# Continuous Selections for the Metric Projection on $C_{1}$ 


#### Abstract

Allan Pinkus Abstract. $\quad C_{1}(K)$ is the space of real continuous functions on $K$ endowed with the usual $L_{1}$-norm where $K=\overline{\operatorname{int} K}$ is compact in $R^{\prime \prime \prime} . U$ is a finite-dimensional subspace of $C_{1}(K)$. The metric projection of $C_{1}(K)$ onto $U$ contains a continuous selection with respect to $L_{1}$-convergence if and only if $U$ is a unicity (Chebyshev) space for $C_{1}(K)$. Furthermore, if $K$ is connected and $U$ is not a unicity space for $C_{1}(K)$, then there is no continuous selection with respect to $L_{x}$-convergence. An example is given of a $U$ and a disconnected $K$ with no continuous selection with respect to $L_{1}$-convergence, but many continuous selections with respect to $L_{\infty}$-convergence.


## 1. Introduction

In what follows, $K$ will denote a compact subset of $R^{m}$ of positive finite Lebesgue measure, with $K=\overline{\operatorname{int} K .} C_{1}=C_{1}(K)$ will denote the space of real continuous functions on $K$ endowed with the norm

$$
\|f\|_{1}=\int_{K}|f(x)| d x
$$

$C_{1}$ is a normed linear space, but is not complete. $U$ will always denote a fixed $n$-dimensional, $n$ finite, subspace of $C_{1}$.

For each $f \in C_{1}$, set

$$
P(f)=\left\{u: u \in U,\|f-u\|_{1} \leq\|f-v\|_{1}, \text { all } v \in U\right\} .
$$

$P(f)$ is the set of best approximants to $f$ from $U$. It is well known that for each $f \in C_{1}, P(f)$ is convex, compact, and nonempty. The set-valued map $P$ is called the metric projection onto $U$. Any single-valued map $s$ from $C_{1}$ onto $U$ for which $s(f) \in P(f)$ for each $f \in C_{1}$ is called a metric selection onto $U$. In this paper we are concerned with characterizing those subspaces $U$ as above for which there exist "continuous" metric selections onto $U$, or for brevity, "continuous" selections.

To explain our result we introduce the following definitions.

[^0]Definition 1. We say that $U$ is a unicity space if $P(f)$ is a singleton for each $f \in C_{1}$.
Unicity spaces are sometimes referred to as Chebyshev spaces. $U$ is a unicity space if to each $f \in C_{1}$ there exists a unique best approximant from $U$. Many such $U$ exist and various characterizations of unicity spaces are known. One such, Proposition 4, will be used in this work.
We now make precise what we mean by a "continuous" selection.
Definition 2. Let $s(\cdot)$ be a metric selection onto $U$. We say that $s$ is an $L_{1}$-continuous selection (or $L_{1}$-continuous) if $s$ is continuous on $C_{1}$ with respect to $L_{1}$-convergence. That is, for $f, f_{n} \in C_{1}$ satisfying $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{1}=0$, it follows that $\lim _{n \rightarrow \infty} s\left(f_{n}\right)=s(f)$. We say that $s$ is an $L_{\infty}$-continuous selection (or $L_{\infty}{ }^{-}$ continuous) if $s$ is continuous on $C_{1}$ with respect to $L_{\infty}$-convergence. That is, for $f, f_{n} \in C_{1}$ satisfying $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\infty}=0$, it follows that $\lim _{n \rightarrow \infty} s\left(f_{n}\right)=s(f)$, where $\|\cdot\|_{\infty}$ represents the usual uniform norm on $K$.

Remark 1. We write $\lim _{n \rightarrow \infty} s\left(f_{n}\right)=s(f)$ since $s(f) \in U$ for each $f \in C_{1}, U$ is finite-dimensional, and all norms are equivalent on $U$.

Remark 2. Since $K$ has finite measure, $L_{1}$-continuity of $s$ implies $L_{\infty}$-continuity.
We can now state our result.
Theorem. Under the above assumptions, there exists an $L_{1}$-continuous selection onto $U$ if and only if $U$ is a unicity space. Furthermore, if $K$ is connected, and $U$ is not a unicity space, then there exists no $L_{\infty}$-continuous selection.

Metric projections and continuous selections are much-studied objects. The interested reader is referred to Deutsch [3], and references therein. Relevant to this work is the following result of Lazar, Wulbert, and Morris [4]: on $L_{1}(K)$ there exist no ( $L_{1^{-}}$) continuous selections.

This paper is organized as follows. In Section 2 we recall some known results, including the simple fact that if $U$ is a unicity space, then there is an $L_{1}$-continuous selection, namely, the metric projection. We also present an example of a disconnected $K$ and a $U$ for which there is no $L_{1}$-continuous selection, but where there are many $L_{\infty}$-continuous selections.

Section 3 contains the main content of this paper. Therein is proved the remaining part of the theorem.

## 2. Preliminaries

We first state the easy half of the theorem. This result should be well known to the reader and is valid in a more general framework, see e.g., Cheney [1, p. 23]. Recall that if $U$ is a unicity space, then the metric projection is single-valued.

Proposition 1. If $U$ is a unicity space for $C_{1}$, then the metric projection is $L_{1^{-}}$ continuous.

We also recall the following characterization of best approximants from $U$. To this end, for each $f \in C_{1}$, set

$$
\begin{aligned}
& Z(f)=\{x: f(x)=0\} \\
& N(f)=K \backslash Z(f)
\end{aligned}
$$

We will also use the notation $|A|=$ meas $\{A\}$ for any measurable subset $A$ of $K$, and write $\int_{A} f$ for $\int_{A} f(x) d x$.

