Approximating By Ridge Functions

Allan Pinkus

Abstract. This paper surveys certain aspects of the study of ridge func-
tions. We hope it will also encourage some readers to consider researching
problems in this area. After first explaining what ridge functions are and
giving various motivations for their study, we turn to the problem of pre-
senting algorithms for approximating by ridge functions. We then touch
upon the topic of determining the degree of approximation by ridge func-
tions, and that of recognizing functions which are linear combinations of
ridge functions.

§1. Introduction

This short paper is an introduction to certain aspects of the study of ridge
functions. After first explaining what ridge functions are and giving various
motivations for their study, we turn to the problem of presenting algorithms
for approximating by ridge functions. We then touch upon the topic of deter-
mining the degree of approximation by ridge functions, and that of recognizing
when we have a function which is a linear combination of ridge functions.

This paper is short for the very simple reason that at present rather little
is known. Our goal here is to present a partial review, to try to convince you,
the reader, of the significance of the subject, and to encourage some of you to
consider researching problems in this area.

A Ridge Function, in its simplest form, is a multivariate function

f:R" =R
of the form
flar, ... xn) = glarxy + -+ apxy,) = g(a-x),

where ¢ : R — R and a = (a1,...,a,) € R"\{0}. In other words, it is a
multivariate function constant on the parallel hyperplanes a-x = ¢, ¢ € R.
The vector a € IR" \{0} is generally called the direction. We should also

Surface Fitting and Multiresolution Methods 1
A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), pp. 1-14.

Copyright @ 1997 by Vanderbilt University Press, Nashville, TN.

ISBN 0-8265-1294-1.

All rights of reproduction in any form reserved.
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regard a ridge function as a composition of one of the simplest multivariate
functions, namely the inner product a-x, with an arbitrary univariate function
qg.

Ridge functions appear in various areas and under various guises. We will
review some of these shortly. Note that we often use ridge functions without
calling them by name. The functions e®*, ¢®* and (a-x)* are well-known
to us.

What are the approximation sets we wish to consider? One can of course
choose a particular univariate function ¢, and then vary over a number of
directions. That is, consider for a fixed ¢ the space

Gr(g) = {Zaig(ai-x): a; € R,a' e R"\{0}, i = 1,...,r}.

(Note that this is not a linear space.) However, of the various possibilities,
this is the one which we will not consider.
Rather we will look at two sets of ridge functions. The first is given by

R(a',...,a") = {Zgi(ai-x): gi:IR—>IR,i:1,...,r} :
i=1

That is, we fix a finite number of directions and consider linear combinations
of ridge functions with these directions. The functions ¢; are the variables.
This is a linear space.

The second set is

Rr:{zgl(alx) aZE]R,n\{O}7gZ]R,—>]R,7Z:177r} X
=1

Here we fix r and choose both the functions ¢; and the directions a’. This is
not a linear space.

§2. Motivations

The name “ridge function” is rather recent. However these functions have
been considered for some time now but under the name of Plane Waves. See,
for example, the well-known book by Fritz John “Plane Waves and Spheri-
cal Means Applied to Practical Differential Equations” [7]. Plane waves are
also discussed in the classic Courant and Hilbert, “Methods of Mathematical
Physics, Vol. I1”, [2]. In general, linear combinations of ridge functions with
fixed directions occur in the study of hyperbolic constant coefficient partial
differential equations. For example, assume that the (a;,b;) are pairwise lin-
early independent vectors in R*,i = 1,...,r. Then the general “solution” of
the homogeneous partial differential equation

. 0 0
H(aia—x+bia—y>f:0 (2.1)

=1
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are all functions of the form
f(xvy) - Zgi(bix_aiy)v (22)
=1

for arbitrary ¢g;. (Here is one way of determining whether an arbitrary function
f is of the form (2.2) for given (a;,b;), ¢ = 1,...,r, and arbitrary g;. Check
whether it satisfies the homogeneous equation (2.1).)

