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Abstract

We review the topic of Chebyshev–Markov–Krein inequalities, i.e. estimates for

inf
ν∈V (µ)


f dν and sup

ν∈V (µ)


f dν

where µ is a non-negative finite measure, and V (µ) is the set of all non-negative finite measures ν satisfying
u dν =


u dµ

for all u ∈ U , where U is a finite-dimensional subspace. For U a finite-dimensional T -space on [a, b],
we prove correct necessary and sufficient conditions for when a given non-negative function f ∈ C[a, b]

satisfies ξ−

a
f dµξ ≤

 ξ−

a
f dν ≤

 ξ+

a
f dν ≤

 ξ+

a
f dµξ

for every ν ∈ V (µ) and all ξ ∈ (a, b), where µξ is the unique canonical representation in V (µ) containing
the point ξ .
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1. Introduction

Chebyshev, in [14], posed the following problem. Given real numbers A < a < b < B, a
positive function f , and the values B

A
f (x) dx,

 B

A
x f (x) dx, . . . ,

 B

A
xm f (x) dx,

find accurate bounds for b

a
f (x) dx .

His solution to this problem, via continued fractions, orthogonal polynomials and Gaussian
quadrature, in the case of specific a, b and f , may be found in [14], without proof. A proof was
provided ten years later by Markov and appeared in [9]. Krein, in his fascinating introduction
to [7], gives a full history of this problem including details of later contributions by Chebyshev,
Markov, Stieltjes, Posse, and others. See also the “Historical comments and notes on Chapter
IV” in [8].

This problem has, over time, been generalized in various directions. One direction has led to a
series of inequalities called “Čebyšev–Markov” inequalities in both [7,8], and “Markov–Krein”
inequalities in [3]. (Krein’s contribution, as found in [7], is significant.) In view of this, we will
call these inequalities Chebyshev–Markov–Krein inequalities.

The above-mentioned texts approach these Chebyshev–Markov–Krein inequalities as they
relate to T -systems and their associated canonical representations for a certain defined set of
functions. This will be explained in Sections 3 and 4. In Section 2 we present an alternative ap-
proach to these inequalities based on semi-infinite optimization or one-sided L1-approximation.
We think that this is a natural approach to this problem as it generalizes, simplifies and, we hope,
illuminates the ideas behind these inequalities.

In Section 3 we present basic facts concerning T -systems, T -spaces, canonical represen-
tations, convexity cones and the first of the classic Chebyshev–Markov–Krein inequalities. In
Section 4, we discuss the second of these Chebyshev–Markov–Krein inequalities. We look, in
detail, at necessary conditions for these inequalities to hold, generalizing what can be found in
the above references. We then discuss the converse to these results. A converse result appears
in [8, p. 137], but unfortunately it is incorrect.

2. One-sided L1-approximation and generalized Chebyshev–Markov–Krein inequalities

Let K be a compact Hausdorff space, C(K ) denote the set of real-valued continuous functions
on K , µ be a non-negative finite measure on K , and U be a finite-dimensional subspace of C(K ).
Let V (µ) denote the set of all non-negative finite measures ν on K satisfying

K
u dν =


K

u dµ

for all u ∈ U . In other words, V (µ) is the set of all possible “representations” of µ on U by
non-negative finite measures. What we call Chebyshev–Markov–Krein inequalities are estimates
for

inf
ν∈V (µ)


K

f dν (2.1)
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and

sup
ν∈V (µ)


K

f dν (2.2)

for a given f ∈ C(K ), or even for certain bounded, measurable and not necessarily continuous
f defined on K .

In what follows we assume, for convenience, that U contains a function that is strictly positive
on K . This is not totally necessary, but it makes the exposition significantly easier. Given
f ∈ C(K ), set

U−( f ) = {u : u ∈ U, u ≤ f }

and

U+( f ) = {u : u ∈ U, u ≥ f }.

The sets U±( f ) are convex and non-empty (by our assumption) subsets of U . The theory, as it
relates to the two problems (2.1) and (2.2), is the same. Hence, let us consider (2.1). For each
u ∈ U−( f ) and ν ∈ V (µ) we have

K
u dµ =


K

u dν ≤


K

f dν.

Thus

sup
u∈U−( f )


K

u dµ ≤ inf
ν∈V (µ)


K

f dν. (2.3)

Equality holds in (2.3). This fact may be found in many sources; see, e.g., [2], [3, p. 472],
[4, Theorem 3], [5, Theorem 3], [6] and [12, Theorem 5.2]. Before stating this result, note that the
solution to this problem also provides a solution to a best one-sided L1-approximation problem
in C(K ).

Consider the problem of characterizing best L1(K , µ) approximations to f from U−( f ) or
from U+( f ). Again, from symmetry considerations, we will consider the first problem. That is,
we are interested in the problem

inf
u∈U−( f )

∥ f − u∥1 := inf
u∈U−( f )


K

| f − u| dµ.

Since f − u ≥ 0 for all u ∈ U−( f ), the problem of finding, or characterizing, a u ∈ U−( f )

attaining the above infimum is equivalent to that of finding, or characterizing, a u ∈ U−( f )

attaining the supremum in

sup
u∈U−( f )


K

u dµ. (2.4)

The values in these two problems differ, but the problem is one and the same. Set

PU−( f ) = {u∗
: u∗

∈ U−( f ), ∥ f − u∗
∥1 ≤ ∥ f − u∥1 for all u ∈ U−( f )}.

That is, PU−( f ) is the set of best one-sided L1(K , µ) approximants to f from below, and the
set of u ∈ U−( f ) attaining the supremum in (2.4). Under our assumptions we have that PU−( f )



Author's personal copy

A. Pinkus, J.M. Quesada / Journal of Approximation Theory 164 (2012) 1262–1282 1265

is always non-empty. A characterization of u∗
∈ PU−( f ) is given by the following; see e.g.

[12, Theorem 5.2].

Theorem 2.1. Let dim U = n. Then under the above assumptions, we have u∗
∈ PU−( f ) if and

only if u∗
∈ U−( f ) and there exist distinct points {xi }

k
i=1 in K , 1 ≤ k ≤ n, and positive numbers

{λi }
k
i=1 for which

(a) ( f − u∗)(xi ) = 0, i = 1, . . . , k

(b)


K

u dµ =

k
i=1

λi u(xi ), all u ∈ U.

Equation (b) is what is called a quadrature formula for U . On the basis of Theorem 2.1 the
equality in (2.3) is now easily proven. Namely,

Theorem 2.2. Let f ∈ C(K ) and {xi }
k
i=1, and {λi }

k
i=1 be as in Theorem 2.1. Then

inf
ν∈V (µ)


K

f dν =

k
i=1

λi f (xi ).

