
Approximating By Ridge FunctionsAllan PinkusAbstract. This paper surveys certain aspects of the study of ridge func-tions. We hope it will also encourage some readers to consider researchingproblems in this area. After �rst explaining what ridge functions are andgiving various motivations for their study, we turn to the problem of pre-senting algorithms for approximating by ridge functions. We then touchupon the topic of determining the degree of approximation by ridge func-tions, and that of recognizing functions which are linear combinations ofridge functions. x1. IntroductionThis short paper is an introduction to certain aspects of the study of ridgefunctions. After �rst explaining what ridge functions are and giving variousmotivations for their study, we turn to the problem of presenting algorithmsfor approximating by ridge functions. We then touch upon the topic of deter-mining the degree of approximation by ridge functions, and that of recognizingwhen we have a function which is a linear combination of ridge functions.This paper is short for the very simple reason that at present rather littleis known. Our goal here is to present a partial review, to try to convince you,the reader, of the signi�cance of the subject, and to encourage some of you toconsider researching problems in this area.A Ridge Function, in its simplest form, is a multivariate functionf : IRn ! IRof the form f(x1; : : : ; xn) = g(a1x1 + � � �+ anxn) = g(a � x);where g : IR ! IR and a = (a1; : : : ; an) 2 IRn nf0g. In other words, it is amultivariate function constant on the parallel hyperplanes a � x = c, c 2 IR.The vector a 2 IRn nf0g is generally called the direction. We should alsoSurface Fitting and Multiresolution Methods 1A. Le M�ehaut�e, C. Rabut, and L. L. Schumaker (eds.), pp. 1{14.Copyright oc 1997 by Vanderbilt University Press, Nashville, TN.ISBN 0-8265-1294-1.All rights of reproduction in any form reserved.



2 A. Pinkusregard a ridge function as a composition of one of the simplest multivariatefunctions, namely the inner product a�x, with an arbitrary univariate functiong. Ridge functions appear in various areas and under various guises. We willreview some of these shortly. Note that we often use ridge functions withoutcalling them by name. The functions ea�x, eia�x, and (a � x)k are well-knownto us.What are the approximation sets we wish to consider? One can of coursechoose a particular univariate function g, and then vary over a number ofdirections. That is, consider for a �xed g the spaceGr(g) = ( rXi=1 �ig(ai � x) : �i 2 IR; ai 2 IRn nf0g; i = 1; : : : ; r) :(Note that this is not a linear space.) However, of the various possibilities,this is the one which we will not consider.Rather we will look at two sets of ridge functions. The �rst is given byR(a1; : : : ;ar) = ( rXi=1 gi(ai � x) : gi : IR! IR; i = 1; : : : ; r) :That is, we �x a �nite number of directions and consider linear combinationsof ridge functions with these directions. The functions gi are the variables.This is a linear space.The second set isRr = ( rXi=1 gi(ai � x) : ai 2 IRn nf0g; gi : IR! IR; i = 1; : : : ; r) :Here we �x r and choose both the functions gi and the directions ai. This isnot a linear space. x2. MotivationsThe name \ridge function" is rather recent. However these functions havebeen considered for some time now but under the name of Plane Waves. See,for example, the well-known book by Fritz John \Plane Waves and Spheri-cal Means Applied to Practical Di�erential Equations" [7]. Plane waves arealso discussed in the classic Courant and Hilbert, \Methods of MathematicalPhysics, Vol. II", [2]. In general, linear combinations of ridge functions with�xed directions occur in the study of hyperbolic constant coe�cient partialdi�erential equations. For example, assume that the (ai; bi) are pairwise lin-early independent vectors in IR2; i = 1; : : : ; r. Then the general \solution" ofthe homogeneous partial di�erential equationrYi=1�ai @@x + bi @@y� f = 0 (2:1)