The term “ridge function” was coined in a 1975 paper by Logan and
Shepp [13]. This was a seminal paper in computerized tomography. In to-
mography, or at least in tomography as the theory was initially constructed in
the early 80’s, ridge functions were basic. However, they were used in a some-
what special form. The general idea therein was to take a given multivariate
function H(x) and to try to reconstruct it from the values of its integrals
along certain planes or lines. If we are given planes or lines which are all
parallels of a given plane or line, then these integrals can be considered as a
ridge function (or some fairly simple generalizations thereof) based on a single
direction. The idea is to reconstruct H(x) from a set of such ridge functions.
Thus the ridge functions so obtained are not arbitrary. These functions all
come from one function H, and thus must satisfy certain moment type condi-
tions. Any reconstruction algorithm must take into account the special nature
of the data. Ridge functions also enter tomography from a slightly different
direction. Logan and Shepp showed how ridge functions solve a “minimum
norm approximation problem” in L?(D) (D the disk in IR?) connected with
best reconstruction of a function based on projection type data.

Ridge functions and ridge function approximation are studied in Statis-
tics. There they often go under the name of Projection Pursuit. The inter-
ested reader may consult Friedman and Stuetzle [5], Huber [6], and Donoho
and Johnstone [4]. Projection pursuit algorithms approximate a function of
n variables by functions of the form

Z gl(al ’ X)7
=1

where the a' and g¢; are the variables. In other words, projection pursuit
algorithms are interested in approximation from R,. The idea here is to
“reduce dimension” and thus bypass the “curse of dimensionality”. The a’-x
is considered as a projection of x. The directions a® are chosen to “pick out
the salient features”. We will later consider some of the ideas and algorithms
developed in the theory of projection pursuit.

The past five years have seen an explosion of interest in the subject of
(Artificial) Neural Networks. This is a highly interdisciplinary area of
research with a selection of problems and models which touch upon various
mathematical questions. One of the popular models is that of a multilayer
feedforward neural net with input, hidden, and output layers. Stripping away
the terminology of neural networks, the simplest case (which is that of one
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hidden layer, r processing units and one output) considers, in mathematical
terms, functions of the form

Z OéiU(Z wijx; + 6;),
=1 =1

where 0 : R — R is some given fixed univariate function (called the activation
function). In this model, which is just one of many, we are in general permitted
to vary over the w;; and #;. Note that for each § € R and w € R" \{0} the
function

o(w-x+0)

is a ridge function. Thus a lower bound on the degree of approximation by
such functions is given by a lower bound on the degree of approximation
by ridge functions, i.e., from R,. And, in fact, there exist o for which the
“degrees of approximation” are essentially the same.

Finally, ridge functions are and should be of interest to the approximation
theorist. The basic idea and concept is a simple one. We wish to approximate
complicated functions by simple functions. Multivariate functions are com-
plicated things. We look for various classes of simpler functions, and ridge
functions are one such class. The questions we ask when approximating by
ridge functions, or by other “candidates” for approximation, are straightfor-
ward questions. Can we approximate (density)? How well can it be done
(degree of approximation)? How do we go about approximating (algorithms
for approximation)? Can it be done quickly and efficiently?

We now have a fairly complete understanding of the first question, i.e.,
that of density. The interested reader should look at Vostrocev and Kreines
[18], Lin and Pinkus [12], and Kroo [10] for various results in this direction.

However, the remaining questions are as yet unanswered.

§3. Approximation Algorithms

A. Fixed Directions
We are interested in methods of approximating from

R(al,...,ar):{Zgi(ai-X): gi:IR—>IR,i:Z,...,r} ,
i=1

in some norm and over some domain in IR".