Proof. Let u∗
∈ PU−( f ) satisfy (a) and (b) of Theorem 2.1 with the above {xi }

k
i=1 and {λi }

k
i=1.

We apply, in order, (a) and (b) of Theorem 2.1, the fact that ν ∈ V (µ), and the inequality u∗
≤ f

to obtain
k

i=1

λi f (xi ) =

k
i=1

λi u∗(xi ) =


K

u∗ dµ =


K

u∗ dν ≤


K

f dν.

Thus for all ν ∈ V (µ) we have

k
i=1

λi f (xi ) ≤


K

f dν.

The infimum is therefore attained on choosing ν to be the atomic measure with the positive
weights λi at the points (nodes) xi , i = 1, . . . , k. �

Thus, we see that to solve (2.1) it is both necessary and sufficient to construct a u∗
∈ U−( f )

satisfying (a) and (b) of Theorem 2.1. We, of course, have the similar result regarding the
supremum

sup
ν∈V (µ)


K

f dν.

Remark. In the above analysis we assumed that f ∈ C(K ). What happens if f is not
continuous? It is not difficult to verify that Theorems 2.1 and 2.2 remain valid if f is bounded
below and lower semicontinuous. (And the corresponding upper bound result will hold if f is
bounded above and upper semicontinuous.)

Example 2.1. Let K be a convex set (with interior) in Rd , and U be the d + 1-dimensional
subspace of linear polynomials. Let µ be any non-negative finite measure with some support in
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the interior of K , i.e. µ(int K ) > 0. Let f be a convex function on K for which there is, for each
interior point of K , exactly one supporting hyperplane that touches f therein, while there are no
supporting hyperplanes for f that agree with f at any boundary point of K . Such functions exist.
From Theorems 2.1 and 2.2 it therefore follows that there exists a point x∗

∈ int K and λ∗ > 0
such that

K
u dµ = λ∗u(x∗)

for all u ∈ U , and

λ∗ f (x∗) ≤


K

f dν

for all non-negative finite measures ν ∈ V (µ). The associated u∗
∈ PU−( f ) is given by the

supporting hyperplane for f at the point x∗. Now, let g be any convex function on K . It then
follows from Theorems 2.1 and 2.2 that we have

λ∗g(x∗) ≤


K

g dν

for all non-negative finite measures ν ∈ V (µ). That is, the same point and discrete measure solve
the infimum problem for all convex g on K . Or, equivalently, for every convex function g on K
a best one-sided L1(K , µ) approximation from below from linear polynomials to g is given by
the linear polynomial that agrees with g at x∗. (This problem can also be solved by other means.)
The best one-sided L1(K , µ) approximation from above from linear polynomials does not have
the property that the points of the optimal discrete measure are the same for all convex g, except
in the case d = 1 where the best one-sided L1(K , µ) approximation from above from linear
polynomials is given by the straight line that interpolates each g at its endpoints (independent
also of the measure µ).

Example 2.2. Set U = Π2 = span{1, t, t2
} on [−1, 1] with uniform measure. Let fc = t2 on

[−1, c) and 0 on [c, 1]. We will calculate the best one-sided L1-approximation from below to
every fc from Π2. For all c ∈ [−1/7, 1] the polynomial (−1 − 6t + 7t2)/16 is the best one-sided
L1-approximation to every such fc. This polynomial interpolates to fc at −1/3 (double zero) and
at 1 and has a zero at −1/7. Note that there is a quadrature formula for Π2 with nodes 1 and −1/3.
For c ∈ (−1, −1/3] the zero function is a best one-sided L1-approximation to fc since, as stated
previously, there is a quadrature formula for Π2 based on the nodes 1 and −1/3. At c = −1/3
there is also a best one-sided L1-approximation given by (3/4)(t −1)(t +1/3), i.e. the quadratic
polynomial that is 0 at 1 and −1/3, and takes the value 1 at −1. Thus λ(3/4)(t − 1)(t + 1/3) is
also a best one-sided L1-approximation for all λ ∈ [0, 1] when c = −1/3. For c ∈ (−1/3, −1/7)

the situation is more complicated and depends critically upon c. We claim that

pc(t) =
4c(t − 1)(c − t)

(c − 1)2

is the best one-sided L1-approximation from below to fc. It is readily verified that pc ≤ 0 on
[c, 1], and

t2
− pc(t) =


c + 1
c − 1

2 
t −

2c
c + 1

2

implying that pc ≤ fc on [−1, 1]. In addition, from the above, fc − pc has a simple zero
at 1 and c, and a double zero at (2c)/(c + 1). (Note that for c ∈ (−1/3, −1/7) we have
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−1 < (2c)/(c + 1) < c.) To prove that pc is the best one-sided L1-approximation from below
to fc from Π2 it remains to verify the existence of a quadrature formula for Π2 with nodes 1,
c, (2c)/(c + 1), and positive weights. It can be verified that the associated weights are

λ1 =
2c(6c2

+ c + 1)

3c(c − 1)2 , λ2 =
2(7c + 1)

3c(c − 1)2 , λ3 =
−2(c + 1)2(3c + 1)

3c(c − 1)2 ,

respectively. For c ∈ (−1/3, −1/7) these coefficients are strictly positive.

We defer further examples to the following sections.

3. Moment theory for T -systems and the first Chebyshev–Markov–Krein inequalities

Most of the results of this section may be found in both [3,8]. We start with the definition of
a Chebyshev system (abbreviated as a T -system since at one time—see the references—Cyrillic
transliteration gave us a spelling of Chebyshev starting with a ‘T’).

Definition 3.1. The set of continuous functions {u1, . . . , un} defined on [a, b] is said to be a
T -system if no nontrivial u ∈ U = span{u1, . . . , un} vanishes at more than n − 1 distinct points
of [a, b]. We call U a T -space.

Note that with this definition, U is necessarily of dimension n, and every basis for U is a
T -system. There are numerous equivalent definitions. One such is the following. Since we are
assuming a connected domain of definition then {ui }

n
i=1 is a T -system if and only if there exists

an ε ∈ {−1, 1} such that

εU


1, . . . , n
s1, . . . , sn


:= ε det(ui (sℓ))

n
i,ℓ=1 > 0 (3.1)

for every choice of a ≤ s1 < · · · < sn ≤ b. If ε = 1 in the above, then we will say that
{u1, . . . , un} is a T +-system. This is simply a normalization.

From Definition 3.1 one can obtain further information regarding zero counting of functions
in T -spaces. Namely, interior zeros that are not sign changes may be counted as double zeros.