Approximating By Ridge Functions 3are all functions of the formf(x; y) = rXi=1 gi(bix� aiy) ; (2:2)for arbitrary gi. (Here is one way of determining whether an arbitrary functionf is of the form (2.2) for given (ai; bi), i = 1; : : : ; r, and arbitrary gi. Checkwhether it satis�es the homogeneous equation (2.1).)The term \ridge function" was coined in a 1975 paper by Logan andShepp [13]. This was a seminal paper in computerized tomography. In to-mography, or at least in tomography as the theory was initially constructed inthe early 80's, ridge functions were basic. However, they were used in a some-what special form. The general idea therein was to take a given multivariatefunction H(x) and to try to reconstruct it from the values of its integralsalong certain planes or lines. If we are given planes or lines which are allparallels of a given plane or line, then these integrals can be considered as aridge function (or some fairly simple generalizations thereof) based on a singledirection. The idea is to reconstruct H(x) from a set of such ridge functions.Thus the ridge functions so obtained are not arbitrary. These functions allcome from one function H, and thus must satisfy certain moment type condi-tions. Any reconstruction algorithmmust take into account the special natureof the data. Ridge functions also enter tomography from a slightly di�erentdirection. Logan and Shepp showed how ridge functions solve a \minimumnorm approximation problem" in L2(D) (D the disk in IR2) connected withbest reconstruction of a function based on projection type data.Ridge functions and ridge function approximation are studied in Statis-tics. There they often go under the name of Projection Pursuit. The inter-ested reader may consult Friedman and Stuetzle [5], Huber [6], and Donohoand Johnstone [4]. Projection pursuit algorithms approximate a function ofn variables by functions of the formrXi=1 gi(ai � x);where the ai and gi are the variables. In other words, projection pursuitalgorithms are interested in approximation from Rr . The idea here is to\reduce dimension" and thus bypass the \curse of dimensionality". The ai �xis considered as a projection of x. The directions ai are chosen to \pick outthe salient features". We will later consider some of the ideas and algorithmsdeveloped in the theory of projection pursuit.The past �ve years have seen an explosion of interest in the subject of(Artificial) Neural Networks. This is a highly interdisciplinary area ofresearch with a selection of problems and models which touch upon variousmathematical questions. One of the popular models is that of a multilayerfeedforward neural net with input, hidden, and output layers. Stripping awaythe terminology of neural networks, the simplest case (which is that of one



4 A. Pinkushidden layer, r processing units and one output) considers, in mathematicalterms, functions of the formrXi=1 �i�( nXj=1wijxj + �i);where � : IR! IR is some given �xed univariate function (called the activationfunction). In this model, which is just one of many, we are in general permittedto vary over the wij and �i. Note that for each � 2 IR and w 2 IRn nf0g thefunction �(w � x+ �)is a ridge function. Thus a lower bound on the degree of approximation bysuch functions is given by a lower bound on the degree of approximationby ridge functions, i.e., from Rr. And, in fact, there exist � for which the\degrees of approximation" are essentially the same.Finally, ridge functions are and should be of interest to the approximationtheorist. The basic idea and concept is a simple one. We wish to approximatecomplicated functions by simple functions. Multivariate functions are com-plicated things. We look for various classes of simpler functions, and ridgefunctions are one such class. The questions we ask when approximating byridge functions, or by other \candidates" for approximation, are straightfor-ward questions. Can we approximate (density)? How well can it be done(degree of approximation)? How do we go about approximating (algorithmsfor approximation)? Can it be done quickly and e�ciently?We now have a fairly complete understanding of the �rst question, i.e.,that of density. The interested reader should look at Vostrocev and Kreines[18], Lin and Pinkus [12], and Kroo [10] for various results in this direction.However, the remaining questions are as yet unanswered.x3. Approximation AlgorithmsA. Fixed DirectionsWe are interested in methods of approximating fromR(a1; : : : ;ar) = ( rXi=1 gi(ai � x) : gi : IR! IR; i = l; : : : ; r) ;in some norm and over some domain in IRn.There seems to be one essential method of approximation. This methodgoes under di�erent names in di�erent settings. Particular variants have beencalled, among other things, the Von Neumann Alternating Algorithm, theCyclic Coordinate Algorithm, the Schwarz Domain Decomposition method,and the Diliberto-Straus Algorithm. Other variants may be found in thetomography literature. The idea in our case is the following:



