−1

that vanishes at ξ11 and η2, implying that µ1 is not a positive measure. Thus
(cr−1, cr, cr+1, cr+2) is a boundary point of the associated moment cone in
R
4, and c 6∈ intP. The similar result holds if cr+2 = λ11Br+2(ξ11), i.e.,
b = 0.
If a, b > 0, then there exists no nontrivial nonnegative linear combination

of {Bj}
r+2
j=r−1 that vanishes at ξ11, η1 and η2. Thus (cr−1, cr, cr+1, cr+2) is an

interior point of the associated moment cone in R
4, and µ1 is a positive mea-

sure relative to span{Br−1, Br, Br+1, Br+2}. From Theorem 5.4 and Propo-
sition 5.5 we now obtain the existence of a unique lower principal represen-
tation for µ1 with respect to the WT-system span{Br−1, Br, Br+1, Br+2},
namely

cj = λ12Bj(ξ12) + λ22Bj(ξ22), j = r − 1, r, r + 1, r + 2,

where λ12, λ22 > 0 and xr < ξ12 < xr+n−1, xr+2 < ξ22 < xr+n+1. The
B-splines Br−2 and Br+3 are in the convexity cone of the WT-system
span{Br−1, Br, Br+1, Br+2}. This implies that for any nonnegative Borel
measure ν satisfying

xr+n+3\
xr−2

Bj(t) dν(t) = cj , j = r − 1, r, r + 1, r + 2,

we have

(6.1) cj ≥ λ12Bj(ξ12) + λ22Bj(ξ22), j = r − 2, r + 3.

Furthermore, if (6.1) holds, then there exists a nonnegative Borel measure
ν on [xr−2, xr+n+3] satisfying

xr+n+3\
xr−2

Bj(t) dν(t) = cj , j = r − 2, . . . , r + 3.

We now continue exactly as above. The vector c is in intP if and only
if there is strict inequality in (6.1) for j = r − 2 and j = r + 3. If this
holds then we can easily construct a positive measure with respect to the
WT-system span{Br−2, . . . , Br+3} by adding to the right-hand side point
functionals, with positive weights, at a point in (xr−2, xr−1) and a point in
(xr+n+2, xr+n+3).
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We continue this process in order to eventually verify if c ∈ intP. De-
pending on the parity of m − n we will either have two conditions or one
condition to check at the very last step.

In terms of splines, our method of determining if there exists an n-convex
f on R satisfying f(xi) = αi, i = 1, . . . ,m, is the following. This equivalence
is a consequence of Theorem 5.6 and the explanation prior to Theorem 5.6.
It is based on the fact that if (cr−l+1, . . . , cr+l) is in the interior of the
associated moment cone in R

2l, then there exists a spline of the form

s∗l (x) = pl(x) +
l∑

k=1

λkl(x− ξkl)
n−1
+ ,

where pl is a polynomial of degree at most n− 1, satisfying

s∗l (xj) = f(xj) = αj , j = r − l + 1, . . . , r + l + n,

with λkl > 0, k = 1, . . . , l, and

xr−l+2k < ξkl < xr−l+2k+n−1, k = 1, . . . , l.

The moment (cr−l, cr−l+1, . . . , cr+l, cr+l+1) is then in the interior of the
associated moment cone in R

2l+2 if and only if

(−1)nf(xr−l) > (−1)
ns∗l (xr−l) and f(xr+l+n+1) > s

∗
l (xr+l+n+1).

The drawback in these two equivalent methods of determining whether
an n-convex function on E is extendable to all of R is that we do not know
how to construct these lower principal representations, or the equivalent
splines s∗l . It is doubtful if there are more elementary criteria.

7. Envelopes. In this section we determine upper and lower pointwise
bounds on the set of all n-convex functions f on (a, b) satisfying f(xi) = αi,
i = 1, . . . ,m.

Assume f is n-convex on (a, b). Again, for convenience, we assume that
the associated moment c is in intP. First assume that m = n + 2r. Then
from Theorem 5.6 we obtain a spline s∗ with exactly r knots satisfying

(−1)n+i(f − s∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 0, 1, . . . , n+ 2r.

This gives half the pointwise bounds on any n-convex f on (a, b) satisfy-
ing f(xi) = αi, i = 1, . . . , n + 2r. How may we obtain the other half?
Consider this same Theorem 5.6, but only with respect to the points
{x2, . . . , xn+2r−1}, i.e., the B-splines {B2, . . . , B2r−1}. From the previous
analysis we obtain a function

S∗(x) = p(x) +

r−1∑

k=1

µk(x− ηk)
n−1
+ ,
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where x2k+1 < ηk < xn+2k and µk > 0, k = 1, . . . , r − 1, satisfying

(−1)n+i−1(f − S∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 1, . . . , n+ 2r − 1.

These new bounds are exact even though the n-convex S∗ does not inter-
polate f at x1 and xn+2r.

Theorem 7.1. Let f , s∗ and S∗ be as above. Then

(− 1)n+is∗(x) ≤ (−1)n+if(x) ≤ (−1)n+iS∗(x)

on (xi, xi+1), i = 1, . . . , n+ 2r − 1,

s∗(x) ≤ f(x) on (xn+2r, b)

(− 1)ns∗(x) ≤ (−1)nf(x) on (a, x1).

Furthermore these bounds are tight.

