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Continuous Selections for the Metric Projection on C1 

Al lan  P inkus  

Abstract. Ct(K) is the space of real continuous functions on K endowed with 
the usual L~-norm where K = int K is compact in R'". U is a finite-dimensional 
subspace of Ct (K). The metric projection of CI(K) onto U contains a continuous 
selection with respect to Lt-convergence if and only if U is a unicity (Chebyshev) 
space for Ct(K ). Furthermore, if K is connected and U is not a unicity space 
for Ct(K), then there is no continuous selection with respect to L:~-convergence. 
An example is given ofa  U and a disconnected K with no continuous selection 
with respect to Ll-Convergence, but many continuous selections with respect to 
Loo-convergence. 

1. Introduct ion 

In  w h a t  f o l l ows ,  K will  d e n o t e  a c o m p a c t  subse t  o f  R m o f  pos i t ive  finite L e b e s g u e  

m e a s u r e ,  w i th  K = int  K. Ct  = Ct(K)  wil l  d e n o t e  the  space  o f  real  c o n t i n u o u s  

f u n c t i o n s  on  K e n d o w e d  wi th  the  n o r m  

Ilflt' = fK If(x)l dx. 

C~ is a n o r m e d  l inear  space ,  bu t  is no t  c o m p l e t e .  U will  a lways  d e n o t e  a f ixed 

n - d i m e n s i o n a l ,  n finite,  s u b s p a c e  o f  C~. 

F o r  e a c h  f ~  q ,  set 

P ( f ) = { u :  u~ U, [ i f - u l I l _  < [ I f - v t [ , ,  a l t v E  u } .  

P ( f )  is t he  set  o f  best  a p p r o x i m a n t s  to f f r o m  U. It  is wel l  k n o w n  tha t  fo r  each  

f ~  Ca, P ( f )  is convex ,  c o m p a c t ,  a n d  n o n e m p t y .  T h e  s e t -va lued  m a p  P is ca l l ed  

the  metric projection o n t o  U. A n y  s i n g l e - v a l u e d  m a p  s f r o m  q o n t o  U for  wh ich  

s ( f )  ~ P ( f )  fo r  each  f s  C~ is ca l led  a metric selection o n t o  U. In this  p a p e r  we 

are  c o n c e r n e d  wi th  cha rac t e r i z ing  t h o s e  s u b s p a c e s  U as a b o v e  fo r  wh ich  there  

exis t  " c o n t i n u o u s "  me t r i c  se lec t ions  o n t o  U, o r  fo r  b rev i ty ,  " c o n t i n u o u s "  se lec-  

t ions .  

T o  e x p l a i n  o u r  resul t  we i n t r o d u c e  the  f o l l o w i n g  def in i t ions .  
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Definition 1. We say that U is a unicity space if P ( f )  is a singleton for e a c h f e  C~. 

Unicity spaces are sometimes referred to as Chebyshev spaces. U is a unicity 
space if to each f ~  Ct there exists a unique best approximant  from U. Many 
such U exist and various characterizations of  unicity spaces are known. One 
such, Proposition 4, will be used in this work. 

We now make precise what we mean by a "cont inuous"  selection. 

Definition 2. Let s ( . )  be a metric selection onto U. We say that s is an 
Li-continuous selection (or Li-continuous) if s is continuous on Ct with respect 
to L~-convergence. That is, for f, fn e C~ satisfying l i m n ~  [ [ f - f ,  Ill = 0, it follows 
that limn~o~ s ( fn )=  s( f) .  We say that s is an L~-continuous selection (or Lo~- 
continuous) if s is continuous on C~ with respect to L~-convergence. That is, for 
f , f ,  ~ CI satisfying limno~ I I f - fn  lifo = 0, it follows that l i m ~  s(f~) = s ( f ) ,  where 
II" I1~ represents the usual uniform norm on K. 

Remark 1. We write l i m , . ~ s ( f , ) = s ( f )  since s ( f ) e  U for e a c h f ~ C l ,  U is 
finite-dimensional, and all norms are equivalent on U. 