Approximating By Ridge Functions 5Set Mi = fg(ai � x) : g 2 Xig(for the appropriate space of functions Xi). Let Pi be a best approximationoperator to Mi, i.e., to each f the element Pif is a best approximation tof from Mi. (This demand on Pi may at times be weakened.) The majorassumption underlying this method is that each Pi is fairly easily computable.Now set E = (I � Pr) � � � (I � P2)(I � P1):That is, we �rst �nd the error in approximating from M1, then the error inapproximating this new function from M2, etc... . E represents a one timecycle of the process through the Mi. In other wordsEf = f � g1 � g2 � � � � � gr;where gj is a best approximation to E � g1 � g2 � � � � � gj�1 from Mj ,j = 1; : : : ; r.The algorithm then iterates E. That is, we considerlimm!1Emf :The hope and expectation is that this algorithm will converge, and convergeto f � g�;where g� is a best approximation to f fromM1 + � � �+Mr = R(a1; : : : ;ar) :(One variant of this algorithm is to consider at each step all the fI � Pigri=1applied to the existing error, and then choose the \best" one.)Consider the uniform norm on a rectangular domain in IR2 with sidesparallel to the axes. If r = 2 and the ai are the unit directions, then thisalgorithm is essentially a speci�c case of the Diliberto-Straus Algorithm, andit converges to the desired quantity. It will, with the proper assumptions,converge to the desired quantity for any two arbitrary directions. However,in general it need not converge to the correct quantity if the number of di-rections r is at least three. It seems that if r � 3 then this algorithm, inthe uniform norm, may prematurely stop. That is, it thinks that it is at abest global approximation fromM1 + � � �+Mr, and it is not. It is at a bestapproximation from each Mi, i = 1; : : : ; r, separately. In this case this doesnot imply that it is at a best approximation from M1 + � � � +Mr. It wouldbe interesting to determine conditions under which this algorithm is valid inthis setting. Moreover to date there are no known algorithms for �nding bestapproximations from R(a1; : : : ;ar) in the uniform norm (or in the L1-norm).Having dwelt on the defects of this \algorithm", let us now consider itsadvantages. The following two results are valid. Both may be proven usingthe methods of proof found in Chapter 3 of Light, Cheney [11].



6 A. PinkusTheorem 1. Assume each Mi, i = 1; : : : ; r, is a closed linear subspace ina uniformly convex and smooth Banach space X. Let Pi denote the bestapproximation operator from Mi, i = 1; : : : ; r. Assume, in addition, thatM1 + � � �+Mris closed. Then the algorithm described above converges as desired.A few comments with regards to the assumptions. The closure of eachMi is necessary in order for a best approximation to exist. The uniformconvexity implies that eachMi is an existence and unicity space (proximinaland Chebyshev). As such the operator Pi is well-de�ned. To the best of myknowledge, it is not known whether the assumption concerning the closure ofM1+ � � �+Mr is in fact necessary. Claims have been made but not properlysubstantiated. However this property is used in the proof of this theorem.The closure question is far from trivial. See, for example, Petersen, Smith,Solmon [16], Boman [1], and references therein.The second result is a strengthening of Theorem 1 in the Hilbert spacesetting.Theorem 2. Assume each Mi, i = 1; : : : ; r, is a closed linear subspace of aHilbert space H. Let Pi denote the best approximation operator from Mi,i = 1; : : : ; r. Then the algorithm, as described above, converges to the bestapproximation from M1 + � � �+Mr :Furthermore, if M1 + � � � +Mr is closed, then the rate of convergence isgeometric.If f 2 H, g� is the best approximation to f from M1 + � � � +Mr, andEmf = f�gm, then we say that the rate of convergence is geometric if thereexist constants C and �; 0 � � < 1, such thatkgm � g�k � C�m:The algorithm we have been considering is useful only if a best approx-imation from each Mi is (easily) calculable. We claim that this is not anunreasonable assumption in our setting. LetM = fg(a � x) : g 2 XMgbe a closed linear subspace of X. Given f 2 X we are essentially lookingfor g� such that on the hyperplane a � x = c the constant g�(c) is a bestapproximation to f (for c as applicable). Finding a best approximation bya constant is not an impossible task. However, what may not be a prioriguaranteed is that the resulting g� be necessarily in the appropriate XM.As an example of how we can calculate the best approximation operatorPi, let 1 < p < 1, d� be a �nite positive measure on IRn, and consider