Proposition 2. Let $f \in C_{1}$. Then $u^{*} \in P(f)$ if and only if

$$
\left|\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right] u\right| \leq \int_{Z\left(f-u^{*}\right)}|u|
$$

for all $u \in U$.
As a consequence of Proposition 2, we easily prove this next result. We will repeatedly use Proposition 3.

Proposition 3. Let $f \in C_{1}$ and $u^{*} \in P(f)$. Then $v \in P(f)$ if and only if:
(a) $\left(f-u^{*}\right)(f-v) \geq 0$ on $K$;
(b) $\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right]\left(v-u^{*}\right)=\int_{Z\left(f-u^{*}\right)}\left|v-u^{*}\right|$.

Proof. Assume $u^{*}, v \in P(f)$. Then

$$
\begin{aligned}
\left\|f-u^{*}\right\|_{1} & =\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right]\left(f-u^{*}\right) \\
& =\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right](f-v)+\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right]\left(v-u^{*}\right) \\
& \leq \int_{N\left(f-u^{*}\right)}|f-v|+\int_{Z\left(f-u^{*}\right)}\left|v-u^{*}\right| \\
& =\int_{N\left(f-u^{*}\right)}|f-v|+\int_{Z\left(f-u^{*}\right)}|v-f| \\
& =\|f-v\|_{1} \\
& =\left\|f-u^{*}\right\|_{1} .
\end{aligned}
$$

Since equality holds, it is necessary that:
( $\left.\mathrm{a}^{\prime}\right) \int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right](f-v)=\int_{N\left(f-u^{*}\right)}|f-v|$;
(b') $\int_{K}\left[\operatorname{sgn}\left(f-u^{*}\right)\right]\left(v-u^{*}\right)=\int_{Z\left(f-u^{*}\right)}\left|v-u^{*}\right|$.
Thus (a) follows from ( $a^{\prime}$ ) and continuity, while (b) is ( $b^{\prime}$ ). If (a) and (b) hold, $u^{*} \in P(f)$ and $v \in U$, then by the above reasoning $v \in P(f)$.

The next result is a characterization of unicity spaces for $C_{1}$. It is due to Cheney and Wulbert [2], with very minor modifications. Because of its importance, we present a proof thereof.

Proposition 4. $U$ is not a unicity space if and only if there exists a measurable function $h$ on $K$ for which $h^{2} \equiv 1$, and a $u^{*} \in U \backslash\{0\}$ such that:
(a) $\int_{K} h u=0$, all $u \in U$;
(b) $h\left|u^{*}\right| \in C_{1}$ (i.e., $h\left|u^{*}\right|$ is continuous).

Proof. Assume there exists an $h$ and $u^{*}$ as above. Set $f=h\left|u^{*}\right| \in C_{1}$. Since $\operatorname{sgn} f=h$ on $N(f)$, we have, from (a),

$$
\int_{K}[\operatorname{sgn} f] u=-\int_{Z(f)} h u, \quad \text { all } \quad u \in U
$$

Thus

$$
\left|\int_{K}[\operatorname{sgn} f] u\right| \leq \int_{Z_{(f)}}|u|, \quad \text { all } \quad u \in U
$$

and from Proposition $2,0 \in P(f)$. For each $a \in \mathbf{R},|a|<1$, it is easily checked that $\operatorname{sgn} f=\operatorname{sgn}\left(f-a u^{*}\right)$, and $Z(f)=Z\left(f-a u^{*}\right)$. Thus

$$
\left|\int_{K}\left[\operatorname{sgn}\left(f-a u^{*}\right)\right] u\right| \leq \int_{Z\left(f-a u^{*}\right)}|u|, \quad \text { all } \quad u \in U,
$$

and from Proposition 2, $a u^{*} \in P(f)$ for all $|a|<1 . U$ is not a unicity space.
We now assume that $U$ is not a unicity space. Let $f \in C_{1}$ be such that $u_{1}$, $u_{2} \in P(f), u_{1} \neq u_{2}$. Set $f^{*}=f-\left(u_{1}+u_{2}\right) / 2$ and $u^{*}=\left(u_{1}-u_{2}\right) / 2$. It follows that 0 , $\pm u \in P\left(f^{*}\right)$, and also that

$$
2\left|f^{*}(x)\right|=\left|f^{*}(x)-u^{*}(x)\right|+\left|f^{*}(x)+u^{*}(x)\right|
$$

for all $x \in K$. If $x \in Z\left(f^{*}\right)$, then $\left(f^{*} \pm u^{*}\right)(x)=0$, implying that $x \in Z\left(u^{*}\right)$. Thus $Z\left(f^{*}\right) \subseteq Z\left(u^{*}\right)$.

Since $0 \in P\left(f^{*}\right)$, from the Hahn-Banach theorem there exists an $h \in L_{\infty}(K)$ for which:
(1) $\|h\|_{\infty}=1$;
(2) $\int_{K} h u=0$, all $u \in U$;
(3) $\int_{K} h f^{*}=\left\|f^{*}\right\|_{1}$.