Remark 2. Since K has finite measure, Ll-continuity of  s implies L~-continuity. 

We can now state our result. 

Theorem. Under the above assumptions, there exists an L~-continuous selection 
onto U if  and only if  U is a unicity space. Furthermore, if  K is connected, and U 
is not a unicity space, then there exists no L~-continuous selection. 

Metric projections and continuous selections are much-studied objects. The 
interested reader is referred to Deutsch [3], and references therein. Relevant to 
this work is the following result of  Lazar, Wulbert, and Morris [4]: on L~(K) 
there exist no (L~-) continuous selections. 

This paper  is organized as follows. In Section 2 we recall some known results, 
including the simple fact that if U is a unicity space, then there is an Ll-continuous 
selection, namely, the metric projection. We also present an example of  a discon- 
nected K and a U for which there is no Ll-cont inuous selection, but where there 
are many L~-continuous selections. 

Section 3 contains the main content of  this paper. Therein is proved the 
remaining part  of  the theorem. 

2. Preliminaries 

We first state the easy half of  the theorem. This result should be well known to 
the reader and is valid in a more general framework,  see e.g., Cheney [1, p. 23]. 
Recall that if U is a unicity space, then the metric projection is single-valued. 

Proposition 1. I f  U is a unicity space for C~, then the metric projection is L~- 
continuous. 
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We also recall the following characterization of best approximants from U. To 
this end, for each f ~  CI, set 

Z ( f )  = {x: f ( x )  = 0}, 

N ( f )  = g \ z ( f ) .  

We will also use the notation IA[ = meas{A} for any measurable subset A of K, 
and write SAf for SAf(X) dx. 

Proposition 2. Let f ~ Ct. Then u* ~ P ( f )  i f  and only i f  

[fK [sgn(f-u*)]ul <- fz(s_u.)]ul 
for all u ~ U. 

As a consequence of Proposition 2, we easily prove this next result. We will 
repeatedly use Proposition 3. 

Proposition 3. Let f a C1 and u* ~ P( f ) .  Then v ~ P ( f )  if  and only if: 

(a) ( f - u * ) ( f - v ) > - O  on K; 
(b) ~K [ s g n ( f -  u*)](v - u*) = Szcf-~*)I v - u*[. 

Proof. Assume u*, v ~ P( f ) .  Then 

IIf- u*ll, = f,, [ s g n ( f -  u * ) ] ( f -  u*) 

= f, [sgn(f-u*)](f-v)+ f, [sgn(f-u*)](v-u*) 

-< fN(z_.. If-vl + fz,s_~ Io- u * l .  

= fN~s_.. If-vl +/z,s_o Iv-~q 
= I t f -  vii, 

= I l f -  u*ll , .  

Since equality holds, it is necessary that: 

(a') SK [ s g n ( f -  u * ) ] ( f -  v) = ~N~y-u*)If- vl; 
(b') ~r [ s g n ( f -  u*)](v - u*) = ~ztf-u*)Iv - u*l. 

Thus (a) follows from (a') and continuity, while (b) is (b'). If (a) and (b) hold, 
u* ~ P ( f )  and v ~ U, then by the above reasoning v ~ P( f ) .  �9 

The next result is a characterization of unicity spaces for C~. It is due to 
Cheney and Wulbert [2], with very minor modifications. Because of its import- 
ance, we present a proof thereof. 
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Proposition 4. U is not a unicity space i f  and only i f  there exists a measurable 
function h on K for which h 2 -  1, and a u* e U\{0} such that: 

(a) ~ K h u = 0 ,  a l l u e U ;  

(b) hlu*[~ C, (i.e., hlu*[ is continuous). 