Approximating By Ridge Functions 7X = Lp(IRn; d�). Given f 2 Lp(IR; d�) and a 2 IRn nf0g, how does one �nda best ridge function g�(a � x) with which to approximate f in Lp(IRn; d�)?Since g� is constant on the hyperplane a � x = c, one takes its valuethereon to be the constant of best approximation to f on this hyperplane. Inthe Lp(IRn; d�) norm, this is the unique constant K for whichZa�x=c jf(x) �Kjp�1sgn(f(x) �K)d~�(x) = 0;where d~� is the appropriate \restriction" of the measure d� to this hyperplane.Note that for p = 2 this reduces toZa�x=c(f(x) �K)d~�(x) = 0 :Thus g�(c) = Ra�x=c f(x)d~�(x)Ra�x=c d~�(x) ;i.e., the \average" value on the hyperplane. A simple calculation also shows,via the orthogonality, thatkf � g�(a� )k2L2(IRn;d�) = kfk2L2(IRn;d�) � kg�(a� )k2L2(IRn;d�) :This formula will prove useful in what follows.B. Variable DirectionsWhen considering R(a1; : : : ;ar), we might ask ourselves if our true aim is to�nd a best approximation from this �xed subspace R(a1; : : : ;ar)? An oddquestion to say the least. But the answer is sometimes yes and sometimes no.Sometimes we are interested in the �xed subspace R(a1; : : : ;ar), in and ofitself. We want a best (or good) approximation and nothing more. Often weuse exactly the same terminology when we are really interested in something abit di�erent, namely in a process wherein r is also tending to in�nity. (If thissounds strange, think of the problem of best approximation from the space ofpolynomials of degree n. The same dichotomy appears here, especially froman algorithmic point of view. Are we interested in pn, the best polynomialapproximant of degree n to a �xed function, or are we interested in a sequencefpng1n=0 of good approximations (each pn of degree n) which approximate ourfunction as n!1, and good methods of constructing the sequence?)Assume that we are given a sequence of vectors �ai	11=1, ai 2 IRn nf0g.Let A = span�gi(ai � x) : gi 2 Xi; i = 1; 2; : : :	(for the appropriate space of functions Xi).We are interested in �nding better and better approximations to a givenfunction f from A. Here the directions are �xed and not variable. But this



8 A. Pinkusis, nevertheless, not the same problem we discussed previously. We couldconsider the problem limr!1 infg2R(a1;:::;ar) kf � gk :However, the order of the ai really plays no particular role in ridge functionapproximation. As such we should rather considerlimr!1 inf1�j1<���<jr infg2R(aj1 ;:::;ajr ) kf � gk ;or some variant thereof. In this sense the above problem of approximationwith �xed directions is very much similar to the problem of approximationfrom the set of ridge functions with variable directions, i.e., approximationfrom Rr = ( rXi=1 gi(ai � x) : ai 2 IRn nf0g; gi : IR! IR; i = 1; : : : ; r) :The di�erence is that in the �rst case the set of permissible directions is lim-ited. However, many of the ideas, with regard to constructing good sequencesof approximants, are the same.The set Rr is non-linear because of the variable directions ai. This non-linearity causes very serious problems in any attempt to construct good ap-proximations. The only work, of which I am aware, in this area is due tostatisticians. (That is to say, it is a projection pursuit algorithm.) It wassuggested by Friedman, Stuetzle [5] in 1981. It does not attempt to constructa best approximation from Rr, but gives a method of obtaining a sequence ofgr 2 Rr which converge to a given f .This framework is L2(IRn; d�) where, as previously, d� is a �nite positivemeasure on IRn. Assume we are given f 2 L2(IRn; d�), and have alreadydetermined g�1 ; : : : ; g�r�1 and directions b1; : : : ;br�1. That is, we are givenf(x) � r�1Xi=1 g�i (bi � x) :How can we choose a function g�r and direction br so as to minimizek (f � r�1Xi=1 g�i (bi� )! � g(a� )kL2(IRn;d�)as we vary over g and a?From the result of the previous subsection, we know that for a given �xeddirection a (which we can always assume to be a unit vector), the optimal gais given by ga(c) = Ra�x=c fr�1(x)d~�(x)Ra�x=c d~�(x) ;