Definition 3.2. An isolated zero of f ∈ C[a, b] at an interior point of (a, b) is said to be
nonnodal if f does not change sign at that zero. All other zeros, including zeros at the endpoints,
are called nodal zeros. Let Z( f ) denote the number of zeros of f where nodal zeros are counted
once and nonnodal zeros are counted twice.

Proposition 3.1. Let U be an n-dimensional subspace of C[a, b]. Then U is a T -space if and
only if for every nontrivial u ∈ U we have Z(u) ≤ n − 1.

What about a converse to Proposition 3.1? That is, given distinct s1, . . . , sℓ in [a, b], and
t1, . . . , tk in (a, b), with ℓ + 2k ≤ n − 1, does there exist a nontrivial u ∈ U which has a nodal
zero at each si and a nonnodal zero at each t j ? The answer is yes. While we do not need this
general result, we will use the following. Firstly, let us define ω(t) = 2 if t ∈ (a, b) and ω(t) = 1
if t ∈ {a, b}. Then we have:

Proposition 3.2. Let U be an n-dimensional T -space in C[a, b]. Assume we are given a ≤ s1 <

· · · < sk ≤ b, where
k

j=1 ω(s j ) ≤ n − 1. Then there exists a nontrivial non-negative u ∈ U
satisfying u(s j ) = 0, j = 1, . . . , k.
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Let µ denote a non-negative finite measure on [a, b]. If µ is a discrete measure, i.e. b

a
f dµ =

k
j=1

λ j f (s j )

for all f ∈ C[a, b] with λ j > 0 and a ≤ s1 < · · · < sk ≤ b, then we call the s j nodes and the
associated λ j weights. The index of µ, that we will denote by I (µ), is defined as

I (µ) :=

k
j=1

ω(s j ).

(In [3], the index is defined as half of the above quantity.)
The measure µ is said to be positive (relative to U ) provided that

 b
a u dµ > 0 whenever u is a

nontrivial non-negative function in U . For an n-dimensional T -space this simply means that the
index of the points of support of µ is at least n, i.e. I (µ) ≥ n. A positive measure corresponds
to an interior point of the moment space determined by the set of functions in U . We recall from
Section 2 that we defined V (µ) to be the set of all non-negative finite measures satisfying b

a
u dν =

 b

a
u dµ

for all u ∈ U . In other words, V (µ) is the set of all possible “representations” of µ on U .
A positive measure ν ∈ V (µ) is said to be a canonical representation for µ if it is a discrete
measure of index at most n + 1. It is said to be a principal representation for µ if it has index
exactly n. The representations are also referred to as either upper or lower. They are called upper
if they have a node at b. Otherwise they are called lower.

Two major results concerning V (µ) are the following:

Theorem 3.3. Associated with every n-dimensional T -space and every positive measure µ there
exist exactly two principal representations in V (µ), one upper and one lower.

Theorem 3.4. Let ξ ∈ (a, b). Then associated with every n-dimensional T -space and every
positive measure µ there is a unique canonical representation in V (µ) containing the node ξ .

Many more facts concerning these representations and their nodes may be found in the previ-
ously mentioned references.

Associated with each n-dimensional T -space U is its convexity cone C(U ). This is simply
the set of functions f such that span{U, f } constitutes a W T (weak Chebyshev) space of
dimension n + 1. (An m-dimensional subspace is a W T -space if no nontrivial function therein
has more than m − 1 sign changes.) If f ∈ C(U ), then − f ∈ C(U ). We decompose C(U )

into C+(U ) and C−(U ). We say that f ∈ C+(U ) if {u1, . . . , un} is a T +-system (this is
simply a normalization) and {u1, . . . , un, f } is a W T +-system (this means that ε = 1 in (3.1)
where the signs of the determinants are non-negative, rather than strictly positive). Alternatively,
given a ≤ s1 < · · · < sk < b with

k
j=1 ω(s j ) = n, there exists a u ∈ U for which

( f − u)(s j ) = 0, j = 1, . . . , k, and f − u ≥ 0 on [a, b]. If the reverse inequality holds we
say that f ∈ C−(U ). Note that f ∈ C+(U ) if and only if − f ∈ C−(U ).

The first set of classic Chebyshev–Markov–Krein inequalities are the following.
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Theorem 3.5. Let U be an n-dimensional T -space in C[a, b], µ be a positive measure relative
to U, and f ∈ C+(U ). Then for every ν ∈ V (µ) we have b

a
f dµ− ≤

 b

a
f dν ≤

 b

a
f dµ+

where µ− and µ+ are the lower and upper principal representations for µ, respectively.

In the above theorem the lower and upper bounds are uniquely attained by these principal
representations if {u1, . . . , un, f } is a T +-system. When assuming that {u1, . . . , un, f } is a
W T +-system we may lose the uniqueness. Generalizations of the above result to where U is
a W T -space can be found in [10]; see also [3, Chapter III, Section 4].

The proof of this result, as presented in [7,3,8], essentially proceeds as follows. Firstly,
prove the existence of the two principal representations. As f ∈ C+(U ), then construct using
Proposition 3.2 with respect to the W T +-space span{U, f }, the function f − u∗, which is non-
negative, nontrivial and vanishes at the nodes (of index n) of the lower principal representation.
Thus (a) and (b) of Theorem 2.1 hold and the result follows from Theorem 2.2. In a similar way
we can see that the best one-sided L1(µ) approximation from above from U to f is given by
the u∗∗ that interpolates to f at the nodes of the upper principal representation. If f ∈ C−(U )

then similar inequalities hold (with the inequalities reversed) simply from considering − f in
place of f . A variation on this proof is presented after the statement of Theorem 3.6. Further
generalizations of this result may be found in [12, Appendix B], and references therein.

We could also prove Theorem 3.5 starting from Theorem 2.1 if {u1, . . . , un, f } is a T +-
system, and in this way also get the existence of the principal representations for U . That is,
assume that we have, as in (b) of Theorem 2.1, distinct points a ≤ x1 < · · · < xk ≤ b in
[a, b], 1 ≤ k ≤ n, and positive numbers {λi }

k
i=1 for which b

a
u dµ =

k
i=1

λi u(xi ) (3.2)

for all u ∈ U . We first claim that
k

i=1 ω(xi ) ≥ n. For otherwise—see Proposition 3.2—there
exists a nontrivial non-negative u ∈ U satisfying u(xi ) = 0, i = 1, . . . , k, contradicting (3.2).
Assume {u1, . . . , un, f } is a T +-system, and let u∗

∈ PU−( f ). Then f − u∗
≥ 0 on [a, b] and

f −u∗ vanishes at the xi . Thus
k

i=1 ω(xi ) ≤ Z( f −u∗) ≤ n. This implies that
k

i=1 ω(xi ) = n.
Since we have that {u1, . . . , un, f } is a T +-system, this also implies that xk < b. In other words
the right-hand side of (3.2) is a lower principal representation for µ. It is not difficult to directly
verify uniqueness of the principal representations; see e.g., [12, pp. 218–219].