Proof. 
s g n f =  h on N ( f ) ,  we have, from (a), 

I, [sgn-'qu =-  fz,s ' 
Thus 

Assume there exists an h and u* as above. Set f =  hfu*le C~. Since 

hu, all u ~ U. 

and from Proposition 2, 0e  P( f ) .  For each a ~ R, la] < 1, it is easily checked that 
s g n f =  s g n ( f -  au*), and Z ( f )  = Z ( f  - au*). Thus 

and from Proposition 2, au*e  P ( f )  for all lal < 1. u is not a unicity space. 
We now assume that U is not a unicity space. Let f e  C~ be such that Ul, 

u~ ~ P( f ) ,  ul # u2 . Set f *  = f - ( u~ + u2)/2 and u* = (ut - u,_) / 2. It follows that 0, 
+ u e P ( f * ) ,  and also that 

2[f*(x)[ = ]f*(x)  - u*(x)[ + [ f*(x)  + u*(x)] 

for all x e K. I f  x e Z ( f * ) ,  then ( f *  + u*)(x) = 0, implying that x ~ Z(u*) .  Thus 
Z ( f * ) c _ Z ( u * ) .  

Since 0 e  P ( f * ) ,  from the Hahn-Banach  theorem there exists an h e  Loo(K) 
for which: 

(1) Ilhllo~=l; 
(2) ~ h u = 0 ,  a l l u e U ;  

(3) ~K h f * =  tlf*lll- 

From Lyapunov 's  theorem, it follows that we may assume that the above h 
satisfies h 2 -  1 (see Phelps [5]). From (3), h = s g n f *  a.e. on N ( f * ) .  Thus we 
may also assume that h = s g n f *  on N ( f * ) .  Since Z ( f * ) c _  Z(u*) ,  it is now seen 
that hiu*[ is continuous. �9 

We close this section by providing an example of  a K and U with no 
Lt-cont inuous selection, but with many L~-cont inuous selections. 

Example. K = [ - 2 , - 1 ] w [ 1 , 2 ]  and U is the one-dimensional space spanned 
by the constant functions. Set h = 1 on [ - 2 ,  - 1 ] ,  and h = -1  on [1, 2]. Then it 
follows from Proposition 4 that U is not a unicity space. 
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Let 
I 1, 

f . ( x )  = - 2 n x -  (1 + 2n),  

[ - 1 ,  

g.(x)  = -2nx  + (1 + 2n),  

[ - 1 ,  

for  all n ~ N. Obviously  f . ,  g.. h ~ C,, and 

lim II h -No II, = lim II h - g .  II, = 0. 
n ~ c x 2  tl ~r 

x e  [ - 2 , - l - l / n ] ,  

x e [ - 1 - 1 / n , - 1 ] ,  

X E [ 1 , 2 ] ,  

x ~ [ - 2 , - 1 ] ,  

x ~ [ 1 ,  I +  l / n ] ,  

x e [ 1 + 1 / n ,  2], 

From Proposi t ions  2 and 3, we obtain P ( f . ) = { - 1 }  and P ( g . ) = { 1 }  for all n. 
Thus there exists no L , -con t inuous  selection for  U on K. 

We now assume that  f~, f e  C , ,  and l i m . ~  IIf-L I]~- 0. 

Claim 1. l f  P ( f )  is a singleton, then l i m . . ~  s ( f . )  = s ( f )  ( = P ( f ) )  for any choice 
of  s ( f . ) e  P( f . ) .  

The p r o o f  o f  this claim follows the me thod  of  the p r o o f  of  Proposi t ion 1, see 
Cheney  [1, p. 23]. 

C l a i m  2. 

(a) 

Let f 6 Cl and assume that P ( f )  is not a singleton. Then f satisfies either 

min f ( x ) >  max f ( x )  
-2<--x<~-I I ~ x ~ 2  

o r  

(b) max f ( x )  < min  f ( x ) .  
- - 2 ~ x ~ - - I  l ~ x ~ 2  

P r o o f .  Assume the constant  functions a and /3 ( a < / 3 )  are in P( f ) .  Then 
As + (1 - A )/3 ~ P ( f )  for all A ~ [0, 1 ]. There  exist a l, /3, c P( f ) ,  a <- a '  </3' <-- fl 
such that  ] Z ( f -  or')[ = ]Z( f - /3 ' )1  = 0. Thus,  f rom Proposi t ion 2, 

fK sgn(f --a ')= fK sgn(f -/3')=O. 
and hence 

and  

I{x: ( f -  a ' ) ( x )  > 0}l = [{x: ( f -  a ~)(x) < 0)l = 1 

I{x: ( f - / 3 ' ) ( x )  > 0}1 = [{x: ( f - / 3 ' ) ( x )  <0I t  = 1. 