From Lyapunov's theorem, it follows that we may assume that the above $h$ satisfies $h^{2} \equiv 1$ (see Phelps [5]). From (3), $h=\operatorname{sgn} f^{*}$ a.e. on $N\left(f^{*}\right)$. Thus we may also assume that $h=\operatorname{sgn} f^{*}$ on $N\left(f^{*}\right)$. Since $Z\left(f^{*}\right) \subseteq Z\left(u^{*}\right)$, it is now seen that $h\left|u^{*}\right|$ is continuous.

We close this section by providing an example of a $K$ and $U$ with no $L_{1}$-continuous selection, but with many $L_{\infty}$-continuous selections.

Example. $K=[-2,-1] \cup[1,2]$ and $U$ is the one-dimensional space spanned by the constant functions. Set $h=1$ on $[-2,-1]$, and $h=-1$ on [1,2]. Then it follows from Proposition 4 that $U$ is not a unicity space.

Let

$$
\begin{aligned}
& f_{n}(x)= \begin{cases}1, & x \in[-2,-1-1 / n], \\
-2 n x-(1+2 n), & x \in[-1-1 / n,-1], \\
-1, & x \in[1,2],\end{cases} \\
& g_{n}(x)= \begin{cases}1, & x \in[-2,-1], \\
-2 n x+(1+2 n), & x \in[1,1+1 / n], \\
-1, & x \in[1+1 / n, 2],\end{cases}
\end{aligned}
$$

for all $n \in \mathbf{N}$. Obviously $f_{n}, g_{n}, h \in C_{1}$, and

$$
\lim _{n \rightarrow \infty}\left\|h-f_{n}\right\|_{1}=\lim _{n \rightarrow \infty}\left\|h-g_{n}\right\|_{i}=0 .
$$

From Propositions 2 and 3, we obtain $P\left(f_{n}\right)=\{-1\}$ and $P\left(g_{n}\right)=\{1\}$ for all $n$. Thus there exists no $L_{1}$-continuous selection for $U$ on $K$.

We now assume that $f_{n}, f \in C_{1}$, and $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\infty}=0$.
Claim 1. If $P(f)$ is a singleton, then $\lim _{n \rightarrow \infty} s\left(f_{n}\right)=s(f)(=P(f))$ for any choice of $s\left(f_{n}\right) \in P\left(f_{n}\right)$.

The proof of this claim follows the method of the proof of Proposition 1, see Cheney [1, p. 23].

Claim 2. Let $f \in C_{1}$ and assume that $P(f)$ is not a singleton. Then $f$ satisfies either
(a)

$$
\min _{-2 \leq x \leq-1} f(x)>\max _{1 \leq x \leq 2} f(x)
$$

or
(b)

$$
\max _{-2 \leq x \leq-1} f(x)<\min _{1 \leq x \leq 2} f(x)
$$

Proof. Assume the constant functions $\alpha$ and $\beta(\alpha<\beta)$ are in $P(f)$. Then $\lambda \alpha+(1-\lambda) \beta \in P(f)$ for all $\lambda \in[0,1]$. There exist $\alpha^{1}, \beta^{1} \in P(f), \alpha \leq \alpha^{1}<\beta^{1} \leq \beta$ such that $\left|Z\left(f-\alpha^{1}\right)\right|=\left|Z\left(f-\beta^{1}\right)\right|=0$. Thus, from Proposition 2,

$$
\int_{K} \operatorname{sgn}\left(f-\alpha^{1}\right)=\int_{K} \operatorname{sgn}\left(f-\beta^{1}\right)=0
$$

and hence

$$
\left|\left\{x:\left(f-\alpha^{1}\right)(x)>0\right\}\right|=\left|\left\{x:\left(f-\alpha^{1}\right)(x)<0\right\}\right|=1
$$

and

$$
\left|\left\{x:\left(f-\beta^{1}\right)(x)>0\right\}\right|=\left|\left\{x:\left(f-\beta^{1}\right)(x)<0\right\}\right|=1
$$

Furthermore, since $\alpha^{1}<\beta^{1}$,

$$
\left\{x:\left(f-\beta^{1}\right)(x)>0\right\} \subseteq\left\{x:\left(f-\alpha^{1}\right)(x)>0\right\}
$$

and

$$
\left\{x:\left(f-\beta^{1}\right)(x)<0\right\} \supseteq\left\{x:\left(f-\alpha^{1}\right)(x)<0\right\} .
$$

If $f$ does not satisfy

$$
\min _{-2 \leq x \leq-1} f(x) \geq \beta^{1}>\alpha^{1} \geq \max _{1 \leq x \leq 2} f(x)
$$

or

$$
\max _{-2 \leq x \leq-1} f(x) \leq \alpha^{1}<\beta^{1} \leq \min _{1 \leq x \leq 2} f(x)
$$

then a contradiction ensues from the continuity of $f$ on $[-2,-1]$ and on [1,2].
Claim 3. Assume that $P(f)$ is not a singleton and that

$$
C=\min _{-2 \leq x \leq-1} f(x)>\max _{1 \leq x \leq 2} f(x)=c
$$

Then the constant function $\alpha$ is in $P(f)$ if and only if $\alpha \in[c, C]$.
Proof. Let $\alpha \in(c, C)$. Then

$$
\operatorname{sgn}(f-\alpha)(x)=\left\{\begin{aligned}
1, & x \in[-2,-1] \\
-1, & x \in[1,2] .
\end{aligned}\right.
$$

From Proposition 2 it follows that $\alpha \in P(f)$. Since $P(f)$ is closed, $[c, C] \subseteq P(f)$.
Assume $\alpha \notin[c, C]$. Let $\beta \in(c, C) \subseteq P(f)$. From Proposition 3 applied to $\beta$ and $\alpha$ it follows that $\alpha \notin P(f)$.