There seems to be one essential method of approximation. This method
goes under different names in different settings. Particular variants have been
called, among other things, the Von Neumann Alternating Algorithm, the
Cyclic Coordinate Algorithm, the Schwarz Domain Decomposition method,
and the Diliberto-Straus Algorithm. Other variants may be found in the
tomography literature. The idea in our case is the following;:
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Set ‘
M; ={g(a"-x): g€ Xi}

(for the appropriate space of functions X;). Let P; be a best approximation
operator to M;, i.e., to each f the element P;f is a best approximation to
f from M;. (This demand on P; may at times be weakened.) The major
assumption underlying this method is that each P; is fairly easily computable.
Now set

E=(I-P)---(I-P)I-P)

That is, we first find the error in approximating from My, then the error in

approximating this new function from Ms, etec.... E represents a one time
cycle of the process through the M;. In other words
Ef=f-9n—92— —9r,
where ¢; is a best approximation to £ —¢; —¢2 — -+ — ¢j—1 from M,
g=1,...,r.
The algorithm then iterates E. That is, we consider
lim E™f.
m—0o0

The hope and expectation is that this algorithm will converge, and converge
to

f - g*v
where ¢* is a best approximation to f from

Mi+-+ M, =R(a',....a").

(One variant of this algorithm is to consider at each step all the {I — P;}I_;
applied to the existing error, and then choose the “best” one.)

Consider the uniform norm on a rectangular domain in IR? with sides
parallel to the axes. If » = 2 and the a® are the unit directions, then this
algorithm is essentially a specific case of the Diliberto-Straus Algorithm, and
it converges to the desired quantity. It will, with the proper assumptions,
converge to the desired quantity for any two arbitrary directions. However,
in general 1t need not converge to the correct quantity if the number of di-
rections r 1s at least three. It seems that if » > 3 then this algorithm, in
the uniform norm, may prematurely stop. That is, it thinks that it is at a
best global approximation from My + -+ M, and it is not. It is at a best
approximation from each M;, « = 1,... r, separately. In this case this does
not imply that it is at a best approximation from My + -+ + M,.. It would
be interesting to determine conditions under which this algorithm is valid in
this setting. Moreover to date there are no known algorithms for finding best
approximations from R(a',...,a”) in the uniform norm (or in the L!'-norm).

Having dwelt on the defects of this “algorithm”, let us now consider its
advantages. The following two results are valid. Both may be proven using
the methods of proof found in Chapter 3 of Light, Cheney [11].
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Theorem 1. Assume each M;, ¢+ = 1,...,r, is a closed linear subspace in
a uniformly convex and smooth Banach space X. Let P; denote the best
approximation operator from M, « =1,...,r. Assume, in addition, that

M+ + M,

is closed. Then the algorithm described above converges as desired.

A few comments with regards to the assumptions. The closure of each
M 1s necessary in order for a best approximation to exist. The uniform
convexity implies that each M; is an existence and unicity space (proximinal
and Chebyshev). As such the operator P; is well-defined. To the best of my
knowledge, it is not known whether the assumption concerning the closure of
My + -+ M, is in fact necessary. Claims have been made but not properly
substantiated. However this property is used in the proof of this theorem.
The closure question is far from trivial. See, for example, Petersen, Smith,
Solmon [16], Boman [1], and references therein.

The second result is a strengthening of Theorem 1 in the Hilbert space
setting.

Theorem 2. Assume each M;, 1 =1,....r, is a closed linear subspace of a
Hilbert space H. Let P; denote the best approximation operator from M,;,
t =1,...,r. Then the algorithm, as described above, converges to the best
approximation from

M+ M,

Furthermore, if My + --- + M, is closed, then the rate of convergence is
geometric.

If f € H, g* is the best approximation to f from Mj + --- + M,., and
E™f = f—gm, then we say that the rate of convergence is geometric if there
exist constants C' and 6, 0 < 6 < 1, such that

lgm —g™[| < CO™.

The algorithm we have been considering is useful only if a best approx-
imation from each M, is (easily) calculable. We claim that this is not an
unreasonable assumption in our setting. Let

M={g(a-x): g€ Xm}

be a closed linear subspace of X. Given f € X we are essentially looking
for ¢* such that on the hyperplane a - x = ¢ the constant ¢*(¢) is a best
approximation to f (for ¢ as applicable). Finding a best approximation by
a constant is not an impossible task. However, what may not be a prior:
guaranteed is that the resulting ¢* be necessarily in the appropriate X 4.