Proof. The inequalities of Theorem 7.1 always hold. We will prove that
these bounds are tight. Those given by s∗ are exact since s∗ is an n-convex
function that interpolates f at {xi}

n+2r
i=1 . We must prove the exactness of

the bounds given by S∗.
By construction, we have (f−S∗)(xn+2r) ≥ 0 and (−1)

n(f−S∗)(x1) ≥ 0.
Given ε > 0 small, let y1 ∈ (x1, x1 + ε) and y2 ∈ (xn+2r − ε, xn+2r). Set

Sε(x) = S
∗(x) +A(x− y2)

n−1
+ +B(y1 − x)

n−1
+

where A and B are chosen so that

Sε(x1) = f(x1), Sε(xn+2r) = f(xn+2r).

Thus A ≥ 0 and (−1)nB ≥ 0. A simple analysis (see the last part of Sec-
tion 3) shows that Sε is n-convex. Thus we have constructed an n-convex
function that, for all ε > 0 small, interpolates f at all the {xi}

n+2r
i=1 and

satisfies Sε(x) = S
∗(x) for x ∈ [x1 + ε, xn+2r − ε]. Thus the bounds given

by S∗ in the statement of Theorem 7.1 are exact.
On (xn+2r, b) and (a, x1) there are in fact only one-sided bounds on f .

For example, the function s∗(x)+A(x−xn+2r)
n−1
+ for A ≥ 0 arbitrary is an

n-convex function interpolating f at {xi}
n+2r
i=1 , and the set of such functions

is not bounded above at any x > xn+2r. A similar result holds on (a, x1).

In Theorem 7.1 we considered the case of n + 2r interpolation points.
Now assume that we are given n+ 2r + 1 points

x0 = a < x1 < · · · < xn+2r+1 < b = xn+2r+2.

Again we assume that the corresponding moments are in the interior of P,
and thus we can apply Theorem 5.4 and Proposition 5.5, as above, both
to the points {x1, . . . , xn+2r}, i.e., the B-splines {B1, . . . , B2r}, and to the
points {x2, . . . , xn+2r+1}, i.e., the B-splines {B2, . . . , B2r+1}. From this anal-
ysis we obtain splines σ∗ and Σ∗, respectively. Each of them has r knots
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satisfying certain inequalities. From Theorem 5.6 we have

(−1)n+i(f − σ∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 0, 1, . . . , n+ 2r,

while

(−1)n+i−1(f −Σ∗)(x) ≥ 0 for x ∈ (xi, xi+1), i = 1, . . . , n+ 2r + 1.

Neither σ∗ nor Σ∗ interpolates f at all {xi}
n+2r+1
i=1 . However, the analysis

of Theorem 7.1 is easily applied.

Summarizing we have

Theorem 7.2. Let f , σ∗ and Σ∗ be as above. Then

(−1)n+iσ∗(x) ≤ (−1)n+if(x) ≤ (−1)n+iΣ∗(x)

for (xi, xi+1), i = 1, . . . , n+ 2r,

(− 1)nσ∗(x) ≤ (−1)nf(x) for x ∈ (a, x1),

Σ∗(x) ≤ f(x) for x ∈ (xn+2r+1, b).

Furthermore these bounds are tight.

The above results were proven under the assumption that the corre-
sponding moments are in the interior of P. What happens on the bound-
ary? The boundary of the moment cone associated with a WT-system can be
somewhat complicated. Therefore it seems easier in our case to simply per-
turb to the interior of P, obtain the result of Theorem 7.1 or Theorem 7.2,
as appropriate, and then perturb back. We will not delve into the details of
this perturbation. Suffice it to say that if c is on the boundary of P, then
c + ε ∈ intP, where ε = (ε, . . . , ε), ε > 0. If f is n-convex and satisfies
f(xi) = αi, i = 1, . . . ,m, and

[xj , . . . , xj+n; f ] = cj , j = 1, . . . ,m− n,

then g(x) = f(x) + εxn is n-convex, and satisfies g(xi) = αi + εx
n
i , i =

1, . . . ,m, and

[xj , . . . , xj+n; g] = cj + ε, j = 1, . . . ,m− n.

We can take a subsequence, as ε → 0, of the associated perturbed splines,
say s∗ε and S

∗
ε , that converges uniformly to some s

∗ and S∗, respectively.
Thus s∗, corresponding to the s∗ of Theorem 5.6, is necessarily a spline of
the form

s∗(x) = p(x) +
r∑

k=1

λk(x− ξk)
n−1
+

where p is a polynomial of degree at most n − 1, x2k ≤ ξk ≤ xn+2k−1 and
λk ≥ 0, k = 1, . . . , r. (At least one of these inequalities must be an equality,
or otherwise c ∈ intP.) A similar result holds for S∗, σ∗ and Σ∗.
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Hermann Burchard in his thesis [6] considered, among other things, much
of the subject matter of this paper and especially this section. Brief an-
nouncements appeared in Burchard [7] and [8]. Burchard considered this
problem in the more general context of “generalized convex functions” given
via the kernel of disconjugate differential equations (see Karlin and Studden
[13, Chap. XI]). We have restricted ourselves in this paper to the differential
equation y(n) = 0. Burchard obtained results concerning the “envelopes”
of n-convex interpolating functions as outlined in this section, although his
results are less exact and hold under certain restrictions.

Acknowledgements. Our thanks to Carl de Boor for his help with the
figure and other suggestions.
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