Let $\lambda, \mu \in[0,1]$. Define $s(f)$ as follows:
(1) If $P(f)$ is a singleton, $s(f)=P(f)$.
(2) If $C(f)=\min _{-2 \leq x \leqslant-1} f(x)>\max _{1 \leq x \leq 2} f(x)=c(f)$,

$$
s(f)=\lambda C(f)+(1-\lambda) c(f)
$$

(3) If $d(f)=\max _{-2 \leq x \leq-1} f(x)<\min _{1 \leq x \leq 2} f(x)=D(f)$,

$$
s(f)=\mu D(f)+(1-\mu) d(f)
$$

Claim 4. $s$, as above, is an $L_{\infty}$-continuous selection.
Proof. Assume $f, f_{n} \in C_{1}, f$ satisfies (2) and $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\infty}=0$. Then for $n$ sufficiently large $f_{n}$ satisfies (2). Furthermore, if $C\left(f_{n}\right)=\min _{-2 \leq x \leq-1} f_{n}(x)$ and $c\left(f_{n}\right)=\max _{1 \leq x \leq 2} f_{n}(x)$, then $\lim _{n \rightarrow \infty} C\left(f_{n}\right)=C(f)$ and $\lim _{n \rightarrow \infty} c\left(f_{n}\right)=c(f)$. Thus $\lim _{n \rightarrow \infty} s\left(f_{n}\right)=s(f)$. The rest of the claim follows easily.

## 3. Main Result

In this section we assume that $U$ is not a unicity space. In addition we assume that $K$ is connected and we will prove that there is no $L_{\infty}$-continuous selection. At the end of this section, we will indicate how a simple modification of the proof shows that there is no $L_{1}$-continuous selection for disconnected $K$.

The proof is somewhat lengthy and as such we divide it into a series of lemmas and propositions.

Recall that since $U$ is not a unicity space, there exists a measurable $h$ satisfying $h^{2} \equiv 1$ on $K$ and a $u^{*} \in U \backslash\{0\}$ for which

$$
\int_{K} h u=0, \quad \text { all } \quad u \in U
$$

and $h\left|u^{*}\right|$ is continuous. We fix $h$ throughout.
Lemma 5. Let $W=\{u: u \in U, h|u|$ continuous $\}$. Then $W=\{u: u \in U$, hu continuous $\}$, and $W$ is a subspace of $U$.

Proof. $h|u|$ is continuous if and only if $u(x)=0$ at each pointof discontinuity $x$ of $h$. Similarly, $h u$ is continuous if and only if $u(x)=0$ at each point of discontinuity $x$ of $h$. The lemma follows.

Lemma 6. Let $v \in W$ and $u \in U$. If $|v| \geqslant h u$ on $K$, then $u \in W$,
Proof. Let $x$ be a point of discontinuity of $h$. Then $0=|v(x)| \geq(h u)(x)$. We must show that $u(x)=0$. Assume $u(x)=c \neq 0$. Since $h$ is discontinuous at $x$, in any neighborhood of $x$ there exists a point $y$ for which $(h u)(y) \geq|c| / 2$. But $v(x)=0$, $v$ is continuous at $x$, and $|v| \geq h u$ on $K$. A contradiction ensues. Thus $u(x)=0$, and $u \in W$.

Set $\bar{W}=\left\{u: u \in W,\|u\|_{1}=1\right\}$ and $J(u)=\{x:(h u)(x) \leq 0\}$. Note that $J(c u)=$ $J(u)$ for all $c>0$. The mapping $u \rightarrow|J(u)|$ is upper semicontinuous, and $\bar{W}$ is compact. Thus there exists a $w \in \bar{W}$ such that $|J(w)| \geqslant|J(u)|$ for all $u \in \bar{W}$. Therefore $|J(w)| \geq|J(u)|$ for all $u \in W \backslash\{0\}$. Since $\int_{K} h u=0$, all $u \in U$, we have $0<|J(w)|<|K|$.

Lemma 7. Let $w$ be as above. If $u \in W$ and $|w| \geqq h u$, then $J(w) \subseteq J(w+u)$. If $w \neq-u$, then $|J(w)|=|J(w+u)|$ and $h(w+u)>0$ a.e. on $K \backslash J(w)$.

Proof. Let $x \in J(w)$. Then $(h w)(x) \leq 0$, and $|w(x)|=-(h w)(x) \geq(h u)(x)$. Thus $(h(w+u))(x) \leq 0$ implying that $J(w) \subseteq J(w+u)$. If $w+u \neq 0$, then, from the definition of $w$ and Lemma 5, the remaining claims of the lemma follow.

Set

$$
V=\{v: v \in \bar{W}, J(w) \subseteq J(v)\} .
$$

$V$ is a compact subset of a finite-dimensional subspace of $C(K)$. Hence equicontinuous and equibounded. For every $v \in V$, let

$$
B_{v}=\{x:(h v)(x)<0\} .
$$

Then $B_{v} \subseteq J(w)$ for all $v \in V$, and $J(w) \backslash B_{v} \subseteq Z(v)$. Furthermore, $B_{v} \neq \varnothing$.