As an example of how we can calculate the best approximation operator
P, let 1 < p < oo, du be a finite positive measure on IR", and consider
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X = LP(R",dp). Given f € LP(IR,du) and a € R" \{0}, how does one find
a best ridge function ¢*(a - x) with which to approximate f in LP(IR", du)?

Since ¢* is constant on the hyperplane a - x = ¢, one takes its value
thereon to be the constant of best approximation to f on this hyperplane. In
the LP(IR", dp) norm, this is the unique constant K for which

|10 = K P sgnt 0 — K)ditx) = o

where dfi 1s the appropriate “restriction” of the measure du to this hyperplane.
Note that for p = 2 this reduces to

| e - Ky = o.

Thus .
Jasme f(X)dfi(x)
Jaze dii(z)
i.e., the “average” value on the hyperplane. A simple calculation also shows,
via the orthogonality, that

g*(c) =

|f—g"(a )HZL?(]R",du) = ||f||2L2(]R",du) — llg*(a- )HZL?(]R",du)'
This formula will prove useful in what follows.

B. Variable Directions

When considering R(a',...,a"), we might ask ourselves if our true aim is to
find a best approximation from this fixed subspace R(al,...,a")? An odd
question to say the least. But the answer is sometimes yes and sometimes no.
Sometimes we are interested in the fixed subspace R(al,...,a"), in and of
itself. We want a best (or good) approximation and nothing more. Often we
use exactly the same terminology when we are really interested in something a
bit different, namely in a process wherein r is also tending to infinity. (If this
sounds strange, think of the problem of best approximation from the space of
polynomials of degree n. The same dichotomy appears here, especially from
an algorithmic point of view. Are we interested in p,, the best polynomial
approximant of degree n to a fixed function, or are we interested in a sequence
{pn},—, of good approximations (each p,, of degree n) which approximate our
function as n — oo, and good methods of constructing the sequence?)

Assume that we are given a sequence of vectors {ai}il, a’ ¢ R"\{o0}.
Let

A=span{gi(a’ - x): ¢; € X;, i =1,2,...}

(for the appropriate space of functions Xj).
We are interested in finding better and better approximations to a given
function f from A. Here the directions are fixed and not variable. But this
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is, nevertheless, not the same problem we discussed previously. We could
consider the problem

lim inf — gl .

r—o0 gcR(al,...,a") ||f g”
However, the order of the a' really plays no particular role in ridge function
approximation. As such we should rather consider

lim inf inf —
r—oo 1< < +-<7p gER(aJ1’,.,’ajr)||f g||7

or some variant thereof. In this sense the above problem of approximation

with fixed directions is very much similar to the problem of approximation

from the set of ridge functions with variable directions, i.e., approximation
from

Rr:{zgl(alx) aZE]R,n\{O}7gZ]R,—>]R,7Z:177r} X
=1

The difference is that in the first case the set of permissible directions is lim-
ited. However, many of the ideas, with regard to constructing good sequences
of approximants, are the same.

The set R, is non-linear because of the variable directions a'. This non-
linearity causes very serious problems in any attempt to construct good ap-
proximations. The only work, of which I am aware, in this area is due to
statisticians. (That is to say, it is a projection pursuit algorithm.) It was
suggested by Friedman, Stuetzle [5] in 1981. It does not attempt to construct
a best approximation from R,, but gives a method of obtaining a sequence of
¢" € R, which converge to a given f.