In [8, pp. 135–6] there can be found the following converse to Theorem 3.5.

Theorem 3.6. Let {u1, . . . , un} be a T +-system on [a, b]. Assume that, for a given f =:

un+1 ∈ C[a, b], and for every positive measure µ relative to U = span{u1, . . . , un}, the
Chebyshev–Markov–Krein inequality holds. Namely for every ν ∈ V (µ) we have b

a
f dµ− ≤

 b

a
f dν

where µ− is the lower principal representation for µ. Then

U


1, . . . , n + 1
t1, . . . , tn+1


≥ 0
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for every a < t1 < · · · < tn+1 < b in the case where n is even, and

U


1, . . . , n + 1
t1, . . . , tn+1


≥ 0

for every a = t1 < · · · < tn+1 < b if n is odd.

A similar statement holds for the maximum value. In that case we only obtain conditions on
determinants with points satisfying tn+1 = b, and also t1 = a if n is even.

There are real differences between these various conditions, where we demand that certain
endpoints be nodes. Take, for example, U = span{u1}, where u1 is the constant function. Then

U


1, 2
t1, t2


≥ 0

for all a < t1 < t2 < b if and only if u2 is a nondecreasing function on [a, b]. We have

U


1, 2
a, t2


≥ 0

for all t2 ∈ (a, b] if and only if u2(a) = min{u2(t) : t ∈ [a, b]}, while

U


1, 2
t1, b


≥ 0

for all t1 ∈ [a, b) if and only if u2(b) = max{u2(t) : t ∈ [a, b]}. Finally

U


1, 2
a, b


≥ 0

if and only if u2(a) ≤ u2(b).
A careful consideration of the analysis also shows that these conditions are sufficient for the

associated Chebyshev–Markov–Krein inequality to hold. That is, we do not need or use the full
convexity cone property in the case of the above minimum if n is odd, or in the case of the
maximum, whether n is odd or even. We present a quick explanation of one of these cases.

We consider the lower bound and n odd. We wish to verify that the condition

U


1, . . . , n + 1
t1, . . . , tn+1


≥ 0

for every a = t1 < · · · < tn+1 < b is sufficient for obtaining b

a
un+1 dµ− ≤

 b

a
un+1 dν

for every ν ∈ V (µ), where µ− is the lower principal representation for µ.
As n is odd, say n = 2k −1, the lower principal representation for a given measure µ, positive

relative to U , has nodes

a = ξ1 < ξ2 < · · · < ξk < b.

We prove that there exists a u∗
∈ U satisfying u∗

≤ un+1 and u∗(ξi ) = un+1(ξi ), i = 1, . . . , k.
By Theorems 2.1 and 2.2, this is exactly what is needed.
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Let t2i−1 = ξi , i = 1, . . . , k, and t2i = ξi+1 − ε, i = 1, . . . , k − 1, for ε > 0, small. Thus the
{t1, . . . , tn} are in strictly increasing order. The ratio

U


1, . . . , n, n + 1
t1, . . . , tn, t


U


1, . . . , n
t1, . . . , tn


is well-defined since, as {u1, . . . , un} is a T +-system, the denominator is strictly positive.
Expanding the numerator by its last column, we have that it equals

un+1(t) − uε(t)

where uε ∈ U . Furthermore, since, by assumption, the numerator is non-negative when the points
are arranged in increasing order, we have that

(−1)i+1(un+1(t) − uε(t)) ≥ 0, t ∈ [ti , ti+1], i = 1, . . . , n,

where tn+1 = b. That is, we can have un+1(t) − uε(t) < 0 only for t in ∪
k
i=2[ξi − ε, ξi ]. It is

easily shown that the uε are uniformly bounded. Thus, as uε ∈ U , and U is a finite-dimensional
subspace, on a subsequence of ε → 0 we have that uε uniformly tends to a u∗

∈ U . From the
above, it follows that u∗

≤ un+1 and u∗(ξi ) = un+1(ξi ), i = 1, . . . , k.
The other cases are proven analogously.

4. The second Chebyshev–Markov–Krein inequalities and its converse

The statement of the second set of classic Chebyshev–Markov–Krein inequalities is more
awkward. Hence we start with a definition that will we hope expedite the exposition.

Definition 4.1. We say that {u1, . . . , un, f } satisfies Condition K on [a, b] if:

(a) {u1, . . . , uk} is a T +-system for k = 1, . . . , n.
(b) f is strictly positive on [a, b].
(c) {u1, . . . , uk, f } is a T +-system for k = 1, . . . , n.

We then have, from [7,3,8]:

Theorem 4.1. Let U = span{u1, . . . , un} and f be in C[a, b] and assume that {u1, . . . ,

un, f } satisfies Condition K thereon. Let µ be a positive measure relative to U, and ξ ∈ (a, b).
Then  ξ−

a
f dµξ ≤

 ξ−

a
f dν ≤

 ξ+

a
f dν ≤

 ξ+

a
f dµξ

for every ν ∈ V (µ), where µξ is the (unique) canonical representation for µ containing the node
ξ .

By
 ξ−

a f dν (
 ξ+

a f dν) we mean the integral over the interval [a, ξ) ([a, ξ ]).
The method of proof is, of course, to show that one can construct the appropriate one-sided

L1-approximations. Let

f ξ−(t) =


f (t), a ≤ t < ξ

0, ξ ≤ t ≤ b,
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and

f ξ+(t) =


f (t), a ≤ t ≤ ξ

0, ξ < t ≤ b.

Recall that f is a strictly positive function. Thus, f ξ− is lower semicontinuous, while f ξ+

is upper semicontinuous. Let a ≤ ξ1 < · · · < ξr ≤ b denote the nodes of the canonical
representation with ξ = ξℓ for some ℓ. The proof involves showing the existence of a u∗

∈ U
satisfying u∗(ξi ) = f ξ−(ξi ), i = 1, . . . , r , and u∗

≤ f ξ−, and a u∗∗
∈ U satisfying

u∗∗(ξi ) = f ξ+(ξi ), i = 1, . . . , r , and u∗∗
≥ f ξ+. Additional conditions under which

Theorem 4.1 holds may be found in [3, Sections 3 and 4 of Chapter III]. An important case
is when f itself is a positive function in U . Theorem 4.2 in Chapter III of [3] provides conditions
for when the desired result holds in this case. (It is not always true.) Alternatively, Theorem 4.1 is
also valid in the case f = um any m ∈ {1, . . . , n}, if um is a non-negative function, {u1, . . . , uk}

is a T +-system for k = 1, . . . , n, and {u1, . . . , uk, um} is a T +-system for k = 1, . . . , m − 1.
This can be proven directly, or can be regarded as belonging to the “boundary of Condition K ”.
Thus, it is always valid for f = u1 if {u1, . . . , uk} is a T +-system for k = 1, . . . , n (the case
k = 1 implying that u1 is a positive function). It should also be noted that for every n-dimensional
T -space U on [a, b], there always exists a basis {v1, . . . , vn} for U such that {v1, . . . , vk} is a
T +-system on (a, b), for k = 1, . . . , n (but not necessarily on [a, b]); see [15] for a proof and a
history of this problem. An example where u∗ is calculated can be found in [1].