Lemma 8. There exists $a w^{*} \in V$ such that, for all $v \in V, B_{v} \subseteq B_{w^{*}}$.
Proof. Assume $v_{1}, \ldots, v_{k} \in V$ and $B_{v_{i}} \varsubsetneqq B_{v_{i+1}}, i=1, \ldots, k-1$. We claim that $v_{1}, \ldots, v_{k}$ are linearly independent. To see this, choose $x_{j} \in B_{v_{j}} \backslash B_{v_{j-1}}, j=1, \ldots, k$ (where $B_{v_{0}}=\varnothing$ ). Now $v_{j}\left(x_{j}\right) \neq 0$ by definition, and $v_{i}\left(x_{j}\right)=0$ for all $i<j$ since $x_{j} \in B_{v_{i}} \backslash B_{v_{i-1}} \subseteq B_{v_{i}} \backslash B_{v_{i}} \subseteq J(w) \backslash B_{v_{i}} \subseteq Z\left(v_{i}\right)$. Thus the matrix $\left(v_{i}\left(x_{j}\right)\right)_{i j=1}^{k}$ is of rank $k$, and $v_{1}, \ldots, v_{k}$ are linearly independent.

Now, choose $v_{1} \in V$. If there exists a $v_{2} \in V$ for which $B_{v_{1}} \subseteq B_{v_{2}}$, then replace $v_{1}$ by $v_{2}$. Continue this process. Since $V \subseteq U$ and $\operatorname{dim} U<\infty$, it follows that this process stops after a finite number of steps.
Thus there exists a $w^{*} \in V$ such that if $v \in V$ and $B_{w^{*}} \subseteq B_{v}$, then $B_{w^{*}}=B_{v}$. We claim that $w^{*}$ satisfies the conditions of the lemma. Assume $v \in V$ and $B_{v} \nsubseteq B_{w^{*}}$. Thus there exists a $y \in K$ such that $(h v)(y)<0=\left(h w^{*}\right)(y)$. Set $z=$ $\left(v+w^{*}\right) /\left\|v+w^{*}\right\|_{1}$. It follows that $z \in V$ and $B_{w^{*}} \subsetneq B_{z}$. This is a contradiction.

Replace $w$ by $w^{*}$ in the definition of $V$. However, for ease of notation we continue to denote it by $w$. Thus we now assume that

$$
V=\{v: v \in \bar{W}, J(w) \subseteq J(v)\}
$$

satisfies:
(1) $|J(w)| \geq|J(u)|$, all $u \in W \backslash\{0\}$;
(2) $B_{v} \subseteq B_{w}$ for all $v \in V$.

For $w$ as above, set

$$
A=\{x:(h w)(x)>0\}
$$

and

$$
B=\{x:(h w)(x)<0\}
$$

i.e., $B=B_{w}$. Note that for all $v \in V, h v>0$ a.e. on $A$.

Since $K$ is connected, there exists an $\alpha \in \partial A \cap Z(w)$ such that for each $\varepsilon>0$, sufficiently small,

$$
A_{\varepsilon}=A \cap\{x:|x-\alpha|<\varepsilon\}
$$

satisfies $\left|A_{\varepsilon}\right|>0$.
Similarly, there exists a $\beta \in \partial B \cap Z(w)$ such that for each $\varepsilon>0$, sufficiently small,

$$
B_{\varepsilon}=B \cap\{x:|x-\beta|<\varepsilon\}
$$

satisfies $\left|B_{\varepsilon}\right|>0$.
For all $v \in V, h v>0$ a.e. on $A_{\varepsilon}$ and $v(\alpha)=0(Z(w) \subseteq Z(v))$. For all $v \in V$, $h v \leq 0$ on $B_{\varepsilon}$ and $v(\beta)=0(Z(w) \subseteq Z(v))$.

For each $\varepsilon>0$ choose $v_{\varepsilon} V$ to satisfy

$$
\int_{B_{\varepsilon}}\left|v_{\varepsilon}\right| \geqslant \int_{B_{\varepsilon}}|v|, \quad \text { all } \quad v \in V
$$

$V$ is compact so that such a $v_{\varepsilon}$ exists.

Lemma 9. Assume $u \in U$ satisfies $\left|v_{\varepsilon}\right| \geq h u$ on $K$, and $-\left|v_{\varepsilon}\right| \geq h u$ on $A_{F}$. Then $u=-v_{\varepsilon}$.

Proof. Assume $u \neq-v_{\varepsilon}$. From Lemmas 6 and 7 with $w$ replaced by $v_{\varepsilon}, u \in W$ and $h\left(v_{\varepsilon}+u\right)>0$ a.e. on $A=K \backslash J(w)$. On $A,\left|v_{\varepsilon}\right|=h v_{\varepsilon}$. Thus on $A_{\varepsilon},-h v_{\varepsilon}=-\left|v_{\varepsilon}\right| \geq$ $h u$, implying that $h\left(v_{\varepsilon}+u\right) \leq 0$ on $A_{\varepsilon}$. This contradicts the fact that $h\left(v_{\varepsilon}+u\right)>0$ a.e. on $A$.

Lemma 10. Assume $u \in U$ satisfies $\left|v_{\varepsilon}\right| \geq h u$ on $K$, and $-\left|v_{\varepsilon}\right| \geq h u$ on $B_{\varepsilon}$. Then $\left\|v_{\varepsilon}+u\right\|_{1}=2$.