This framework is L?(IR", du) where, as previously, du is a finite positive
measure on IR". Assume we are given f € L*(IR",du), and have already
determined g¢§,...,¢’_, and directions b, ..., b"!. That is, we are given

£ = 3 gi (b %),

How can we choose a function ¢ and direction b” so as to minimize

| ((f - Z_:g?(bi‘)> _g(a')”L?(R",du)

as we vary over ¢ and a?
From the result of the previous subsection, we know that for a given fixed
direction a (which we can always assume to be a unit vector), the optimal ga

is given by
fa~x=c fr—l (Jf)d/jL(X)
Jarxme ()

galc) =

Y
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where dji is the appropriate restriction of the measure du to the hyperplane
a-x =c, and

r—1
froi(x) = f(x) = Y gf(b'-x).
=1
Furthermore, as noted,

1fr—1 = gal@ )2 mn apy = fr=1llz2mn ) = N9al@ )Lz mn ap -

Thus minimizing the resulting error is equivalent to maximizing

|ga(a: )HL?(]R",du)

over the (compact) set of unit vectors. As such, theoretically it is doable.
From a computational point of view it is difficult.

This is a “greedy” algorithm. At the rth step it looks at the best of the
possible approximants to the upgraded f,_;. It does not look for the best
approximation from R.,.

The algorithm converges. That is,

Jim {| ]l 22 g ap = 0

However, because of the non-linearity it is worth trying to mollify the demands
of the algorithm while maintaining its convergence. In 1987, L. K. Jones [8]
proved the following result.

Let 0 < p < 1 be fixed. Assume that at the rth step we have obtained

gr(b"-x),

where ¢ is optimal for b” (i.e., g = gpr) but b” is not quite an optimal
direction. Assume, however, that we do know that

lgr (D" L2gn 4y = p sup [lga(@ )]|z2 e an) -

lall=1
Then -
S [1F =37 97" [z any = 0.
1=1

§4. Degree of Approximation

There is very, very little known about degree of approximation by ridge func-
tions. The problems are both interesting and important. For example, recall
that in the model for multilayer feedforward neural nets with one hidden layer
a lower bound on the degree of approximation is given by the lower bound on
the degree of approximation by ridge functions (and this lower bound may be
attained).
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One of the major issues (and this is certainly the same for any reason-
able approximating set in many variables) is in deciding what criteria to use in
measuring “goodness of approximation”. This is intertwined with the problem
of identifying classes of functions which are better and more appropriately ap-
proximated by ridge functions. The usual classes considered are the Sobolev
spaces, determined by smoothness conditions. To understate the case some-
what, it is far from clear that this is a reasonable class in this setting. It
seems, using the criteria of Sobolev spaces, that R(a',... a") (and R,) at-
tain approximation orders (in the worst case) essentially the same as those of
the polynomials they contain, in the following sense.

In R" the dimension of the space 7} of polynomials of degree at most k is

(":k> The space H}! of homogeneous polynomials of degree & has dimension
<"+,’§_1>. Set r = dim H}! = <"+,’§_1> = k"1 andlet the a',...,a” be chosen
so that

H' =span{(a’-x)*: i=1,...,r}.

(The set of {a',... a"} for which this assumption does not hold is rather
sparse.) Then
¢ C R(a',...,a"),

and
T ¢ R(al,...,a").

(Note that R(a',...,a") contains 7} and not only H}'. This is an important
difference. )

Let BJ" denote the usual subset of the Sobolev space consisting of all
functions defined on I = [0,1]" which have a.e. in their domain of definition
all partial derivatives up to order s and such that

| fllze rey + Z ID* fll o iy <1,
[k|<s

where k| =k +--- 4+ k, and

Now it is well-known that

sup inf [|f — p|lprxy) < CE7F
feBy " PE

for some constant C'. Since r < k"~! and 7} C R(al,....a"), it thus follows
that for any {al,... a"} as above,
sup inf = gllory < Crms/n7Y)

feBy™ 9€R(al,...am)
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This is an elementary calculation. The more interesting question is whether
this in fact is the correct order. That is, is the lower bound on the degree of
approximation of the same order? It seems that it is essentially of that order,
see Maiorov [14]. (Other results in this direction may be found in DeVore,
Oskolkov Petrushev [3].)