The method of proof of Theorem 4.1 does not use Condition K , per se, but rather a conse-
quence thereof. We state this consequence as Condition M , as it is, in fact, the relevant property
and will also appear in the converse theorem.

To ease notation, we again set f =: un+1 and assume that un+1 is a non-negative nontrivial
function in C[a, b]. For each ξ ∈ (a, b), we use the notation uξ±

n+1 as previously defined.
For q ∈ {1, . . . , n + 1} and a ≤ s1 < · · · < sn+1 ≤ b, we define

U q


1, . . . , n + 1
s1, . . . , sn+1


=


u1(s1) · · · u1(sq) u1(sq+1) · · · u1(sn+1)
...

. . .
...

...
. . .

...

un(s1) · · · un(sq) un(sq+1) · · · un(sn+1)

un+1(s1) · · · un+1(sq) 0 · · · 0

 .
That is, the last n + 1 − q entries in the last row are set equal to 0.

Definition 4.2. We will say that the function un+1 ∈ C[a, b] satisfies Condition M with respect
to the n-dimensional T +-system {u1, . . . , un} and the points a ≤ s1 < · · · < sn+1 ≤ b and
1 ≤ q ≤ n + 1 if

(−1)n+1+qU q


1, . . . , n + 1
s1, . . . , sn+1


≥ 0.

We say that un+1 satisfies the strong Condition M if strict inequality holds in the above.

Condition M , unlike Condition K , does not depend on the choice of a bases for U . Note that
the case q = 1 actually implies that un+1 is a non-negative function.

What is proven in [3, pp. 33–36] is that Condition K implies the strong Condition M for all
a ≤ s1 < · · · < sn+1 ≤ b and all 1 ≤ q ≤ n + 1. And it is this strong Condition M that is used
to prove the existence of the desired functions u∗ and u∗∗.
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Before considering the exact connection between Condition M and these Chebyshev–
Markov–Krein inequalities, we will study Condition M in further detail. The first important and
surprising result is the following.

Proposition 4.2. Assume un+1 satisfies Condition M with respect to the n-dimensional T +-
system {u1, . . . , un} and all points a ≤ s1 < · · · < sn+1 = b for all q ∈ {1, . . . , n}. Then
un+1 satisfies Condition M with respect to the n-dimensional T +-system {u1, . . . , un} and all
points a ≤ s1 < · · · < sn+1 ≤ b for all q ∈ {1, . . . , n}.

Proof. It is easily verified that the result holds for q = 1. This follows from the fact that

(−1)n+2U 1


1, . . . , n + 1
s1, . . . , sn+1


= un+1(s1)U


1, . . . , n

s2, . . . , sn+1


for every choice of a ≤ s1 < · · · < sn+1 ≤ b. Thus Condition M with sn+1 = b and q = 1, and
the fact that {u1, . . . , un} is a T +-system imply that un+1 is a non-negative function, which in
turn implies that Condition M holds for q = 1 and for all a ≤ s1 < · · · < sn+1 ≤ b.

The general case is proven as follows. Let A be an (n + 1) × (n + 2) matrix. The following
determinantal identity is well-known, and may be easily proven as a consequence of Sylvester’s
determinant identity; see e.g., [13, p. 5]:

A


1, . . . , n + 1
1, . . . , n + 1


A


1, . . . , n

2, . . . , n, n + 2


= A


1, . . . , n + 1

1, . . . , n, n + 2


A


1, . . . , n

2, . . . , n + 1


− A


1, . . . , n + 1
2, . . . , n + 2


A


1, . . . , n
1, . . . , n


.

Let a ≤ s1 < · · · < sn+1 < b and set sn+2 = b. Define the (n + 1) × (n + 2) matrix A by

A =


u1(s1) · · · u1(sq) u1(sq+1) · · · u1(sn+2)

...
. . .

...
...

. . .
...

un(s1) · · · un(sq) un(sq+1) · · · un(sn+2)

un+1(s1) · · · un+1(sq) 0 · · · 0

 .

Assume 1 ≤ q ≤ n and apply the previous determinantal identity to obtain

U q


1, . . . , n + 1
s1, . . . , sn+1


U


1, . . . , n

s2, . . . , sn, sn+2


= U q


1, . . . , n + 1

s1, . . . , sn, sn+2


U


1, . . . , n

s2, . . . , sn+1


− U q−1


1, . . . , n + 1
s2, . . . , sn+2


U


1, . . . , n

s1, . . . , sn


.

By assumption, since sn+2 = b, we have

(−1)n+1+qU q


1, . . . , n + 1
s1, . . . , sn, sn+2


≥ 0

and

(−1)n+1+q−1U q−1


1, . . . , n + 1
s2, . . . , sn+2


≥ 0.
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As {u1, . . . , un} is a T +-system on [a, b] the three determinants containing only the rows
{1, . . . , n} are strictly positive. Thus

(−1)n+1+qU q


1, . . . , n + 1
s1, . . . , sn+1


≥ 0. �

Remark. The above result does not hold for q = n + 1, as may be seen by the example given
after the statement of Theorem 3.6.

We could also have demanded less in our definition of Condition M , as is attested to by the
following.

Proposition 4.3. Assume {u1, . . . , un} is a T +-system on [a, b], un+1 is a non-negative
nontrivial function in C[a, b], and q ∈ {1, . . . , n}. Assume there exists a δq ∈ {−1, 1} for which

δq U q


1, . . . , n + 1
s1, . . . , sn+1


≥ 0

for all a ≤ s1 < · · · < sn+1 ≤ b. Then δq = (−1)n+1+q .

Proof. Consider the function

Gq(t) =


u1(s1) · · · u1(sq) u1(t) u1(sq+2) · · · u1(sn+1)

...
. . .

...
...

...
. . .