Proof. From Lemmas 6 and 7, $u \in W$ and $z=\left(v_{\varepsilon}+u\right) /\left\|v_{\varepsilon}+u\right\|_{1} \in V$ if $u \neq-v_{\varepsilon}$. Since $-\left|v_{\varepsilon}\right| \geq h u$ on $B_{\varepsilon}$, and $\int_{B_{\varepsilon}}\left|v_{\varepsilon}\right| \geq \int_{B_{\varepsilon}}|w|>0$, it easily follows that $u \neq-v_{\varepsilon}$. Thus $z \in V$. Now,

$$
\begin{aligned}
\left\|v_{\varepsilon}+u\right\|_{1} & =\int_{K}\left[\operatorname{sgn}\left(v_{\varepsilon}+u\right)\right]\left(v_{\varepsilon}+u\right) \\
& =\int_{K}\left[\operatorname{sgn} h\left(v_{\varepsilon}+u\right)\right] h\left(v_{\varepsilon}+u\right) \\
& =\int_{h\left(v_{\varepsilon}+u\right)>0} h\left(v_{\varepsilon}+u\right)-\int_{h\left(v_{\varepsilon}+u\right) \leq 0} h\left(v_{\varepsilon}+u\right) .
\end{aligned}
$$

Since $h\left(v_{\varepsilon}+u\right)>0$ a.e. on $h v_{\varepsilon}>0$, and $h\left(v_{\varepsilon}+u\right) \leqslant 0$ a.e. on $h v_{\varepsilon} \leqslant 0$,

$$
\begin{aligned}
\left\|v_{F}+u\right\|_{1} & =\int_{h v_{\varepsilon}>0} h\left(v_{\varepsilon}+u\right)-\int_{h v_{\varepsilon} \leq 0} h\left(v_{\varepsilon}+u\right) \\
& =\int_{h v_{\varepsilon}>0} h v_{\varepsilon}-\int_{h v_{\varepsilon} \leq 0} h v_{\varepsilon}+\int_{h v_{s}>0} h u-\int_{h v_{\varepsilon} \leq 0} h u .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \int_{h v_{\varepsilon}>0} h v_{\varepsilon}-\int_{h v_{s} \leq 0} h v_{\varepsilon}=\left\|h v_{\varepsilon}\right\|_{1}=\left\|v_{\varepsilon}\right\|_{1}=1, \\
& \int_{h v_{s}>0} h u+\int_{h v_{\varepsilon} \leq 0} h u=0, \quad \text { all } \quad u \in U,
\end{aligned}
$$

and on $h v_{\varepsilon}>0, h v_{\varepsilon}=\left|v_{\varepsilon}\right| \geq h u$.
Thus,

$$
\left\|v_{\varepsilon}+u\right\|_{1}=1+2 \int_{h v_{\varepsilon}>0} h u \leq 1+2 \int_{h v_{\varepsilon}>0} h v_{\varepsilon}=1+\left\|v_{\varepsilon}\right\|_{1}=2 .
$$

On $B_{\varepsilon}, h v_{\varepsilon} \leqslant 0$ and $0 \geq h v_{\varepsilon}=-\left|v_{\varepsilon}\right| \geq h u$. Thus $0 \geq 2 h v_{\varepsilon} \geq h\left(v_{\varepsilon}+u\right)$ implying that $\left|v_{\varepsilon}+u\right| \geqslant 2\left|v_{\varepsilon}\right|$ on $B_{\varepsilon}$. If $\left\|v_{\varepsilon}+u\right\|_{1}<2$, then

$$
\int_{B_{\varepsilon}}|z|>\int_{B_{\varepsilon}}\left|v_{\varepsilon}\right|
$$

contradicting our choice of $v_{\varepsilon}$.
We now come to the main content of the proof of the theorem.

Set $H_{\varepsilon}=h\left|v_{\varepsilon}\right|$, and construct

$$
G_{\varepsilon}(x)= \begin{cases}H_{\varepsilon}(x), & x \notin A_{2 \varepsilon}, \\ \sigma_{\varepsilon}(x), & x \in \bar{A}_{2 \varepsilon} \backslash \bar{A}_{\varepsilon} \\ -v_{\varepsilon}(x), & x \in \bar{A}_{\varepsilon}\end{cases}
$$

where $\left|\sigma_{\varepsilon}\right|<\left|v_{\varepsilon}\right|$ on $\left(A_{2 \varepsilon} \backslash \bar{A}_{\varepsilon}\right) \backslash Z\left(v_{\varepsilon}\right), \sigma_{\varepsilon}=0$ on $\left(A_{2 \varepsilon} \backslash \bar{A}_{\varepsilon}\right) \cup Z\left(v_{\varepsilon}\right)$, and $G_{\varepsilon} \in C_{1}$. (Note that on $\bar{A}_{\varepsilon}, G_{\varepsilon}=-H_{\varepsilon}$.) Such a construction is possible.

Similarly, let

$$
F_{\varepsilon}(x)= \begin{cases}H_{\varepsilon}(x), & x \notin B_{2 \varepsilon}, \\ \gamma_{\varepsilon}(x), & x \in B_{2 \varepsilon} \backslash \bar{B}_{\varepsilon}, \\ v_{\varepsilon}(x), & x \in \bar{B}_{\varepsilon},\end{cases}
$$