Approximating By Ridge Functions 9where d~� is the appropriate restriction of the measure d� to the hyperplanea � x = c, and fr�1(x) = f(x) � r�1Xi=1 g�i (bi � x) :Furthermore, as noted,kfr�1 � ga(a� )k2L2(IRn;d�) = kfr�1k2L2(IRn;d�) � kga(a� )k2L2(IRn;d�) :Thus minimizing the resulting error is equivalent to maximizingkga(a� )kL2(IRn;d�)over the (compact) set of unit vectors. As such, theoretically it is doable.From a computational point of view it is di�cult.This is a \greedy" algorithm. At the rth step it looks at the best of thepossible approximants to the upgraded fr�1. It does not look for the bestapproximation from Rr.The algorithm converges. That is,limr!1 kfrkL2(IRn;d�) = 0 :However, because of the non-linearity it is worth trying to mollify the demandsof the algorithm while maintaining its convergence. In 1987, L. K. Jones [8]proved the following result.Let 0 < � < 1 be �xed. Assume that at the rth step we have obtainedg�r (br � x);where g�r is optimal for br (i.e., g�r = gbr) but br is not quite an optimaldirection. Assume, however, that we do know thatkg�r (br � )kL2(IRn;d�) � � supkak=1 kga(a� )kL2(IRn;d�) :Then limr!1 kf � rXi=1 g�i (bi� )kL2(IRn;d�) = 0 :x4. Degree of ApproximationThere is very, very little known about degree of approximation by ridge func-tions. The problems are both interesting and important. For example, recallthat in the model for multilayer feedforward neural nets with one hidden layera lower bound on the degree of approximation is given by the lower bound onthe degree of approximation by ridge functions (and this lower bound may beattained).



10 A. PinkusOne of the major issues (and this is certainly the same for any reason-able approximating set in many variables) is in deciding what criteria to use inmeasuring \goodness of approximation". This is intertwined with the problemof identifying classes of functions which are better and more appropriately ap-proximated by ridge functions. The usual classes considered are the Sobolevspaces, determined by smoothness conditions. To understate the case some-what, it is far from clear that this is a reasonable class in this setting. Itseems, using the criteria of Sobolev spaces, that R(a1; : : : ;ar) (and Rr) at-tain approximation orders (in the worst case) essentially the same as those ofthe polynomials they contain, in the following sense.In IRn the dimension of the space �nk of polynomials of degree at most k is�n+kk �. The space Hnk of homogeneous polynomials of degree k has dimension�n+k�1k �. Set r = dimHnk = �n+k�1k � � kn�1, and let the a1; : : : ;ar be chosenso that Hnk = spanf(ai � x)k : i = 1; : : : ; rg :(The set of fa1; : : : ;arg for which this assumption does not hold is rathersparse.) Then �nk � R(a1; : : : ;ar) ;and �nk+1 6� R(a1; : : : ;ar) :(Note that R(a1; : : : ;ar) contains �nk and not only Hnk . This is an importantdi�erence.)Let Bs;np denote the usual subset of the Sobolev space consisting of allfunctions de�ned on K = [0; 1]n which have a.e. in their domain of de�nitionall partial derivatives up to order s and such thatkfkLp(K) + Xjkj�s kDkfkLp(K) � 1 ;where jkj = k1 + � � �+ kn andDkf = @jkjf@xk11 � � � @xknn :Now it is well-known thatsupf2Bs;np infp2�nk kf � pkLp(K) � Ck�sfor some constant C. Since r � kn�1 and �nk � R(a1; : : : ;ar), it thus followsthat for any fa1; : : : ;arg as above,supf2Bs;np infg2R(a1;:::;ar) kf � gkLp(K) � Cr�s=(n�1) :



Approximating By Ridge Functions 11This is an elementary calculation. The more interesting question is whetherthis in fact is the correct order. That is, is the lower bound on the degree ofapproximation of the same order? It seems that it is essentially of that order,see Maiorov [14]. (Other results in this direction may be found in DeVore,Oskolkov Petrushev [3].)Another method of obtaining error estimates developed as a consequenceof this next result. This is due to Maurey, is contained in a paper of Pisier[17], was later independently proven by L. K. Jones [9] in a di�erent form,and we quote it here in a slightly re�ned manner as it appears in Makovoz[15].Theorem 3. Let � = f�1; �2; : : :g be an arbitrary bounded sequence ofelements in a Hilbert space H. Let"r(�) = inff" > 0 : � can be covered by at most r sets of diameter � "g :For every r and f 2 H of the formf =Xi ci�i ; Xi jcij <1 ;there is a g =Prj=1 aj�ij with Prj=1 jaj j �Pi jcij such thatkf � gkH � 2"r(�)pr (X jcij) :We can translate this result into a ridge function \meta"theorem as fol-lows.Assume f lies in the closure of the convex hull of a bounded set of ridgefunctions g(a � x), i.e., satisfying kg(a� )kL2(IRn;d�) � c for some �xed c.Then infg2Rr kf � gkL2(IRn;d�) � Acprfor some absolute constant A.The important and surprising fact worth noting here is that the boundis independent of n. Have we found a method of defeating the \curse ofdimensionality"? Undoubtedly not. The \dimensionality" factor has beentransferred to the class of functions being approximated. It seems that thefunction sets cofg(a� ) : kg(a�)kL2(IRn;d�) � cgare, in some sense, more andmore constrained as the dimension increases. Theproblem remains to understand the nature of these sets. In [9], L. K. Jonesgives an algorithm, close in character to the Friedman, Stuetzle algorithm, forwhich the bound is attained.