...

un(s1) · · · un(sq) un(t) un(sq+2) · · · un(sn+1)

un+1(s1) · · · un+1(sq) 0 0 · · · 0

 ,
where sq ∈ (a, b) is chosen such that un+1(sq) > 0. Note that

Gq(sq+1) = U q


1, . . . , n + 1
s1, . . . , sn+1


for any sq+1 ∈ (sq , sq+2).

Now,

Gq(sq) =


u1(s1) · · · u1(sq) u1(sq) · · · u1(sn+1)

...
. . .

...
...

. . .
...

un(s1) · · · un(sq) un(sq) · · · un(sn+1)

un+1(s1) · · · un+1(sq) 0 · · · 0

 .
Expanding the above by the last row, and since the qth and (q + 1)st columns are equal except
for their last components, we have

Gq(sq) = (−1)n+1+q un+1(sq) U


1, . . . , n
s1, . . . , sq , sq+2, . . . , sn+1


.

Since {u1, . . . , un} is a T +-system, we have

U


1, . . . , n
s1, . . . , sq , sq+2, . . . , sn+1


> 0

for all choices of strictly increasing points. In addition, un+1(sq) > 0 and therefore (−1)n+1+q

Gq(sq) > 0. Since Gq
∈ C[a, b] we obtain (−1)n+1+q Gq(sq + ε) > 0 for ε > 0, small. Thus

δq = (−1)n+1+q . �
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From continuity and connectedness we also have:

Corollary 4.4. Assume {u1, . . . , un} is a T +-system on [a, b], un+1 is a strictly positive function
in C[a, b], and q ∈ {1, . . . , n}. Assume

U q


1, . . . , n + 1
s1, . . . , sn+1


≠ 0

for all a ≤ s1 < · · · < sn+1 ≤ b. Then

(−1)n+1+qU q


1, . . . , n + 1
s1, . . . , sn+1


> 0

for all a ≤ s1 < · · · < sn+1 ≤ b.

The above arguments do not apply, and are not valid, when q = n + 1.
Condition M might, at first glance, seem to be a bit odd. However similar phenomena may

be found in the literature. For example, if A is an m × m totally positive matrix (all minors are
non-negative) and we alter A to Aq by setting the last m − q elements of the last row of A to be
zero, then in fact

(−1)m+q det Aq
≥ 0

(see [13, p. 30]). Thus, if {u1, . . . , un+1} is a Descartes system, i.e. {ui1 , . . . , uir } is a T +-system
for every 1 ≤ i1 < · · · < ir ≤ n + 1 and every r = 1, . . . , n + 1, then (strong) Condition M
holds for all a ≤ s1 < · · · < sn+1 ≤ b and all q ∈ {1, . . . , n}. This is a case where Condition K
also holds.

Example 4.1. On any interval [a, b] where 0 ≤ a < b the functions {1, t, . . . , tn−1
} form a

Descartes system (aside from a degeneracy at t = 0). This means that the associated matrix
U , as defined above, is totally positive. One consequence thereof is that f (t) = tk satisfies
Condition M with respect to U for all k ∈ Z+. (Compare this to Example 2.2.)

Example 4.2. Assume [a, b] = [0, 1], U = span{1, t}, and f (t) = 1. Let µ be any non-negative
measure satisfying 1

0
1 dµ = 1

and  1

0
t dµ = c

where 0 < c < 1. The fact that c ∈ (0, 1) guarantees that µ is a positive measure relative to U .
It is readily verified that the canonical representation for µ containing ξ ∈ (0, 1) is given by

dµξ =
ξ − c

ξ
δ0 +

c
ξ
δξ

for ξ ≥ c, and

dµξ =
1 − c
1 − ξ

δξ +
c − ξ

1 − ξ
δ1

for ξ ≤ c, where δy represents the unit point measure at y. (For ξ = c these formulas give
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the lower principal representation for µ, while for ξ = 0 or ξ = 1 we get the upper principal
representation for µ.) It therefore follows from Theorem 4.1 that

min
ν∈V (µ)

 ξ−

0
1 dν =

 ξ−

0
1 dµξ =

0, 0 < ξ ≤ c
ξ − c

ξ
, c ≤ ξ < 1,

and

max
ν∈V (µ)

 ξ+

0
1 dν =

 ξ+

0
1 dµξ =


1 − c
1 − ξ

, 0 < ξ ≤ c

1, c ≤ ξ < 1.

We can now show the exact connection between Condition M and the result in Theorem 4.1.
We will prove direct and converse directions for both the lower and upper bounds that are

more general than those found in the above-mentioned texts. Furthermore, the converse theorem
as stated in [8, p. 137], and in [11], is incorrect.

Theorem 4.5. Assume U = span{u1, . . . , un} is an n-dimensional T -space in C[a, b], and
{u1, . . . , un} is a T +-system. Let µ be a positive measure relative to U. Assume un+1 satisfies
Condition M with respect to the {u1, . . . , un} and any set of points a ≤ s1 < · · · < sn+1 ≤ b,
and all q ∈ {1, . . . , n}. Then for each ξ ∈ (a, b) ξ−

a
un+1 dµξ ≤

 ξ−

a
un+1 dν

for every ν ∈ V (µ), where µξ is the (unique) canonical representation for µ containing the
node ξ .

Proof. Let a ≤ ξ1 < · · · < ξr ≤ b denote the nodes of the canonical representation for
µξ with ξ = ξℓ. We wish to prove the existence of a u∗

∈ U satisfying u∗
≤ uξ−

n+1 and

u∗(ξi ) = uξ−

n+1(ξi ), i = 1, . . . , r . From Theorems 2.1 and 2.2, this then proves our theorem. Note
that if ℓ = 1, then we simply set u∗

= 0. Hence, we can assume that 1 < ℓ ≤ r . Furthermore, as
ξ ∈ (a, b), if ℓ = r then we have ξr < b.

As µξ is a canonical representation, we have I (µξ ) = n or n + 1. If I (µξ ) = n, then we will
add another node at an endpoint. In the case where µξ has a node at each endpoint, then we will
add a node at a and consider it as a double node. That is, we will assume that I (µξ ) = n + 1.
We add to the node set {ξi }

r
i=1 the values {ξi + ε} for all i ∈ {1, . . . , r} satisfying a < ξi < b,

except for i = ℓ. (If there is a double node at a, then we consider the two values a and a + ε.)
We call this new set of n strictly increasing values {ti }n

i=1.
Consider the ratio

U ξ−


1, . . . , n, n + 1

t1, . . . , tn, t


U


1, . . . , n
t1, . . . , tn


.