where $\left|\gamma_{\varepsilon}\right|<\left|v_{\varepsilon}\right|$ on $\left(B_{2 \varepsilon} \backslash \bar{B}_{\varepsilon}\right) \backslash Z\left(v_{\varepsilon}\right), \gamma_{\varepsilon}=0$ on $\left(B_{2 \varepsilon} \backslash \bar{B}_{\varepsilon}\right) \cup Z\left(v_{\varepsilon}\right)$, and $F_{\varepsilon} \in C_{1}$.
Proposition 11. $P\left(G_{\varepsilon}\right)=\left\{-v_{\varepsilon}\right\}$, and if $u \in P\left(F_{\varepsilon}\right)$, then $\left\|v_{\varepsilon}+u\right\|_{1}=2$.
Proof. The idea is to prove:
(I) $-v_{\varepsilon} \in P\left(G_{\varepsilon}\right)$ and if $u \in P\left(G_{\varepsilon}\right)$, then $\left|v_{\varepsilon}\right| \geq h u$ on $K$, and $-\left|v_{\varepsilon}\right| \geq h u$ on $A_{\varepsilon}$;
(II) $v_{\varepsilon} \in P\left(F_{\varepsilon}\right)$ and if $u \in P\left(F_{\varepsilon}\right)$, then $\left|v_{\varepsilon}\right| \geq h u$ on $K$, and $-\left|v_{\varepsilon}\right| \geq h u$ on $B_{\varepsilon}$.

We then apply Lemmas 9 and 10 to (I) and (II), respectively, to obtain the desired results. The proofs of (I) and (II) are totally analogous. As such we prove only (I).

We first consider $\operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right)$ :
(i) $\operatorname{On} \bar{A}_{\varepsilon}$.

$$
\operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right)=\operatorname{sgn}\left(-v_{\varepsilon}+v_{\varepsilon}\right)=0
$$

(ii) On $A_{2 \varepsilon} \backslash \overline{A_{\varepsilon}}$,

$$
\begin{aligned}
\operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right) & =\operatorname{sgn}\left(\sigma_{\varepsilon}+v_{\varepsilon}\right) \\
& =\operatorname{sgn} v_{\varepsilon} \\
& =\operatorname{sgn} H_{\varepsilon} .
\end{aligned}
$$

(iii) Off $A_{2 \varepsilon}$,

$$
\begin{aligned}
\operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right) & =\operatorname{sgn}\left(H_{\varepsilon}+v_{\varepsilon}\right) \\
& = \begin{cases}0, & H_{\varepsilon}=-v_{\varepsilon} \\
\operatorname{sgn} H_{\varepsilon}, & H_{\varepsilon}=v_{\varepsilon} \neq 0\end{cases}
\end{aligned}
$$

Thus, for all $u \in U$,
(a)

$$
\int_{Z\left(G_{\varepsilon}+v_{\varepsilon}\right)}|u|=\int_{H_{\varepsilon}=-v_{\varepsilon} \neq 0}|u|+\int_{Z\left(H_{e}\right)}|u|+\int_{\bar{A}_{\varepsilon}}|u|
$$

(b) $\quad \int_{K} \operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right) u=\int_{\substack{H_{\varepsilon}=v_{\varepsilon} \neq 0 \\ x \in A_{2 \varepsilon}}}\left(\operatorname{sgn} H_{\varepsilon}\right) u+\int_{A_{2 c} \backslash \overline{A_{\varepsilon}}}\left(\operatorname{sgn} H_{\varepsilon}\right) u$

$$
=\int_{H_{\varepsilon}=v_{\varepsilon} \neq 0}\left(\operatorname{sgn} H_{\varepsilon}\right) u-\int_{\bar{A}_{\varepsilon}}\left(\operatorname{sgn} H_{\varepsilon}\right) u .
$$

For every $u \in U$,

$$
0=\int_{K} h u=\int_{H_{\varepsilon}=v_{\varepsilon} \neq 0}\left(\operatorname{sgn} H_{\varepsilon}\right) u+\int_{H_{\varepsilon}=-v_{\varepsilon} \neq 0}\left(\operatorname{sgn} H_{\varepsilon}\right) u+\int_{Z\left(H_{\varepsilon}\right)} h u .
$$

Therefore,
$\left(\mathrm{b}^{\prime}\right) \int_{K} \operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right) u=-\int_{H_{\varepsilon}=-v_{\varepsilon} \neq 0}\left(\operatorname{sgn} H_{\varepsilon}\right) u-\int_{Z\left(H_{\varepsilon}\right)} h u-\int_{\bar{A}_{\varepsilon}}\left(\operatorname{sgn} H_{\varepsilon}\right) u$.
From (a) and ( $b^{\prime}$ ),

$$
\left|\int_{K} \operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right) u\right| \leqslant \int_{Z\left(G_{\varepsilon}+v_{\varepsilon}\right)}|u| .
$$

Thus, from Proposition $2,-v_{\varepsilon} \in P\left(G_{\varepsilon}\right)$.
Assume $u \in P\left(G_{\varepsilon}\right), u \neq-v_{\varepsilon}$. From Proposition 3 we have:
(A) $\left(G_{\varepsilon}+v_{\varepsilon}\right)\left(G_{\varepsilon}-u\right) \geq 0$ on $K$;
(B) $\int_{K} \operatorname{sgn}\left(G_{\varepsilon}+v_{\varepsilon}\right)\left(u+v_{\varepsilon}\right)=\int_{Z\left(G_{\varepsilon}+v_{\varepsilon}\right)}\left|u+v_{\varepsilon}\right|$.