Fur thermore ,  since a ~ < 13', 

{x: ( f - / 3 ' ) ( x )  > 0} ~ (x:  ( f -  a ' ) (x )  > 0} 
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and 

{x: (f-/31)(x)<O}D_{x: ( f -  a ' ) ( x )  <0}. 

I f f  does not satisfy 

_2min_l f ( x )  _>/31 > ,v' _ max f ( x )  
I~x-----2 

o r  

max f (x )<-al</3  l<- min ,~x~2 f ( x ) '  
_ 2 < x _ < _  1 �9 

then a contradiction ensues from the continuity o f f  on [ - 2 , - 1 ]  and on [1, 2]. 

Claim 3. Assume that P( f )  is not a singleton and that 

C =  min f ( x ) > m a x 2 f ( x ) = c .  
- - 2 ~ x ~ - - 1  1 < --  --< 

Then the constant function a is in P( f )  if and only ira ~[e, C]. 

Proof. Let a e (c, C). Then 

1, x ~ [ - 2 , - 1 ] ,  
s g n ( f - a ) ( x ) =  - 1 ,  x e [ 1 , 2 ] .  

From Proposition 2 it follows that a e P ( f ) .  Since P( f )  is closed, [c, C]_~ P ( f ) .  
Assume a fi [c, C]. Let/3 e (c, C) c p ( f ) .  From Proposition 3 applied to/3 and 

a it follows that a ~ P( f ) .  �9 

Let A,/z ~ [0, 1]. Define s ( f )  as follows: 

(1) If  P( f )  is a singleton, s ( f )  = P( f ) .  
(2) I f  C ( f )  = min_: . . . .  1 f ( x )  > m a x l ~ :  f ( x )  = c ( f ) ,  

s ( f )  = AC ( f )  + (1 - X)c ( f ) ,  

(3) If d ( f ) = m a x _ :  . . . .  i f(x)<minl<_x~_2f(x) = D ( f ) ,  

s ( f )  = I zD( f )  + (1 - / z ) d  ( f ) ,  

Claim 4. s, as above, is an L~-continuous selection. 

Proof. Assume f, fn e C1, f satisfies (2) and l i m , . ~  IIf-fn I1~ = 0. Then for n 
sufficiently large f ,  satisfies (2). Furthermore, if C( fn)=min_2  . . . .  l f , ( x )  and 
c(f~) = maxl~x~2f,(x) ,  then l im , .~  C(f , )  = C ( f )  and l im,_~ c(f ,)  = c(f) .  Thus 
l i m , ~  s ( f , ) =  s( f) .  The rest of  the claim follows easily. �9 

3. Main Result 

In this section we assume that U is not a unicity space. In addition we assume 
that K is connected and we will prove that there is no L~-continuous selection. 
At the end of  this section, we will indicate how a simple modification of  the 
proof  shows that there is no Ll-continuous selection for disconnected K. 
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The proof  is somewhat lengthy and as such we divide it into a series of  lemmas 
and propositions. 

Recall that since U is not a unicity space, there exists a measurable h satisfying 
h 2~ I on K and a u*~ U\{0} for which 

f = 0, all u ~ U, hu 
K 

and hlu* t is continuous. We fix h throughout.  

Lemma 5. Let W = { u : u ~ U , h [ u [  continuous}. Then W = { u : u 6 U ,  hu con- 
tinuous}, and W is a subspace of U. 