Another method of obtaining error estimates developed as a consequence
of this next result. This is due to Maurey, is contained in a paper of Pisier
[17], was later independently proven by L. K. Jones [9] in a different form,
and we quote it here in a slightly refined manner as it appears in Makovoz

[15].

Theorem 3. Let & = {dy,¢2,...} be an arbitrary bounded sequence of
elements in a Hilbert space H. Let

er(®) =inf{e > 0: & can be covered by at most r sets of diameter < e}.

For every r and f € H of the form
f:ZCi¢i, Z|Ci|<00,

there is a g = 2;21 aj¢q; with 2;21 la;| <>, |ei| such that

B 2e,(P) .
If =glla < NG > leil).

We can translate this result into a ridge function “meta”theorem as fol-
lows.

Assume f lies in the closure of the convex hull of a bounded set of ridge
functions g(a - x), i.e., satisfying ||g(a-)||z2(r»,ap) < ¢ for some fixed c.

Then 4
C
1 f - 2 n < —

for some absolute constant A.

The important and surprising fact worth noting here is that the bound
is independent of n. Have we found a method of defeating the “curse of
dimensionality”? Undoubtedly not. The “dimensionality” factor has been
transferred to the class of functions being approximated. It seems that the
function sets

co{g(a-): llg(a)llzzmn.apn) < ¢}

are, in some sense, more and more constrained as the dimension increases. The
problem remains to understand the nature of these sets. In [9], L. K. Jones
gives an algorithm, close in character to the Friedman, Stuetzle algorithm, for
which the bound is attained.
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We recall that in the Friedman, Stuetzle algorithm we chose, at the rth
step, a function ¢ and a direction b” so as to minimize

| (f— ng(bi‘)> _g(a')”L?(R",du)

as we vary over ¢ and a. The Jones variant which gives the bound Ac/+/r for
the requisite f has us, at step r, minimizing

r—1
If—(1—a) (Z g; (b )) — ag(a )l L2mn,ap
=1
over a function ¢, direction a, and « € [0, 1].

§5. Recognizing Linear Combinations of Ridge Functions

As mentioned in Section 2, a function f(x,y) is of the form

Floy) =D gilaiz + biy)
i=1

for given (a;, b;), but unknown ¢;, ¢ = 1,...,r, if and only if
. 0 0
bim— —a;=— ) f=0,
il;[l ( or 8y> !

in a “generalized” sense. Unfortunately such a simple characterization does
not carry over to the case of three or more variables.
How can we determine if a function f (defined on R") is of the form

f(x) = Zgi(ai - X)

for some given al,...,a” € R" \{0}, but unknown ¢',...,¢"? That is, how
do we identify R(a',...,a”)? The answer is known and may be found in Lin,
Pinkus [12]. Let P(al,... ,a") denote the set of polynomials which vanish on
all the rays {da’: A€ R}, i =1,...,r.

Theorem 4. The continuous function f € R(a',... a") if and only if
f € span{q : ¢ polynomial, p(D)q = 0 for every p € P(a',... a")}.

It follows from the theory of polynomial ideals that one need not check
every p € P(al,... a").
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Can we determine when f € R, for a fixed r? (Recall that as the direc-
tions are also variables, R, is a nonlinear set and more difficult to classify.)
The case r = 1 is relatively simple. Assume

f(x) =g(a-x)

for some unknown a and ¢. Assume f (i.e., ¢g) is continuously differentiable.

Then
of

a:][;‘(X):aig'(a-x), i=1,...,n.
1
Taking ratios we have
I3)
ag}fi (X) . a; ij = 1 n
B — T S T b PR
%(X) 4

assuming a; and ¢'(a - x) do not vanish. Note that the right-hand-side is
independent of x for every choice of 7,57 € {1,...,n}. The a and ¢ are not
uniquely determined. We can always replace a by ca for any constant ¢ # 0,
and appropriately alter ¢g. As such, knowing all the ratios a;/a; effectively
determines a. Knowing a we obtain g¢.
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