From (i)-(iii), (a), and (b') we obtain:
(1) On $H_{\varepsilon}=v_{\varepsilon} \neq 0, x \notin A_{2 \varepsilon}$, $\left(\operatorname{sgn} H_{\varepsilon}\right)\left(H_{\varepsilon}-u\right) \geq 0$.
(2) On $A_{2 \varepsilon} \backslash \bar{A}_{\varepsilon},\left(\operatorname{sgn} H_{\varepsilon}\right)\left(\sigma_{\varepsilon}-u\right) \geq 0$.
(3) On $H_{\varepsilon}=-v_{\varepsilon} \neq 0,-\left(\operatorname{sgn} H_{\varepsilon}\right)\left(u+v_{₹}\right) \geq 0$.
(4) On $Z\left(H_{\varepsilon}\right)$, $-h\left(u+v_{\varepsilon}\right) \geq 0$.
(5) On $\bar{A}_{\varepsilon},-\left(\operatorname{sgn} H_{\varepsilon}\right)\left(u+v_{\varepsilon}\right) \geq 0$.

Since $\operatorname{sgn} H_{\varepsilon}=h$ off $Z\left(H_{\varepsilon}\right)$, it follows from the construction, and from (1)-(5), that $\left|v_{\varepsilon}\right| \geq h u$ on all of $K$, and $-\left|v_{\varepsilon}\right| \geq h u$ on $A_{\varepsilon}$.

Proof of the Theorem. $\quad V$ is compact and equicontinuous. There therefore exists a subsequence $\varepsilon_{n} \downarrow 0$ and a $v^{*} \in V$ such that $\lim _{n \rightarrow \infty}\left\|v^{*}-v_{\varepsilon_{n}}\right\|_{\infty}=0$. Set $H^{*}=h\left|v^{*}\right|$ and recall that $H_{\varepsilon}=h\left|v_{\varepsilon}\right|$. Then $\lim _{n \rightarrow \infty}\left\|H^{*}-H_{\varepsilon_{n}}\right\|_{\infty}=0$. By definition,

$$
\begin{aligned}
& \left\|H_{\varepsilon}-G_{\varepsilon}\right\|_{\infty} \leq 2 \max _{x \in \bar{A}_{2 \varepsilon}}\left|v_{\varepsilon}(x)\right|, \\
& \left\|H_{\varepsilon}-F_{\varepsilon}\right\|_{\infty} \leq 2 \max _{x \in \bar{B}_{2 \varepsilon}}\left|v_{\varepsilon}(x)\right| .
\end{aligned}
$$

By construction, $v(\alpha)=v(\beta)=0$ for all $v \in V$. From the equicontinuity of $V$ it therefore follows that

$$
\lim _{n \rightarrow \infty}\left\|H_{\varepsilon_{n}}-G_{\varepsilon_{n}}\right\|_{\infty}=\lim _{n \rightarrow \infty}\left\|H_{\varepsilon_{n}}-F_{\varepsilon_{n}}\right\|_{\infty}=0
$$

Thus

$$
\lim _{n \rightarrow \infty}\left\|H^{*}-G_{\varepsilon_{n}}\right\|_{\infty}=\lim _{n \rightarrow \infty}\left\|H^{*}-F_{\varepsilon_{n}}\right\|_{\infty}=0
$$

From Proposition 11, $P\left(G_{\varepsilon_{n}}\right)=\left\{-v_{\varepsilon_{n}}\right\}$ and, for every $u \in P\left(F_{\varepsilon_{n}}\right), \operatorname{dist}\left(u,-v_{\varepsilon_{n}}\right)=$ $\left\|u+v_{\varepsilon_{n}}\right\|_{1}=2$. Thus there cannot exist an $L_{\infty}$-continuous selection onto $U$.

Assume now that $K$ is not connected. The above proof fails since we cannot necessarily find the requisite $\alpha$ and $\beta$. That this may indeed be the case is illustrated by the example in Section 2. What we do in this case is simply choose $\alpha$ to be any point in $A$, and $\beta$ to be any point in $B$. A reading of the proof shows that all of the lemmas and propositions still hold. (Lemma 8 is unnecessary.) We do lose the uniform convergence of $H_{\varepsilon_{n}}-G_{\varepsilon_{n}}$ and $H_{\varepsilon_{n}}-F_{\varepsilon_{n}}$ to zero. However, it is easily seen that

$$
\lim _{n \rightarrow \infty}\left\|H_{\varepsilon_{n}}-G_{\varepsilon_{n}}\right\|_{1}=\lim _{n \rightarrow \infty}\left\|H_{\varepsilon_{n}}-F_{\varepsilon_{n}}\right\|_{1}=0
$$

It therefore follows that there cannot exist an $L_{1}$-continuous selection onto $U$.

## References

1. E. W. Cheney (1966): Introduction to Approximation Theory. New York: McGraw-Hill.
2. E. W. Cheney, D. E. Wulbert (1969): The existence and unicity of best approximations. Math. Scand., 24:113-140.
3. F. Deutsch (1983): A survey of metric selections. In: Fixed Points and Nonexpansive Mapping (R. C. Sine, ed.). Contemporary Mathematics, vol. 18. Providence, RI: American Mathematical Society, pp. 49-71.
4. A. J. Lazar, D. E. Wulbert, P. D. Morris (1969): Continuous selections for metric projections. J. Funct. Anal., 3:193-216.
5. R.R. Phelps (1966): Chebyshev subspaces of finite dimension in $L_{1}$. Proc. Amer. Math. Soc., 17:646-652.
A. Pinkus

Department of Mathematics
Technion
Haifa 32000
Israel


[^0]:    Date received: August 1, 1986. Date revised: February 19, 1987. Communicated by Hubert Berens. AMS classification: 41A65.
    Key words and phrases: Metric projection, Continuous selection.