Proof. h[u[ is continuous if and only if u(x) = 0  at each pointof discontinuity 
x of  h. Similarly, hu is continuous if and only if u ( x ) = O  at each point of  
discontinuity x of  h. The lemma follows. �9 

Lemma 6. Let v6 Wand u~ U. I f  [v[>-hu on K, then u~ W, 

Proof. Let x be a point of  discontinuity of  h. Then 0 = Iv(x)l >-- (hu)(x). We must 
show that u ( x ) = 0 .  Assume u(x)=c#O.  Since h is discontinuous at x, in any 
neighborhood of x there exists a point y for which (hu)(y)>-H/2. But v(x)= O, 
v is continuous at x, and [vl-> hu on K. A contradiction ensues. Thus u(x)= O, 
and u c W. �9 

Set ~ ' = { u :  u6  W, HUH,= 1} and S(u)={x: (hu)(x)<-O}. Note that J(cu)= 
J(u) for all c > 0 .  The mapping u-->[J(u)] is upper  semicontinuous, and if" is 
compact.  Thus there exists a w~ ~/ such that ]J(w)[>_[J(u)] for all u~ W. 
Therefore ]J(w)]>_[J(u)[ for all u c  W\{0}. Since ~K hu=O, all u~ U, we have 
O<lS(w)l<lK[. 

Lemma 7. Let w be as above. I f  u~ Wand  [w[>-hu, then J(w)~J(w+u). If 
w # - u ,  then [J(w)[=[J(w+u)[ and h(w+u)>O a.e. on KkJ(w). 

Proof. Let x~J(w) .  Then (hw)(x)<-O, and Iw(x)l = - ( h w ) ( x ) > - ( h u ) ( x ) .  Thus 
(h(w+u))(x)<-O implying that J(w)cJ(w+u). If  w+u#O,  then, from the 
definition of  w and Lemma 5, the remaining claims of the lemma follow. �9 

Set 

V={v: v~ ~,J(w)~_s(v)}. 

V is a compact  subset of  a finite-dimensional subspace of  C ( K ) .  Hence equicon- 
tinuous and equibounded. For every v ~ V, let 

Bo = {x: (hv)(x) <0}. 

Then Bvc_J(w) for all v~ V, and J(w)\B~c_Z(v). Furthermore, B v # Q .  
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Lemma 8. There exists a w* ~ V such that, for  all v ~ V, B~, c_ Bw*. 

Proof. Assume V ~ , . . . , V k e V  and Bo,~B ..... i = l , . . . , k - 1 .  We claim that 
v~, . .  . , Vk are linearly independent. To see this, choose x] e Bv,\ B, j_ , , j  = 1 , . . . ,  k 
(where B~o= Q). Now v j ( x j )#  0 by definition, and v i (x j )=0  for all i < j  since 

X k .,(~ e B~,\B~,_, c_ B~,kB~, c J(w)kBv,  ~ Z(v i ) .  Thus the matrix (v~( J))u=, is of rank 
k, and v~ . . . .  , Vk are linearly independent. 

Now, choose v~ e V. If  there exists a v2 e V for which B~,, ~ B~, then replace 
v~ by v2. Continue this process. Since V c  U and dim U<oo ,  it follows that this 
process stops after a finite number of steps. 

Thus there exists a w* e V such that if v e V and B,.. c B~,, then B~. = Bo. We 
claim that w* satisfies the conditions of  the lemma. Assume v e V and B~ ~; B~.. 
Thus there exists a y e K  such that ( h v ) ( y ) < O = ( h w * ) ( y ) .  Set z =  
(v+  w*)/llv+ w*ll,. It follows that z e  V and B~.~ B_-. This is a contradiction. 

Replace w by w* in the definition of V. However, for ease of  notation we 
continue to denote it by w. Thus we now assume that 

V--{v: v~ ffv, J ( w ) c _ ] ( v ) }  

satisfies: 

(1) [J(w)[>]J(u)],  all u e  W\{O}; 
(2) B~_~ Bw for all ve  V. 

For w as above, set 

and 

A = { x :  ( hw) (x )  > O} 

B = {x: (hw) (x )  < 0}, 

i.e., B = Bw. Note that for all v ~ V, hv > 0 a.e. on A. 
Since K is connected, there exists an a e a A n Z ( w )  such that for each e > 0 ,  

sufficiently small, 

m ~ = A ~ { x : l x - a l < e }  

satisfies IA, I > 0. 
Similarly, there exists a /3 e aB ~ Z ( w )  such that for each e > 0, sufficiently 

small, 

B, = B n { x :  I x - i l l <  e} 

satisfies In~l > 0. 