It is well-defined since, as {u1, . . . , un} is a T +-system, the denominator is strictly positive.
Expanding the numerator by its last column, we have that it equals

uξ−

n+1(t) − uε(t)

where uε ∈ U . Let us consider the sign of this function.
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Assume ξ = ξℓ = tk . For t ∈ [ti , ti+1] with i ≥ k, i.e. t ≥ ξ , we are considering a
determinant of the form U q with q = k − 1. Rearranging the columns in increasing order of
the points, i.e. moving the column with the value t a total of n − i positions to its left, implies,
from Condition M , that

(−1)i+kU ξ−


1, . . . , n, n + 1

t1, . . . , tn, t


≥ 0, t ∈ [ti , ti+1], i ≥ k.

And similarly, for t ∈ [ti , ti+1] with i < k, i.e. t ≤ ξ . But here we are considering a determinant
of the form U q with q = k. Therefore

(−1)i+k+1U ξ−


1, . . . , n, n + 1

t1, . . . , tn, t


≥ 0, t ∈ [ti , ti+1], i < k.

(Note that we always have q ≤ k ≤ n.)
From the above two inequalities it is readily verified that

uξ−

n+1(t) − uε(t) < 0

can only hold in the intervals (ξi , ξi + ε). It is easily shown that the uε are uniformly bounded.
Thus, as uε ∈ U , and U is a finite-dimensional subspace, on a subsequence of ε → 0 we
have that uε uniformly tends to a u∗

∈ U . The limit function u∗ satisfies u∗
≤ uξ−

n+1 and

u∗(ξi ) = uξ−

n+1(ξi ), i = 1, . . . , k. We have constructed the desired u∗
∈ U . �

Remark. Note that there is no demand that Condition M holds for the case q = n + 1.

As we now show, these same sufficient conditions are necessary if the above Chebyshev–
Markov–Krein lower bounds are to hold for every ξ ∈ (a, b) and all positive measures relative
to U .

Theorem 4.6. Let {u1, . . . , un} be a T +-system on [a, b]. Assume that for a given un+1 ∈

C[a, b], for each ξ ∈ (a, b), and for every positive measure µ relative to U = span{u1, . . . , un}

we have that ξ−

a
un+1 dµξ ≤

 ξ−

a
un+1 dν (4.1)

for every ν ∈ V (µ), where µξ is the unique canonical representation for µ containing the node
ξ . Then un+1 satisfies Condition M with respect to the n-dimensional T +-system {u1, . . . , un}

for every choice of points a ≤ s1 < · · · < sn+1 ≤ b, and all q ∈ {1, . . . , n}.

Proof. This proof is a variation on the method of proof in [8, pp. 135–136], for the above
Theorem 3.6.

Choose any set of n + 1 strictly increasing points a ≤ s1 < · · · < sn+1 ≤ b. Set

ai = U


1, . . . , n
s1, . . . , si−1, si+1, . . . , sn+1


, i = 1, . . . , n + 1.

Then

n+1
i=1

(−1)i ai u(si ) = 0, (4.2)
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for all u ∈ U . As {u1, . . . , un} is a T +-system we have ai > 0, i = 1, . . . , n + 1. Expanding the
determinant U q , at the points {si }

n+1
i=1 , by its last row we also have

U q


1, . . . , n + 1
s1, . . . , sn+1


= (−1)n+1

q
i=1

(−1)i ai un+1(si ).

Thus the fact that un+1 satisfies Condition M with respect to the n-dimensional T +-system
{u1, . . . , un} for the choice of points a ≤ s1 < · · · < sn+1 ≤ b, and q ∈ {1, . . . , n}, is
equivalent to

(−1)q
q

i=1

(−1)i ai un+1(si ) ≥ 0, (4.3)

for the choice of points a ≤ s1 < · · · < sn+1 ≤ b, and q ∈ {1, . . . , n}. We will prove (4.3).
We start with the case of n odd, i.e. n = 2k − 1. Choose any set of n + 1 = 2k strictly

increasing points in [a, b],

a ≤ s1 < · · · < s2k ≤ b.

From (4.2) we have

k
i=1

a2i−1u(s2i−1) =

k
i=1

a2i u(s2i ) (4.4)

for all u ∈ U .
Choose ξ = sq+1 for some q ∈ {1, . . . , n}, where a < ξ = sq+1 < b. Assume, for the

moment, that q = 2ℓ − 1 is odd. Let µξ denote the non-negative discrete measure given by b

a
u dµξ =

k
i=1

a2i u(s2i ).

Note that since ξ ∈ {s2, . . . , s2k} and a < s2 < · · · < s2k ≤ b, we have that n = 2k − 1 ≤

I (µξ ) ≤ 2k = n + 1. Therefore, µξ is a positive measure relative to U , and is also a canonical
representation containing the node ξ . Thus, from (4.1), ξ−

a
un+1 dµξ ≤

 ξ−

a
un+1 dν

for every ν ∈ V (µξ ), and in particular, from (4.4), we obtain

ℓ−1
i=1

a2i un+1(s2i ) ≤

ℓ
i=1

a2i−1un+1(s2i−1),

which is simply

(−1)q
q

i=1

(−1)i ai un+1(si ) ≥ 0,

since q = 2ℓ − 1 odd. This is (4.3).
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Now, assume that q is even, i.e. q = 2ℓ, and ξ = s2ℓ+1. Let µξ denote the non-negative
discrete measure given by b

a
u dµξ =

k
i=1

a2i−1u(s2i−1).

We follow exactly the same analysis as above. The difference is that we obtain the inequality
ℓ−1
i=1

a2i−1un+1(s2i−1) ≤

ℓ−1
i=1

a2i un+1(s2i ),

and thus

(−1)q
q

i=1

(−1)i ai un+1(si ) ≥ 0,

for q even. This proves (4.3).
Let us now consider the case where n is even, i.e. n = 2k. As above, choose any set of

n + 1 = 2k + 1 strictly increasing points in [a, b],

a ≤ s1 < · · · < s2k+1 ≤ b.