12 A. PinkusWe recall that in the Friedman, Stuetzle algorithm we chose, at the rthstep, a function g�r and a direction br so as to minimizek f � r�1Xi=1 g�i (bi� )! � g(a� )kL2(IRn;d�)as we vary over g and a. The Jones variant which gives the bound Ac=pr forthe requisite f has us, at step r, minimizingkf � (1 � �) r�1Xi=1 g�i (bi� )! � �g(a� )kL2(IRn;d�)over a function g, direction a, and � 2 [0; 1].x5. Recognizing Linear Combinations of Ridge FunctionsAs mentioned in Section 2, a function f(x; y) is of the formf(x; y) = rXi=1 gi(aix+ biy)for given (ai; bi), but unknown gi, i = 1; : : : ; r, if and only ifrYi=1�bi @@x � ai @@y� f = 0 ;in a \generalized" sense. Unfortunately such a simple characterization doesnot carry over to the case of three or more variables.How can we determine if a function f (de�ned on IRn) is of the formf(x) = rXi=1 gi(ai � x)for some given a1; : : : ;ar 2 IRn nf0g, but unknown g1; : : : ; gr? That is, howdo we identify R(a1; : : : ;ar)? The answer is known and may be found in Lin,Pinkus [12]. Let P(a1; : : : ;ar) denote the set of polynomials which vanish onall the rays f�ai : � 2 IRg, i = 1; : : : ; r.Theorem 4. The continuous function f 2 R(a1; : : : ;ar) if and only iff 2 spanfq : q polynomial; p(D)q = 0 for every p 2 P(a1; : : : ;ar)g :It follows from the theory of polynomial ideals that one need not checkevery p 2 P(a1; : : : ;ar).



Approximating By Ridge Functions 13Can we determine when f 2 Rr for a �xed r? (Recall that as the direc-tions are also variables, Rr is a nonlinear set and more di�cult to classify.)The case r = 1 is relatively simple. Assumef(x) = g(a � x)for some unknown a and g. Assume f (i.e., g) is continuously di�erentiable.Then @f@xi (x) = aig0(a � x) ; i = 1; : : : ; n :Taking ratios we have @f@xi (x)@f@xj (x) = aiaj ; i; j = 1; : : : ; n ;assuming aj and g0(a � x) do not vanish. Note that the right-hand-side isindependent of x for every choice of i; j 2 f1; : : : ; ng. The a and g are notuniquely determined. We can always replace a by ca for any constant c 6= 0,and appropriately alter g. As such, knowing all the ratios ai=aj e�ectivelydetermines a. Knowing a we obtain g.References1. Boman, J., On the closure of spaces of sums of ridge functions and therange of the X-ray transform, Ann. Inst. Fourier, Grenoble 34 (1984),207{239.2. Courant, R., and D. Hilbert, Methods of Mathematical Physics, Vol. II,Interscience Publishers, Inc., New York, 1962.3. DeVore, R. A., Oskolkov, K. I., and P. P. Petrushev, Approximation byfeed-forward neural networks, preprint.4. Donoho, D. L., and I. M. Johnstone, Projection-based approximation anda duality method with kernel methods, Ann. Statist. 17 (1989), 58{106.5. Friedman, J. H., and W. Stuetzle, Projection pursuit regression, J. Amer.Statist. Assoc. 76 (1981), 817{8236. Huber, P. J., Projection pursuit, Ann. Statist. 13 (1985), 435{475.7. John, F., Plane Waves and Spherical Means Applied to Partial Di�eren-tial Equations, Interscience Publishers, Inc., New York, 1955.8. Jones, L. K., On a conjecture of Huber concerning the convergence ofprojection pursuit regression, Ann. Statist. 15 (1987), 880{882.9. Jones, L. K., A simple lemma on greedy approximation in Hilbert spaceand convergence rates for projection pursuit regression and neural net-work training, Ann. Statist. 20 (1992), 608{613.10. Kroo, A., On approximation by ridge functions, to appear in Const. Ap-prox.
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