For all v e  V, hv>O a.e. on A, and v ( a ) = 0  ( Z ( w ) ~ Z ( v ) ) .  For all ve  V, 
hv<-O on B, and v( /3)=0 ( Z ( w ) c _ Z ( v ) ) .  

For each e > 0 choose v , V  to satisfy 

l Iv.l--I Ivl. 
,] ,J B~ B,. 

V is compact so that such a v, exists. 
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Lemma 9. Assume u~ U satisfies IvEl>--hu o.  K, and -Iv~l>_hu on ms. Then 
U = - - V  e.  

Proof. Assume u ~ - r E .  From Lemmas 6 and 7 with w replaced by v~. u ~ W 
and h(v~ + u ) >  0a.e.  on A = K \ J ( w ) . O n  A. I~1-- h~ .  ~ u s o n  A~,-h~E =-I~1-> 
hu. implying that h( v, + u) <- 0 on A~. This contradicts  the fact that h( v. + u) > 0 
a.e. on A. �9 

Lemma 10. Assume ue  U satisfies IvEl>_hu on K, and -[v~l>_hu on Be. Then 
llv~ + ull, =2 .  

Proof.  From Lemmas 6 and 7, u e  W and z=(v~+u)/ l lv~+u[] ,~ V if u#-v~ .  
Since -IvEl>-hu on B~, and J'B, Iv~l->~, Iwl > 0 ,  it easily follows that u # - v ~ .  
Thus z ~ V. Now,  

IIv~+ul[,= f [sgn(v .+u)](v~+u) 
K 

= f  [sgn h(v~+u)]h (v ,+u)  
K 

= fh h(v,+u)- f h(ve+u). 
( v , + u ) > O  d h ( v . + u } < - O  

Since h(v~+u)>O a.e. on hv~>O, and h(v~+u)<~O a.e. on hvE<~O, 

I f. h ( v . + u )  
hve>O ve<--zO 

Now, 

fh h u + f  hu=O. all u ~ U ,  
V~;>O IVF "~-- 0 

and on hv~>O, hv~=lv,[>-hu. 
Thus,  

,, V~ + U ,,1= I + 2 Ih hu <-- l + 2 Ih hv~ = l + ,, v~ ,, , = 2. 

On B,, hv~ <~ 0 and O -  > hv~ = -IvEI >- hu. Thus O-- > 2hv, >- h( v, + u) implying that 
[v,+ul>-2lv~l on BE. If  live+ ull, < 2 .  then 

contradict ing our  choice o f  v~. �9 

We now come to the main content o f  the p roo f  o f  the theorem. 
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Set H, = h I v el, and construct 

f H~(x), x~A2e , 
G~(x)=lo'~(x), x~A2~\A~, 

L- v,(x), 
where Icr, l<lv~l on (A2,\,~,,)\g(v~), o'~=0 on (A2~\,4,)wg(v~), and G,~  C~. 
(Note that on 5,~, G, = - H e . )  Such a construction is possible. 

Similarly, let 

fH~(x), x~ B2~, 
F,(x)=~'y,(x),  x6B2e\Be, 

lv,(x), 
where lY~[ < I~1 on ( s=~ \ ~ ) \ z (~ ) ,  ~ - - 0  on (B2~\/3~)w Z(v~), and F~ ~ C~. 

Proposition 11. P( G~)= {-v~}, and if u e P( F~), then Ilv~+ull~ =2. 

Proof. The idea is to prove: 

(I) -v~ ~ P(G~) and if u e P(G~), then Iv, l >- hu on K, and -Iv~l-> hu on At; 
(II) v ~ P ( F , )  and if u~P(F~), then Iv~]>-hu on K, and -[v~l>-hu on Be. 