From (4.2) we have
k+1
i=1

a2i−1u(s2i−1) =

k
i=1

a2i u(s2i )

for all u ∈ U .
The proof now proceeds in essentially the same manner as previously. Choose ξ = sq+1 for

some q ∈ {1, . . . , n}, where a < ξ = sq+1 < b. Assume, for the moment, that q = 2ℓ − 1 is
odd. Then we proceed exactly as above since the index associated with the points {s2, . . . , s2k}

is n = 2k. That is, the associated measure µξ given by b

a
u dµξ =

k
i=1

a2i u(s2i )

is a canonical (in fact principal) representation. Thus we obtain in this case

(−1)q
q

i=1

(−1)i ai un+1(si ) ≥ 0,

for q odd.
However, if q is even then the index associated with the points {s1, . . . , s2k+1} can be n, n + 1

or n + 2. The associated measure is not canonical when the index is n + 2. We must therefore
exclude this case. But this is exactly the case when both a < s1 and s2k+1 < b. It therefore
follows that when n is even we obtain

(−1)q
q

i=1

(−1)i ai un+1(si ) ≥ 0,

for q even, only for those a ≤ s1 < · · · < s2k+1 ≤ b with s1 = a and/or s2k+1 = b. This implies
that in this case we have that un+1 satisfies Condition M with respect to the n-dimensional T +-
system {u1, . . . , un} for every choice of points a ≤ s1 < · · · < sn+1 ≤ b, and all q ∈ {1, . . . , n},



Author's personal copy

1280 A. Pinkus, J.M. Quesada / Journal of Approximation Theory 164 (2012) 1262–1282

except that if q is even we must restrict ourselves to a ≤ s1 < · · · < s2k+1 ≤ b with s1 = a
and/or s2k+1 = b. We now apply Proposition 4.2 to eliminate this restriction. �

The same arguments as above prove the following results for the upper bound. The difference
between the upper and lower bound is that in the upper bound we demand that u∗∗

≥ uξ+

n+1 and,
in particular, u∗∗(ξ) = un+1(ξ).

Theorem 4.7. Assume U = span{u1, . . . , un} is an n-dimensional T -space in C[a, b], and
{u1, . . . , un} is a T +-system. Let µ be a positive measure relative to U. Assume that for
q ∈ {1, . . . , n} we have that un+1 satisfies Condition M with respect to the {u1, . . . , un} and
any set of points a ≤ s1 < · · · < sn+1 ≤ b. Assume, in addition, that if q = n + 1 and n
is odd, then un+1 satisfies Condition M with respect to the {u1, . . . , un} and any set of points
a ≤ s1 < · · · < sn+1 ≤ b, while if q = n + 1 and n is even, then un+1 satisfies Condition M
with respect to the {u1, . . . , un} and any set of points satisfying a = s1 < · · · < sn+1 ≤ b. Then
for each ξ ∈ (a, b) ξ+

a
un+1 dν ≤

 ξ+

a
un+1 dµξ

for every ν ∈ V (µ) where µξ is the (unique) canonical representation for µ containing the node
ξ .

Theorem 4.8. Let {u1, . . . , un} be a T +-system on [a, b]. Assume that for a given un+1 ∈

C[a, b], for each ξ ∈ (a, b), and for every positive measure µ relative to U = span{u1, . . . , un}

we have that ξ+

a
un+1 dν ≤

 ξ+

a
un+1 dµξ

for every ν ∈ V (µ), where µξ is the unique canonical representation for µ containing the node
ξ . Then un+1 satisfies Condition M with respect to the n-dimensional T +-system {u1, . . . , un}

for every choice of points a ≤ s1 < · · · < sn+1 ≤ b, and all q ∈ {1, . . . , n}. If q = n + 1 and
n is odd, then un+1 satisfies Condition M with respect to the {u1, . . . , un} and any set of points
a ≤ s1 < · · · < sn+1 ≤ b, while if q = n + 1 and n is even, then un+1 satisfies Condition M
with respect to the {u1, . . . , un} only for the set of points satisfying a = s1 < · · · < sn+1 ≤ b.

Remark. Note that there is, in Theorems 4.5–4.8, no a priori demand that un+1 be a non-negative
function. However from Condition M with q = 1 it follows that un+1 is a non-negative function
on [a, b]. What exactly the other demands of Condition M imply as regards un+1 is unclear.

Remark. In Theorems 4.7 and 4.8 there is the additional demand that does not appear in
Theorems 4.5 and 4.6, namely that Condition M must hold with q = n + 1 either for all
a ≤ s1 < · · · < sn+1 ≤ b, or only for a = s1 < · · · < sn+1 ≤ b. As an example of the
difference, with or without this condition with q = n + 1, consider U = Π1 = span{1, t} on
[a, b]. If u3 is positive and increasing, then it satisfies Condition M with respect to Π1 for the
points a ≤ s1 < s2 < s3 ≤ b and for q = 1 and q = 2. For each ξ ∈ (a, b), u∗ is the linear
polynomial satisfying u∗(ξ) = 0 and u∗(a) = u3(a). It is easily shown that there exist u3 that are
positive and increasing, but where the best L1 one-sided approximation from above from Π1 to
uξ+

3 does not interpolate to uξ+

3 at ξ . The additional conditions of Theorems 4.7 and 4.8, namely
that Condition M holds with respect to Π1 for the points a = s1 < s2 < s3 ≤ b and q = 3, is
equivalent to the demand that (u3(t) − u3(a))/(t − a) be a nondecreasing function on [a, b].
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It is of interest to ask the same questions for the parallel problems of

inf
ν∈V (µ)

 b

ξ+

f dν

and

sup
ν∈V (µ)

 b

ξ−

f dν,

where ξ ∈ (a, b). The analysis is very much the same. We state the analogue of Condition M as
Condition M ′.

For p ∈ {1, . . . , n + 1} and a ≤ s1 < · · · < sn+1 ≤ b, we define

Up


1, . . . , n + 1
s1, . . . , sn+1


=


u1(s1) · · · u1(sp) u1(sp+1) · · · u1(sn+1)

...
. . .

...
...

. . .
...

un(s1) · · · un(sp) un(sp+1) · · · un(sn+1)

0 · · · 0 un+1(sp+1) · · · un+1(sn+1)

 .
That is, the first p entries in the last row are set equal to 0.

Definition 4.3. We will say that the function un+1 ∈ C[a, b] satisfies Condition M ′ with respect
to the n-dimensional T +-system {u1, . . . , un} and the points a ≤ s1 < · · · < sn+1 ≤ b and
0 ≤ p ≤ n if

(−1)n+pUp


1, . . . , n + 1
s1, . . . , sn+1


≥ 0.

There is an inherent symmetry between Condition M and Condition M ′. It is that if u ∈ U ,
then u satisfies Condition M for all a ≤ s1 < · · · < sn+1 ≤ b and all 1 ≤ q ≤ n + 1 if and only
if it satisfies Condition M ′ for all a ≤ s1 < · · · < sn+1 ≤ b and all 0 ≤ p ≤ n.

Note that the analogue of Condition K in this setting is:

Definition 4.4. We say that {u1, . . . , un, f } satisfies Condition K ′ on [a, b] if:

(a′) {u1, . . . , uk} is a T +-system for k = 1, . . . , n.
(b′) f is strictly positive on [a, b].
(c′) { f, u1, . . . , uk} is a T +-system for k = 1, . . . , n.
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