We then apply Lemmas 9 and 10 to (I) and (II), respectively, to obtain the 
desired results. The proofs of (I) and (II) are totally analogous. As such we prove 
only (I). 

We first consider sgn(G~ + v~): 

(i) On ,'~. 

sgn(G~ + v,) = sgn(-v~ + v,) = 0. 

sgn(G~ + v~) = sgn(o'~ + v~) 

(ii) On A2~\A~, 

(iii) Off A2e , 

= sgn v, 

= sgn Hr. 

sgn(G~ + re) = sgn(H~ + v,) 

={'s' gn H~, 

Thus, for all u ~ U, 

(a) 

(b) 

H~=v~#O. 

L 
f sgn(G~ + v~)u = f (sgn H~)u + L (sgn H~)u 

x~A2e 

= fn, =o~#o (sgn He)u-  L ,  (sgn He)u" 
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For every u ~ U, 

0 =  I hu= I (sgnHe,u+f (sgnH )u+fz hu. 
K He=Oe#O H~=-u~#O (He) 

Therefore, 

(b"I, sgn(Ce+ve)u=-I,.,=_o..o(sgnH~)u-f~,,, hu-f~ (sgnH~)u. 
From (a) and (b'), 

I f  sg n ( G , +  v , )u  ~Iz,o,+o,)lu' �9 
Thus, from Proposition 2, - ve ~ P(G,) .  

Assume u ~ P( G~), u ~ -re. From Proposition 3 we have: 

(A) (G~+v~)(G,-u)>-O on K;  
(B) ~K sgn(G~ +v~)(u+v~)=~z(c~+o~)[u+v~ I. 

From (i)-(iii), (a), and (b') we obtain: 

(1) On H~=v,#O, x~A2e, (sgnH,)(H~-u)>--O. 
(2) On A2~\A,, (sgn He)(o'~-u)>-O. 
(3) On H, = - v ~  #0 ,  - (sgn H~)(u+v~)>-O. 
(4) On Z(H~), -h(u+v,)>-O. 
(5) On A,e, - (sgn H~)(u+v~)>-O. 

Since sgn He = h off Z(He), it follows from the construction, and from (1)-(5), 
that Iv~l>-hu on all of K, and -Iv~l>-hu on a , .  �9 

Proof of the Theorem. V is compact and equicontinuous. There therefore exists 
a subsequence e,~0 and a v* ~ V suchthat  limn_o~ II v* - v~o lid = 0. Set H* = hlv*[ 
and recall that He = hlv, l. Then lim,.oo I I H * - H ~ o l I ~  = 0. By definition, 

IIH~ - G~ll~-<2 ma_x [v~(x)l, 
x E A 2 e  

l ine -  F~lloo-<2 ma_x Iv~(x)l. 
x E B2e 

By construction, v ( a ) =  v( /3)=0 for all v~ V. From the equicontinuity of V it 
therefore follows that 

!ira II n~,, - G~, lid = ! i ra  II n~,, - f~n I1~ = 0. 

Thus 

l im [ [ H * - G e  liD = l im [ [ H * - F ~ , I I ~ = 0 .  
n ~ o o  n n ~ o o  

From Proposition 11, P(G~~ = {-v~,,} and, for every u ~ P(F~n) , dist(u, - v , , )  = 
II u + V~n I1' = 2. ThUS there cannot exist an LD-continuous selection onto U. 
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Assume now that K is n o t  connected. The above proof  fails since we cannot 
necessarily find the requisite a and ~. That this may indeed be the case is 
illustrated by the example in Section 2. What we do in this case is simply choose  
a to be any point in A, and/3 to be any point in B. A reading o f  the proof  shows 
that all o f  the lemmas and propositions still hold. (Lemma 8 is unnecessary.) We 
do lose the uniform convergence of  He,, - G~,, and H~,, - F~, to zero. However,  it 
is easily seen that 

l im  I! n~,,  - G~,, II, = l i m  II H~,, - F,,,  II, = 0. 
n ~ o G  

It therefore fol lows that there cannot exist an Ll-cont inuous  selection onto U. 
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